Files
clang-p2996/mlir/lib/Dialect/AMDGPU/IR/AMDGPUDialect.cpp
Krzysztof Drewniak 2ebd633f14 [mlir][AMDGPU] Add packed 8-bit float conversion ops and lowering
Define operations that wrap the gfx940's new operations for converting
between f32 and registers containing packed sets of four 8-bit floats.

Define rocdl operations for the intrinsics and an AMDGPU dialect
wrapper around them (to account for the fact that MLIR distinguishes
the two float formats at the type level but that the LLVM IR does
not).

Define an ArithToAMDGPU pass, meant to run before conversion to LLVM,
that replaces relevant calls to arith.extf and arith.truncf with the
packed operations in the AMDGPU dialect. Note that the conversion
currently only handles scalars and vectors of rank <= 1, as we do not
have a usecase for multi-dimensional vector support right now.

Reviewed By: jsjodin

Differential Revision: https://reviews.llvm.org/D152457
2023-09-28 14:44:16 +00:00

336 lines
11 KiB
C++

//===- AMDGPUDialect.cpp - MLIR AMDGPU dialect implementation --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the AMDGPU dialect and its operations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/AMDGPU/IR/AMDGPUDialect.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Diagnostics.h"
#include "mlir/IR/DialectImplementation.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "llvm/ADT/TypeSwitch.h"
#include <limits>
#include <optional>
using namespace mlir;
using namespace mlir::amdgpu;
#include "mlir/Dialect/AMDGPU/IR/AMDGPUDialect.cpp.inc"
void AMDGPUDialect::initialize() {
addOperations<
#define GET_OP_LIST
#include "mlir/Dialect/AMDGPU/IR/AMDGPU.cpp.inc"
>();
addAttributes<
#define GET_ATTRDEF_LIST
#include "mlir/Dialect/AMDGPU/IR/AMDGPUAttributes.cpp.inc"
>();
}
//===----------------------------------------------------------------------===//
// 8-bit float ops
//===----------------------------------------------------------------------===//
LogicalResult PackedTrunc2xFp8Op::verify() {
if (getExisting() && getExisting().getType() != getResult().getType())
return emitOpError("existing values must have same type as result");
return success();
}
LogicalResult PackedStochRoundFp8Op::verify() {
if (getExisting() && getExisting().getType() != getResult().getType())
return emitOpError("existing values must have same type as result");
return success();
}
//===----------------------------------------------------------------------===//
// RawBuffer*Op
//===----------------------------------------------------------------------===//
template <typename T>
static LogicalResult verifyRawBufferOp(T &op) {
MemRefType bufferType = llvm::cast<MemRefType>(op.getMemref().getType());
Attribute memorySpace = bufferType.getMemorySpace();
bool isGlobal = false;
if (!memorySpace)
isGlobal = true;
else if (auto intMemorySpace = llvm::dyn_cast<IntegerAttr>(memorySpace))
isGlobal = intMemorySpace.getInt() == 0 || intMemorySpace.getInt() == 1;
else if (auto gpuMemorySpace =
llvm::dyn_cast<gpu::AddressSpaceAttr>(memorySpace))
isGlobal = gpuMemorySpace.getValue() == gpu::AddressSpace::Global;
if (!isGlobal)
return op.emitOpError(
"Buffer ops must operate on a memref in global memory");
if (!bufferType.hasRank())
return op.emitOpError(
"Cannot meaningfully buffer_store to an unranked memref");
if (static_cast<int64_t>(op.getIndices().size()) != bufferType.getRank())
return op.emitOpError("Expected " + Twine(bufferType.getRank()) +
" indices to memref");
return success();
}
LogicalResult RawBufferLoadOp::verify() { return verifyRawBufferOp(*this); }
LogicalResult RawBufferStoreOp::verify() { return verifyRawBufferOp(*this); }
LogicalResult RawBufferAtomicFaddOp::verify() {
return verifyRawBufferOp(*this);
}
LogicalResult RawBufferAtomicFmaxOp::verify() {
return verifyRawBufferOp(*this);
}
LogicalResult RawBufferAtomicSmaxOp::verify() {
return verifyRawBufferOp(*this);
}
LogicalResult RawBufferAtomicUminOp::verify() {
return verifyRawBufferOp(*this);
}
LogicalResult RawBufferAtomicCmpswapOp::verify() {
return verifyRawBufferOp(*this);
}
static std::optional<uint32_t> getConstantUint32(Value v) {
APInt cst;
if (!v.getType().isInteger(32))
return std::nullopt;
if (matchPattern(v, m_ConstantInt(&cst)))
return cst.getZExtValue();
return std::nullopt;
}
template <typename OpType>
static bool staticallyOutOfBounds(OpType op) {
if (!op.getBoundsCheck())
return false;
MemRefType bufferType = op.getMemref().getType();
if (!bufferType.hasStaticShape())
return false;
int64_t offset;
SmallVector<int64_t> strides;
if (failed(getStridesAndOffset(bufferType, strides, offset)))
return false;
int64_t result = offset + op.getIndexOffset().value_or(0);
if (op.getSgprOffset()) {
std::optional<uint32_t> sgprOffset = getConstantUint32(op.getSgprOffset());
if (!sgprOffset)
return false;
result += *sgprOffset;
}
if (strides.size() != op.getIndices().size())
return false;
int64_t indexVal = 0;
for (auto pair : llvm::zip(strides, op.getIndices())) {
int64_t stride = std::get<0>(pair);
Value idx = std::get<1>(pair);
std::optional<uint32_t> idxVal = getConstantUint32(idx);
if (!idxVal)
return false;
indexVal += stride * *idxVal;
}
result += indexVal;
if (result > std::numeric_limits<uint32_t>::max())
// Overflow means don't drop
return false;
return result >= bufferType.getNumElements();
}
namespace {
template <typename OpType>
struct RemoveStaticallyOobBufferLoads final : public OpRewritePattern<OpType> {
using OpRewritePattern<OpType>::OpRewritePattern;
LogicalResult matchAndRewrite(OpType op, PatternRewriter &rw) const override {
if (!staticallyOutOfBounds(op))
return failure();
Type loadType = op.getResult().getType();
rw.replaceOpWithNewOp<arith::ConstantOp>(op, loadType,
rw.getZeroAttr(loadType));
return success();
}
};
template <typename OpType>
struct RemoveStaticallyOobBufferWrites final : public OpRewritePattern<OpType> {
using OpRewritePattern<OpType>::OpRewritePattern;
LogicalResult matchAndRewrite(OpType op, PatternRewriter &rw) const override {
if (!staticallyOutOfBounds(op))
return failure();
rw.eraseOp(op);
return success();
}
};
} // end namespace
void RawBufferLoadOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<RemoveStaticallyOobBufferLoads<RawBufferLoadOp>>(context);
}
void RawBufferStoreOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<RemoveStaticallyOobBufferWrites<RawBufferStoreOp>>(context);
}
void RawBufferAtomicFaddOp::getCanonicalizationPatterns(
RewritePatternSet &results, MLIRContext *context) {
results.add<RemoveStaticallyOobBufferWrites<RawBufferAtomicFaddOp>>(context);
}
void RawBufferAtomicFmaxOp::getCanonicalizationPatterns(
RewritePatternSet &results, MLIRContext *context) {
results.add<RemoveStaticallyOobBufferWrites<RawBufferAtomicFmaxOp>>(context);
}
void RawBufferAtomicSmaxOp::getCanonicalizationPatterns(
RewritePatternSet &results, MLIRContext *context) {
results.add<RemoveStaticallyOobBufferWrites<RawBufferAtomicSmaxOp>>(context);
}
void RawBufferAtomicUminOp::getCanonicalizationPatterns(
RewritePatternSet &results, MLIRContext *context) {
results.add<RemoveStaticallyOobBufferWrites<RawBufferAtomicUminOp>>(context);
}
void RawBufferAtomicCmpswapOp::getCanonicalizationPatterns(
RewritePatternSet &results, MLIRContext *context) {
results.add<RemoveStaticallyOobBufferLoads<RawBufferAtomicCmpswapOp>>(
context);
}
//===----------------------------------------------------------------------===//
// WMMAOp
//===----------------------------------------------------------------------===//
LogicalResult WMMAOp::verify() {
Type sourceAType = getSourceA().getType();
Type destType = getDestC().getType();
VectorType sourceVectorAType = sourceAType.dyn_cast<VectorType>();
VectorType destVectorType = destType.dyn_cast<VectorType>();
Type sourceAElemType = sourceVectorAType.getElementType();
Type destElemType = destVectorType.getElementType();
bool isDestFloat =
(destElemType.isF32() || destElemType.isF16() || destElemType.isBF16());
bool isSrcFloat = (sourceAElemType.isF16() || sourceAElemType.isBF16());
if (isDestFloat && !isSrcFloat) {
return emitOpError("Expected float sources with float destination");
}
if (!isDestFloat && isSrcFloat) {
return emitOpError("Expected int sources with int destination");
}
return success();
}
//===----------------------------------------------------------------------===//
// MFMAOp
//===----------------------------------------------------------------------===//
LogicalResult MFMAOp::verify() {
constexpr uint32_t waveSize = 64;
Builder b(getContext());
Type sourceType = getSourceA().getType();
Type destType = getDestC().getType();
Type sourceElem = sourceType, destElem = destType;
uint32_t sourceLen = 1, destLen = 1;
if (auto sourceVector = llvm::dyn_cast<VectorType>(sourceType)) {
sourceLen = sourceVector.getNumElements();
sourceElem = sourceVector.getElementType();
}
if (auto destVector = llvm::dyn_cast<VectorType>(destType)) {
destLen = destVector.getNumElements();
destElem = destVector.getElementType();
}
Type sourceBType = getSourceB().getType();
if (sourceElem.isFloat8E5M2FNUZ() || sourceElem.isFloat8E4M3FNUZ()) {
int64_t sourceBLen = 1;
Type sourceBElem = sourceBType;
if (auto sourceBVector = llvm::dyn_cast<VectorType>(sourceBType)) {
sourceBLen = sourceBVector.getNumElements();
sourceBElem = sourceBVector.getElementType();
}
if (!sourceBElem.isFloat8E5M2FNUZ() && !sourceBElem.isFloat8E4M3FNUZ())
return emitOpError("expected both source operands to have f8 elements");
if (sourceLen != sourceBLen)
return emitOpError(
"expected both f8 source vectors to have the same length");
} else {
if (sourceType != sourceBType)
return emitOpError(
"expected both non-f8 source operand types to match exactly");
}
// Normalize the wider integer types the compiler expects to i8
if (sourceElem.isInteger(32)) {
sourceLen *= 4;
sourceElem = b.getI8Type();
}
if (sourceElem.isInteger(64)) {
sourceLen *= 8;
sourceElem = b.getI8Type();
}
int64_t numSourceElems = (getM() * getK() * getBlocks()) / waveSize;
if (sourceLen != numSourceElems)
return emitOpError("expected " + Twine(numSourceElems) +
" source values for this operation but got " +
Twine(sourceLen));
int64_t numDestElems = (getM() * getN() * getBlocks()) / waveSize;
if (destLen != numDestElems)
return emitOpError("expected " + Twine(numDestElems) +
" result values for this operation but got " +
Twine(destLen));
if (destElem.isF64() && getBlgp() != MFMAPermB::none)
return emitOpError(
"double-precision ops do not support permuting lanes of B");
if (destElem.isF64() && getCbsz() != 0)
return emitOpError(
"double-precision ops do not support permuting lanes of A");
if (getAbid() >= (1u << getCbsz()))
return emitOpError(
"block ID for permuting A (abid) must be below 2 ** cbsz");
if ((getNegateA() || getNegateB() || getNegateC()) && !destElem.isF64())
return emitOpError(
"negation flags only available for double-precision operations");
return success();
}
#include "mlir/Dialect/AMDGPU/IR/AMDGPUEnums.cpp.inc"
#define GET_ATTRDEF_CLASSES
#include "mlir/Dialect/AMDGPU/IR/AMDGPUAttributes.cpp.inc"
#define GET_OP_CLASSES
#include "mlir/Dialect/AMDGPU/IR/AMDGPU.cpp.inc"