Splits the cleanup block lowered from AsyncToAsyncRuntime.
The incentive of this change is to clarify the CFG branched by
`async.coro.suspend`.
The `async.coro.suspend` op branches into 3 blocks, depending on the
state of the coroutine:
1) suspend
2) resume
3) cleanup
The behavior before this change is that after the coroutine is resumed
and completed, it will jump to a shared cleanup block for destroying the
states of coroutines. The CFG looks like the following,
Entry block
| \
resume |
| |
Cleanup
|
End
This CFG can potentially be problematic, because the `Cleanup` block is
a shared block and it is not dominated by `resume`. For instance, if
some pass wants to add some specific cleanup mechanism to resume, it can
be confused and add them to the shared `Cleanup`, which leads to the
"operand not dominate its use" error because of the existence of the
other "Entry->cleanup" path.
After this change, the CFG will look like the following,
The overall structure of the lowered CFG can be the following,
Entry (calling async.coro.suspend)
| \
Resume Destroy (duplicate of Cleanup)
| |
Cleanup |
| /
End (ends the corontine)
In this case, the Cleanup block tied to the Resume block will be
isolated from the other path and it is strictly dominated by "Resume".
909 lines
35 KiB
C++
909 lines
35 KiB
C++
//===- AsyncToAsyncRuntime.cpp - Lower from Async to Async Runtime --------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements lowering from high level async operations to async.coro
|
|
// and async.runtime operations.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include <utility>
|
|
|
|
#include "mlir/Dialect/Async/Passes.h"
|
|
|
|
#include "PassDetail.h"
|
|
#include "mlir/Conversion/SCFToControlFlow/SCFToControlFlow.h"
|
|
#include "mlir/Dialect/Arith/IR/Arith.h"
|
|
#include "mlir/Dialect/Async/IR/Async.h"
|
|
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
#include "mlir/Dialect/SCF/IR/SCF.h"
|
|
#include "mlir/IR/IRMapping.h"
|
|
#include "mlir/IR/ImplicitLocOpBuilder.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
#include "mlir/Transforms/RegionUtils.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include <optional>
|
|
|
|
namespace mlir {
|
|
#define GEN_PASS_DEF_ASYNCTOASYNCRUNTIME
|
|
#define GEN_PASS_DEF_ASYNCFUNCTOASYNCRUNTIME
|
|
#include "mlir/Dialect/Async/Passes.h.inc"
|
|
} // namespace mlir
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::async;
|
|
|
|
#define DEBUG_TYPE "async-to-async-runtime"
|
|
// Prefix for functions outlined from `async.execute` op regions.
|
|
static constexpr const char kAsyncFnPrefix[] = "async_execute_fn";
|
|
|
|
namespace {
|
|
|
|
class AsyncToAsyncRuntimePass
|
|
: public impl::AsyncToAsyncRuntimeBase<AsyncToAsyncRuntimePass> {
|
|
public:
|
|
AsyncToAsyncRuntimePass() = default;
|
|
void runOnOperation() override;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
namespace {
|
|
|
|
class AsyncFuncToAsyncRuntimePass
|
|
: public impl::AsyncFuncToAsyncRuntimeBase<AsyncFuncToAsyncRuntimePass> {
|
|
public:
|
|
AsyncFuncToAsyncRuntimePass() = default;
|
|
void runOnOperation() override;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
/// Function targeted for coroutine transformation has two additional blocks at
|
|
/// the end: coroutine cleanup and coroutine suspension.
|
|
///
|
|
/// async.await op lowering additionaly creates a resume block for each
|
|
/// operation to enable non-blocking waiting via coroutine suspension.
|
|
namespace {
|
|
struct CoroMachinery {
|
|
func::FuncOp func;
|
|
|
|
// Async function returns an optional token, followed by some async values
|
|
//
|
|
// async.func @foo() -> !async.value<T> {
|
|
// %cst = arith.constant 42.0 : T
|
|
// return %cst: T
|
|
// }
|
|
// Async execute region returns a completion token, and an async value for
|
|
// each yielded value.
|
|
//
|
|
// %token, %result = async.execute -> !async.value<T> {
|
|
// %0 = arith.constant ... : T
|
|
// async.yield %0 : T
|
|
// }
|
|
std::optional<Value> asyncToken; // returned completion token
|
|
llvm::SmallVector<Value, 4> returnValues; // returned async values
|
|
|
|
Value coroHandle; // coroutine handle (!async.coro.getHandle value)
|
|
Block *entry; // coroutine entry block
|
|
std::optional<Block *> setError; // set returned values to error state
|
|
Block *cleanup; // coroutine cleanup block
|
|
|
|
// Coroutine cleanup block for destroy after the coroutine is resumed,
|
|
// e.g. async.coro.suspend state, [suspend], [resume], [destroy]
|
|
//
|
|
// This cleanup block is a duplicate of the cleanup block followed by the
|
|
// resume block. The purpose of having a duplicate cleanup block for destroy
|
|
// is to make the CFG clear so that the control flow analysis won't confuse.
|
|
//
|
|
// The overall structure of the lowered CFG can be the following,
|
|
//
|
|
// Entry (calling async.coro.suspend)
|
|
// | \
|
|
// Resume Destroy (duplicate of Cleanup)
|
|
// | |
|
|
// Cleanup |
|
|
// | /
|
|
// End (ends the corontine)
|
|
//
|
|
// If there is resume-specific cleanup logic, it can go into the Cleanup
|
|
// block but not the destroy block. Otherwise, it can fail block dominance
|
|
// check.
|
|
Block *cleanupForDestroy;
|
|
Block *suspend; // coroutine suspension block
|
|
};
|
|
} // namespace
|
|
|
|
using FuncCoroMapPtr =
|
|
std::shared_ptr<llvm::DenseMap<func::FuncOp, CoroMachinery>>;
|
|
|
|
/// Utility to partially update the regular function CFG to the coroutine CFG
|
|
/// compatible with LLVM coroutines switched-resume lowering using
|
|
/// `async.runtime.*` and `async.coro.*` operations. Adds a new entry block
|
|
/// that branches into preexisting entry block. Also inserts trailing blocks.
|
|
///
|
|
/// The result types of the passed `func` start with an optional `async.token`
|
|
/// and be continued with some number of `async.value`s.
|
|
///
|
|
/// See LLVM coroutines documentation: https://llvm.org/docs/Coroutines.html
|
|
///
|
|
/// - `entry` block sets up the coroutine.
|
|
/// - `set_error` block sets completion token and async values state to error.
|
|
/// - `cleanup` block cleans up the coroutine state.
|
|
/// - `suspend block after the @llvm.coro.end() defines what value will be
|
|
/// returned to the initial caller of a coroutine. Everything before the
|
|
/// @llvm.coro.end() will be executed at every suspension point.
|
|
///
|
|
/// Coroutine structure (only the important bits):
|
|
///
|
|
/// func @some_fn(<function-arguments>) -> (!async.token, !async.value<T>)
|
|
/// {
|
|
/// ^entry(<function-arguments>):
|
|
/// %token = <async token> : !async.token // create async runtime token
|
|
/// %value = <async value> : !async.value<T> // create async value
|
|
/// %id = async.coro.getId // create a coroutine id
|
|
/// %hdl = async.coro.begin %id // create a coroutine handle
|
|
/// cf.br ^preexisting_entry_block
|
|
///
|
|
/// /* preexisting blocks modified to branch to the cleanup block */
|
|
///
|
|
/// ^set_error: // this block created lazily only if needed (see code below)
|
|
/// async.runtime.set_error %token : !async.token
|
|
/// async.runtime.set_error %value : !async.value<T>
|
|
/// cf.br ^cleanup
|
|
///
|
|
/// ^cleanup:
|
|
/// async.coro.free %hdl // delete the coroutine state
|
|
/// cf.br ^suspend
|
|
///
|
|
/// ^suspend:
|
|
/// async.coro.end %hdl // marks the end of a coroutine
|
|
/// return %token, %value : !async.token, !async.value<T>
|
|
/// }
|
|
///
|
|
static CoroMachinery setupCoroMachinery(func::FuncOp func) {
|
|
assert(!func.getBlocks().empty() && "Function must have an entry block");
|
|
|
|
MLIRContext *ctx = func.getContext();
|
|
Block *entryBlock = &func.getBlocks().front();
|
|
Block *originalEntryBlock =
|
|
entryBlock->splitBlock(entryBlock->getOperations().begin());
|
|
auto builder = ImplicitLocOpBuilder::atBlockBegin(func->getLoc(), entryBlock);
|
|
|
|
// ------------------------------------------------------------------------ //
|
|
// Allocate async token/values that we will return from a ramp function.
|
|
// ------------------------------------------------------------------------ //
|
|
|
|
// We treat TokenType as state update marker to represent side-effects of
|
|
// async computations
|
|
bool isStateful = isa<TokenType>(func.getResultTypes().front());
|
|
|
|
std::optional<Value> retToken;
|
|
if (isStateful)
|
|
retToken.emplace(builder.create<RuntimeCreateOp>(TokenType::get(ctx)));
|
|
|
|
llvm::SmallVector<Value, 4> retValues;
|
|
ArrayRef<Type> resValueTypes =
|
|
isStateful ? func.getResultTypes().drop_front() : func.getResultTypes();
|
|
for (auto resType : resValueTypes)
|
|
retValues.emplace_back(
|
|
builder.create<RuntimeCreateOp>(resType).getResult());
|
|
|
|
// ------------------------------------------------------------------------ //
|
|
// Initialize coroutine: get coroutine id and coroutine handle.
|
|
// ------------------------------------------------------------------------ //
|
|
auto coroIdOp = builder.create<CoroIdOp>(CoroIdType::get(ctx));
|
|
auto coroHdlOp =
|
|
builder.create<CoroBeginOp>(CoroHandleType::get(ctx), coroIdOp.getId());
|
|
builder.create<cf::BranchOp>(originalEntryBlock);
|
|
|
|
Block *cleanupBlock = func.addBlock();
|
|
Block *cleanupBlockForDestroy = func.addBlock();
|
|
Block *suspendBlock = func.addBlock();
|
|
|
|
// ------------------------------------------------------------------------ //
|
|
// Coroutine cleanup blocks: deallocate coroutine frame, free the memory.
|
|
// ------------------------------------------------------------------------ //
|
|
auto buildCleanupBlock = [&](Block *cb) {
|
|
builder.setInsertionPointToStart(cb);
|
|
builder.create<CoroFreeOp>(coroIdOp.getId(), coroHdlOp.getHandle());
|
|
|
|
// Branch into the suspend block.
|
|
builder.create<cf::BranchOp>(suspendBlock);
|
|
};
|
|
buildCleanupBlock(cleanupBlock);
|
|
buildCleanupBlock(cleanupBlockForDestroy);
|
|
|
|
// ------------------------------------------------------------------------ //
|
|
// Coroutine suspend block: mark the end of a coroutine and return allocated
|
|
// async token.
|
|
// ------------------------------------------------------------------------ //
|
|
builder.setInsertionPointToStart(suspendBlock);
|
|
|
|
// Mark the end of a coroutine: async.coro.end
|
|
builder.create<CoroEndOp>(coroHdlOp.getHandle());
|
|
|
|
// Return created optional `async.token` and `async.values` from the suspend
|
|
// block. This will be the return value of a coroutine ramp function.
|
|
SmallVector<Value, 4> ret;
|
|
if (retToken)
|
|
ret.push_back(*retToken);
|
|
ret.insert(ret.end(), retValues.begin(), retValues.end());
|
|
builder.create<func::ReturnOp>(ret);
|
|
|
|
// `async.await` op lowering will create resume blocks for async
|
|
// continuations, and will conditionally branch to cleanup or suspend blocks.
|
|
|
|
// The switch-resumed API based coroutine should be marked with
|
|
// coroutine.presplit attribute to mark the function as a coroutine.
|
|
func->setAttr("passthrough", builder.getArrayAttr(
|
|
StringAttr::get(ctx, "presplitcoroutine")));
|
|
|
|
CoroMachinery machinery;
|
|
machinery.func = func;
|
|
machinery.asyncToken = retToken;
|
|
machinery.returnValues = retValues;
|
|
machinery.coroHandle = coroHdlOp.getHandle();
|
|
machinery.entry = entryBlock;
|
|
machinery.setError = std::nullopt; // created lazily only if needed
|
|
machinery.cleanup = cleanupBlock;
|
|
machinery.cleanupForDestroy = cleanupBlockForDestroy;
|
|
machinery.suspend = suspendBlock;
|
|
return machinery;
|
|
}
|
|
|
|
// Lazily creates `set_error` block only if it is required for lowering to the
|
|
// runtime operations (see for example lowering of assert operation).
|
|
static Block *setupSetErrorBlock(CoroMachinery &coro) {
|
|
if (coro.setError)
|
|
return *coro.setError;
|
|
|
|
coro.setError = coro.func.addBlock();
|
|
(*coro.setError)->moveBefore(coro.cleanup);
|
|
|
|
auto builder =
|
|
ImplicitLocOpBuilder::atBlockBegin(coro.func->getLoc(), *coro.setError);
|
|
|
|
// Coroutine set_error block: set error on token and all returned values.
|
|
if (coro.asyncToken)
|
|
builder.create<RuntimeSetErrorOp>(*coro.asyncToken);
|
|
|
|
for (Value retValue : coro.returnValues)
|
|
builder.create<RuntimeSetErrorOp>(retValue);
|
|
|
|
// Branch into the cleanup block.
|
|
builder.create<cf::BranchOp>(coro.cleanup);
|
|
|
|
return *coro.setError;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// async.execute op outlining to the coroutine functions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Outline the body region attached to the `async.execute` op into a standalone
|
|
/// function.
|
|
///
|
|
/// Note that this is not reversible transformation.
|
|
static std::pair<func::FuncOp, CoroMachinery>
|
|
outlineExecuteOp(SymbolTable &symbolTable, ExecuteOp execute) {
|
|
ModuleOp module = execute->getParentOfType<ModuleOp>();
|
|
|
|
MLIRContext *ctx = module.getContext();
|
|
Location loc = execute.getLoc();
|
|
|
|
// Make sure that all constants will be inside the outlined async function to
|
|
// reduce the number of function arguments.
|
|
cloneConstantsIntoTheRegion(execute.getBodyRegion());
|
|
|
|
// Collect all outlined function inputs.
|
|
SetVector<mlir::Value> functionInputs(execute.getDependencies().begin(),
|
|
execute.getDependencies().end());
|
|
functionInputs.insert(execute.getBodyOperands().begin(),
|
|
execute.getBodyOperands().end());
|
|
getUsedValuesDefinedAbove(execute.getBodyRegion(), functionInputs);
|
|
|
|
// Collect types for the outlined function inputs and outputs.
|
|
auto typesRange = llvm::map_range(
|
|
functionInputs, [](Value value) { return value.getType(); });
|
|
SmallVector<Type, 4> inputTypes(typesRange.begin(), typesRange.end());
|
|
auto outputTypes = execute.getResultTypes();
|
|
|
|
auto funcType = FunctionType::get(ctx, inputTypes, outputTypes);
|
|
auto funcAttrs = ArrayRef<NamedAttribute>();
|
|
|
|
// TODO: Derive outlined function name from the parent FuncOp (support
|
|
// multiple nested async.execute operations).
|
|
func::FuncOp func =
|
|
func::FuncOp::create(loc, kAsyncFnPrefix, funcType, funcAttrs);
|
|
symbolTable.insert(func);
|
|
|
|
SymbolTable::setSymbolVisibility(func, SymbolTable::Visibility::Private);
|
|
auto builder = ImplicitLocOpBuilder::atBlockBegin(loc, func.addEntryBlock());
|
|
|
|
// Prepare for coroutine conversion by creating the body of the function.
|
|
{
|
|
size_t numDependencies = execute.getDependencies().size();
|
|
size_t numOperands = execute.getBodyOperands().size();
|
|
|
|
// Await on all dependencies before starting to execute the body region.
|
|
for (size_t i = 0; i < numDependencies; ++i)
|
|
builder.create<AwaitOp>(func.getArgument(i));
|
|
|
|
// Await on all async value operands and unwrap the payload.
|
|
SmallVector<Value, 4> unwrappedOperands(numOperands);
|
|
for (size_t i = 0; i < numOperands; ++i) {
|
|
Value operand = func.getArgument(numDependencies + i);
|
|
unwrappedOperands[i] = builder.create<AwaitOp>(loc, operand).getResult();
|
|
}
|
|
|
|
// Map from function inputs defined above the execute op to the function
|
|
// arguments.
|
|
IRMapping valueMapping;
|
|
valueMapping.map(functionInputs, func.getArguments());
|
|
valueMapping.map(execute.getBodyRegion().getArguments(), unwrappedOperands);
|
|
|
|
// Clone all operations from the execute operation body into the outlined
|
|
// function body.
|
|
for (Operation &op : execute.getBodyRegion().getOps())
|
|
builder.clone(op, valueMapping);
|
|
}
|
|
|
|
// Adding entry/cleanup/suspend blocks.
|
|
CoroMachinery coro = setupCoroMachinery(func);
|
|
|
|
// Suspend async function at the end of an entry block, and resume it using
|
|
// Async resume operation (execution will be resumed in a thread managed by
|
|
// the async runtime).
|
|
{
|
|
cf::BranchOp branch = cast<cf::BranchOp>(coro.entry->getTerminator());
|
|
builder.setInsertionPointToEnd(coro.entry);
|
|
|
|
// Save the coroutine state: async.coro.save
|
|
auto coroSaveOp =
|
|
builder.create<CoroSaveOp>(CoroStateType::get(ctx), coro.coroHandle);
|
|
|
|
// Pass coroutine to the runtime to be resumed on a runtime managed
|
|
// thread.
|
|
builder.create<RuntimeResumeOp>(coro.coroHandle);
|
|
|
|
// Add async.coro.suspend as a suspended block terminator.
|
|
builder.create<CoroSuspendOp>(coroSaveOp.getState(), coro.suspend,
|
|
branch.getDest(), coro.cleanupForDestroy);
|
|
|
|
branch.erase();
|
|
}
|
|
|
|
// Replace the original `async.execute` with a call to outlined function.
|
|
{
|
|
ImplicitLocOpBuilder callBuilder(loc, execute);
|
|
auto callOutlinedFunc = callBuilder.create<func::CallOp>(
|
|
func.getName(), execute.getResultTypes(), functionInputs.getArrayRef());
|
|
execute.replaceAllUsesWith(callOutlinedFunc.getResults());
|
|
execute.erase();
|
|
}
|
|
|
|
return {func, coro};
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Convert async.create_group operation to async.runtime.create_group
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class CreateGroupOpLowering : public OpConversionPattern<CreateGroupOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(CreateGroupOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
rewriter.replaceOpWithNewOp<RuntimeCreateGroupOp>(
|
|
op, GroupType::get(op->getContext()), adaptor.getOperands());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Convert async.add_to_group operation to async.runtime.add_to_group.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class AddToGroupOpLowering : public OpConversionPattern<AddToGroupOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(AddToGroupOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
rewriter.replaceOpWithNewOp<RuntimeAddToGroupOp>(
|
|
op, rewriter.getIndexType(), adaptor.getOperands());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Convert async.func, async.return and async.call operations to non-blocking
|
|
// operations based on llvm coroutine
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Convert async.func operation to func.func
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class AsyncFuncOpLowering : public OpConversionPattern<async::FuncOp> {
|
|
public:
|
|
AsyncFuncOpLowering(MLIRContext *ctx, FuncCoroMapPtr coros)
|
|
: OpConversionPattern<async::FuncOp>(ctx), coros(std::move(coros)) {}
|
|
|
|
LogicalResult
|
|
matchAndRewrite(async::FuncOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Location loc = op->getLoc();
|
|
|
|
auto newFuncOp =
|
|
rewriter.create<func::FuncOp>(loc, op.getName(), op.getFunctionType());
|
|
|
|
SymbolTable::setSymbolVisibility(newFuncOp,
|
|
SymbolTable::getSymbolVisibility(op));
|
|
// Copy over all attributes other than the name.
|
|
for (const auto &namedAttr : op->getAttrs()) {
|
|
if (namedAttr.getName() != SymbolTable::getSymbolAttrName())
|
|
newFuncOp->setAttr(namedAttr.getName(), namedAttr.getValue());
|
|
}
|
|
|
|
rewriter.inlineRegionBefore(op.getBody(), newFuncOp.getBody(),
|
|
newFuncOp.end());
|
|
|
|
CoroMachinery coro = setupCoroMachinery(newFuncOp);
|
|
(*coros)[newFuncOp] = coro;
|
|
// no initial suspend, we should hot-start
|
|
|
|
rewriter.eraseOp(op);
|
|
return success();
|
|
}
|
|
|
|
private:
|
|
FuncCoroMapPtr coros;
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Convert async.call operation to func.call
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class AsyncCallOpLowering : public OpConversionPattern<async::CallOp> {
|
|
public:
|
|
AsyncCallOpLowering(MLIRContext *ctx)
|
|
: OpConversionPattern<async::CallOp>(ctx) {}
|
|
|
|
LogicalResult
|
|
matchAndRewrite(async::CallOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
rewriter.replaceOpWithNewOp<func::CallOp>(
|
|
op, op.getCallee(), op.getResultTypes(), op.getOperands());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Convert async.return operation to async.runtime operations.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class AsyncReturnOpLowering : public OpConversionPattern<async::ReturnOp> {
|
|
public:
|
|
AsyncReturnOpLowering(MLIRContext *ctx, FuncCoroMapPtr coros)
|
|
: OpConversionPattern<async::ReturnOp>(ctx), coros(std::move(coros)) {}
|
|
|
|
LogicalResult
|
|
matchAndRewrite(async::ReturnOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto func = op->template getParentOfType<func::FuncOp>();
|
|
auto funcCoro = coros->find(func);
|
|
if (funcCoro == coros->end())
|
|
return rewriter.notifyMatchFailure(
|
|
op, "operation is not inside the async coroutine function");
|
|
|
|
Location loc = op->getLoc();
|
|
const CoroMachinery &coro = funcCoro->getSecond();
|
|
rewriter.setInsertionPointAfter(op);
|
|
|
|
// Store return values into the async values storage and switch async
|
|
// values state to available.
|
|
for (auto tuple : llvm::zip(adaptor.getOperands(), coro.returnValues)) {
|
|
Value returnValue = std::get<0>(tuple);
|
|
Value asyncValue = std::get<1>(tuple);
|
|
rewriter.create<RuntimeStoreOp>(loc, returnValue, asyncValue);
|
|
rewriter.create<RuntimeSetAvailableOp>(loc, asyncValue);
|
|
}
|
|
|
|
if (coro.asyncToken)
|
|
// Switch the coroutine completion token to available state.
|
|
rewriter.create<RuntimeSetAvailableOp>(loc, *coro.asyncToken);
|
|
|
|
rewriter.eraseOp(op);
|
|
rewriter.create<cf::BranchOp>(loc, coro.cleanup);
|
|
return success();
|
|
}
|
|
|
|
private:
|
|
FuncCoroMapPtr coros;
|
|
};
|
|
} // namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Convert async.await and async.await_all operations to the async.runtime.await
|
|
// or async.runtime.await_and_resume operations.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
template <typename AwaitType, typename AwaitableType>
|
|
class AwaitOpLoweringBase : public OpConversionPattern<AwaitType> {
|
|
using AwaitAdaptor = typename AwaitType::Adaptor;
|
|
|
|
public:
|
|
AwaitOpLoweringBase(MLIRContext *ctx, FuncCoroMapPtr coros,
|
|
bool shouldLowerBlockingWait)
|
|
: OpConversionPattern<AwaitType>(ctx), coros(std::move(coros)),
|
|
shouldLowerBlockingWait(shouldLowerBlockingWait) {}
|
|
|
|
LogicalResult
|
|
matchAndRewrite(AwaitType op, typename AwaitType::Adaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
// We can only await on one the `AwaitableType` (for `await` it can be
|
|
// a `token` or a `value`, for `await_all` it must be a `group`).
|
|
if (!isa<AwaitableType>(op.getOperand().getType()))
|
|
return rewriter.notifyMatchFailure(op, "unsupported awaitable type");
|
|
|
|
// Check if await operation is inside the coroutine function.
|
|
auto func = op->template getParentOfType<func::FuncOp>();
|
|
auto funcCoro = coros->find(func);
|
|
const bool isInCoroutine = funcCoro != coros->end();
|
|
|
|
Location loc = op->getLoc();
|
|
Value operand = adaptor.getOperand();
|
|
|
|
Type i1 = rewriter.getI1Type();
|
|
|
|
// Delay lowering to block wait in case await op is inside async.execute
|
|
if (!isInCoroutine && !shouldLowerBlockingWait)
|
|
return failure();
|
|
|
|
// Inside regular functions we use the blocking wait operation to wait for
|
|
// the async object (token, value or group) to become available.
|
|
if (!isInCoroutine) {
|
|
ImplicitLocOpBuilder builder(loc, op, &rewriter);
|
|
builder.create<RuntimeAwaitOp>(loc, operand);
|
|
|
|
// Assert that the awaited operands is not in the error state.
|
|
Value isError = builder.create<RuntimeIsErrorOp>(i1, operand);
|
|
Value notError = builder.create<arith::XOrIOp>(
|
|
isError, builder.create<arith::ConstantOp>(
|
|
loc, i1, builder.getIntegerAttr(i1, 1)));
|
|
|
|
builder.create<cf::AssertOp>(notError,
|
|
"Awaited async operand is in error state");
|
|
}
|
|
|
|
// Inside the coroutine we convert await operation into coroutine suspension
|
|
// point, and resume execution asynchronously.
|
|
if (isInCoroutine) {
|
|
CoroMachinery &coro = funcCoro->getSecond();
|
|
Block *suspended = op->getBlock();
|
|
|
|
ImplicitLocOpBuilder builder(loc, op, &rewriter);
|
|
MLIRContext *ctx = op->getContext();
|
|
|
|
// Save the coroutine state and resume on a runtime managed thread when
|
|
// the operand becomes available.
|
|
auto coroSaveOp =
|
|
builder.create<CoroSaveOp>(CoroStateType::get(ctx), coro.coroHandle);
|
|
builder.create<RuntimeAwaitAndResumeOp>(operand, coro.coroHandle);
|
|
|
|
// Split the entry block before the await operation.
|
|
Block *resume = rewriter.splitBlock(suspended, Block::iterator(op));
|
|
|
|
// Add async.coro.suspend as a suspended block terminator.
|
|
builder.setInsertionPointToEnd(suspended);
|
|
builder.create<CoroSuspendOp>(coroSaveOp.getState(), coro.suspend, resume,
|
|
coro.cleanupForDestroy);
|
|
|
|
// Split the resume block into error checking and continuation.
|
|
Block *continuation = rewriter.splitBlock(resume, Block::iterator(op));
|
|
|
|
// Check if the awaited value is in the error state.
|
|
builder.setInsertionPointToStart(resume);
|
|
auto isError = builder.create<RuntimeIsErrorOp>(loc, i1, operand);
|
|
builder.create<cf::CondBranchOp>(isError,
|
|
/*trueDest=*/setupSetErrorBlock(coro),
|
|
/*trueArgs=*/ArrayRef<Value>(),
|
|
/*falseDest=*/continuation,
|
|
/*falseArgs=*/ArrayRef<Value>());
|
|
|
|
// Make sure that replacement value will be constructed in the
|
|
// continuation block.
|
|
rewriter.setInsertionPointToStart(continuation);
|
|
}
|
|
|
|
// Erase or replace the await operation with the new value.
|
|
if (Value replaceWith = getReplacementValue(op, operand, rewriter))
|
|
rewriter.replaceOp(op, replaceWith);
|
|
else
|
|
rewriter.eraseOp(op);
|
|
|
|
return success();
|
|
}
|
|
|
|
virtual Value getReplacementValue(AwaitType op, Value operand,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
return Value();
|
|
}
|
|
|
|
private:
|
|
FuncCoroMapPtr coros;
|
|
bool shouldLowerBlockingWait;
|
|
};
|
|
|
|
/// Lowering for `async.await` with a token operand.
|
|
class AwaitTokenOpLowering : public AwaitOpLoweringBase<AwaitOp, TokenType> {
|
|
using Base = AwaitOpLoweringBase<AwaitOp, TokenType>;
|
|
|
|
public:
|
|
using Base::Base;
|
|
};
|
|
|
|
/// Lowering for `async.await` with a value operand.
|
|
class AwaitValueOpLowering : public AwaitOpLoweringBase<AwaitOp, ValueType> {
|
|
using Base = AwaitOpLoweringBase<AwaitOp, ValueType>;
|
|
|
|
public:
|
|
using Base::Base;
|
|
|
|
Value
|
|
getReplacementValue(AwaitOp op, Value operand,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
// Load from the async value storage.
|
|
auto valueType = cast<ValueType>(operand.getType()).getValueType();
|
|
return rewriter.create<RuntimeLoadOp>(op->getLoc(), valueType, operand);
|
|
}
|
|
};
|
|
|
|
/// Lowering for `async.await_all` operation.
|
|
class AwaitAllOpLowering : public AwaitOpLoweringBase<AwaitAllOp, GroupType> {
|
|
using Base = AwaitOpLoweringBase<AwaitAllOp, GroupType>;
|
|
|
|
public:
|
|
using Base::Base;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Convert async.yield operation to async.runtime operations.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class YieldOpLowering : public OpConversionPattern<async::YieldOp> {
|
|
public:
|
|
YieldOpLowering(MLIRContext *ctx, FuncCoroMapPtr coros)
|
|
: OpConversionPattern<async::YieldOp>(ctx), coros(std::move(coros)) {}
|
|
|
|
LogicalResult
|
|
matchAndRewrite(async::YieldOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
// Check if yield operation is inside the async coroutine function.
|
|
auto func = op->template getParentOfType<func::FuncOp>();
|
|
auto funcCoro = coros->find(func);
|
|
if (funcCoro == coros->end())
|
|
return rewriter.notifyMatchFailure(
|
|
op, "operation is not inside the async coroutine function");
|
|
|
|
Location loc = op->getLoc();
|
|
const CoroMachinery &coro = funcCoro->getSecond();
|
|
|
|
// Store yielded values into the async values storage and switch async
|
|
// values state to available.
|
|
for (auto tuple : llvm::zip(adaptor.getOperands(), coro.returnValues)) {
|
|
Value yieldValue = std::get<0>(tuple);
|
|
Value asyncValue = std::get<1>(tuple);
|
|
rewriter.create<RuntimeStoreOp>(loc, yieldValue, asyncValue);
|
|
rewriter.create<RuntimeSetAvailableOp>(loc, asyncValue);
|
|
}
|
|
|
|
if (coro.asyncToken)
|
|
// Switch the coroutine completion token to available state.
|
|
rewriter.create<RuntimeSetAvailableOp>(loc, *coro.asyncToken);
|
|
|
|
rewriter.eraseOp(op);
|
|
rewriter.create<cf::BranchOp>(loc, coro.cleanup);
|
|
|
|
return success();
|
|
}
|
|
|
|
private:
|
|
FuncCoroMapPtr coros;
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Convert cf.assert operation to cf.cond_br into `set_error` block.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class AssertOpLowering : public OpConversionPattern<cf::AssertOp> {
|
|
public:
|
|
AssertOpLowering(MLIRContext *ctx, FuncCoroMapPtr coros)
|
|
: OpConversionPattern<cf::AssertOp>(ctx), coros(std::move(coros)) {}
|
|
|
|
LogicalResult
|
|
matchAndRewrite(cf::AssertOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
// Check if assert operation is inside the async coroutine function.
|
|
auto func = op->template getParentOfType<func::FuncOp>();
|
|
auto funcCoro = coros->find(func);
|
|
if (funcCoro == coros->end())
|
|
return rewriter.notifyMatchFailure(
|
|
op, "operation is not inside the async coroutine function");
|
|
|
|
Location loc = op->getLoc();
|
|
CoroMachinery &coro = funcCoro->getSecond();
|
|
|
|
Block *cont = rewriter.splitBlock(op->getBlock(), Block::iterator(op));
|
|
rewriter.setInsertionPointToEnd(cont->getPrevNode());
|
|
rewriter.create<cf::CondBranchOp>(loc, adaptor.getArg(),
|
|
/*trueDest=*/cont,
|
|
/*trueArgs=*/ArrayRef<Value>(),
|
|
/*falseDest=*/setupSetErrorBlock(coro),
|
|
/*falseArgs=*/ArrayRef<Value>());
|
|
rewriter.eraseOp(op);
|
|
|
|
return success();
|
|
}
|
|
|
|
private:
|
|
FuncCoroMapPtr coros;
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
void AsyncToAsyncRuntimePass::runOnOperation() {
|
|
ModuleOp module = getOperation();
|
|
SymbolTable symbolTable(module);
|
|
|
|
// Functions with coroutine CFG setups, which are results of outlining
|
|
// `async.execute` body regions
|
|
FuncCoroMapPtr coros =
|
|
std::make_shared<llvm::DenseMap<func::FuncOp, CoroMachinery>>();
|
|
|
|
module.walk([&](ExecuteOp execute) {
|
|
coros->insert(outlineExecuteOp(symbolTable, execute));
|
|
});
|
|
|
|
LLVM_DEBUG({
|
|
llvm::dbgs() << "Outlined " << coros->size()
|
|
<< " functions built from async.execute operations\n";
|
|
});
|
|
|
|
// Returns true if operation is inside the coroutine.
|
|
auto isInCoroutine = [&](Operation *op) -> bool {
|
|
auto parentFunc = op->getParentOfType<func::FuncOp>();
|
|
return coros->find(parentFunc) != coros->end();
|
|
};
|
|
|
|
// Lower async operations to async.runtime operations.
|
|
MLIRContext *ctx = module->getContext();
|
|
RewritePatternSet asyncPatterns(ctx);
|
|
|
|
// Conversion to async runtime augments original CFG with the coroutine CFG,
|
|
// and we have to make sure that structured control flow operations with async
|
|
// operations in nested regions will be converted to branch-based control flow
|
|
// before we add the coroutine basic blocks.
|
|
populateSCFToControlFlowConversionPatterns(asyncPatterns);
|
|
|
|
// Async lowering does not use type converter because it must preserve all
|
|
// types for async.runtime operations.
|
|
asyncPatterns.add<CreateGroupOpLowering, AddToGroupOpLowering>(ctx);
|
|
|
|
asyncPatterns
|
|
.add<AwaitTokenOpLowering, AwaitValueOpLowering, AwaitAllOpLowering>(
|
|
ctx, coros, /*should_lower_blocking_wait=*/true);
|
|
|
|
// Lower assertions to conditional branches into error blocks.
|
|
asyncPatterns.add<YieldOpLowering, AssertOpLowering>(ctx, coros);
|
|
|
|
// All high level async operations must be lowered to the runtime operations.
|
|
ConversionTarget runtimeTarget(*ctx);
|
|
runtimeTarget.addLegalDialect<AsyncDialect, func::FuncDialect>();
|
|
runtimeTarget.addIllegalOp<CreateGroupOp, AddToGroupOp>();
|
|
runtimeTarget.addIllegalOp<ExecuteOp, AwaitOp, AwaitAllOp, async::YieldOp>();
|
|
|
|
// Decide if structured control flow has to be lowered to branch-based CFG.
|
|
runtimeTarget.addDynamicallyLegalDialect<scf::SCFDialect>([&](Operation *op) {
|
|
auto walkResult = op->walk([&](Operation *nested) {
|
|
bool isAsync = isa<async::AsyncDialect>(nested->getDialect());
|
|
return isAsync && isInCoroutine(nested) ? WalkResult::interrupt()
|
|
: WalkResult::advance();
|
|
});
|
|
return !walkResult.wasInterrupted();
|
|
});
|
|
runtimeTarget.addLegalOp<cf::AssertOp, arith::XOrIOp, arith::ConstantOp,
|
|
func::ConstantOp, cf::BranchOp, cf::CondBranchOp>();
|
|
|
|
// Assertions must be converted to runtime errors inside async functions.
|
|
runtimeTarget.addDynamicallyLegalOp<cf::AssertOp>(
|
|
[&](cf::AssertOp op) -> bool {
|
|
auto func = op->getParentOfType<func::FuncOp>();
|
|
return !coros->contains(func);
|
|
});
|
|
|
|
if (failed(applyPartialConversion(module, runtimeTarget,
|
|
std::move(asyncPatterns)))) {
|
|
signalPassFailure();
|
|
return;
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
void mlir::populateAsyncFuncToAsyncRuntimeConversionPatterns(
|
|
RewritePatternSet &patterns, ConversionTarget &target) {
|
|
// Functions with coroutine CFG setups, which are results of converting
|
|
// async.func.
|
|
FuncCoroMapPtr coros =
|
|
std::make_shared<llvm::DenseMap<func::FuncOp, CoroMachinery>>();
|
|
MLIRContext *ctx = patterns.getContext();
|
|
// Lower async.func to func.func with coroutine cfg.
|
|
patterns.add<AsyncCallOpLowering>(ctx);
|
|
patterns.add<AsyncFuncOpLowering, AsyncReturnOpLowering>(ctx, coros);
|
|
|
|
patterns.add<AwaitTokenOpLowering, AwaitValueOpLowering, AwaitAllOpLowering>(
|
|
ctx, coros, /*should_lower_blocking_wait=*/false);
|
|
patterns.add<YieldOpLowering, AssertOpLowering>(ctx, coros);
|
|
|
|
target.addDynamicallyLegalOp<AwaitOp, AwaitAllOp, YieldOp, cf::AssertOp>(
|
|
[coros](Operation *op) {
|
|
auto exec = op->getParentOfType<ExecuteOp>();
|
|
auto func = op->getParentOfType<func::FuncOp>();
|
|
return exec || !coros->contains(func);
|
|
});
|
|
}
|
|
|
|
void AsyncFuncToAsyncRuntimePass::runOnOperation() {
|
|
ModuleOp module = getOperation();
|
|
|
|
// Lower async operations to async.runtime operations.
|
|
MLIRContext *ctx = module->getContext();
|
|
RewritePatternSet asyncPatterns(ctx);
|
|
ConversionTarget runtimeTarget(*ctx);
|
|
|
|
// Lower async.func to func.func with coroutine cfg.
|
|
populateAsyncFuncToAsyncRuntimeConversionPatterns(asyncPatterns,
|
|
runtimeTarget);
|
|
|
|
runtimeTarget.addLegalDialect<AsyncDialect, func::FuncDialect>();
|
|
runtimeTarget.addIllegalOp<async::FuncOp, async::CallOp, async::ReturnOp>();
|
|
|
|
runtimeTarget.addLegalOp<arith::XOrIOp, arith::ConstantOp, func::ConstantOp,
|
|
cf::BranchOp, cf::CondBranchOp>();
|
|
|
|
if (failed(applyPartialConversion(module, runtimeTarget,
|
|
std::move(asyncPatterns)))) {
|
|
signalPassFailure();
|
|
return;
|
|
}
|
|
}
|
|
|
|
std::unique_ptr<OperationPass<ModuleOp>> mlir::createAsyncToAsyncRuntimePass() {
|
|
return std::make_unique<AsyncToAsyncRuntimePass>();
|
|
}
|
|
|
|
std::unique_ptr<OperationPass<ModuleOp>>
|
|
mlir::createAsyncFuncToAsyncRuntimePass() {
|
|
return std::make_unique<AsyncFuncToAsyncRuntimePass>();
|
|
}
|