Files
clang-p2996/mlir/lib/Dialect/Bufferization/Transforms/BufferUtils.cpp
Martin Erhart 8160bce969 [mlir][bufferization][NFC] Introduce BufferDeallocationOpInterface (#66349)
This new interface allows operations to implement custom handling of ownership values and insertion of dealloc operations which is useful when an op cannot implement the interfaces supported by default by the buffer deallocation pass (e.g., because they are not exactly compatible or because there are some additional semantics to it that would render the default implementations in buffer deallocation invalid, or because no interfaces exist for this
kind of behavior and it's not worth introducing one plus a default implementation in buffer deallocation). Additionally, it can also be used to provide more efficient handling for a specific op than the interface based default
implementations can.
2023-09-14 13:58:30 +02:00

205 lines
8.3 KiB
C++

//===- BufferUtils.cpp - buffer transformation utilities ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements utilities for buffer optimization passes.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Bufferization/Transforms/BufferUtils.h"
#include "mlir/Dialect/Bufferization/Transforms/Bufferize.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/MemRef/Utils/MemRefUtils.h"
#include "mlir/IR/Operation.h"
#include "mlir/Interfaces/ControlFlowInterfaces.h"
#include "mlir/Interfaces/LoopLikeInterface.h"
#include "mlir/Pass/Pass.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SmallString.h"
#include <optional>
using namespace mlir;
using namespace mlir::bufferization;
//===----------------------------------------------------------------------===//
// BufferPlacementAllocs
//===----------------------------------------------------------------------===//
/// Get the start operation to place the given alloc value withing the
// specified placement block.
Operation *BufferPlacementAllocs::getStartOperation(Value allocValue,
Block *placementBlock,
const Liveness &liveness) {
// We have to ensure that we place the alloc before its first use in this
// block.
const LivenessBlockInfo &livenessInfo = *liveness.getLiveness(placementBlock);
Operation *startOperation = livenessInfo.getStartOperation(allocValue);
// Check whether the start operation lies in the desired placement block.
// If not, we will use the terminator as this is the last operation in
// this block.
if (startOperation->getBlock() != placementBlock) {
Operation *opInPlacementBlock =
placementBlock->findAncestorOpInBlock(*startOperation);
startOperation = opInPlacementBlock ? opInPlacementBlock
: placementBlock->getTerminator();
}
return startOperation;
}
/// Initializes the internal list by discovering all supported allocation
/// nodes.
BufferPlacementAllocs::BufferPlacementAllocs(Operation *op) { build(op); }
/// Searches for and registers all supported allocation entries.
void BufferPlacementAllocs::build(Operation *op) {
op->walk([&](MemoryEffectOpInterface opInterface) {
// Try to find a single allocation result.
SmallVector<MemoryEffects::EffectInstance, 2> effects;
opInterface.getEffects(effects);
SmallVector<MemoryEffects::EffectInstance, 2> allocateResultEffects;
llvm::copy_if(
effects, std::back_inserter(allocateResultEffects),
[=](MemoryEffects::EffectInstance &it) {
Value value = it.getValue();
return isa<MemoryEffects::Allocate>(it.getEffect()) && value &&
isa<OpResult>(value) &&
it.getResource() !=
SideEffects::AutomaticAllocationScopeResource::get();
});
// If there is one result only, we will be able to move the allocation and
// (possibly existing) deallocation ops.
if (allocateResultEffects.size() != 1)
return;
// Get allocation result.
Value allocValue = allocateResultEffects[0].getValue();
// Find the associated dealloc value and register the allocation entry.
std::optional<Operation *> dealloc = memref::findDealloc(allocValue);
// If the allocation has > 1 dealloc associated with it, skip handling it.
if (!dealloc)
return;
allocs.push_back(std::make_tuple(allocValue, *dealloc));
});
}
//===----------------------------------------------------------------------===//
// BufferPlacementTransformationBase
//===----------------------------------------------------------------------===//
/// Constructs a new transformation base using the given root operation.
BufferPlacementTransformationBase::BufferPlacementTransformationBase(
Operation *op)
: aliases(op), allocs(op), liveness(op) {}
/// Returns true if the given operation represents a loop by testing whether it
/// implements the `LoopLikeOpInterface` or the `RegionBranchOpInterface`. In
/// the case of a `RegionBranchOpInterface`, it checks all region-based control-
/// flow edges for cycles.
bool BufferPlacementTransformationBase::isLoop(Operation *op) {
// If the operation implements the `LoopLikeOpInterface` it can be considered
// a loop.
if (isa<LoopLikeOpInterface>(op))
return true;
// If the operation does not implement the `RegionBranchOpInterface`, it is
// (currently) not possible to detect a loop.
RegionBranchOpInterface regionInterface;
if (!(regionInterface = dyn_cast<RegionBranchOpInterface>(op)))
return false;
// Recurses into a region using the current region interface to find potential
// cycles.
SmallPtrSet<Region *, 4> visitedRegions;
std::function<bool(Region *)> recurse = [&](Region *current) {
if (!current)
return false;
// If we have found a back edge, the parent operation induces a loop.
if (!visitedRegions.insert(current).second)
return true;
// Recurses into all region successors.
SmallVector<RegionSuccessor, 2> successors;
regionInterface.getSuccessorRegions(current, successors);
for (RegionSuccessor &regionEntry : successors)
if (recurse(regionEntry.getSuccessor()))
return true;
return false;
};
// Start with all entry regions and test whether they induce a loop.
SmallVector<RegionSuccessor, 2> successorRegions;
regionInterface.getSuccessorRegions(/*point=*/RegionBranchPoint::parent(),
successorRegions);
for (RegionSuccessor &regionEntry : successorRegions) {
if (recurse(regionEntry.getSuccessor()))
return true;
visitedRegions.clear();
}
return false;
}
//===----------------------------------------------------------------------===//
// BufferPlacementTransformationBase
//===----------------------------------------------------------------------===//
FailureOr<memref::GlobalOp>
bufferization::getGlobalFor(arith::ConstantOp constantOp, uint64_t alignment,
Attribute memorySpace) {
auto type = cast<RankedTensorType>(constantOp.getType());
auto moduleOp = constantOp->getParentOfType<ModuleOp>();
if (!moduleOp)
return failure();
// If we already have a global for this constant value, no need to do
// anything else.
for (Operation &op : moduleOp.getRegion().getOps()) {
auto globalOp = dyn_cast<memref::GlobalOp>(&op);
if (!globalOp)
continue;
if (!globalOp.getInitialValue().has_value())
continue;
uint64_t opAlignment = globalOp.getAlignment().value_or(0);
Attribute initialValue = globalOp.getInitialValue().value();
if (opAlignment == alignment && initialValue == constantOp.getValue())
return globalOp;
}
// Create a builder without an insertion point. We will insert using the
// symbol table to guarantee unique names.
OpBuilder globalBuilder(moduleOp.getContext());
SymbolTable symbolTable(moduleOp);
// Create a pretty name.
SmallString<64> buf;
llvm::raw_svector_ostream os(buf);
interleave(type.getShape(), os, "x");
os << "x" << type.getElementType();
// Add an optional alignment to the global memref.
IntegerAttr memrefAlignment =
alignment > 0 ? IntegerAttr::get(globalBuilder.getI64Type(), alignment)
: IntegerAttr();
BufferizeTypeConverter typeConverter;
auto memrefType = cast<MemRefType>(typeConverter.convertType(type));
if (memorySpace)
memrefType = MemRefType::Builder(memrefType).setMemorySpace(memorySpace);
auto global = globalBuilder.create<memref::GlobalOp>(
constantOp.getLoc(), (Twine("__constant_") + os.str()).str(),
/*sym_visibility=*/globalBuilder.getStringAttr("private"),
/*type=*/memrefType,
/*initial_value=*/cast<ElementsAttr>(constantOp.getValue()),
/*constant=*/true,
/*alignment=*/memrefAlignment);
symbolTable.insert(global);
// The symbol table inserts at the end of the module, but globals are a bit
// nicer if they are at the beginning.
global->moveBefore(&moduleOp.front());
return global;
}