Files
clang-p2996/mlir/lib/Dialect/Bufferization/IR/BufferDeallocationOpInterface.cpp
Kazu Hirata f9306f6de3 [ADT] Rename llvm::erase_value to llvm::erase (NFC) (#70156)
C++20 comes with std::erase to erase a value from std::vector.  This
patch renames llvm::erase_value to llvm::erase for consistency with
C++20.

We could make llvm::erase more similar to std::erase by having it
return the number of elements removed, but I'm not doing that for now
because nobody seems to care about that in our code base.

Since there are only 50 occurrences of erase_value in our code base,
this patch replaces all of them with llvm::erase and deprecates
llvm::erase_value.
2023-10-24 23:03:13 -07:00

315 lines
12 KiB
C++

//===- BufferDeallocationOpInterface.cpp ----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Bufferization/IR/BufferDeallocationOpInterface.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/IR/AsmState.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/IR/Value.h"
#include "llvm/ADT/SetOperations.h"
//===----------------------------------------------------------------------===//
// BufferDeallocationOpInterface
//===----------------------------------------------------------------------===//
namespace mlir {
namespace bufferization {
#include "mlir/Dialect/Bufferization/IR/BufferDeallocationOpInterface.cpp.inc"
} // namespace bufferization
} // namespace mlir
using namespace mlir;
using namespace bufferization;
//===----------------------------------------------------------------------===//
// Helpers
//===----------------------------------------------------------------------===//
static Value buildBoolValue(OpBuilder &builder, Location loc, bool value) {
return builder.create<arith::ConstantOp>(loc, builder.getBoolAttr(value));
}
static bool isMemref(Value v) { return v.getType().isa<BaseMemRefType>(); }
//===----------------------------------------------------------------------===//
// Ownership
//===----------------------------------------------------------------------===//
Ownership::Ownership(Value indicator)
: indicator(indicator), state(State::Unique) {}
Ownership Ownership::getUnknown() {
Ownership unknown;
unknown.indicator = Value();
unknown.state = State::Unknown;
return unknown;
}
Ownership Ownership::getUnique(Value indicator) { return Ownership(indicator); }
Ownership Ownership::getUninitialized() { return Ownership(); }
bool Ownership::isUninitialized() const {
return state == State::Uninitialized;
}
bool Ownership::isUnique() const { return state == State::Unique; }
bool Ownership::isUnknown() const { return state == State::Unknown; }
Value Ownership::getIndicator() const {
assert(isUnique() && "must have unique ownership to get the indicator");
return indicator;
}
Ownership Ownership::getCombined(Ownership other) const {
if (other.isUninitialized())
return *this;
if (isUninitialized())
return other;
if (!isUnique() || !other.isUnique())
return getUnknown();
// Since we create a new constant i1 value for (almost) each use-site, we
// should compare the actual value rather than just the SSA Value to avoid
// unnecessary invalidations.
if (isEqualConstantIntOrValue(indicator, other.indicator))
return *this;
// Return the join of the lattice if the indicator of both ownerships cannot
// be merged.
return getUnknown();
}
void Ownership::combine(Ownership other) { *this = getCombined(other); }
//===----------------------------------------------------------------------===//
// DeallocationState
//===----------------------------------------------------------------------===//
DeallocationState::DeallocationState(Operation *op) : liveness(op) {}
void DeallocationState::updateOwnership(Value memref, Ownership ownership,
Block *block) {
// In most cases we care about the block where the value is defined.
if (block == nullptr)
block = memref.getParentBlock();
// Update ownership of current memref itself.
ownershipMap[{memref, block}].combine(ownership);
}
void DeallocationState::resetOwnerships(ValueRange memrefs, Block *block) {
for (Value val : memrefs)
ownershipMap[{val, block}] = Ownership::getUninitialized();
}
Ownership DeallocationState::getOwnership(Value memref, Block *block) const {
return ownershipMap.lookup({memref, block});
}
void DeallocationState::addMemrefToDeallocate(Value memref, Block *block) {
memrefsToDeallocatePerBlock[block].push_back(memref);
}
void DeallocationState::dropMemrefToDeallocate(Value memref, Block *block) {
llvm::erase(memrefsToDeallocatePerBlock[block], memref);
}
void DeallocationState::getLiveMemrefsIn(Block *block,
SmallVectorImpl<Value> &memrefs) {
SmallVector<Value> liveMemrefs(
llvm::make_filter_range(liveness.getLiveIn(block), isMemref));
llvm::sort(liveMemrefs, ValueComparator());
memrefs.append(liveMemrefs);
}
std::pair<Value, Value>
DeallocationState::getMemrefWithUniqueOwnership(OpBuilder &builder,
Value memref, Block *block) {
auto iter = ownershipMap.find({memref, block});
assert(iter != ownershipMap.end() &&
"Value must already have been registered in the ownership map");
Ownership ownership = iter->second;
if (ownership.isUnique())
return {memref, ownership.getIndicator()};
// Instead of inserting a clone operation we could also insert a dealloc
// operation earlier in the block and use the updated ownerships returned by
// the op for the retained values. Alternatively, we could insert code to
// check aliasing at runtime and use this information to combine two unique
// ownerships more intelligently to not end up with an 'Unknown' ownership in
// the first place.
auto cloneOp =
builder.create<bufferization::CloneOp>(memref.getLoc(), memref);
Value condition = buildBoolValue(builder, memref.getLoc(), true);
Value newMemref = cloneOp.getResult();
updateOwnership(newMemref, condition);
memrefsToDeallocatePerBlock[newMemref.getParentBlock()].push_back(newMemref);
return {newMemref, condition};
}
void DeallocationState::getMemrefsToRetain(
Block *fromBlock, Block *toBlock, ValueRange destOperands,
SmallVectorImpl<Value> &toRetain) const {
for (Value operand : destOperands) {
if (!isMemref(operand))
continue;
toRetain.push_back(operand);
}
SmallPtrSet<Value, 16> liveOut;
for (auto val : liveness.getLiveOut(fromBlock))
if (isMemref(val))
liveOut.insert(val);
if (toBlock)
llvm::set_intersect(liveOut, liveness.getLiveIn(toBlock));
// liveOut has non-deterministic order because it was constructed by iterating
// over a hash-set.
SmallVector<Value> retainedByLiveness(liveOut.begin(), liveOut.end());
std::sort(retainedByLiveness.begin(), retainedByLiveness.end(),
ValueComparator());
toRetain.append(retainedByLiveness);
}
LogicalResult DeallocationState::getMemrefsAndConditionsToDeallocate(
OpBuilder &builder, Location loc, Block *block,
SmallVectorImpl<Value> &memrefs, SmallVectorImpl<Value> &conditions) const {
for (auto [i, memref] :
llvm::enumerate(memrefsToDeallocatePerBlock.lookup(block))) {
Ownership ownership = ownershipMap.lookup({memref, block});
if (!ownership.isUnique())
return emitError(memref.getLoc(),
"MemRef value does not have valid ownership");
// Simply cast unranked MemRefs to ranked memrefs with 0 dimensions such
// that we can call extract_strided_metadata on it.
if (auto unrankedMemRefTy = dyn_cast<UnrankedMemRefType>(memref.getType()))
memref = builder.create<memref::ReinterpretCastOp>(
loc, MemRefType::get({}, unrankedMemRefTy.getElementType()), memref,
0, SmallVector<int64_t>{}, SmallVector<int64_t>{});
// Use the `memref.extract_strided_metadata` operation to get the base
// memref. This is needed because the same MemRef that was produced by the
// alloc operation has to be passed to the dealloc operation. Passing
// subviews, etc. to a dealloc operation is not allowed.
memrefs.push_back(
builder.create<memref::ExtractStridedMetadataOp>(loc, memref)
.getResult(0));
conditions.push_back(ownership.getIndicator());
}
return success();
}
//===----------------------------------------------------------------------===//
// ValueComparator
//===----------------------------------------------------------------------===//
bool ValueComparator::operator()(const Value &lhs, const Value &rhs) const {
if (lhs == rhs)
return false;
// Block arguments are less than results.
bool lhsIsBBArg = lhs.isa<BlockArgument>();
if (lhsIsBBArg != rhs.isa<BlockArgument>()) {
return lhsIsBBArg;
}
Region *lhsRegion;
Region *rhsRegion;
if (lhsIsBBArg) {
auto lhsBBArg = llvm::cast<BlockArgument>(lhs);
auto rhsBBArg = llvm::cast<BlockArgument>(rhs);
if (lhsBBArg.getArgNumber() != rhsBBArg.getArgNumber()) {
return lhsBBArg.getArgNumber() < rhsBBArg.getArgNumber();
}
lhsRegion = lhsBBArg.getParentRegion();
rhsRegion = rhsBBArg.getParentRegion();
assert(lhsRegion != rhsRegion &&
"lhsRegion == rhsRegion implies lhs == rhs");
} else if (lhs.getDefiningOp() == rhs.getDefiningOp()) {
return llvm::cast<OpResult>(lhs).getResultNumber() <
llvm::cast<OpResult>(rhs).getResultNumber();
} else {
lhsRegion = lhs.getDefiningOp()->getParentRegion();
rhsRegion = rhs.getDefiningOp()->getParentRegion();
if (lhsRegion == rhsRegion) {
return lhs.getDefiningOp()->isBeforeInBlock(rhs.getDefiningOp());
}
}
// lhsRegion != rhsRegion, so if we look at their ancestor chain, they
// - have different heights
// - or there's a spot where their region numbers differ
// - or their parent regions are the same and their parent ops are
// different.
while (lhsRegion && rhsRegion) {
if (lhsRegion->getRegionNumber() != rhsRegion->getRegionNumber()) {
return lhsRegion->getRegionNumber() < rhsRegion->getRegionNumber();
}
if (lhsRegion->getParentRegion() == rhsRegion->getParentRegion()) {
return lhsRegion->getParentOp()->isBeforeInBlock(
rhsRegion->getParentOp());
}
lhsRegion = lhsRegion->getParentRegion();
rhsRegion = rhsRegion->getParentRegion();
}
if (rhsRegion)
return true;
assert(lhsRegion && "this should only happen if lhs == rhs");
return false;
}
//===----------------------------------------------------------------------===//
// Implementation utilities
//===----------------------------------------------------------------------===//
FailureOr<Operation *> deallocation_impl::insertDeallocOpForReturnLike(
DeallocationState &state, Operation *op, ValueRange operands,
SmallVectorImpl<Value> &updatedOperandOwnerships) {
assert(op->hasTrait<OpTrait::IsTerminator>() && "must be a terminator");
assert(!op->hasSuccessors() && "must not have any successors");
// Collect the values to deallocate and retain and use them to create the
// dealloc operation.
OpBuilder builder(op);
Block *block = op->getBlock();
SmallVector<Value> memrefs, conditions, toRetain;
if (failed(state.getMemrefsAndConditionsToDeallocate(
builder, op->getLoc(), block, memrefs, conditions)))
return failure();
state.getMemrefsToRetain(block, /*toBlock=*/nullptr, operands, toRetain);
if (memrefs.empty() && toRetain.empty())
return op;
auto deallocOp = builder.create<bufferization::DeallocOp>(
op->getLoc(), memrefs, conditions, toRetain);
// We want to replace the current ownership of the retained values with the
// result values of the dealloc operation as they are always unique.
state.resetOwnerships(deallocOp.getRetained(), block);
for (auto [retained, ownership] :
llvm::zip(deallocOp.getRetained(), deallocOp.getUpdatedConditions()))
state.updateOwnership(retained, ownership, block);
unsigned numMemrefOperands = llvm::count_if(operands, isMemref);
auto newOperandOwnerships =
deallocOp.getUpdatedConditions().take_front(numMemrefOperands);
updatedOperandOwnerships.append(newOperandOwnerships.begin(),
newOperandOwnerships.end());
return op;
}