Files
clang-p2996/mlir/lib/Dialect/OpenACC/IR/OpenACC.cpp
Valentin Clement a25da1a921 [mlir][openacc] Add device_type support for compute operations (#75864)
Re-land PR after being reverted because of buildbot failures.

This patch adds representation for `device_type` clause information on
compute construct (parallel, kernels, serial).

The `device_type` clause on compute construct impacts clauses that
appear after it. The values impacted by `device_type` are now tied with
an attribute array that represent the device_type associated with them.
`DeviceType::None` is used to represent the value produced by a clause
before any `device_type`. The operands and the attribute information are
parser/printed together.

This is an example with `vector_length` clause. The first value (64) is
not impacted by `device_type` so it will be represented with
DeviceType::None. None is not printed. The second value (128) is tied
with the `device_type(multicore)` clause.
```
!$acc parallel vector_length(64) device_type(multicore) vector_length(256)
```
```
acc.parallel vector_length(%c64 : i32, %c128 : i32 [#acc.device_type<multicore>]) {
}
```

When multiple values can be produced for a single clause like
`num_gangs` and `wait`, an extra attribute describe the number of values
belonging to each `device_type`. Values and attributes are
parsed/printed together.

```
acc.parallel num_gangs({%c2 : i32, %c4 : i32}, {%c4 : i32} [#acc.device_type<nvidia>])
```

While preparing this patch I noticed that the wait devnum is not part of
the operations and is not lowered. It will be added in a follow up
patch.
2023-12-20 20:36:09 -08:00

1921 lines
71 KiB
C++

//===- OpenACC.cpp - OpenACC MLIR Operations ------------------------------===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
// =============================================================================
#include "mlir/Dialect/OpenACC/OpenACC.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMTypes.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/DialectImplementation.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/ADT/TypeSwitch.h"
using namespace mlir;
using namespace acc;
#include "mlir/Dialect/OpenACC/OpenACCOpsDialect.cpp.inc"
#include "mlir/Dialect/OpenACC/OpenACCOpsEnums.cpp.inc"
#include "mlir/Dialect/OpenACC/OpenACCOpsInterfaces.cpp.inc"
#include "mlir/Dialect/OpenACC/OpenACCTypeInterfaces.cpp.inc"
namespace {
struct MemRefPointerLikeModel
: public PointerLikeType::ExternalModel<MemRefPointerLikeModel,
MemRefType> {
Type getElementType(Type pointer) const {
return llvm::cast<MemRefType>(pointer).getElementType();
}
};
struct LLVMPointerPointerLikeModel
: public PointerLikeType::ExternalModel<LLVMPointerPointerLikeModel,
LLVM::LLVMPointerType> {
Type getElementType(Type pointer) const { return Type(); }
};
} // namespace
//===----------------------------------------------------------------------===//
// OpenACC operations
//===----------------------------------------------------------------------===//
void OpenACCDialect::initialize() {
addOperations<
#define GET_OP_LIST
#include "mlir/Dialect/OpenACC/OpenACCOps.cpp.inc"
>();
addAttributes<
#define GET_ATTRDEF_LIST
#include "mlir/Dialect/OpenACC/OpenACCOpsAttributes.cpp.inc"
>();
addTypes<
#define GET_TYPEDEF_LIST
#include "mlir/Dialect/OpenACC/OpenACCOpsTypes.cpp.inc"
>();
// By attaching interfaces here, we make the OpenACC dialect dependent on
// the other dialects. This is probably better than having dialects like LLVM
// and memref be dependent on OpenACC.
MemRefType::attachInterface<MemRefPointerLikeModel>(*getContext());
LLVM::LLVMPointerType::attachInterface<LLVMPointerPointerLikeModel>(
*getContext());
}
//===----------------------------------------------------------------------===//
// DataBoundsOp
//===----------------------------------------------------------------------===//
LogicalResult acc::DataBoundsOp::verify() {
auto extent = getExtent();
auto upperbound = getUpperbound();
if (!extent && !upperbound)
return emitError("expected extent or upperbound.");
return success();
}
//===----------------------------------------------------------------------===//
// PrivateOp
//===----------------------------------------------------------------------===//
LogicalResult acc::PrivateOp::verify() {
if (getDataClause() != acc::DataClause::acc_private)
return emitError(
"data clause associated with private operation must match its intent");
return success();
}
//===----------------------------------------------------------------------===//
// FirstprivateOp
//===----------------------------------------------------------------------===//
LogicalResult acc::FirstprivateOp::verify() {
if (getDataClause() != acc::DataClause::acc_firstprivate)
return emitError("data clause associated with firstprivate operation must "
"match its intent");
return success();
}
//===----------------------------------------------------------------------===//
// ReductionOp
//===----------------------------------------------------------------------===//
LogicalResult acc::ReductionOp::verify() {
if (getDataClause() != acc::DataClause::acc_reduction)
return emitError("data clause associated with reduction operation must "
"match its intent");
return success();
}
//===----------------------------------------------------------------------===//
// DevicePtrOp
//===----------------------------------------------------------------------===//
LogicalResult acc::DevicePtrOp::verify() {
if (getDataClause() != acc::DataClause::acc_deviceptr)
return emitError("data clause associated with deviceptr operation must "
"match its intent");
return success();
}
//===----------------------------------------------------------------------===//
// PresentOp
//===----------------------------------------------------------------------===//
LogicalResult acc::PresentOp::verify() {
if (getDataClause() != acc::DataClause::acc_present)
return emitError(
"data clause associated with present operation must match its intent");
return success();
}
//===----------------------------------------------------------------------===//
// CopyinOp
//===----------------------------------------------------------------------===//
LogicalResult acc::CopyinOp::verify() {
// Test for all clauses this operation can be decomposed from:
if (!getImplicit() && getDataClause() != acc::DataClause::acc_copyin &&
getDataClause() != acc::DataClause::acc_copyin_readonly &&
getDataClause() != acc::DataClause::acc_copy &&
getDataClause() != acc::DataClause::acc_reduction)
return emitError(
"data clause associated with copyin operation must match its intent"
" or specify original clause this operation was decomposed from");
return success();
}
bool acc::CopyinOp::isCopyinReadonly() {
return getDataClause() == acc::DataClause::acc_copyin_readonly;
}
//===----------------------------------------------------------------------===//
// CreateOp
//===----------------------------------------------------------------------===//
LogicalResult acc::CreateOp::verify() {
// Test for all clauses this operation can be decomposed from:
if (getDataClause() != acc::DataClause::acc_create &&
getDataClause() != acc::DataClause::acc_create_zero &&
getDataClause() != acc::DataClause::acc_copyout &&
getDataClause() != acc::DataClause::acc_copyout_zero)
return emitError(
"data clause associated with create operation must match its intent"
" or specify original clause this operation was decomposed from");
return success();
}
bool acc::CreateOp::isCreateZero() {
// The zero modifier is encoded in the data clause.
return getDataClause() == acc::DataClause::acc_create_zero ||
getDataClause() == acc::DataClause::acc_copyout_zero;
}
//===----------------------------------------------------------------------===//
// NoCreateOp
//===----------------------------------------------------------------------===//
LogicalResult acc::NoCreateOp::verify() {
if (getDataClause() != acc::DataClause::acc_no_create)
return emitError("data clause associated with no_create operation must "
"match its intent");
return success();
}
//===----------------------------------------------------------------------===//
// AttachOp
//===----------------------------------------------------------------------===//
LogicalResult acc::AttachOp::verify() {
if (getDataClause() != acc::DataClause::acc_attach)
return emitError(
"data clause associated with attach operation must match its intent");
return success();
}
//===----------------------------------------------------------------------===//
// DeclareDeviceResidentOp
//===----------------------------------------------------------------------===//
LogicalResult acc::DeclareDeviceResidentOp::verify() {
if (getDataClause() != acc::DataClause::acc_declare_device_resident)
return emitError("data clause associated with device_resident operation "
"must match its intent");
return success();
}
//===----------------------------------------------------------------------===//
// DeclareLinkOp
//===----------------------------------------------------------------------===//
LogicalResult acc::DeclareLinkOp::verify() {
if (getDataClause() != acc::DataClause::acc_declare_link)
return emitError(
"data clause associated with link operation must match its intent");
return success();
}
//===----------------------------------------------------------------------===//
// CopyoutOp
//===----------------------------------------------------------------------===//
LogicalResult acc::CopyoutOp::verify() {
// Test for all clauses this operation can be decomposed from:
if (getDataClause() != acc::DataClause::acc_copyout &&
getDataClause() != acc::DataClause::acc_copyout_zero &&
getDataClause() != acc::DataClause::acc_copy &&
getDataClause() != acc::DataClause::acc_reduction)
return emitError(
"data clause associated with copyout operation must match its intent"
" or specify original clause this operation was decomposed from");
if (!getVarPtr() || !getAccPtr())
return emitError("must have both host and device pointers");
return success();
}
bool acc::CopyoutOp::isCopyoutZero() {
return getDataClause() == acc::DataClause::acc_copyout_zero;
}
//===----------------------------------------------------------------------===//
// DeleteOp
//===----------------------------------------------------------------------===//
LogicalResult acc::DeleteOp::verify() {
// Test for all clauses this operation can be decomposed from:
if (getDataClause() != acc::DataClause::acc_delete &&
getDataClause() != acc::DataClause::acc_create &&
getDataClause() != acc::DataClause::acc_create_zero &&
getDataClause() != acc::DataClause::acc_copyin &&
getDataClause() != acc::DataClause::acc_copyin_readonly &&
getDataClause() != acc::DataClause::acc_present &&
getDataClause() != acc::DataClause::acc_declare_device_resident &&
getDataClause() != acc::DataClause::acc_declare_link)
return emitError(
"data clause associated with delete operation must match its intent"
" or specify original clause this operation was decomposed from");
if (!getAccPtr())
return emitError("must have device pointer");
return success();
}
//===----------------------------------------------------------------------===//
// DetachOp
//===----------------------------------------------------------------------===//
LogicalResult acc::DetachOp::verify() {
// Test for all clauses this operation can be decomposed from:
if (getDataClause() != acc::DataClause::acc_detach &&
getDataClause() != acc::DataClause::acc_attach)
return emitError(
"data clause associated with detach operation must match its intent"
" or specify original clause this operation was decomposed from");
if (!getAccPtr())
return emitError("must have device pointer");
return success();
}
//===----------------------------------------------------------------------===//
// HostOp
//===----------------------------------------------------------------------===//
LogicalResult acc::UpdateHostOp::verify() {
// Test for all clauses this operation can be decomposed from:
if (getDataClause() != acc::DataClause::acc_update_host &&
getDataClause() != acc::DataClause::acc_update_self)
return emitError(
"data clause associated with host operation must match its intent"
" or specify original clause this operation was decomposed from");
if (!getVarPtr() || !getAccPtr())
return emitError("must have both host and device pointers");
return success();
}
//===----------------------------------------------------------------------===//
// DeviceOp
//===----------------------------------------------------------------------===//
LogicalResult acc::UpdateDeviceOp::verify() {
// Test for all clauses this operation can be decomposed from:
if (getDataClause() != acc::DataClause::acc_update_device)
return emitError(
"data clause associated with device operation must match its intent"
" or specify original clause this operation was decomposed from");
return success();
}
//===----------------------------------------------------------------------===//
// UseDeviceOp
//===----------------------------------------------------------------------===//
LogicalResult acc::UseDeviceOp::verify() {
// Test for all clauses this operation can be decomposed from:
if (getDataClause() != acc::DataClause::acc_use_device)
return emitError(
"data clause associated with use_device operation must match its intent"
" or specify original clause this operation was decomposed from");
return success();
}
//===----------------------------------------------------------------------===//
// CacheOp
//===----------------------------------------------------------------------===//
LogicalResult acc::CacheOp::verify() {
// Test for all clauses this operation can be decomposed from:
if (getDataClause() != acc::DataClause::acc_cache &&
getDataClause() != acc::DataClause::acc_cache_readonly)
return emitError(
"data clause associated with cache operation must match its intent"
" or specify original clause this operation was decomposed from");
return success();
}
template <typename StructureOp>
static ParseResult parseRegions(OpAsmParser &parser, OperationState &state,
unsigned nRegions = 1) {
SmallVector<Region *, 2> regions;
for (unsigned i = 0; i < nRegions; ++i)
regions.push_back(state.addRegion());
for (Region *region : regions)
if (parser.parseRegion(*region, /*arguments=*/{}, /*argTypes=*/{}))
return failure();
return success();
}
static bool isComputeOperation(Operation *op) {
return isa<acc::ParallelOp>(op) || isa<acc::LoopOp>(op);
}
namespace {
/// Pattern to remove operation without region that have constant false `ifCond`
/// and remove the condition from the operation if the `ifCond` is a true
/// constant.
template <typename OpTy>
struct RemoveConstantIfCondition : public OpRewritePattern<OpTy> {
using OpRewritePattern<OpTy>::OpRewritePattern;
LogicalResult matchAndRewrite(OpTy op,
PatternRewriter &rewriter) const override {
// Early return if there is no condition.
Value ifCond = op.getIfCond();
if (!ifCond)
return failure();
IntegerAttr constAttr;
if (!matchPattern(ifCond, m_Constant(&constAttr)))
return failure();
if (constAttr.getInt())
rewriter.updateRootInPlace(op, [&]() { op.getIfCondMutable().erase(0); });
else
rewriter.eraseOp(op);
return success();
}
};
/// Replaces the given op with the contents of the given single-block region,
/// using the operands of the block terminator to replace operation results.
static void replaceOpWithRegion(PatternRewriter &rewriter, Operation *op,
Region &region, ValueRange blockArgs = {}) {
assert(llvm::hasSingleElement(region) && "expected single-region block");
Block *block = &region.front();
Operation *terminator = block->getTerminator();
ValueRange results = terminator->getOperands();
rewriter.inlineBlockBefore(block, op, blockArgs);
rewriter.replaceOp(op, results);
rewriter.eraseOp(terminator);
}
/// Pattern to remove operation with region that have constant false `ifCond`
/// and remove the condition from the operation if the `ifCond` is constant
/// true.
template <typename OpTy>
struct RemoveConstantIfConditionWithRegion : public OpRewritePattern<OpTy> {
using OpRewritePattern<OpTy>::OpRewritePattern;
LogicalResult matchAndRewrite(OpTy op,
PatternRewriter &rewriter) const override {
// Early return if there is no condition.
Value ifCond = op.getIfCond();
if (!ifCond)
return failure();
IntegerAttr constAttr;
if (!matchPattern(ifCond, m_Constant(&constAttr)))
return failure();
if (constAttr.getInt())
rewriter.updateRootInPlace(op, [&]() { op.getIfCondMutable().erase(0); });
else
replaceOpWithRegion(rewriter, op, op.getRegion());
return success();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// PrivateRecipeOp
//===----------------------------------------------------------------------===//
static LogicalResult verifyInitLikeSingleArgRegion(
Operation *op, Region &region, StringRef regionType, StringRef regionName,
Type type, bool verifyYield, bool optional = false) {
if (optional && region.empty())
return success();
if (region.empty())
return op->emitOpError() << "expects non-empty " << regionName << " region";
Block &firstBlock = region.front();
if (firstBlock.getNumArguments() < 1 ||
firstBlock.getArgument(0).getType() != type)
return op->emitOpError() << "expects " << regionName
<< " region first "
"argument of the "
<< regionType << " type";
if (verifyYield) {
for (YieldOp yieldOp : region.getOps<acc::YieldOp>()) {
if (yieldOp.getOperands().size() != 1 ||
yieldOp.getOperands().getTypes()[0] != type)
return op->emitOpError() << "expects " << regionName
<< " region to "
"yield a value of the "
<< regionType << " type";
}
}
return success();
}
LogicalResult acc::PrivateRecipeOp::verifyRegions() {
if (failed(verifyInitLikeSingleArgRegion(*this, getInitRegion(),
"privatization", "init", getType(),
/*verifyYield=*/false)))
return failure();
if (failed(verifyInitLikeSingleArgRegion(
*this, getDestroyRegion(), "privatization", "destroy", getType(),
/*verifyYield=*/false, /*optional=*/true)))
return failure();
return success();
}
//===----------------------------------------------------------------------===//
// FirstprivateRecipeOp
//===----------------------------------------------------------------------===//
LogicalResult acc::FirstprivateRecipeOp::verifyRegions() {
if (failed(verifyInitLikeSingleArgRegion(*this, getInitRegion(),
"privatization", "init", getType(),
/*verifyYield=*/false)))
return failure();
if (getCopyRegion().empty())
return emitOpError() << "expects non-empty copy region";
Block &firstBlock = getCopyRegion().front();
if (firstBlock.getNumArguments() < 2 ||
firstBlock.getArgument(0).getType() != getType())
return emitOpError() << "expects copy region with two arguments of the "
"privatization type";
if (getDestroyRegion().empty())
return success();
if (failed(verifyInitLikeSingleArgRegion(*this, getDestroyRegion(),
"privatization", "destroy",
getType(), /*verifyYield=*/false)))
return failure();
return success();
}
//===----------------------------------------------------------------------===//
// ReductionRecipeOp
//===----------------------------------------------------------------------===//
LogicalResult acc::ReductionRecipeOp::verifyRegions() {
if (failed(verifyInitLikeSingleArgRegion(*this, getInitRegion(), "reduction",
"init", getType(),
/*verifyYield=*/false)))
return failure();
if (getCombinerRegion().empty())
return emitOpError() << "expects non-empty combiner region";
Block &reductionBlock = getCombinerRegion().front();
if (reductionBlock.getNumArguments() < 2 ||
reductionBlock.getArgument(0).getType() != getType() ||
reductionBlock.getArgument(1).getType() != getType())
return emitOpError() << "expects combiner region with the first two "
<< "arguments of the reduction type";
for (YieldOp yieldOp : getCombinerRegion().getOps<YieldOp>()) {
if (yieldOp.getOperands().size() != 1 ||
yieldOp.getOperands().getTypes()[0] != getType())
return emitOpError() << "expects combiner region to yield a value "
"of the reduction type";
}
return success();
}
//===----------------------------------------------------------------------===//
// Custom parser and printer verifier for private clause
//===----------------------------------------------------------------------===//
static ParseResult parseSymOperandList(
mlir::OpAsmParser &parser,
llvm::SmallVectorImpl<mlir::OpAsmParser::UnresolvedOperand> &operands,
llvm::SmallVectorImpl<Type> &types, mlir::ArrayAttr &symbols) {
llvm::SmallVector<SymbolRefAttr> attributes;
if (failed(parser.parseCommaSeparatedList([&]() {
if (parser.parseAttribute(attributes.emplace_back()) ||
parser.parseArrow() ||
parser.parseOperand(operands.emplace_back()) ||
parser.parseColonType(types.emplace_back()))
return failure();
return success();
})))
return failure();
llvm::SmallVector<mlir::Attribute> arrayAttr(attributes.begin(),
attributes.end());
symbols = ArrayAttr::get(parser.getContext(), arrayAttr);
return success();
}
static void printSymOperandList(mlir::OpAsmPrinter &p, mlir::Operation *op,
mlir::OperandRange operands,
mlir::TypeRange types,
std::optional<mlir::ArrayAttr> attributes) {
for (unsigned i = 0, e = attributes->size(); i < e; ++i) {
if (i != 0)
p << ", ";
p << (*attributes)[i] << " -> " << operands[i] << " : "
<< operands[i].getType();
}
}
//===----------------------------------------------------------------------===//
// ParallelOp
//===----------------------------------------------------------------------===//
/// Check dataOperands for acc.parallel, acc.serial and acc.kernels.
template <typename Op>
static LogicalResult checkDataOperands(Op op,
const mlir::ValueRange &operands) {
for (mlir::Value operand : operands)
if (!mlir::isa<acc::AttachOp, acc::CopyinOp, acc::CopyoutOp, acc::CreateOp,
acc::DeleteOp, acc::DetachOp, acc::DevicePtrOp,
acc::GetDevicePtrOp, acc::NoCreateOp, acc::PresentOp>(
operand.getDefiningOp()))
return op.emitError(
"expect data entry/exit operation or acc.getdeviceptr "
"as defining op");
return success();
}
template <typename Op>
static LogicalResult
checkSymOperandList(Operation *op, std::optional<mlir::ArrayAttr> attributes,
mlir::OperandRange operands, llvm::StringRef operandName,
llvm::StringRef symbolName, bool checkOperandType = true) {
if (!operands.empty()) {
if (!attributes || attributes->size() != operands.size())
return op->emitOpError()
<< "expected as many " << symbolName << " symbol reference as "
<< operandName << " operands";
} else {
if (attributes)
return op->emitOpError()
<< "unexpected " << symbolName << " symbol reference";
return success();
}
llvm::DenseSet<Value> set;
for (auto args : llvm::zip(operands, *attributes)) {
mlir::Value operand = std::get<0>(args);
if (!set.insert(operand).second)
return op->emitOpError()
<< operandName << " operand appears more than once";
mlir::Type varType = operand.getType();
auto symbolRef = llvm::cast<SymbolRefAttr>(std::get<1>(args));
auto decl = SymbolTable::lookupNearestSymbolFrom<Op>(op, symbolRef);
if (!decl)
return op->emitOpError()
<< "expected symbol reference " << symbolRef << " to point to a "
<< operandName << " declaration";
if (checkOperandType && decl.getType() && decl.getType() != varType)
return op->emitOpError() << "expected " << operandName << " (" << varType
<< ") to be the same type as " << operandName
<< " declaration (" << decl.getType() << ")";
}
return success();
}
unsigned ParallelOp::getNumDataOperands() {
return getReductionOperands().size() + getGangPrivateOperands().size() +
getGangFirstPrivateOperands().size() + getDataClauseOperands().size();
}
Value ParallelOp::getDataOperand(unsigned i) {
unsigned numOptional = getAsync().size();
numOptional += getNumGangs().size();
numOptional += getNumWorkers().size();
numOptional += getVectorLength().size();
numOptional += getIfCond() ? 1 : 0;
numOptional += getSelfCond() ? 1 : 0;
return getOperand(getWaitOperands().size() + numOptional + i);
}
template <typename Op>
static LogicalResult verifyDeviceTypeCountMatch(Op op, OperandRange operands,
ArrayAttr deviceTypes,
llvm::StringRef keyword) {
if (operands.size() > 0 && deviceTypes.getValue().size() != operands.size())
return op.emitOpError() << keyword << " operands count must match "
<< keyword << " device_type count";
return success();
}
template <typename Op>
static LogicalResult verifyDeviceTypeAndSegmentCountMatch(
Op op, OperandRange operands, DenseI32ArrayAttr segments,
ArrayAttr deviceTypes, llvm::StringRef keyword, int32_t maxInSegment = 0) {
std::size_t numOperandsInSegments = 0;
if (!segments)
return success();
for (auto segCount : segments.asArrayRef()) {
if (maxInSegment != 0 && segCount > maxInSegment)
return op.emitOpError() << keyword << " expects a maximum of "
<< maxInSegment << " values per segment";
numOperandsInSegments += segCount;
}
if (numOperandsInSegments != operands.size())
return op.emitOpError()
<< keyword << " operand count does not match count in segments";
if (deviceTypes.getValue().size() != (size_t)segments.size())
return op.emitOpError()
<< keyword << " segment count does not match device_type count";
return success();
}
LogicalResult acc::ParallelOp::verify() {
if (failed(checkSymOperandList<mlir::acc::PrivateRecipeOp>(
*this, getPrivatizations(), getGangPrivateOperands(), "private",
"privatizations", /*checkOperandType=*/false)))
return failure();
if (failed(checkSymOperandList<mlir::acc::ReductionRecipeOp>(
*this, getReductionRecipes(), getReductionOperands(), "reduction",
"reductions", false)))
return failure();
if (failed(verifyDeviceTypeAndSegmentCountMatch(
*this, getNumGangs(), getNumGangsSegmentsAttr(),
getNumGangsDeviceTypeAttr(), "num_gangs", 3)))
return failure();
if (failed(verifyDeviceTypeAndSegmentCountMatch(
*this, getWaitOperands(), getWaitOperandsSegmentsAttr(),
getWaitOperandsDeviceTypeAttr(), "wait")))
return failure();
if (failed(verifyDeviceTypeCountMatch(*this, getNumWorkers(),
getNumWorkersDeviceTypeAttr(),
"num_workers")))
return failure();
if (failed(verifyDeviceTypeCountMatch(*this, getVectorLength(),
getVectorLengthDeviceTypeAttr(),
"vector_length")))
return failure();
if (failed(verifyDeviceTypeCountMatch(*this, getAsync(),
getAsyncDeviceTypeAttr(), "async")))
return failure();
return checkDataOperands<acc::ParallelOp>(*this, getDataClauseOperands());
}
static std::optional<unsigned> findSegment(ArrayAttr segments,
mlir::acc::DeviceType deviceType) {
unsigned segmentIdx = 0;
for (auto attr : segments) {
auto deviceTypeAttr = mlir::dyn_cast<mlir::acc::DeviceTypeAttr>(attr);
if (deviceTypeAttr.getValue() == deviceType)
return std::make_optional(segmentIdx);
++segmentIdx;
}
return std::nullopt;
}
static mlir::Value
getValueInDeviceTypeSegment(std::optional<mlir::ArrayAttr> arrayAttr,
mlir::Operation::operand_range range,
mlir::acc::DeviceType deviceType) {
if (!arrayAttr)
return {};
if (auto pos = findSegment(*arrayAttr, deviceType))
return range[*pos];
return {};
}
bool acc::ParallelOp::hasAsyncOnly() {
return hasAsyncOnly(mlir::acc::DeviceType::None);
}
bool acc::ParallelOp::hasAsyncOnly(mlir::acc::DeviceType deviceType) {
if (auto arrayAttr = getAsyncOnly()) {
if (findSegment(*arrayAttr, deviceType))
return true;
}
return false;
}
mlir::Value acc::ParallelOp::getAsyncValue() {
return getAsyncValue(mlir::acc::DeviceType::None);
}
mlir::Value acc::ParallelOp::getAsyncValue(mlir::acc::DeviceType deviceType) {
return getValueInDeviceTypeSegment(getAsyncDeviceType(), getAsync(),
deviceType);
}
mlir::Value acc::ParallelOp::getNumWorkersValue() {
return getNumWorkersValue(mlir::acc::DeviceType::None);
}
mlir::Value
acc::ParallelOp::getNumWorkersValue(mlir::acc::DeviceType deviceType) {
return getValueInDeviceTypeSegment(getNumWorkersDeviceType(), getNumWorkers(),
deviceType);
}
mlir::Value acc::ParallelOp::getVectorLengthValue() {
return getVectorLengthValue(mlir::acc::DeviceType::None);
}
mlir::Value
acc::ParallelOp::getVectorLengthValue(mlir::acc::DeviceType deviceType) {
return getValueInDeviceTypeSegment(getVectorLengthDeviceType(),
getVectorLength(), deviceType);
}
mlir::Operation::operand_range ParallelOp::getNumGangsValues() {
return getNumGangsValues(mlir::acc::DeviceType::None);
}
static mlir::Operation::operand_range
getValuesFromSegments(std::optional<mlir::ArrayAttr> arrayAttr,
mlir::Operation::operand_range range,
std::optional<llvm::ArrayRef<int32_t>> segments,
mlir::acc::DeviceType deviceType) {
if (!arrayAttr)
return range.take_front(0);
if (auto pos = findSegment(*arrayAttr, deviceType)) {
int32_t nbOperandsBefore = 0;
for (unsigned i = 0; i < *pos; ++i)
nbOperandsBefore += (*segments)[i];
return range.drop_front(nbOperandsBefore).take_front((*segments)[*pos]);
}
return range.take_front(0);
}
mlir::Operation::operand_range
ParallelOp::getNumGangsValues(mlir::acc::DeviceType deviceType) {
return getValuesFromSegments(getNumGangsDeviceType(), getNumGangs(),
getNumGangsSegments(), deviceType);
}
bool acc::ParallelOp::hasWaitOnly() {
return hasWaitOnly(mlir::acc::DeviceType::None);
}
bool acc::ParallelOp::hasWaitOnly(mlir::acc::DeviceType deviceType) {
if (auto arrayAttr = getWaitOnly()) {
if (findSegment(*arrayAttr, deviceType))
return true;
}
return false;
}
mlir::Operation::operand_range ParallelOp::getWaitValues() {
return getWaitValues(mlir::acc::DeviceType::None);
}
mlir::Operation::operand_range
ParallelOp::getWaitValues(mlir::acc::DeviceType deviceType) {
return getValuesFromSegments(getWaitOperandsDeviceType(), getWaitOperands(),
getWaitOperandsSegments(), deviceType);
}
static ParseResult parseNumGangs(
mlir::OpAsmParser &parser,
llvm::SmallVectorImpl<mlir::OpAsmParser::UnresolvedOperand> &operands,
llvm::SmallVectorImpl<Type> &types, mlir::ArrayAttr &deviceTypes,
mlir::DenseI32ArrayAttr &segments) {
llvm::SmallVector<DeviceTypeAttr> attributes;
llvm::SmallVector<int32_t> seg;
do {
if (failed(parser.parseLBrace()))
return failure();
if (failed(parser.parseCommaSeparatedList(
mlir::AsmParser::Delimiter::None, [&]() {
if (parser.parseOperand(operands.emplace_back()) ||
parser.parseColonType(types.emplace_back()))
return failure();
return success();
})))
return failure();
seg.push_back(operands.size());
if (failed(parser.parseRBrace()))
return failure();
if (succeeded(parser.parseOptionalLSquare())) {
if (parser.parseAttribute(attributes.emplace_back()) ||
parser.parseRSquare())
return failure();
} else {
attributes.push_back(mlir::acc::DeviceTypeAttr::get(
parser.getContext(), mlir::acc::DeviceType::None));
}
} while (succeeded(parser.parseOptionalComma()));
llvm::SmallVector<mlir::Attribute> arrayAttr(attributes.begin(),
attributes.end());
deviceTypes = ArrayAttr::get(parser.getContext(), arrayAttr);
segments = DenseI32ArrayAttr::get(parser.getContext(), seg);
return success();
}
static void printNumGangs(mlir::OpAsmPrinter &p, mlir::Operation *op,
mlir::OperandRange operands, mlir::TypeRange types,
std::optional<mlir::ArrayAttr> deviceTypes,
std::optional<mlir::DenseI32ArrayAttr> segments) {
unsigned opIdx = 0;
for (unsigned i = 0; i < deviceTypes->size(); ++i) {
if (i != 0)
p << ", ";
p << "{";
for (int32_t j = 0; j < (*segments)[i]; ++j) {
if (j != 0)
p << ", ";
p << operands[opIdx] << " : " << operands[opIdx].getType();
++opIdx;
}
p << "}";
auto deviceTypeAttr =
mlir::dyn_cast<mlir::acc::DeviceTypeAttr>((*deviceTypes)[i]);
if (deviceTypeAttr.getValue() != mlir::acc::DeviceType::None)
p << " [" << (*deviceTypes)[i] << "]";
}
}
static ParseResult parseWaitOperands(
mlir::OpAsmParser &parser,
llvm::SmallVectorImpl<mlir::OpAsmParser::UnresolvedOperand> &operands,
llvm::SmallVectorImpl<Type> &types, mlir::ArrayAttr &deviceTypes,
mlir::DenseI32ArrayAttr &segments) {
llvm::SmallVector<DeviceTypeAttr> attributes;
llvm::SmallVector<int32_t> seg;
do {
if (failed(parser.parseLBrace()))
return failure();
if (failed(parser.parseCommaSeparatedList(
mlir::AsmParser::Delimiter::None, [&]() {
if (parser.parseOperand(operands.emplace_back()) ||
parser.parseColonType(types.emplace_back()))
return failure();
return success();
})))
return failure();
seg.push_back(operands.size());
if (failed(parser.parseRBrace()))
return failure();
if (succeeded(parser.parseOptionalLSquare())) {
if (parser.parseAttribute(attributes.emplace_back()) ||
parser.parseRSquare())
return failure();
} else {
attributes.push_back(mlir::acc::DeviceTypeAttr::get(
parser.getContext(), mlir::acc::DeviceType::None));
}
} while (succeeded(parser.parseOptionalComma()));
llvm::SmallVector<mlir::Attribute> arrayAttr(attributes.begin(),
attributes.end());
deviceTypes = ArrayAttr::get(parser.getContext(), arrayAttr);
segments = DenseI32ArrayAttr::get(parser.getContext(), seg);
return success();
}
static void printWaitOperands(mlir::OpAsmPrinter &p, mlir::Operation *op,
mlir::OperandRange operands,
mlir::TypeRange types,
std::optional<mlir::ArrayAttr> deviceTypes,
std::optional<mlir::DenseI32ArrayAttr> segments) {
unsigned opIdx = 0;
for (unsigned i = 0; i < deviceTypes->size(); ++i) {
if (i != 0)
p << ", ";
p << "{";
for (int32_t j = 0; j < (*segments)[i]; ++j) {
if (j != 0)
p << ", ";
p << operands[opIdx] << " : " << operands[opIdx].getType();
++opIdx;
}
p << "}";
auto deviceTypeAttr =
mlir::dyn_cast<mlir::acc::DeviceTypeAttr>((*deviceTypes)[i]);
if (deviceTypeAttr.getValue() != mlir::acc::DeviceType::None)
p << " [" << (*deviceTypes)[i] << "]";
}
}
static ParseResult parseDeviceTypeOperands(
mlir::OpAsmParser &parser,
llvm::SmallVectorImpl<mlir::OpAsmParser::UnresolvedOperand> &operands,
llvm::SmallVectorImpl<Type> &types, mlir::ArrayAttr &deviceTypes) {
llvm::SmallVector<DeviceTypeAttr> attributes;
if (failed(parser.parseCommaSeparatedList([&]() {
if (parser.parseOperand(operands.emplace_back()) ||
parser.parseColonType(types.emplace_back()))
return failure();
if (succeeded(parser.parseOptionalLSquare())) {
if (parser.parseAttribute(attributes.emplace_back()) ||
parser.parseRSquare())
return failure();
} else {
attributes.push_back(mlir::acc::DeviceTypeAttr::get(
parser.getContext(), mlir::acc::DeviceType::None));
}
return success();
})))
return failure();
llvm::SmallVector<mlir::Attribute> arrayAttr(attributes.begin(),
attributes.end());
deviceTypes = ArrayAttr::get(parser.getContext(), arrayAttr);
return success();
}
static void
printDeviceTypeOperands(mlir::OpAsmPrinter &p, mlir::Operation *op,
mlir::OperandRange operands, mlir::TypeRange types,
std::optional<mlir::ArrayAttr> deviceTypes) {
for (unsigned i = 0, e = deviceTypes->size(); i < e; ++i) {
if (i != 0)
p << ", ";
p << operands[i] << " : " << operands[i].getType();
auto deviceTypeAttr =
mlir::dyn_cast<mlir::acc::DeviceTypeAttr>((*deviceTypes)[i]);
if (deviceTypeAttr.getValue() != mlir::acc::DeviceType::None)
p << " [" << (*deviceTypes)[i] << "]";
}
}
//===----------------------------------------------------------------------===//
// SerialOp
//===----------------------------------------------------------------------===//
unsigned SerialOp::getNumDataOperands() {
return getReductionOperands().size() + getGangPrivateOperands().size() +
getGangFirstPrivateOperands().size() + getDataClauseOperands().size();
}
Value SerialOp::getDataOperand(unsigned i) {
unsigned numOptional = getAsync().size();
numOptional += getIfCond() ? 1 : 0;
numOptional += getSelfCond() ? 1 : 0;
return getOperand(getWaitOperands().size() + numOptional + i);
}
bool acc::SerialOp::hasAsyncOnly() {
return hasAsyncOnly(mlir::acc::DeviceType::None);
}
bool acc::SerialOp::hasAsyncOnly(mlir::acc::DeviceType deviceType) {
if (auto arrayAttr = getAsyncOnly()) {
if (findSegment(*arrayAttr, deviceType))
return true;
}
return false;
}
mlir::Value acc::SerialOp::getAsyncValue() {
return getAsyncValue(mlir::acc::DeviceType::None);
}
mlir::Value acc::SerialOp::getAsyncValue(mlir::acc::DeviceType deviceType) {
return getValueInDeviceTypeSegment(getAsyncDeviceType(), getAsync(),
deviceType);
}
bool acc::SerialOp::hasWaitOnly() {
return hasWaitOnly(mlir::acc::DeviceType::None);
}
bool acc::SerialOp::hasWaitOnly(mlir::acc::DeviceType deviceType) {
if (auto arrayAttr = getWaitOnly()) {
if (findSegment(*arrayAttr, deviceType))
return true;
}
return false;
}
mlir::Operation::operand_range SerialOp::getWaitValues() {
return getWaitValues(mlir::acc::DeviceType::None);
}
mlir::Operation::operand_range
SerialOp::getWaitValues(mlir::acc::DeviceType deviceType) {
return getValuesFromSegments(getWaitOperandsDeviceType(), getWaitOperands(),
getWaitOperandsSegments(), deviceType);
}
LogicalResult acc::SerialOp::verify() {
if (failed(checkSymOperandList<mlir::acc::PrivateRecipeOp>(
*this, getPrivatizations(), getGangPrivateOperands(), "private",
"privatizations", /*checkOperandType=*/false)))
return failure();
if (failed(checkSymOperandList<mlir::acc::ReductionRecipeOp>(
*this, getReductionRecipes(), getReductionOperands(), "reduction",
"reductions", false)))
return failure();
if (failed(verifyDeviceTypeAndSegmentCountMatch(
*this, getWaitOperands(), getWaitOperandsSegmentsAttr(),
getWaitOperandsDeviceTypeAttr(), "wait")))
return failure();
if (failed(verifyDeviceTypeCountMatch(*this, getAsync(),
getAsyncDeviceTypeAttr(), "async")))
return failure();
return checkDataOperands<acc::SerialOp>(*this, getDataClauseOperands());
}
//===----------------------------------------------------------------------===//
// KernelsOp
//===----------------------------------------------------------------------===//
unsigned KernelsOp::getNumDataOperands() {
return getDataClauseOperands().size();
}
Value KernelsOp::getDataOperand(unsigned i) {
unsigned numOptional = getAsync().size();
numOptional += getWaitOperands().size();
numOptional += getNumGangs().size();
numOptional += getNumWorkers().size();
numOptional += getVectorLength().size();
numOptional += getIfCond() ? 1 : 0;
numOptional += getSelfCond() ? 1 : 0;
return getOperand(numOptional + i);
}
bool acc::KernelsOp::hasAsyncOnly() {
return hasAsyncOnly(mlir::acc::DeviceType::None);
}
bool acc::KernelsOp::hasAsyncOnly(mlir::acc::DeviceType deviceType) {
if (auto arrayAttr = getAsyncOnly()) {
if (findSegment(*arrayAttr, deviceType))
return true;
}
return false;
}
mlir::Value acc::KernelsOp::getAsyncValue() {
return getAsyncValue(mlir::acc::DeviceType::None);
}
mlir::Value acc::KernelsOp::getAsyncValue(mlir::acc::DeviceType deviceType) {
return getValueInDeviceTypeSegment(getAsyncDeviceType(), getAsync(),
deviceType);
}
mlir::Value acc::KernelsOp::getNumWorkersValue() {
return getNumWorkersValue(mlir::acc::DeviceType::None);
}
mlir::Value
acc::KernelsOp::getNumWorkersValue(mlir::acc::DeviceType deviceType) {
return getValueInDeviceTypeSegment(getNumWorkersDeviceType(), getNumWorkers(),
deviceType);
}
mlir::Value acc::KernelsOp::getVectorLengthValue() {
return getVectorLengthValue(mlir::acc::DeviceType::None);
}
mlir::Value
acc::KernelsOp::getVectorLengthValue(mlir::acc::DeviceType deviceType) {
return getValueInDeviceTypeSegment(getVectorLengthDeviceType(),
getVectorLength(), deviceType);
}
mlir::Operation::operand_range KernelsOp::getNumGangsValues() {
return getNumGangsValues(mlir::acc::DeviceType::None);
}
mlir::Operation::operand_range
KernelsOp::getNumGangsValues(mlir::acc::DeviceType deviceType) {
return getValuesFromSegments(getNumGangsDeviceType(), getNumGangs(),
getNumGangsSegments(), deviceType);
}
bool acc::KernelsOp::hasWaitOnly() {
return hasWaitOnly(mlir::acc::DeviceType::None);
}
bool acc::KernelsOp::hasWaitOnly(mlir::acc::DeviceType deviceType) {
if (auto arrayAttr = getWaitOnly()) {
if (findSegment(*arrayAttr, deviceType))
return true;
}
return false;
}
mlir::Operation::operand_range KernelsOp::getWaitValues() {
return getWaitValues(mlir::acc::DeviceType::None);
}
mlir::Operation::operand_range
KernelsOp::getWaitValues(mlir::acc::DeviceType deviceType) {
return getValuesFromSegments(getWaitOperandsDeviceType(), getWaitOperands(),
getWaitOperandsSegments(), deviceType);
}
LogicalResult acc::KernelsOp::verify() {
if (failed(verifyDeviceTypeAndSegmentCountMatch(
*this, getNumGangs(), getNumGangsSegmentsAttr(),
getNumGangsDeviceTypeAttr(), "num_gangs", 3)))
return failure();
if (failed(verifyDeviceTypeAndSegmentCountMatch(
*this, getWaitOperands(), getWaitOperandsSegmentsAttr(),
getWaitOperandsDeviceTypeAttr(), "wait")))
return failure();
if (failed(verifyDeviceTypeCountMatch(*this, getNumWorkers(),
getNumWorkersDeviceTypeAttr(),
"num_workers")))
return failure();
if (failed(verifyDeviceTypeCountMatch(*this, getVectorLength(),
getVectorLengthDeviceTypeAttr(),
"vector_length")))
return failure();
if (failed(verifyDeviceTypeCountMatch(*this, getAsync(),
getAsyncDeviceTypeAttr(), "async")))
return failure();
return checkDataOperands<acc::KernelsOp>(*this, getDataClauseOperands());
}
//===----------------------------------------------------------------------===//
// HostDataOp
//===----------------------------------------------------------------------===//
LogicalResult acc::HostDataOp::verify() {
if (getDataClauseOperands().empty())
return emitError("at least one operand must appear on the host_data "
"operation");
for (mlir::Value operand : getDataClauseOperands())
if (!mlir::isa<acc::UseDeviceOp>(operand.getDefiningOp()))
return emitError("expect data entry operation as defining op");
return success();
}
void acc::HostDataOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<RemoveConstantIfConditionWithRegion<HostDataOp>>(context);
}
//===----------------------------------------------------------------------===//
// LoopOp
//===----------------------------------------------------------------------===//
static ParseResult
parseGangValue(OpAsmParser &parser, llvm::StringRef keyword,
std::optional<OpAsmParser::UnresolvedOperand> &value,
Type &valueType, bool &needComa, bool &newValue) {
if (succeeded(parser.parseOptionalKeyword(keyword))) {
if (parser.parseEqual())
return failure();
value = OpAsmParser::UnresolvedOperand{};
if (parser.parseOperand(*value) || parser.parseColonType(valueType))
return failure();
needComa = true;
newValue = true;
}
return success();
}
static ParseResult parseGangClause(
OpAsmParser &parser, std::optional<OpAsmParser::UnresolvedOperand> &gangNum,
Type &gangNumType, std::optional<OpAsmParser::UnresolvedOperand> &gangDim,
Type &gangDimType,
std::optional<OpAsmParser::UnresolvedOperand> &gangStatic,
Type &gangStaticType, UnitAttr &hasGang) {
hasGang = UnitAttr::get(parser.getBuilder().getContext());
gangNum = std::nullopt;
gangDim = std::nullopt;
gangStatic = std::nullopt;
bool needComa = false;
// optional gang operands
if (succeeded(parser.parseOptionalLParen())) {
while (true) {
bool newValue = false;
bool needValue = false;
if (needComa) {
if (succeeded(parser.parseOptionalComma()))
needValue = true; // expect a new value after comma.
else
break;
}
if (failed(parseGangValue(parser, LoopOp::getGangNumKeyword(), gangNum,
gangNumType, needComa, newValue)))
return failure();
if (failed(parseGangValue(parser, LoopOp::getGangDimKeyword(), gangDim,
gangDimType, needComa, newValue)))
return failure();
if (failed(parseGangValue(parser, LoopOp::getGangStaticKeyword(),
gangStatic, gangStaticType, needComa,
newValue)))
return failure();
if (!newValue && needValue) {
parser.emitError(parser.getCurrentLocation(),
"new value expected after comma");
return failure();
}
if (!newValue)
break;
}
if (!gangNum && !gangDim && !gangStatic) {
parser.emitError(parser.getCurrentLocation(),
"expect at least one of num, dim or static values");
return failure();
}
if (failed(parser.parseRParen()))
return failure();
}
return success();
}
void printGangClause(OpAsmPrinter &p, Operation *op, Value gangNum,
Type gangNumType, Value gangDim, Type gangDimType,
Value gangStatic, Type gangStaticType, UnitAttr hasGang) {
if (gangNum || gangStatic || gangDim) {
p << "(";
if (gangNum) {
p << LoopOp::getGangNumKeyword() << "=" << gangNum << " : "
<< gangNumType;
if (gangStatic || gangDim)
p << ", ";
}
if (gangDim) {
p << LoopOp::getGangDimKeyword() << "=" << gangDim << " : "
<< gangDimType;
if (gangStatic)
p << ", ";
}
if (gangStatic)
p << LoopOp::getGangStaticKeyword() << "=" << gangStatic << " : "
<< gangStaticType;
p << ")";
}
}
static ParseResult
parseWorkerClause(OpAsmParser &parser,
std::optional<OpAsmParser::UnresolvedOperand> &workerNum,
Type &workerNumType, UnitAttr &hasWorker) {
hasWorker = UnitAttr::get(parser.getBuilder().getContext());
if (succeeded(parser.parseOptionalLParen())) {
workerNum = OpAsmParser::UnresolvedOperand{};
if (parser.parseOperand(*workerNum) ||
parser.parseColonType(workerNumType) || parser.parseRParen())
return failure();
}
return success();
}
void printWorkerClause(OpAsmPrinter &p, Operation *op, Value workerNum,
Type workerNumType, UnitAttr hasWorker) {
if (workerNum)
p << "(" << workerNum << " : " << workerNumType << ")";
}
static ParseResult
parseVectorClause(OpAsmParser &parser,
std::optional<OpAsmParser::UnresolvedOperand> &vectorLength,
Type &vectorLengthType, UnitAttr &hasVector) {
hasVector = UnitAttr::get(parser.getBuilder().getContext());
if (succeeded(parser.parseOptionalLParen())) {
vectorLength = OpAsmParser::UnresolvedOperand{};
if (parser.parseOperand(*vectorLength) ||
parser.parseColonType(vectorLengthType) || parser.parseRParen())
return failure();
}
return success();
}
void printVectorClause(OpAsmPrinter &p, Operation *op, Value vectorLength,
Type vectorLengthType, UnitAttr hasVector) {
if (vectorLength)
p << "(" << vectorLength << " : " << vectorLengthType << ")";
}
LogicalResult acc::LoopOp::verify() {
// auto, independent and seq attribute are mutually exclusive.
if ((getAuto_() && (getIndependent() || getSeq())) ||
(getIndependent() && getSeq())) {
return emitError() << "only one of \"" << acc::LoopOp::getAutoAttrStrName()
<< "\", " << getIndependentAttrName() << ", "
<< getSeqAttrName()
<< " can be present at the same time";
}
// Gang, worker and vector are incompatible with seq.
if (getSeq() && (getHasGang() || getHasWorker() || getHasVector()))
return emitError("gang, worker or vector cannot appear with the seq attr");
if (failed(checkSymOperandList<mlir::acc::PrivateRecipeOp>(
*this, getPrivatizations(), getPrivateOperands(), "private",
"privatizations", false)))
return failure();
if (failed(checkSymOperandList<mlir::acc::ReductionRecipeOp>(
*this, getReductionRecipes(), getReductionOperands(), "reduction",
"reductions", false)))
return failure();
// Check non-empty body().
if (getRegion().empty())
return emitError("expected non-empty body.");
return success();
}
unsigned LoopOp::getNumDataOperands() {
return getReductionOperands().size() + getPrivateOperands().size();
}
Value LoopOp::getDataOperand(unsigned i) {
unsigned numOptional = getGangNum() ? 1 : 0;
numOptional += getGangDim() ? 1 : 0;
numOptional += getGangStatic() ? 1 : 0;
numOptional += getVectorLength() ? 1 : 0;
numOptional += getWorkerNum() ? 1 : 0;
numOptional += getTileOperands().size();
numOptional += getCacheOperands().size();
return getOperand(numOptional + i);
}
//===----------------------------------------------------------------------===//
// DataOp
//===----------------------------------------------------------------------===//
LogicalResult acc::DataOp::verify() {
// 2.6.5. Data Construct restriction
// At least one copy, copyin, copyout, create, no_create, present, deviceptr,
// attach, or default clause must appear on a data construct.
if (getOperands().empty() && !getDefaultAttr())
return emitError("at least one operand or the default attribute "
"must appear on the data operation");
for (mlir::Value operand : getDataClauseOperands())
if (!mlir::isa<acc::AttachOp, acc::CopyinOp, acc::CopyoutOp, acc::CreateOp,
acc::DeleteOp, acc::DetachOp, acc::DevicePtrOp,
acc::GetDevicePtrOp, acc::NoCreateOp, acc::PresentOp>(
operand.getDefiningOp()))
return emitError("expect data entry/exit operation or acc.getdeviceptr "
"as defining op");
return success();
}
unsigned DataOp::getNumDataOperands() { return getDataClauseOperands().size(); }
Value DataOp::getDataOperand(unsigned i) {
unsigned numOptional = getIfCond() ? 1 : 0;
numOptional += getAsync() ? 1 : 0;
numOptional += getWaitOperands().size();
return getOperand(numOptional + i);
}
//===----------------------------------------------------------------------===//
// ExitDataOp
//===----------------------------------------------------------------------===//
LogicalResult acc::ExitDataOp::verify() {
// 2.6.6. Data Exit Directive restriction
// At least one copyout, delete, or detach clause must appear on an exit data
// directive.
if (getDataClauseOperands().empty())
return emitError("at least one operand must be present in dataOperands on "
"the exit data operation");
// The async attribute represent the async clause without value. Therefore the
// attribute and operand cannot appear at the same time.
if (getAsyncOperand() && getAsync())
return emitError("async attribute cannot appear with asyncOperand");
// The wait attribute represent the wait clause without values. Therefore the
// attribute and operands cannot appear at the same time.
if (!getWaitOperands().empty() && getWait())
return emitError("wait attribute cannot appear with waitOperands");
if (getWaitDevnum() && getWaitOperands().empty())
return emitError("wait_devnum cannot appear without waitOperands");
return success();
}
unsigned ExitDataOp::getNumDataOperands() {
return getDataClauseOperands().size();
}
Value ExitDataOp::getDataOperand(unsigned i) {
unsigned numOptional = getIfCond() ? 1 : 0;
numOptional += getAsyncOperand() ? 1 : 0;
numOptional += getWaitDevnum() ? 1 : 0;
return getOperand(getWaitOperands().size() + numOptional + i);
}
void ExitDataOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<RemoveConstantIfCondition<ExitDataOp>>(context);
}
//===----------------------------------------------------------------------===//
// EnterDataOp
//===----------------------------------------------------------------------===//
LogicalResult acc::EnterDataOp::verify() {
// 2.6.6. Data Enter Directive restriction
// At least one copyin, create, or attach clause must appear on an enter data
// directive.
if (getDataClauseOperands().empty())
return emitError("at least one operand must be present in dataOperands on "
"the enter data operation");
// The async attribute represent the async clause without value. Therefore the
// attribute and operand cannot appear at the same time.
if (getAsyncOperand() && getAsync())
return emitError("async attribute cannot appear with asyncOperand");
// The wait attribute represent the wait clause without values. Therefore the
// attribute and operands cannot appear at the same time.
if (!getWaitOperands().empty() && getWait())
return emitError("wait attribute cannot appear with waitOperands");
if (getWaitDevnum() && getWaitOperands().empty())
return emitError("wait_devnum cannot appear without waitOperands");
for (mlir::Value operand : getDataClauseOperands())
if (!mlir::isa<acc::AttachOp, acc::CreateOp, acc::CopyinOp>(
operand.getDefiningOp()))
return emitError("expect data entry operation as defining op");
return success();
}
unsigned EnterDataOp::getNumDataOperands() {
return getDataClauseOperands().size();
}
Value EnterDataOp::getDataOperand(unsigned i) {
unsigned numOptional = getIfCond() ? 1 : 0;
numOptional += getAsyncOperand() ? 1 : 0;
numOptional += getWaitDevnum() ? 1 : 0;
return getOperand(getWaitOperands().size() + numOptional + i);
}
void EnterDataOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<RemoveConstantIfCondition<EnterDataOp>>(context);
}
//===----------------------------------------------------------------------===//
// AtomicReadOp
//===----------------------------------------------------------------------===//
LogicalResult AtomicReadOp::verify() { return verifyCommon(); }
//===----------------------------------------------------------------------===//
// AtomicWriteOp
//===----------------------------------------------------------------------===//
LogicalResult AtomicWriteOp::verify() { return verifyCommon(); }
//===----------------------------------------------------------------------===//
// AtomicUpdateOp
//===----------------------------------------------------------------------===//
LogicalResult AtomicUpdateOp::canonicalize(AtomicUpdateOp op,
PatternRewriter &rewriter) {
if (op.isNoOp()) {
rewriter.eraseOp(op);
return success();
}
if (Value writeVal = op.getWriteOpVal()) {
rewriter.replaceOpWithNewOp<AtomicWriteOp>(op, op.getX(), writeVal);
return success();
}
return failure();
}
LogicalResult AtomicUpdateOp::verify() { return verifyCommon(); }
LogicalResult AtomicUpdateOp::verifyRegions() { return verifyRegionsCommon(); }
//===----------------------------------------------------------------------===//
// AtomicCaptureOp
//===----------------------------------------------------------------------===//
AtomicReadOp AtomicCaptureOp::getAtomicReadOp() {
if (auto op = dyn_cast<AtomicReadOp>(getFirstOp()))
return op;
return dyn_cast<AtomicReadOp>(getSecondOp());
}
AtomicWriteOp AtomicCaptureOp::getAtomicWriteOp() {
if (auto op = dyn_cast<AtomicWriteOp>(getFirstOp()))
return op;
return dyn_cast<AtomicWriteOp>(getSecondOp());
}
AtomicUpdateOp AtomicCaptureOp::getAtomicUpdateOp() {
if (auto op = dyn_cast<AtomicUpdateOp>(getFirstOp()))
return op;
return dyn_cast<AtomicUpdateOp>(getSecondOp());
}
LogicalResult AtomicCaptureOp::verifyRegions() { return verifyRegionsCommon(); }
//===----------------------------------------------------------------------===//
// DeclareEnterOp
//===----------------------------------------------------------------------===//
template <typename Op>
static LogicalResult
checkDeclareOperands(Op &op, const mlir::ValueRange &operands,
bool requireAtLeastOneOperand = true) {
if (operands.empty() && requireAtLeastOneOperand)
return emitError(
op->getLoc(),
"at least one operand must appear on the declare operation");
for (mlir::Value operand : operands) {
if (!mlir::isa<acc::CopyinOp, acc::CopyoutOp, acc::CreateOp,
acc::DevicePtrOp, acc::GetDevicePtrOp, acc::PresentOp,
acc::DeclareDeviceResidentOp, acc::DeclareLinkOp>(
operand.getDefiningOp()))
return op.emitError(
"expect valid declare data entry operation or acc.getdeviceptr "
"as defining op");
mlir::Value varPtr{getVarPtr(operand.getDefiningOp())};
assert(varPtr && "declare operands can only be data entry operations which "
"must have varPtr");
std::optional<mlir::acc::DataClause> dataClauseOptional{
getDataClause(operand.getDefiningOp())};
assert(dataClauseOptional.has_value() &&
"declare operands can only be data entry operations which must have "
"dataClause");
// If varPtr has no defining op - there is nothing to check further.
if (!varPtr.getDefiningOp())
continue;
// Check that the varPtr has a declare attribute.
auto declareAttribute{
varPtr.getDefiningOp()->getAttr(mlir::acc::getDeclareAttrName())};
if (!declareAttribute)
return op.emitError(
"expect declare attribute on variable in declare operation");
auto declAttr = mlir::cast<mlir::acc::DeclareAttr>(declareAttribute);
if (declAttr.getDataClause().getValue() != dataClauseOptional.value())
return op.emitError(
"expect matching declare attribute on variable in declare operation");
// If the variable is marked with implicit attribute, the matching declare
// data action must also be marked implicit. The reverse is not checked
// since implicit data action may be inserted to do actions like updating
// device copy, in which case the variable is not necessarily implicitly
// declare'd.
if (declAttr.getImplicit() &&
declAttr.getImplicit() != acc::getImplicitFlag(operand.getDefiningOp()))
return op.emitError(
"implicitness must match between declare op and flag on variable");
}
return success();
}
LogicalResult acc::DeclareEnterOp::verify() {
return checkDeclareOperands(*this, this->getDataClauseOperands());
}
//===----------------------------------------------------------------------===//
// DeclareExitOp
//===----------------------------------------------------------------------===//
LogicalResult acc::DeclareExitOp::verify() {
if (getToken())
return checkDeclareOperands(*this, this->getDataClauseOperands(),
/*requireAtLeastOneOperand=*/false);
return checkDeclareOperands(*this, this->getDataClauseOperands());
}
//===----------------------------------------------------------------------===//
// DeclareOp
//===----------------------------------------------------------------------===//
LogicalResult acc::DeclareOp::verify() {
return checkDeclareOperands(*this, this->getDataClauseOperands());
}
//===----------------------------------------------------------------------===//
// RoutineOp
//===----------------------------------------------------------------------===//
LogicalResult acc::RoutineOp::verify() {
int parallelism = 0;
parallelism += getGang() ? 1 : 0;
parallelism += getWorker() ? 1 : 0;
parallelism += getVector() ? 1 : 0;
parallelism += getSeq() ? 1 : 0;
if (parallelism > 1)
return emitError() << "only one of `gang`, `worker`, `vector`, `seq` can "
"be present at the same time";
return success();
}
static ParseResult parseRoutineGangClause(OpAsmParser &parser, UnitAttr &gang,
IntegerAttr &gangDim) {
// Since gang clause exists, ensure that unit attribute is set.
gang = UnitAttr::get(parser.getBuilder().getContext());
// Next, look for dim on gang. Don't initialize `gangDim` yet since
// we leave it without attribute if there is no `dim` specifier.
if (succeeded(parser.parseOptionalLParen())) {
// Look for syntax that looks like `dim = 1 : i32`.
// Thus first look for `dim =`
if (failed(parser.parseKeyword(RoutineOp::getGangDimKeyword())) ||
failed(parser.parseEqual()))
return failure();
int64_t dimValue;
Type valueType;
// Now look for `1 : i32`
if (failed(parser.parseInteger(dimValue)) ||
failed(parser.parseColonType(valueType)))
return failure();
gangDim = IntegerAttr::get(valueType, dimValue);
if (failed(parser.parseRParen()))
return failure();
}
return success();
}
void printRoutineGangClause(OpAsmPrinter &p, Operation *op, UnitAttr gang,
IntegerAttr gangDim) {
if (gangDim)
p << "(" << RoutineOp::getGangDimKeyword() << " = " << gangDim.getValue()
<< " : " << gangDim.getType() << ")";
}
//===----------------------------------------------------------------------===//
// InitOp
//===----------------------------------------------------------------------===//
LogicalResult acc::InitOp::verify() {
Operation *currOp = *this;
while ((currOp = currOp->getParentOp()))
if (isComputeOperation(currOp))
return emitOpError("cannot be nested in a compute operation");
return success();
}
//===----------------------------------------------------------------------===//
// ShutdownOp
//===----------------------------------------------------------------------===//
LogicalResult acc::ShutdownOp::verify() {
Operation *currOp = *this;
while ((currOp = currOp->getParentOp()))
if (isComputeOperation(currOp))
return emitOpError("cannot be nested in a compute operation");
return success();
}
//===----------------------------------------------------------------------===//
// SetOp
//===----------------------------------------------------------------------===//
LogicalResult acc::SetOp::verify() {
Operation *currOp = *this;
while ((currOp = currOp->getParentOp()))
if (isComputeOperation(currOp))
return emitOpError("cannot be nested in a compute operation");
if (!getDeviceTypeAttr() && !getDefaultAsync() && !getDeviceNum())
return emitOpError("at least one default_async, device_num, or device_type "
"operand must appear");
return success();
}
//===----------------------------------------------------------------------===//
// UpdateOp
//===----------------------------------------------------------------------===//
LogicalResult acc::UpdateOp::verify() {
// At least one of host or device should have a value.
if (getDataClauseOperands().empty())
return emitError("at least one value must be present in dataOperands");
// The async attribute represent the async clause without value. Therefore the
// attribute and operand cannot appear at the same time.
if (getAsyncOperand() && getAsync())
return emitError("async attribute cannot appear with asyncOperand");
// The wait attribute represent the wait clause without values. Therefore the
// attribute and operands cannot appear at the same time.
if (!getWaitOperands().empty() && getWait())
return emitError("wait attribute cannot appear with waitOperands");
if (getWaitDevnum() && getWaitOperands().empty())
return emitError("wait_devnum cannot appear without waitOperands");
for (mlir::Value operand : getDataClauseOperands())
if (!mlir::isa<acc::UpdateDeviceOp, acc::UpdateHostOp, acc::GetDevicePtrOp>(
operand.getDefiningOp()))
return emitError("expect data entry/exit operation or acc.getdeviceptr "
"as defining op");
return success();
}
unsigned UpdateOp::getNumDataOperands() {
return getDataClauseOperands().size();
}
Value UpdateOp::getDataOperand(unsigned i) {
unsigned numOptional = getAsyncOperand() ? 1 : 0;
numOptional += getWaitDevnum() ? 1 : 0;
numOptional += getIfCond() ? 1 : 0;
return getOperand(getWaitOperands().size() + numOptional + i);
}
void UpdateOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<RemoveConstantIfCondition<UpdateOp>>(context);
}
//===----------------------------------------------------------------------===//
// WaitOp
//===----------------------------------------------------------------------===//
LogicalResult acc::WaitOp::verify() {
// The async attribute represent the async clause without value. Therefore the
// attribute and operand cannot appear at the same time.
if (getAsyncOperand() && getAsync())
return emitError("async attribute cannot appear with asyncOperand");
if (getWaitDevnum() && getWaitOperands().empty())
return emitError("wait_devnum cannot appear without waitOperands");
return success();
}
#define GET_OP_CLASSES
#include "mlir/Dialect/OpenACC/OpenACCOps.cpp.inc"
#define GET_ATTRDEF_CLASSES
#include "mlir/Dialect/OpenACC/OpenACCOpsAttributes.cpp.inc"
#define GET_TYPEDEF_CLASSES
#include "mlir/Dialect/OpenACC/OpenACCOpsTypes.cpp.inc"
//===----------------------------------------------------------------------===//
// acc dialect utilities
//===----------------------------------------------------------------------===//
mlir::Value mlir::acc::getVarPtr(mlir::Operation *accDataClauseOp) {
auto varPtr{llvm::TypeSwitch<mlir::Operation *, mlir::Value>(accDataClauseOp)
.Case<ACC_DATA_ENTRY_OPS>(
[&](auto entry) { return entry.getVarPtr(); })
.Case<mlir::acc::CopyoutOp, mlir::acc::UpdateHostOp>(
[&](auto exit) { return exit.getVarPtr(); })
.Default([&](mlir::Operation *) { return mlir::Value(); })};
return varPtr;
}
mlir::Value mlir::acc::getAccPtr(mlir::Operation *accDataClauseOp) {
auto accPtr{llvm::TypeSwitch<mlir::Operation *, mlir::Value>(accDataClauseOp)
.Case<ACC_DATA_ENTRY_OPS, ACC_DATA_EXIT_OPS>(
[&](auto dataClause) { return dataClause.getAccPtr(); })
.Default([&](mlir::Operation *) { return mlir::Value(); })};
return accPtr;
}
mlir::Value mlir::acc::getVarPtrPtr(mlir::Operation *accDataClauseOp) {
auto varPtrPtr{
llvm::TypeSwitch<mlir::Operation *, mlir::Value>(accDataClauseOp)
.Case<ACC_DATA_ENTRY_OPS>(
[&](auto dataClause) { return dataClause.getVarPtrPtr(); })
.Default([&](mlir::Operation *) { return mlir::Value(); })};
return varPtrPtr;
}
mlir::SmallVector<mlir::Value>
mlir::acc::getBounds(mlir::Operation *accDataClauseOp) {
mlir::SmallVector<mlir::Value> bounds{
llvm::TypeSwitch<mlir::Operation *, mlir::SmallVector<mlir::Value>>(
accDataClauseOp)
.Case<ACC_DATA_ENTRY_OPS, ACC_DATA_EXIT_OPS>([&](auto dataClause) {
return mlir::SmallVector<mlir::Value>(
dataClause.getBounds().begin(), dataClause.getBounds().end());
})
.Default([&](mlir::Operation *) {
return mlir::SmallVector<mlir::Value, 0>();
})};
return bounds;
}
std::optional<llvm::StringRef> mlir::acc::getVarName(mlir::Operation *accOp) {
auto name{
llvm::TypeSwitch<mlir::Operation *, std::optional<llvm::StringRef>>(accOp)
.Case<ACC_DATA_ENTRY_OPS>([&](auto entry) { return entry.getName(); })
.Default([&](mlir::Operation *) -> std::optional<llvm::StringRef> {
return {};
})};
return name;
}
std::optional<mlir::acc::DataClause>
mlir::acc::getDataClause(mlir::Operation *accDataEntryOp) {
auto dataClause{
llvm::TypeSwitch<mlir::Operation *, std::optional<mlir::acc::DataClause>>(
accDataEntryOp)
.Case<ACC_DATA_ENTRY_OPS>(
[&](auto entry) { return entry.getDataClause(); })
.Default([&](mlir::Operation *) { return std::nullopt; })};
return dataClause;
}
bool mlir::acc::getImplicitFlag(mlir::Operation *accDataEntryOp) {
auto implicit{llvm::TypeSwitch<mlir::Operation *, bool>(accDataEntryOp)
.Case<ACC_DATA_ENTRY_OPS>(
[&](auto entry) { return entry.getImplicit(); })
.Default([&](mlir::Operation *) { return false; })};
return implicit;
}
mlir::ValueRange mlir::acc::getDataOperands(mlir::Operation *accOp) {
auto dataOperands{
llvm::TypeSwitch<mlir::Operation *, mlir::ValueRange>(accOp)
.Case<ACC_COMPUTE_AND_DATA_CONSTRUCT_OPS>(
[&](auto entry) { return entry.getDataClauseOperands(); })
.Default([&](mlir::Operation *) { return mlir::ValueRange(); })};
return dataOperands;
}
mlir::MutableOperandRange
mlir::acc::getMutableDataOperands(mlir::Operation *accOp) {
auto dataOperands{
llvm::TypeSwitch<mlir::Operation *, mlir::MutableOperandRange>(accOp)
.Case<ACC_COMPUTE_AND_DATA_CONSTRUCT_OPS>(
[&](auto entry) { return entry.getDataClauseOperandsMutable(); })
.Default([&](mlir::Operation *) { return nullptr; })};
return dataOperands;
}