Files
clang-p2996/mlir/lib/Conversion/VectorToSPIRV/VectorToSPIRV.cpp
Jakub Kuderski 560564f51c [mlir][vector][gpu] Align minf/maxf reduction kind names with arith (#75901)
This is to avoid confusion when dealing with reduction/combining kinds.
For example, see a recent PR comment:
https://github.com/llvm/llvm-project/pull/75846#discussion_r1430722175.

Previously, they were picked to mostly mirror the names of the llvm
vector reduction intrinsics:
https://llvm.org/docs/LangRef.html#llvm-vector-reduce-fmin-intrinsic. In
isolation, it was not clear if `<maxf>` has `arith.maxnumf` or
`arith.maximumf` semantics. The new reduction kind names map 1:1 to
arith ops, which makes it easier to tell/look up their semantics.

Because both the vector and the gpu dialect depend on the arith dialect,
it's more natural to align names with those in arith than with the
lowering to llvm intrinsics.

Issue: https://github.com/llvm/llvm-project/issues/72354
2023-12-20 00:14:43 -05:00

837 lines
31 KiB
C++

//===- VectorToSPIRV.cpp - Vector to SPIR-V Patterns ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements patterns to convert Vector dialect to SPIRV dialect.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/VectorToSPIRV/VectorToSPIRV.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVDialect.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVOps.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVTypes.h"
#include "mlir/Dialect/SPIRV/Transforms/SPIRVConversion.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Location.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Support/LogicalResult.h"
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SmallVectorExtras.h"
#include "llvm/Support/FormatVariadic.h"
#include <cassert>
#include <cstdint>
#include <numeric>
using namespace mlir;
/// Returns the integer value from the first valid input element, assuming Value
/// inputs are defined by a constant index ops and Attribute inputs are integer
/// attributes.
static uint64_t getFirstIntValue(ValueRange values) {
return values[0].getDefiningOp<arith::ConstantIndexOp>().value();
}
static uint64_t getFirstIntValue(ArrayRef<Attribute> attr) {
return cast<IntegerAttr>(attr[0]).getInt();
}
static uint64_t getFirstIntValue(ArrayAttr attr) {
return (*attr.getAsValueRange<IntegerAttr>().begin()).getZExtValue();
}
static uint64_t getFirstIntValue(ArrayRef<OpFoldResult> foldResults) {
auto attr = foldResults[0].dyn_cast<Attribute>();
if (attr)
return getFirstIntValue(attr);
return getFirstIntValue(ValueRange{foldResults[0].get<Value>()});
}
/// Returns the number of bits for the given scalar/vector type.
static int getNumBits(Type type) {
// TODO: This does not take into account any memory layout or widening
// constraints. E.g., a vector<3xi57> may report to occupy 3x57=171 bit, even
// though in practice it will likely be stored as in a 4xi64 vector register.
if (auto vectorType = dyn_cast<VectorType>(type))
return vectorType.getNumElements() * vectorType.getElementTypeBitWidth();
return type.getIntOrFloatBitWidth();
}
namespace {
struct VectorShapeCast final : public OpConversionPattern<vector::ShapeCastOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(vector::ShapeCastOp shapeCastOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Type dstType = getTypeConverter()->convertType(shapeCastOp.getType());
if (!dstType)
return failure();
// If dstType is same as the source type or the vector size is 1, it can be
// directly replaced by the source.
if (dstType == adaptor.getSource().getType() ||
shapeCastOp.getResultVectorType().getNumElements() == 1) {
rewriter.replaceOp(shapeCastOp, adaptor.getSource());
return success();
}
// Lowering for size-n vectors when n > 1 hasn't been implemented.
return failure();
}
};
struct VectorBitcastConvert final
: public OpConversionPattern<vector::BitCastOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(vector::BitCastOp bitcastOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Type dstType = getTypeConverter()->convertType(bitcastOp.getType());
if (!dstType)
return failure();
if (dstType == adaptor.getSource().getType()) {
rewriter.replaceOp(bitcastOp, adaptor.getSource());
return success();
}
// Check that the source and destination type have the same bitwidth.
// Depending on the target environment, we may need to emulate certain
// types, which can cause issue with bitcast.
Type srcType = adaptor.getSource().getType();
if (getNumBits(dstType) != getNumBits(srcType)) {
return rewriter.notifyMatchFailure(
bitcastOp,
llvm::formatv("different source ({0}) and target ({1}) bitwidth",
srcType, dstType));
}
rewriter.replaceOpWithNewOp<spirv::BitcastOp>(bitcastOp, dstType,
adaptor.getSource());
return success();
}
};
struct VectorBroadcastConvert final
: public OpConversionPattern<vector::BroadcastOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(vector::BroadcastOp castOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Type resultType =
getTypeConverter()->convertType(castOp.getResultVectorType());
if (!resultType)
return failure();
if (isa<spirv::ScalarType>(resultType)) {
rewriter.replaceOp(castOp, adaptor.getSource());
return success();
}
SmallVector<Value, 4> source(castOp.getResultVectorType().getNumElements(),
adaptor.getSource());
rewriter.replaceOpWithNewOp<spirv::CompositeConstructOp>(
castOp, castOp.getResultVectorType(), source);
return success();
}
};
struct VectorExtractOpConvert final
: public OpConversionPattern<vector::ExtractOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(vector::ExtractOp extractOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (extractOp.hasDynamicPosition())
return failure();
Type dstType = getTypeConverter()->convertType(extractOp.getType());
if (!dstType)
return failure();
if (isa<spirv::ScalarType>(adaptor.getVector().getType())) {
rewriter.replaceOp(extractOp, adaptor.getVector());
return success();
}
int32_t id = getFirstIntValue(extractOp.getMixedPosition());
rewriter.replaceOpWithNewOp<spirv::CompositeExtractOp>(
extractOp, adaptor.getVector(), id);
return success();
}
};
struct VectorExtractStridedSliceOpConvert final
: public OpConversionPattern<vector::ExtractStridedSliceOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(vector::ExtractStridedSliceOp extractOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Type dstType = getTypeConverter()->convertType(extractOp.getType());
if (!dstType)
return failure();
uint64_t offset = getFirstIntValue(extractOp.getOffsets());
uint64_t size = getFirstIntValue(extractOp.getSizes());
uint64_t stride = getFirstIntValue(extractOp.getStrides());
if (stride != 1)
return failure();
Value srcVector = adaptor.getOperands().front();
// Extract vector<1xT> case.
if (isa<spirv::ScalarType>(dstType)) {
rewriter.replaceOpWithNewOp<spirv::CompositeExtractOp>(extractOp,
srcVector, offset);
return success();
}
SmallVector<int32_t, 2> indices(size);
std::iota(indices.begin(), indices.end(), offset);
rewriter.replaceOpWithNewOp<spirv::VectorShuffleOp>(
extractOp, dstType, srcVector, srcVector,
rewriter.getI32ArrayAttr(indices));
return success();
}
};
template <class SPIRVFMAOp>
struct VectorFmaOpConvert final : public OpConversionPattern<vector::FMAOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(vector::FMAOp fmaOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Type dstType = getTypeConverter()->convertType(fmaOp.getType());
if (!dstType)
return failure();
rewriter.replaceOpWithNewOp<SPIRVFMAOp>(fmaOp, dstType, adaptor.getLhs(),
adaptor.getRhs(), adaptor.getAcc());
return success();
}
};
struct VectorInsertOpConvert final
: public OpConversionPattern<vector::InsertOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(vector::InsertOp insertOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (isa<VectorType>(insertOp.getSourceType()))
return rewriter.notifyMatchFailure(insertOp, "unsupported vector source");
if (!getTypeConverter()->convertType(insertOp.getDestVectorType()))
return rewriter.notifyMatchFailure(insertOp,
"unsupported dest vector type");
// Special case for inserting scalar values into size-1 vectors.
if (insertOp.getSourceType().isIntOrFloat() &&
insertOp.getDestVectorType().getNumElements() == 1) {
rewriter.replaceOp(insertOp, adaptor.getSource());
return success();
}
int32_t id = getFirstIntValue(insertOp.getMixedPosition());
rewriter.replaceOpWithNewOp<spirv::CompositeInsertOp>(
insertOp, adaptor.getSource(), adaptor.getDest(), id);
return success();
}
};
struct VectorExtractElementOpConvert final
: public OpConversionPattern<vector::ExtractElementOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(vector::ExtractElementOp extractOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Type resultType = getTypeConverter()->convertType(extractOp.getType());
if (!resultType)
return failure();
if (isa<spirv::ScalarType>(adaptor.getVector().getType())) {
rewriter.replaceOp(extractOp, adaptor.getVector());
return success();
}
APInt cstPos;
if (matchPattern(adaptor.getPosition(), m_ConstantInt(&cstPos)))
rewriter.replaceOpWithNewOp<spirv::CompositeExtractOp>(
extractOp, resultType, adaptor.getVector(),
rewriter.getI32ArrayAttr({static_cast<int>(cstPos.getSExtValue())}));
else
rewriter.replaceOpWithNewOp<spirv::VectorExtractDynamicOp>(
extractOp, resultType, adaptor.getVector(), adaptor.getPosition());
return success();
}
};
struct VectorInsertElementOpConvert final
: public OpConversionPattern<vector::InsertElementOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(vector::InsertElementOp insertOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Type vectorType = getTypeConverter()->convertType(insertOp.getType());
if (!vectorType)
return failure();
if (isa<spirv::ScalarType>(vectorType)) {
rewriter.replaceOp(insertOp, adaptor.getSource());
return success();
}
APInt cstPos;
if (matchPattern(adaptor.getPosition(), m_ConstantInt(&cstPos)))
rewriter.replaceOpWithNewOp<spirv::CompositeInsertOp>(
insertOp, adaptor.getSource(), adaptor.getDest(),
cstPos.getSExtValue());
else
rewriter.replaceOpWithNewOp<spirv::VectorInsertDynamicOp>(
insertOp, vectorType, insertOp.getDest(), adaptor.getSource(),
adaptor.getPosition());
return success();
}
};
struct VectorInsertStridedSliceOpConvert final
: public OpConversionPattern<vector::InsertStridedSliceOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(vector::InsertStridedSliceOp insertOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Value srcVector = adaptor.getOperands().front();
Value dstVector = adaptor.getOperands().back();
uint64_t stride = getFirstIntValue(insertOp.getStrides());
if (stride != 1)
return failure();
uint64_t offset = getFirstIntValue(insertOp.getOffsets());
if (isa<spirv::ScalarType>(srcVector.getType())) {
assert(!isa<spirv::ScalarType>(dstVector.getType()));
rewriter.replaceOpWithNewOp<spirv::CompositeInsertOp>(
insertOp, dstVector.getType(), srcVector, dstVector,
rewriter.getI32ArrayAttr(offset));
return success();
}
uint64_t totalSize = cast<VectorType>(dstVector.getType()).getNumElements();
uint64_t insertSize =
cast<VectorType>(srcVector.getType()).getNumElements();
SmallVector<int32_t, 2> indices(totalSize);
std::iota(indices.begin(), indices.end(), 0);
std::iota(indices.begin() + offset, indices.begin() + offset + insertSize,
totalSize);
rewriter.replaceOpWithNewOp<spirv::VectorShuffleOp>(
insertOp, dstVector.getType(), dstVector, srcVector,
rewriter.getI32ArrayAttr(indices));
return success();
}
};
static SmallVector<Value> extractAllElements(
vector::ReductionOp reduceOp, vector::ReductionOp::Adaptor adaptor,
VectorType srcVectorType, ConversionPatternRewriter &rewriter) {
int numElements = static_cast<int>(srcVectorType.getDimSize(0));
SmallVector<Value> values;
values.reserve(numElements + (adaptor.getAcc() ? 1 : 0));
Location loc = reduceOp.getLoc();
for (int i = 0; i < numElements; ++i) {
values.push_back(rewriter.create<spirv::CompositeExtractOp>(
loc, srcVectorType.getElementType(), adaptor.getVector(),
rewriter.getI32ArrayAttr({i})));
}
if (Value acc = adaptor.getAcc())
values.push_back(acc);
return values;
}
struct ReductionRewriteInfo {
Type resultType;
SmallVector<Value> extractedElements;
};
FailureOr<ReductionRewriteInfo> static getReductionInfo(
vector::ReductionOp op, vector::ReductionOp::Adaptor adaptor,
ConversionPatternRewriter &rewriter, const TypeConverter &typeConverter) {
Type resultType = typeConverter.convertType(op.getType());
if (!resultType)
return failure();
auto srcVectorType = dyn_cast<VectorType>(adaptor.getVector().getType());
if (!srcVectorType || srcVectorType.getRank() != 1)
return rewriter.notifyMatchFailure(op, "not a 1-D vector source");
SmallVector<Value> extractedElements =
extractAllElements(op, adaptor, srcVectorType, rewriter);
return ReductionRewriteInfo{resultType, std::move(extractedElements)};
}
template <typename SPIRVUMaxOp, typename SPIRVUMinOp, typename SPIRVSMaxOp,
typename SPIRVSMinOp>
struct VectorReductionPattern final : OpConversionPattern<vector::ReductionOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(vector::ReductionOp reduceOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto reductionInfo =
getReductionInfo(reduceOp, adaptor, rewriter, *getTypeConverter());
if (failed(reductionInfo))
return failure();
auto [resultType, extractedElements] = *reductionInfo;
Location loc = reduceOp->getLoc();
Value result = extractedElements.front();
for (Value next : llvm::drop_begin(extractedElements)) {
switch (reduceOp.getKind()) {
#define INT_AND_FLOAT_CASE(kind, iop, fop) \
case vector::CombiningKind::kind: \
if (llvm::isa<IntegerType>(resultType)) { \
result = rewriter.create<spirv::iop>(loc, resultType, result, next); \
} else { \
assert(llvm::isa<FloatType>(resultType)); \
result = rewriter.create<spirv::fop>(loc, resultType, result, next); \
} \
break
#define INT_OR_FLOAT_CASE(kind, fop) \
case vector::CombiningKind::kind: \
result = rewriter.create<fop>(loc, resultType, result, next); \
break
INT_AND_FLOAT_CASE(ADD, IAddOp, FAddOp);
INT_AND_FLOAT_CASE(MUL, IMulOp, FMulOp);
INT_OR_FLOAT_CASE(MINUI, SPIRVUMinOp);
INT_OR_FLOAT_CASE(MINSI, SPIRVSMinOp);
INT_OR_FLOAT_CASE(MAXUI, SPIRVUMaxOp);
INT_OR_FLOAT_CASE(MAXSI, SPIRVSMaxOp);
case vector::CombiningKind::AND:
case vector::CombiningKind::OR:
case vector::CombiningKind::XOR:
return rewriter.notifyMatchFailure(reduceOp, "unimplemented");
default:
return rewriter.notifyMatchFailure(reduceOp, "not handled here");
}
#undef INT_AND_FLOAT_CASE
#undef INT_OR_FLOAT_CASE
}
rewriter.replaceOp(reduceOp, result);
return success();
}
};
template <typename SPIRVFMaxOp, typename SPIRVFMinOp>
struct VectorReductionFloatMinMax final
: OpConversionPattern<vector::ReductionOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(vector::ReductionOp reduceOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto reductionInfo =
getReductionInfo(reduceOp, adaptor, rewriter, *getTypeConverter());
if (failed(reductionInfo))
return failure();
auto [resultType, extractedElements] = *reductionInfo;
Location loc = reduceOp->getLoc();
Value result = extractedElements.front();
for (Value next : llvm::drop_begin(extractedElements)) {
switch (reduceOp.getKind()) {
#define INT_OR_FLOAT_CASE(kind, fop) \
case vector::CombiningKind::kind: \
result = rewriter.create<fop>(loc, resultType, result, next); \
break
INT_OR_FLOAT_CASE(MAXIMUMF, SPIRVFMaxOp);
INT_OR_FLOAT_CASE(MINIMUMF, SPIRVFMinOp);
INT_OR_FLOAT_CASE(MAXNUMF, SPIRVFMaxOp);
INT_OR_FLOAT_CASE(MINNUMF, SPIRVFMinOp);
default:
return rewriter.notifyMatchFailure(reduceOp, "not handled here");
}
#undef INT_OR_FLOAT_CASE
}
rewriter.replaceOp(reduceOp, result);
return success();
}
};
class VectorSplatPattern final : public OpConversionPattern<vector::SplatOp> {
public:
using OpConversionPattern<vector::SplatOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(vector::SplatOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Type dstType = getTypeConverter()->convertType(op.getType());
if (!dstType)
return failure();
if (isa<spirv::ScalarType>(dstType)) {
rewriter.replaceOp(op, adaptor.getInput());
} else {
auto dstVecType = cast<VectorType>(dstType);
SmallVector<Value, 4> source(dstVecType.getNumElements(),
adaptor.getInput());
rewriter.replaceOpWithNewOp<spirv::CompositeConstructOp>(op, dstType,
source);
}
return success();
}
};
struct VectorShuffleOpConvert final
: public OpConversionPattern<vector::ShuffleOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(vector::ShuffleOp shuffleOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto oldResultType = shuffleOp.getResultVectorType();
Type newResultType = getTypeConverter()->convertType(oldResultType);
if (!newResultType)
return rewriter.notifyMatchFailure(shuffleOp,
"unsupported result vector type");
SmallVector<int32_t, 4> mask = llvm::map_to_vector<4>(
shuffleOp.getMask(), [](Attribute attr) -> int32_t {
return cast<IntegerAttr>(attr).getValue().getZExtValue();
});
auto oldV1Type = shuffleOp.getV1VectorType();
auto oldV2Type = shuffleOp.getV2VectorType();
// When both operands are SPIR-V vectors, emit a SPIR-V shuffle.
if (oldV1Type.getNumElements() > 1 && oldV2Type.getNumElements() > 1) {
rewriter.replaceOpWithNewOp<spirv::VectorShuffleOp>(
shuffleOp, newResultType, adaptor.getV1(), adaptor.getV2(),
rewriter.getI32ArrayAttr(mask));
return success();
}
// When at least one of the operands becomes a scalar after type conversion
// for SPIR-V, extract all the required elements and construct the result
// vector.
auto getElementAtIdx = [&rewriter, loc = shuffleOp.getLoc()](
Value scalarOrVec, int32_t idx) -> Value {
if (auto vecTy = dyn_cast<VectorType>(scalarOrVec.getType()))
return rewriter.create<spirv::CompositeExtractOp>(loc, scalarOrVec,
idx);
assert(idx == 0 && "Invalid scalar element index");
return scalarOrVec;
};
int32_t numV1Elems = oldV1Type.getNumElements();
SmallVector<Value> newOperands(mask.size());
for (auto [shuffleIdx, newOperand] : llvm::zip_equal(mask, newOperands)) {
Value vec = adaptor.getV1();
int32_t elementIdx = shuffleIdx;
if (elementIdx >= numV1Elems) {
vec = adaptor.getV2();
elementIdx -= numV1Elems;
}
newOperand = getElementAtIdx(vec, elementIdx);
}
rewriter.replaceOpWithNewOp<spirv::CompositeConstructOp>(
shuffleOp, newResultType, newOperands);
return success();
}
};
struct VectorLoadOpConverter final
: public OpConversionPattern<vector::LoadOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(vector::LoadOp loadOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto memrefType = loadOp.getMemRefType();
auto attr =
dyn_cast_or_null<spirv::StorageClassAttr>(memrefType.getMemorySpace());
if (!attr)
return rewriter.notifyMatchFailure(
loadOp, "expected spirv.storage_class memory space");
const auto &typeConverter = *getTypeConverter<SPIRVTypeConverter>();
auto loc = loadOp.getLoc();
Value accessChain =
spirv::getElementPtr(typeConverter, memrefType, adaptor.getBase(),
adaptor.getIndices(), loc, rewriter);
if (!accessChain)
return rewriter.notifyMatchFailure(
loadOp, "failed to get memref element pointer");
spirv::StorageClass storageClass = attr.getValue();
auto vectorType = loadOp.getVectorType();
auto vectorPtrType = spirv::PointerType::get(vectorType, storageClass);
Value castedAccessChain =
rewriter.create<spirv::BitcastOp>(loc, vectorPtrType, accessChain);
rewriter.replaceOpWithNewOp<spirv::LoadOp>(loadOp, vectorType,
castedAccessChain);
return success();
}
};
struct VectorStoreOpConverter final
: public OpConversionPattern<vector::StoreOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(vector::StoreOp storeOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto memrefType = storeOp.getMemRefType();
auto attr =
dyn_cast_or_null<spirv::StorageClassAttr>(memrefType.getMemorySpace());
if (!attr)
return rewriter.notifyMatchFailure(
storeOp, "expected spirv.storage_class memory space");
const auto &typeConverter = *getTypeConverter<SPIRVTypeConverter>();
auto loc = storeOp.getLoc();
Value accessChain =
spirv::getElementPtr(typeConverter, memrefType, adaptor.getBase(),
adaptor.getIndices(), loc, rewriter);
if (!accessChain)
return rewriter.notifyMatchFailure(
storeOp, "failed to get memref element pointer");
spirv::StorageClass storageClass = attr.getValue();
auto vectorType = storeOp.getVectorType();
auto vectorPtrType = spirv::PointerType::get(vectorType, storageClass);
Value castedAccessChain =
rewriter.create<spirv::BitcastOp>(loc, vectorPtrType, accessChain);
rewriter.replaceOpWithNewOp<spirv::StoreOp>(storeOp, castedAccessChain,
adaptor.getValueToStore());
return success();
}
};
struct VectorReductionToIntDotProd final
: OpRewritePattern<vector::ReductionOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::ReductionOp op,
PatternRewriter &rewriter) const override {
if (op.getKind() != vector::CombiningKind::ADD)
return rewriter.notifyMatchFailure(op, "combining kind is not 'add'");
auto resultType = dyn_cast<IntegerType>(op.getType());
if (!resultType)
return rewriter.notifyMatchFailure(op, "result is not an integer");
int64_t resultBitwidth = resultType.getIntOrFloatBitWidth();
if (!llvm::is_contained({32, 64}, resultBitwidth))
return rewriter.notifyMatchFailure(op, "unsupported integer bitwidth");
VectorType inVecTy = op.getSourceVectorType();
if (!llvm::is_contained({4, 3}, inVecTy.getNumElements()) ||
inVecTy.getShape().size() != 1 || inVecTy.isScalable())
return rewriter.notifyMatchFailure(op, "unsupported vector shape");
auto mul = op.getVector().getDefiningOp<arith::MulIOp>();
if (!mul)
return rewriter.notifyMatchFailure(
op, "reduction operand is not 'arith.muli'");
if (succeeded(handleCase<arith::ExtSIOp, arith::ExtSIOp, spirv::SDotOp,
spirv::SDotAccSatOp, false>(op, mul, rewriter)))
return success();
if (succeeded(handleCase<arith::ExtUIOp, arith::ExtUIOp, spirv::UDotOp,
spirv::UDotAccSatOp, false>(op, mul, rewriter)))
return success();
if (succeeded(handleCase<arith::ExtSIOp, arith::ExtUIOp, spirv::SUDotOp,
spirv::SUDotAccSatOp, false>(op, mul, rewriter)))
return success();
if (succeeded(handleCase<arith::ExtUIOp, arith::ExtSIOp, spirv::SUDotOp,
spirv::SUDotAccSatOp, true>(op, mul, rewriter)))
return success();
return failure();
}
private:
template <typename LhsExtensionOp, typename RhsExtensionOp, typename DotOp,
typename DotAccOp, bool SwapOperands>
static LogicalResult handleCase(vector::ReductionOp op, arith::MulIOp mul,
PatternRewriter &rewriter) {
auto lhs = mul.getLhs().getDefiningOp<LhsExtensionOp>();
if (!lhs)
return failure();
Value lhsIn = lhs.getIn();
auto lhsInType = cast<VectorType>(lhsIn.getType());
if (!lhsInType.getElementType().isInteger(8))
return failure();
auto rhs = mul.getRhs().getDefiningOp<RhsExtensionOp>();
if (!rhs)
return failure();
Value rhsIn = rhs.getIn();
auto rhsInType = cast<VectorType>(rhsIn.getType());
if (!rhsInType.getElementType().isInteger(8))
return failure();
if (op.getSourceVectorType().getNumElements() == 3) {
IntegerType i8Type = rewriter.getI8Type();
auto v4i8Type = VectorType::get({4}, i8Type);
Location loc = op.getLoc();
Value zero = spirv::ConstantOp::getZero(i8Type, loc, rewriter);
lhsIn = rewriter.create<spirv::CompositeConstructOp>(
loc, v4i8Type, ValueRange{lhsIn, zero});
rhsIn = rewriter.create<spirv::CompositeConstructOp>(
loc, v4i8Type, ValueRange{rhsIn, zero});
}
// There's no variant of dot prod ops for unsigned LHS and signed RHS, so
// we have to swap operands instead in that case.
if (SwapOperands)
std::swap(lhsIn, rhsIn);
if (Value acc = op.getAcc()) {
rewriter.replaceOpWithNewOp<DotAccOp>(op, op.getType(), lhsIn, rhsIn, acc,
nullptr);
} else {
rewriter.replaceOpWithNewOp<DotOp>(op, op.getType(), lhsIn, rhsIn,
nullptr);
}
return success();
}
};
struct VectorReductionToFPDotProd final
: OpConversionPattern<vector::ReductionOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(vector::ReductionOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (op.getKind() != vector::CombiningKind::ADD)
return rewriter.notifyMatchFailure(op, "combining kind is not 'add'");
auto resultType = getTypeConverter()->convertType<FloatType>(op.getType());
if (!resultType)
return rewriter.notifyMatchFailure(op, "result is not a float");
Value vec = adaptor.getVector();
Value acc = adaptor.getAcc();
auto vectorType = dyn_cast<VectorType>(vec.getType());
if (!vectorType) {
assert(isa<FloatType>(vec.getType()) &&
"Expected the vector to be scalarized");
if (acc) {
rewriter.replaceOpWithNewOp<spirv::FAddOp>(op, acc, vec);
return success();
}
rewriter.replaceOp(op, vec);
return success();
}
Location loc = op.getLoc();
Value lhs;
Value rhs;
if (auto mul = vec.getDefiningOp<arith::MulFOp>()) {
lhs = mul.getLhs();
rhs = mul.getRhs();
} else {
// If the operand is not a mul, use a vector of ones for the dot operand
// to just sum up all values.
lhs = vec;
Attribute oneAttr =
rewriter.getFloatAttr(vectorType.getElementType(), 1.0);
oneAttr = SplatElementsAttr::get(vectorType, oneAttr);
rhs = rewriter.create<spirv::ConstantOp>(loc, vectorType, oneAttr);
}
assert(lhs);
assert(rhs);
Value res = rewriter.create<spirv::DotOp>(loc, resultType, lhs, rhs);
if (acc)
res = rewriter.create<spirv::FAddOp>(loc, acc, res);
rewriter.replaceOp(op, res);
return success();
}
};
} // namespace
#define CL_INT_MAX_MIN_OPS \
spirv::CLUMaxOp, spirv::CLUMinOp, spirv::CLSMaxOp, spirv::CLSMinOp
#define GL_INT_MAX_MIN_OPS \
spirv::GLUMaxOp, spirv::GLUMinOp, spirv::GLSMaxOp, spirv::GLSMinOp
#define CL_FLOAT_MAX_MIN_OPS spirv::CLFMaxOp, spirv::CLFMinOp
#define GL_FLOAT_MAX_MIN_OPS spirv::GLFMaxOp, spirv::GLFMinOp
void mlir::populateVectorToSPIRVPatterns(SPIRVTypeConverter &typeConverter,
RewritePatternSet &patterns) {
patterns.add<
VectorBitcastConvert, VectorBroadcastConvert,
VectorExtractElementOpConvert, VectorExtractOpConvert,
VectorExtractStridedSliceOpConvert, VectorFmaOpConvert<spirv::GLFmaOp>,
VectorFmaOpConvert<spirv::CLFmaOp>, VectorInsertElementOpConvert,
VectorInsertOpConvert, VectorReductionPattern<GL_INT_MAX_MIN_OPS>,
VectorReductionPattern<CL_INT_MAX_MIN_OPS>,
VectorReductionFloatMinMax<CL_FLOAT_MAX_MIN_OPS>,
VectorReductionFloatMinMax<GL_FLOAT_MAX_MIN_OPS>, VectorShapeCast,
VectorInsertStridedSliceOpConvert, VectorShuffleOpConvert,
VectorSplatPattern, VectorLoadOpConverter, VectorStoreOpConverter>(
typeConverter, patterns.getContext(), PatternBenefit(1));
// Make sure that the more specialized dot product pattern has higher benefit
// than the generic one that extracts all elements.
patterns.add<VectorReductionToFPDotProd>(typeConverter, patterns.getContext(),
PatternBenefit(2));
}
void mlir::populateVectorReductionToSPIRVDotProductPatterns(
RewritePatternSet &patterns) {
patterns.add<VectorReductionToIntDotProd>(patterns.getContext());
}