Files
clang-p2996/mlir/lib/Dialect/GPU/TransformOps/Utils.cpp
Nicolas Vasilache 44e6318cea [mlir][transforms] Revamp the implementation of mapping loops to GPUs
This revision significantly simplifies the specification and implementation of mapping loops to GPU ids.

Each type of mapping (block, warpgroup, warp, thread) now comes with 2 mapping modes:
  1. a 3-D "grid-like" mode, subject to alignment considerations on threadIdx.x, on which predication
     may occur on a per-dimension 3-D sub-rectangle basis.
  2. a n-D linearized mode, on which predication may only occur on a linear basis.

In the process, better size and alignment requirement inference are introduced along with improved runtime verification messages.

The `warp_dims` attribute was deemed confusing and is removed from the transform in favor of better size inference.

Differential Revision: https://reviews.llvm.org/D155941
2023-07-26 00:09:08 +02:00

342 lines
15 KiB
C++

//===- Utils.cpp - Utils for GPU transform ops ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/GPU/TransformOps/Utils.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/GPU/TransformOps/GPUTransformOps.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/DeviceMappingInterface.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/Transform/IR/TransformDialect.h"
#include "mlir/Dialect/Transform/IR/TransformInterfaces.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/OpDefinition.h"
#include "mlir/IR/Value.h"
#include "mlir/IR/Visitors.h"
#include "mlir/Support/LLVM.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/Debug.h"
using namespace mlir;
using namespace mlir::gpu;
using namespace mlir::transform;
using namespace mlir::transform::gpu;
#define DEBUG_TYPE "gpu-transforms"
#define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ")
#define LDBG(X) LLVM_DEBUG(DBGS() << X << "\n")
#define DBGS_ALIAS() (llvm::dbgs() << '[' << DEBUG_TYPE_ALIAS << "] ")
/// Return a flattened thread id for the workgroup with given sizes.
template <typename ThreadOrBlockIdOp>
static Value buildLinearId(RewriterBase &rewriter, Location loc,
ArrayRef<OpFoldResult> originalBasisOfr) {
LLVM_DEBUG(llvm::interleaveComma(
originalBasisOfr,
DBGS() << "----buildLinearId with originalBasisOfr: ");
llvm::dbgs() << "\n");
assert(originalBasisOfr.size() == 3 && "expected 3 sizes");
IndexType indexType = rewriter.getIndexType();
AffineExpr tx, ty, tz, BDX, BDY;
bindDims(rewriter.getContext(), tx, ty, tz);
bindSymbols(rewriter.getContext(), BDX, BDY);
SmallVector<OpFoldResult> vals{
rewriter.create<ThreadOrBlockIdOp>(loc, indexType, Dimension::x)
.getResult(),
rewriter.create<ThreadOrBlockIdOp>(loc, indexType, Dimension::y)
.getResult(),
rewriter.create<ThreadOrBlockIdOp>(loc, indexType, Dimension::z)
.getResult(),
originalBasisOfr[0], originalBasisOfr[1]};
OpFoldResult ofr = affine::makeComposedFoldedAffineApply(
rewriter, loc, tx + ty * BDX + tz * BDX * BDY, vals);
return getValueOrCreateConstantIndexOp(rewriter, loc, ofr);
}
/// Create a linear id builder that takes the `originalBasisOfr` and decompose
/// it in the basis of `forallMappingSizes`. The linear id builder returns an
/// n-D vector of ids for indexing and 1-D size + id for predicate generation.
template <typename ThreadOrBlockIdOp>
static GpuIdBuilderFnType commonLinearIdBuilderFn(int64_t multiplicity = 1) {
auto res = [multiplicity](RewriterBase &rewriter, Location loc,
ArrayRef<int64_t> forallMappingSizes,
ArrayRef<int64_t> originalBasis) {
SmallVector<OpFoldResult> originalBasisOfr =
getAsIndexOpFoldResult(rewriter.getContext(), originalBasis);
OpFoldResult linearId =
buildLinearId<ThreadOrBlockIdOp>(rewriter, loc, originalBasisOfr);
// Sizes in [0 .. n] -> [n .. 0] order to properly compute strides in
// "row-major" order.
SmallVector<int64_t> reverseBasisSizes(llvm::reverse(forallMappingSizes));
SmallVector<int64_t> strides = computeStrides(reverseBasisSizes);
AffineExpr d0 = getAffineDimExpr(0, rewriter.getContext());
OpFoldResult scaledLinearId = affine::makeComposedFoldedAffineApply(
rewriter, loc, d0.floorDiv(multiplicity), {linearId});
SmallVector<AffineExpr> delinearizingExprs = delinearize(d0, strides);
SmallVector<Value> ids;
// Reverse back to be in [0 .. n] order.
for (AffineExpr e : llvm::reverse(delinearizingExprs)) {
ids.push_back(
affine::makeComposedAffineApply(rewriter, loc, e, {scaledLinearId}));
}
// clang-format off
LLVM_DEBUG(llvm::interleaveComma(reverseBasisSizes,
DBGS() << "--delinearization basis: ");
llvm::dbgs() << "\n";
llvm::interleaveComma(strides,
DBGS() << "--delinearization strides: ");
llvm::dbgs() << "\n";
llvm::interleaveComma(delinearizingExprs,
DBGS() << "--delinearization exprs: ");
llvm::dbgs() << "\n";
llvm::interleaveComma(ids, DBGS() << "--ids: ");
llvm::dbgs() << "\n";);
// clang-format on
// Return n-D ids for indexing and 1-D size + id for predicate generation.
return IdBuilderResult{
/*mappingIdOps=*/ids,
/*availableMappingSizes=*/
SmallVector<int64_t>{computeProduct(originalBasis)},
// `forallMappingSizes` iterate in the scaled basis, they need to be
// scaled back into the original basis to provide tight
// activeMappingSizes quantities for predication.
/*activeMappingSizes=*/
SmallVector<int64_t>{computeProduct(forallMappingSizes) * multiplicity},
/*activeIdOps=*/SmallVector<Value>{linearId.get<Value>()}};
};
return res;
}
/// Create a simple 3-D id builder that takes the `originalBasisOfr`
/// The 3-D id builder returns a 3-D vector of ids for indexing and 3-D sizes
/// + ids for predicate generation.
template <typename ThreadOrBlockIdOp>
static GpuIdBuilderFnType common3DIdBuilderFn(int64_t multiplicity = 1) {
auto res = [multiplicity](RewriterBase &rewriter, Location loc,
ArrayRef<int64_t> forallMappingSizes,
ArrayRef<int64_t> originalBasis) {
IndexType indexType = rewriter.getIndexType();
SmallVector<Value> ids{
rewriter.create<ThreadOrBlockIdOp>(loc, indexType, Dimension::x),
rewriter.create<ThreadOrBlockIdOp>(loc, indexType, Dimension::y),
rewriter.create<ThreadOrBlockIdOp>(loc, indexType, Dimension::z)};
// In the 3-D mapping case, scale the first dimension by the multiplicity.
SmallVector<Value> scaledIds = ids;
AffineExpr d0 = getAffineDimExpr(0, rewriter.getContext());
scaledIds[0] = affine::makeComposedFoldedAffineApply(
rewriter, loc, d0.floorDiv(multiplicity), {scaledIds[0]})
.get<Value>();
// In the 3-D mapping case, unscale the first dimension by the multiplicity.
SmallVector<int64_t> forallMappingSizeInOriginalBasis(
forallMappingSizes.begin(), forallMappingSizes.end());
forallMappingSizeInOriginalBasis[0] *= multiplicity;
return IdBuilderResult{
/*mappingIdOps=*/scaledIds,
/*availableMappingSizes=*/SmallVector<int64_t>{originalBasis},
// `forallMappingSizes` iterate in the scaled basis, they need to be
// scaled back into the original basis to provide tight
// activeMappingSizes quantities for predication.
/*activeMappingSizes=*/
SmallVector<int64_t>{forallMappingSizeInOriginalBasis},
/*activeIdOps=*/ids};
};
return res;
}
namespace mlir {
namespace transform {
namespace gpu {
GpuIdBuilder::GpuIdBuilder(MLIRContext *ctx, bool useLinearMapping,
MappingIdBuilderFnType fn)
: mappingAttributes(), idBuilder() {
if (useLinearMapping) {
for (uint64_t d = static_cast<uint64_t>(MappingId::LinearDim0),
e = getMaxEnumValForMappingId();
d <= e; ++d)
mappingAttributes.push_back(fn(ctx, symbolizeMappingId(d).value()));
} else {
for (uint64_t d = static_cast<uint64_t>(MappingId::DimX),
e = static_cast<uint64_t>(MappingId::DimZ);
d <= e; ++d)
mappingAttributes.push_back(fn(ctx, symbolizeMappingId(d).value()));
}
}
GpuBlockIdBuilder::GpuBlockIdBuilder(MLIRContext *ctx, bool useLinearMapping)
: GpuIdBuilder(ctx, useLinearMapping, [](MLIRContext *ctx, MappingId id) {
return GPUBlockMappingAttr::get(ctx, id);
}) {
idBuilder = useLinearMapping
? commonLinearIdBuilderFn<BlockIdOp>(/*multiplicity=*/1)
: common3DIdBuilderFn<BlockIdOp>(/*multiplicity=*/1);
}
GpuWarpgroupIdBuilder::GpuWarpgroupIdBuilder(MLIRContext *ctx, int64_t warpSize,
bool useLinearMapping)
: GpuIdBuilder(ctx, useLinearMapping,
[](MLIRContext *ctx, MappingId id) {
return GPUWarpgroupMappingAttr::get(ctx, id);
}),
warpSize(warpSize) {
idBuilder = useLinearMapping
? commonLinearIdBuilderFn<ThreadIdOp>(
/*multiplicity=*/kNumWarpsPerGroup * warpSize)
: common3DIdBuilderFn<ThreadIdOp>(
/*multiplicity=*/kNumWarpsPerGroup * warpSize);
}
GpuWarpIdBuilder::GpuWarpIdBuilder(MLIRContext *ctx, int64_t warpSize,
bool useLinearMapping)
: GpuIdBuilder(ctx, useLinearMapping,
[](MLIRContext *ctx, MappingId id) {
return GPUWarpMappingAttr::get(ctx, id);
}),
warpSize(warpSize) {
idBuilder =
useLinearMapping
? commonLinearIdBuilderFn<ThreadIdOp>(/*multiplicity=*/warpSize)
: common3DIdBuilderFn<ThreadIdOp>(/*multiplicity=*/warpSize);
}
GpuThreadIdBuilder::GpuThreadIdBuilder(MLIRContext *ctx, bool useLinearMapping)
: GpuIdBuilder(ctx, useLinearMapping, [](MLIRContext *ctx, MappingId id) {
return GPUThreadMappingAttr::get(ctx, id);
}) {
idBuilder = useLinearMapping
? commonLinearIdBuilderFn<ThreadIdOp>(/*multiplicity=*/1)
: common3DIdBuilderFn<ThreadIdOp>(/*multiplicity=*/1);
}
DiagnosedSilenceableFailure checkGpuLimits(TransformOpInterface transformOp,
std::optional<int64_t> gridDimX,
std::optional<int64_t> gridDimY,
std::optional<int64_t> gridDimZ,
std::optional<int64_t> blockDimX,
std::optional<int64_t> blockDimY,
std::optional<int64_t> blockDimZ) {
// TODO: pass a configuration object to set the limits properly.
static constexpr int maxTotalBlockdim = 1024;
static constexpr int maxBlockdimx = 1024;
static constexpr int maxBlockdimy = 1024;
static constexpr int maxBlockdimz = 64;
static constexpr int maxTotalGriddim = 2147483647;
static constexpr int maxGriddimx = 2147483647;
static constexpr int maxGriddimy = 65535;
static constexpr int maxGriddimz = 65535;
if ((blockDimX.value_or(1) * blockDimY.value_or(1) * blockDimZ.value_or(1)) >
maxTotalBlockdim ||
(gridDimX.value_or(1) * gridDimY.value_or(1) * gridDimZ.value_or(1)) >
maxTotalGriddim ||
blockDimX.value_or(1) > maxBlockdimx ||
blockDimY.value_or(1) > maxBlockdimy ||
blockDimZ.value_or(1) > maxBlockdimz ||
gridDimY.value_or(1) > maxGriddimy ||
gridDimZ.value_or(1) > maxGriddimz ||
gridDimX.value_or(1) > maxGriddimx) {
return transformOp.emitSilenceableError()
<< "Trying to launch a GPU kernel with grid_dims = ("
<< gridDimX.value_or(1) << ", " << gridDimY.value_or(1) << ", "
<< gridDimZ.value_or(1) << ") block_dims = ("
<< blockDimX.value_or(1) << ", " << blockDimY.value_or(1) << ", "
<< blockDimZ.value_or(1) << "). It is larger than the limits.";
}
return DiagnosedSilenceableFailure::success();
}
DiagnosedSilenceableFailure createGpuLaunch(
RewriterBase &rewriter, Location loc, TransformOpInterface transformOp,
LaunchOp &launchOp, std::optional<int64_t> gridDimX,
std::optional<int64_t> gridDimY, std::optional<int64_t> gridDimZ,
std::optional<int64_t> blockDimX, std::optional<int64_t> blockDimY,
std::optional<int64_t> blockDimZ) {
DiagnosedSilenceableFailure diag =
checkGpuLimits(transformOp, gridDimX, gridDimY, gridDimZ, blockDimX,
blockDimY, blockDimZ);
if (!diag.succeeded())
return diag;
auto createConst = [&](int dim) {
return rewriter.create<arith::ConstantIndexOp>(loc, dim);
};
OpBuilder::InsertionGuard guard(rewriter);
Value one = createConst(1);
Value gridSizeX = gridDimX.has_value() ? createConst(gridDimX.value()) : one;
Value gridSizeY = gridDimY.has_value() ? createConst(gridDimY.value()) : one;
Value gridSizeZ = gridDimZ.has_value() ? createConst(gridDimZ.value()) : one;
Value blkSizeX = blockDimX.has_value() ? createConst(blockDimX.value()) : one;
Value blkSizeY = blockDimY.has_value() ? createConst(blockDimY.value()) : one;
Value blkSizeZ = blockDimZ.has_value() ? createConst(blockDimZ.value()) : one;
launchOp = rewriter.create<LaunchOp>(loc, gridSizeX, gridSizeY, gridSizeZ,
blkSizeX, blkSizeY, blkSizeZ);
rewriter.setInsertionPointToEnd(&launchOp.getBody().front());
rewriter.create<TerminatorOp>(loc);
return DiagnosedSilenceableFailure::success();
}
/// Alter kernel configuration of the given kernel.
DiagnosedSilenceableFailure alterGpuLaunch(
RewriterBase &rewriter, LaunchOp gpuLaunch,
TransformOpInterface transformOp, std::optional<int64_t> gridDimX,
std::optional<int64_t> gridDimY, std::optional<int64_t> gridDimZ,
std::optional<int64_t> blockDimX, std::optional<int64_t> blockDimY,
std::optional<int64_t> blockDimZ) {
DiagnosedSilenceableFailure diag =
checkGpuLimits(transformOp, gridDimX, gridDimY, gridDimZ, blockDimX,
blockDimY, blockDimZ);
if (!diag.succeeded())
return diag;
KernelDim3 currentBlockdim = gpuLaunch.getBlockSizeOperandValues();
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPointAfterValue(currentBlockdim.x);
auto createConstValue = [&](int dim) {
return rewriter.create<arith::ConstantIndexOp>(currentBlockdim.x.getLoc(),
dim);
};
if (gridDimX.has_value())
gpuLaunch.getGridSizeXMutable().assign(createConstValue(gridDimX.value()));
if (gridDimY.has_value())
gpuLaunch.getGridSizeYMutable().assign(createConstValue(gridDimY.value()));
if (gridDimZ.has_value())
gpuLaunch.getGridSizeZMutable().assign(createConstValue(gridDimZ.value()));
if (blockDimX.has_value())
gpuLaunch.getBlockSizeXMutable().assign(
createConstValue(blockDimX.value()));
if (blockDimY.has_value())
gpuLaunch.getBlockSizeYMutable().assign(
createConstValue(blockDimY.value()));
if (blockDimZ.has_value())
gpuLaunch.getBlockSizeZMutable().assign(
createConstValue(blockDimZ.value()));
return DiagnosedSilenceableFailure::success();
}
} // namespace gpu
} // namespace transform
} // namespace mlir