The MLIR classes Type/Attribute/Operation/Op/Value support cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast functionality in addition to defining methods with the same name. This change begins the migration of uses of the method to the corresponding function call as has been decided as more consistent. Note that there still exist classes that only define methods directly, such as AffineExpr, and this does not include work currently to support a functional cast/isa call. Caveats include: - This clang-tidy script probably has more problems. - This only touches C++ code, so nothing that is being generated. Context: - https://mlir.llvm.org/deprecation/ at "Use the free function variants for dyn_cast/cast/isa/…" - Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443 Implementation: This first patch was created with the following steps. The intention is to only do automated changes at first, so I waste less time if it's reverted, and so the first mass change is more clear as an example to other teams that will need to follow similar steps. Steps are described per line, as comments are removed by git: 0. Retrieve the change from the following to build clang-tidy with an additional check: https://github.com/llvm/llvm-project/compare/main...tpopp:llvm-project:tidy-cast-check 1. Build clang-tidy 2. Run clang-tidy over your entire codebase while disabling all checks and enabling the one relevant one. Run on all header files also. 3. Delete .inc files that were also modified, so the next build rebuilds them to a pure state. 4. Some changes have been deleted for the following reasons: - Some files had a variable also named cast - Some files had not included a header file that defines the cast functions - Some files are definitions of the classes that have the casting methods, so the code still refers to the method instead of the function without adding a prefix or removing the method declaration at the same time. ``` ninja -C $BUILD_DIR clang-tidy run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\ -header-filter=mlir/ mlir/* -fix rm -rf $BUILD_DIR/tools/mlir/**/*.inc git restore mlir/lib/IR mlir/lib/Dialect/DLTI/DLTI.cpp\ mlir/lib/Dialect/Complex/IR/ComplexDialect.cpp\ mlir/lib/**/IR/\ mlir/lib/Dialect/SparseTensor/Transforms/SparseVectorization.cpp\ mlir/lib/Dialect/Vector/Transforms/LowerVectorMultiReduction.cpp\ mlir/test/lib/Dialect/Test/TestTypes.cpp\ mlir/test/lib/Dialect/Transform/TestTransformDialectExtension.cpp\ mlir/test/lib/Dialect/Test/TestAttributes.cpp\ mlir/unittests/TableGen/EnumsGenTest.cpp\ mlir/test/python/lib/PythonTestCAPI.cpp\ mlir/include/mlir/IR/ ``` Differential Revision: https://reviews.llvm.org/D150123
169 lines
6.5 KiB
C++
169 lines
6.5 KiB
C++
//===- NamedOpConversions.cpp - Implements conversions between named ops --===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements conversions between named ops that can be seens as
|
|
// canonicalizations of named ops.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Linalg/Passes.h"
|
|
|
|
#include "mlir/Dialect/Linalg/IR/Linalg.h"
|
|
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/TypeSwitch.h"
|
|
|
|
namespace mlir {
|
|
#define GEN_PASS_DEF_LINALGNAMEDOPCONVERSION
|
|
#include "mlir/Dialect/Linalg/Passes.h.inc"
|
|
} // namespace mlir
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::linalg;
|
|
|
|
static llvm::SmallVector<int64_t> getIndicesVector(int start, int end) {
|
|
return llvm::to_vector<2>(llvm::seq<int64_t>(start, end));
|
|
}
|
|
|
|
static LogicalResult
|
|
matchAndReplaceDepthwiseConv(Operation *operation, Value input, Value kernel,
|
|
Value iZp, Value kZp, Value init, Attribute stride,
|
|
Attribute dilation, PatternRewriter &rewriter) {
|
|
Location loc = operation->getLoc();
|
|
auto linalgOp = dyn_cast<LinalgOp>(operation);
|
|
// Exit out on the memref version of this operation.
|
|
if (!linalgOp || !linalgOp.hasTensorSemantics())
|
|
return failure();
|
|
|
|
auto result = operation->getResult(0);
|
|
|
|
auto kernelTy = dyn_cast<RankedTensorType>(kernel.getType());
|
|
auto initTy = dyn_cast<RankedTensorType>(init.getType());
|
|
auto resultTy = dyn_cast<RankedTensorType>(result.getType());
|
|
if (!kernelTy || !initTy || !resultTy)
|
|
return failure();
|
|
|
|
if (kernelTy.getDimSize(3) != 1)
|
|
return failure();
|
|
|
|
// Collapse kernel dims.
|
|
SmallVector<ReassociationIndices, 4> collapsedKernelDims = {
|
|
getIndicesVector(0, 1), getIndicesVector(1, 2), getIndicesVector(2, 4)};
|
|
auto newKernelTy = RankedTensorType::get(
|
|
{kernelTy.getDimSize(0), kernelTy.getDimSize(1), kernelTy.getDimSize(2)},
|
|
kernelTy.getElementType());
|
|
auto collapsedKernel = rewriter.create<tensor::CollapseShapeOp>(
|
|
loc, newKernelTy, kernel, collapsedKernelDims);
|
|
|
|
// Collapse init dims.
|
|
SmallVector<ReassociationIndices, 4> collapsedInitDims = {
|
|
getIndicesVector(0, 1), getIndicesVector(1, 2), getIndicesVector(2, 3),
|
|
getIndicesVector(3, 5)};
|
|
auto newInitTy =
|
|
RankedTensorType::get({initTy.getDimSize(0), initTy.getDimSize(1),
|
|
initTy.getDimSize(2), initTy.getDimSize(3)},
|
|
initTy.getElementType());
|
|
auto collapsedInit = rewriter.create<tensor::CollapseShapeOp>(
|
|
loc, newInitTy, init, collapsedInitDims);
|
|
|
|
SmallVector<NamedAttribute> preservedAttrs;
|
|
Operation *newConv =
|
|
TypeSwitch<Operation *, Operation *>(operation)
|
|
.Case<DepthwiseConv2DNhwcHwcmOp>([&](auto op) {
|
|
preservedAttrs = getPrunedAttributeList(op);
|
|
return rewriter.create<DepthwiseConv2DNhwcHwcOp>(
|
|
loc, newInitTy, ValueRange{input, collapsedKernel},
|
|
ValueRange{collapsedInit}, stride, dilation);
|
|
})
|
|
.Case<DepthwiseConv2DNhwcHwcmQOp>([&](auto op) {
|
|
preservedAttrs = getPrunedAttributeList(op);
|
|
return rewriter.create<DepthwiseConv2DNhwcHwcQOp>(
|
|
loc, newInitTy, ValueRange{input, collapsedKernel, iZp, kZp},
|
|
ValueRange{collapsedInit}, stride, dilation);
|
|
})
|
|
.Default([](Operation *op) { return nullptr; });
|
|
if (!newConv)
|
|
return failure();
|
|
for (auto attr : preservedAttrs)
|
|
newConv->setAttr(attr.getName(), attr.getValue());
|
|
|
|
// Expand dimensions back out to
|
|
rewriter.replaceOpWithNewOp<tensor::ExpandShapeOp>(
|
|
operation, resultTy, newConv->getResult(0), collapsedInitDims);
|
|
return success();
|
|
}
|
|
|
|
namespace {
|
|
struct SimplifyDepthwiseConvOp
|
|
: public OpRewritePattern<DepthwiseConv2DNhwcHwcmOp> {
|
|
using OpRewritePattern<DepthwiseConv2DNhwcHwcmOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(DepthwiseConv2DNhwcHwcmOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Operation *operation = op.getOperation();
|
|
Value input = op.getDpsInputOperand(0)->get();
|
|
Value kernel = op.getDpsInputOperand(1)->get();
|
|
Value init = op.getDpsInitOperand(0)->get();
|
|
|
|
auto stride = op.getStrides();
|
|
auto dilation = op.getDilations();
|
|
|
|
return matchAndReplaceDepthwiseConv(operation, input, kernel, nullptr,
|
|
nullptr, init, stride, dilation,
|
|
rewriter);
|
|
}
|
|
};
|
|
|
|
struct SimplifyDepthwiseConvQOp
|
|
: public OpRewritePattern<DepthwiseConv2DNhwcHwcmQOp> {
|
|
using OpRewritePattern<DepthwiseConv2DNhwcHwcmQOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(DepthwiseConv2DNhwcHwcmQOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Operation *operation = op.getOperation();
|
|
Value input = op.getDpsInputOperand(0)->get();
|
|
Value kernel = op.getDpsInputOperand(1)->get();
|
|
Value iZp = op.getDpsInputOperand(2)->get();
|
|
Value kZp = op.getDpsInputOperand(3)->get();
|
|
Value init = op.getDpsInitOperand(0)->get();
|
|
|
|
auto stride = op.getStrides();
|
|
auto dilation = op.getDilations();
|
|
|
|
return matchAndReplaceDepthwiseConv(operation, input, kernel, iZp, kZp,
|
|
init, stride, dilation, rewriter);
|
|
}
|
|
};
|
|
|
|
struct LinalgNamedOpConversionPass
|
|
: public impl::LinalgNamedOpConversionBase<LinalgNamedOpConversionPass> {
|
|
LinalgNamedOpConversionPass() = default;
|
|
LinalgNamedOpConversionPass(const LinalgNamedOpConversionPass &) = default;
|
|
|
|
void runOnOperation() override {
|
|
Operation *op = getOperation();
|
|
RewritePatternSet patterns(op->getContext());
|
|
populateLinalgNamedOpConversionPatterns(patterns);
|
|
if (failed(applyPatternsAndFoldGreedily(op, std::move(patterns))))
|
|
return signalPassFailure();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
void mlir::linalg::populateLinalgNamedOpConversionPatterns(
|
|
RewritePatternSet &patterns) {
|
|
patterns.add<SimplifyDepthwiseConvOp, SimplifyDepthwiseConvQOp>(
|
|
patterns.getContext());
|
|
}
|
|
|
|
std::unique_ptr<Pass> mlir::createLinalgNamedOpConversionPass() {
|
|
return std::make_unique<LinalgNamedOpConversionPass>();
|
|
}
|