Context BoundsSanitizer is a mitigation that is part of UBSAN. It can be enabled in "trap" mode to crash on OOB array accesses. Problem BoundsSan has zero false positives meaning every crash is a OOB array access, unfortunately optimizations cause these crashes in production builds to be a bit useless because we only know which function is crashing but not which line of code. Godbolt example of the optimization: https://godbolt.org/z/6qjax9z1b This Diff I wanted to provide a way to know exactly which LOC is responsible for the crash. What we do here is use the size of the basic block as an iterator to an immediate value for the ubsan trap. Previous discussion: https://reviews.llvm.org/D148654
234 lines
8.6 KiB
C++
234 lines
8.6 KiB
C++
//===- BoundsChecking.cpp - Instrumentation for run-time bounds checking --===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Instrumentation/BoundsChecking.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/Analysis/MemoryBuiltins.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/TargetFolder.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstIterator.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <cstdint>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "bounds-checking"
|
|
|
|
static cl::opt<bool> SingleTrapBB("bounds-checking-single-trap",
|
|
cl::desc("Use one trap block per function"));
|
|
|
|
static cl::opt<bool> DebugTrapBB("bounds-checking-unique-traps",
|
|
cl::desc("Always use one trap per check"));
|
|
|
|
STATISTIC(ChecksAdded, "Bounds checks added");
|
|
STATISTIC(ChecksSkipped, "Bounds checks skipped");
|
|
STATISTIC(ChecksUnable, "Bounds checks unable to add");
|
|
|
|
using BuilderTy = IRBuilder<TargetFolder>;
|
|
|
|
/// Gets the conditions under which memory accessing instructions will overflow.
|
|
///
|
|
/// \p Ptr is the pointer that will be read/written, and \p InstVal is either
|
|
/// the result from the load or the value being stored. It is used to determine
|
|
/// the size of memory block that is touched.
|
|
///
|
|
/// Returns the condition under which the access will overflow.
|
|
static Value *getBoundsCheckCond(Value *Ptr, Value *InstVal,
|
|
const DataLayout &DL, TargetLibraryInfo &TLI,
|
|
ObjectSizeOffsetEvaluator &ObjSizeEval,
|
|
BuilderTy &IRB, ScalarEvolution &SE) {
|
|
TypeSize NeededSize = DL.getTypeStoreSize(InstVal->getType());
|
|
LLVM_DEBUG(dbgs() << "Instrument " << *Ptr << " for " << Twine(NeededSize)
|
|
<< " bytes\n");
|
|
|
|
SizeOffsetEvalType SizeOffset = ObjSizeEval.compute(Ptr);
|
|
|
|
if (!ObjSizeEval.bothKnown(SizeOffset)) {
|
|
++ChecksUnable;
|
|
return nullptr;
|
|
}
|
|
|
|
Value *Size = SizeOffset.first;
|
|
Value *Offset = SizeOffset.second;
|
|
ConstantInt *SizeCI = dyn_cast<ConstantInt>(Size);
|
|
|
|
Type *IndexTy = DL.getIndexType(Ptr->getType());
|
|
Value *NeededSizeVal = IRB.CreateTypeSize(IndexTy, NeededSize);
|
|
|
|
auto SizeRange = SE.getUnsignedRange(SE.getSCEV(Size));
|
|
auto OffsetRange = SE.getUnsignedRange(SE.getSCEV(Offset));
|
|
auto NeededSizeRange = SE.getUnsignedRange(SE.getSCEV(NeededSizeVal));
|
|
|
|
// three checks are required to ensure safety:
|
|
// . Offset >= 0 (since the offset is given from the base ptr)
|
|
// . Size >= Offset (unsigned)
|
|
// . Size - Offset >= NeededSize (unsigned)
|
|
//
|
|
// optimization: if Size >= 0 (signed), skip 1st check
|
|
// FIXME: add NSW/NUW here? -- we dont care if the subtraction overflows
|
|
Value *ObjSize = IRB.CreateSub(Size, Offset);
|
|
Value *Cmp2 = SizeRange.getUnsignedMin().uge(OffsetRange.getUnsignedMax())
|
|
? ConstantInt::getFalse(Ptr->getContext())
|
|
: IRB.CreateICmpULT(Size, Offset);
|
|
Value *Cmp3 = SizeRange.sub(OffsetRange)
|
|
.getUnsignedMin()
|
|
.uge(NeededSizeRange.getUnsignedMax())
|
|
? ConstantInt::getFalse(Ptr->getContext())
|
|
: IRB.CreateICmpULT(ObjSize, NeededSizeVal);
|
|
Value *Or = IRB.CreateOr(Cmp2, Cmp3);
|
|
if ((!SizeCI || SizeCI->getValue().slt(0)) &&
|
|
!SizeRange.getSignedMin().isNonNegative()) {
|
|
Value *Cmp1 = IRB.CreateICmpSLT(Offset, ConstantInt::get(IndexTy, 0));
|
|
Or = IRB.CreateOr(Cmp1, Or);
|
|
}
|
|
|
|
return Or;
|
|
}
|
|
|
|
/// Adds run-time bounds checks to memory accessing instructions.
|
|
///
|
|
/// \p Or is the condition that should guard the trap.
|
|
///
|
|
/// \p GetTrapBB is a callable that returns the trap BB to use on failure.
|
|
template <typename GetTrapBBT>
|
|
static void insertBoundsCheck(Value *Or, BuilderTy &IRB, GetTrapBBT GetTrapBB) {
|
|
// check if the comparison is always false
|
|
ConstantInt *C = dyn_cast_or_null<ConstantInt>(Or);
|
|
if (C) {
|
|
++ChecksSkipped;
|
|
// If non-zero, nothing to do.
|
|
if (!C->getZExtValue())
|
|
return;
|
|
}
|
|
++ChecksAdded;
|
|
|
|
BasicBlock::iterator SplitI = IRB.GetInsertPoint();
|
|
BasicBlock *OldBB = SplitI->getParent();
|
|
BasicBlock *Cont = OldBB->splitBasicBlock(SplitI);
|
|
OldBB->getTerminator()->eraseFromParent();
|
|
|
|
if (C) {
|
|
// If we have a constant zero, unconditionally branch.
|
|
// FIXME: We should really handle this differently to bypass the splitting
|
|
// the block.
|
|
BranchInst::Create(GetTrapBB(IRB), OldBB);
|
|
return;
|
|
}
|
|
|
|
// Create the conditional branch.
|
|
BranchInst::Create(GetTrapBB(IRB), Cont, Or, OldBB);
|
|
}
|
|
|
|
static bool addBoundsChecking(Function &F, TargetLibraryInfo &TLI,
|
|
ScalarEvolution &SE) {
|
|
if (F.hasFnAttribute(Attribute::NoSanitizeBounds))
|
|
return false;
|
|
|
|
const DataLayout &DL = F.getParent()->getDataLayout();
|
|
ObjectSizeOpts EvalOpts;
|
|
EvalOpts.RoundToAlign = true;
|
|
EvalOpts.EvalMode = ObjectSizeOpts::Mode::ExactUnderlyingSizeAndOffset;
|
|
ObjectSizeOffsetEvaluator ObjSizeEval(DL, &TLI, F.getContext(), EvalOpts);
|
|
|
|
// check HANDLE_MEMORY_INST in include/llvm/Instruction.def for memory
|
|
// touching instructions
|
|
SmallVector<std::pair<Instruction *, Value *>, 4> TrapInfo;
|
|
for (Instruction &I : instructions(F)) {
|
|
Value *Or = nullptr;
|
|
BuilderTy IRB(I.getParent(), BasicBlock::iterator(&I), TargetFolder(DL));
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
|
|
if (!LI->isVolatile())
|
|
Or = getBoundsCheckCond(LI->getPointerOperand(), LI, DL, TLI,
|
|
ObjSizeEval, IRB, SE);
|
|
} else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
|
|
if (!SI->isVolatile())
|
|
Or = getBoundsCheckCond(SI->getPointerOperand(), SI->getValueOperand(),
|
|
DL, TLI, ObjSizeEval, IRB, SE);
|
|
} else if (AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) {
|
|
if (!AI->isVolatile())
|
|
Or =
|
|
getBoundsCheckCond(AI->getPointerOperand(), AI->getCompareOperand(),
|
|
DL, TLI, ObjSizeEval, IRB, SE);
|
|
} else if (AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) {
|
|
if (!AI->isVolatile())
|
|
Or = getBoundsCheckCond(AI->getPointerOperand(), AI->getValOperand(),
|
|
DL, TLI, ObjSizeEval, IRB, SE);
|
|
}
|
|
if (Or)
|
|
TrapInfo.push_back(std::make_pair(&I, Or));
|
|
}
|
|
|
|
// Create a trapping basic block on demand using a callback. Depending on
|
|
// flags, this will either create a single block for the entire function or
|
|
// will create a fresh block every time it is called.
|
|
BasicBlock *TrapBB = nullptr;
|
|
auto GetTrapBB = [&TrapBB](BuilderTy &IRB) {
|
|
Function *Fn = IRB.GetInsertBlock()->getParent();
|
|
auto DebugLoc = IRB.getCurrentDebugLocation();
|
|
IRBuilder<>::InsertPointGuard Guard(IRB);
|
|
|
|
if (TrapBB && SingleTrapBB && !DebugTrapBB)
|
|
return TrapBB;
|
|
|
|
TrapBB = BasicBlock::Create(Fn->getContext(), "trap", Fn);
|
|
IRB.SetInsertPoint(TrapBB);
|
|
|
|
Intrinsic::ID IntrID = DebugTrapBB ? Intrinsic::ubsantrap : Intrinsic::trap;
|
|
auto *F = Intrinsic::getDeclaration(Fn->getParent(), IntrID);
|
|
|
|
CallInst *TrapCall;
|
|
if (DebugTrapBB) {
|
|
TrapCall =
|
|
IRB.CreateCall(F, ConstantInt::get(IRB.getInt8Ty(), Fn->size()));
|
|
} else {
|
|
TrapCall = IRB.CreateCall(F, {});
|
|
}
|
|
|
|
TrapCall->setDoesNotReturn();
|
|
TrapCall->setDoesNotThrow();
|
|
TrapCall->setDebugLoc(DebugLoc);
|
|
IRB.CreateUnreachable();
|
|
|
|
return TrapBB;
|
|
};
|
|
|
|
// Add the checks.
|
|
for (const auto &Entry : TrapInfo) {
|
|
Instruction *Inst = Entry.first;
|
|
BuilderTy IRB(Inst->getParent(), BasicBlock::iterator(Inst), TargetFolder(DL));
|
|
insertBoundsCheck(Entry.second, IRB, GetTrapBB);
|
|
}
|
|
|
|
return !TrapInfo.empty();
|
|
}
|
|
|
|
PreservedAnalyses BoundsCheckingPass::run(Function &F, FunctionAnalysisManager &AM) {
|
|
auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
|
|
auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
|
|
|
|
if (!addBoundsChecking(F, TLI, SE))
|
|
return PreservedAnalyses::all();
|
|
|
|
return PreservedAnalyses::none();
|
|
}
|