Files
clang-p2996/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorPasses.cpp
Aart Bik 5f32bcfbae [mlir][sparse][gpu] re-enable all GPU libgen tests (#72185)
Previous change no longer properly used the GPU libgen pass (even though
most tests still passed falling back to CPU). This revision puts the
proper pass order into place. Also bit of a cleanup of CPU codegen vs.
libgen setup.
2023-11-14 09:06:15 -08:00

470 lines
18 KiB
C++

//===- SparseTensorPasses.cpp - Pass for autogen sparse tensor code -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Complex/IR/Complex.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Func/Transforms/FuncConversions.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/SCF/Transforms/Patterns.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
namespace mlir {
#define GEN_PASS_DEF_SPARSEREINTERPRETMAP
#define GEN_PASS_DEF_PRESPARSIFICATIONREWRITE
#define GEN_PASS_DEF_SPARSIFICATIONPASS
#define GEN_PASS_DEF_LOWERSPARSEOPSTOFOREACH
#define GEN_PASS_DEF_LOWERFOREACHTOSCF
#define GEN_PASS_DEF_SPARSETENSORCONVERSIONPASS
#define GEN_PASS_DEF_SPARSETENSORCODEGEN
#define GEN_PASS_DEF_SPARSEBUFFERREWRITE
#define GEN_PASS_DEF_SPARSEVECTORIZATION
#define GEN_PASS_DEF_SPARSEGPUCODEGEN
#define GEN_PASS_DEF_STAGESPARSEOPERATIONS
#define GEN_PASS_DEF_STORAGESPECIFIERTOLLVM
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h.inc"
} // namespace mlir
using namespace mlir;
using namespace mlir::sparse_tensor;
namespace {
//===----------------------------------------------------------------------===//
// Passes implementation.
//===----------------------------------------------------------------------===//
struct SparseReinterpretMap
: public impl::SparseReinterpretMapBase<SparseReinterpretMap> {
SparseReinterpretMap() = default;
SparseReinterpretMap(const SparseReinterpretMap &pass) = default;
SparseReinterpretMap(const SparseReinterpretMapOptions &options) {
scope = options.scope;
}
void runOnOperation() override {
auto *ctx = &getContext();
RewritePatternSet patterns(ctx);
populateSparseReinterpretMap(patterns, scope);
(void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns));
}
};
struct PreSparsificationRewritePass
: public impl::PreSparsificationRewriteBase<PreSparsificationRewritePass> {
PreSparsificationRewritePass() = default;
PreSparsificationRewritePass(const PreSparsificationRewritePass &pass) =
default;
void runOnOperation() override {
auto *ctx = &getContext();
RewritePatternSet patterns(ctx);
populatePreSparsificationRewriting(patterns);
(void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns));
}
};
struct SparsificationPass
: public impl::SparsificationPassBase<SparsificationPass> {
SparsificationPass() = default;
SparsificationPass(const SparsificationPass &pass) = default;
SparsificationPass(const SparsificationOptions &options) {
parallelization = options.parallelizationStrategy;
enableRuntimeLibrary = options.enableRuntimeLibrary;
}
void runOnOperation() override {
auto *ctx = &getContext();
// Translate strategy flags to strategy options.
SparsificationOptions options(parallelization, enableRuntimeLibrary);
// Apply sparsification and cleanup rewriting.
RewritePatternSet patterns(ctx);
populateSparsificationPatterns(patterns, options);
scf::ForOp::getCanonicalizationPatterns(patterns, ctx);
(void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns));
}
};
struct StageSparseOperationsPass
: public impl::StageSparseOperationsBase<StageSparseOperationsPass> {
StageSparseOperationsPass() = default;
StageSparseOperationsPass(const StageSparseOperationsPass &pass) = default;
void runOnOperation() override {
auto *ctx = &getContext();
RewritePatternSet patterns(ctx);
populateStageSparseOperationsPatterns(patterns);
(void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns));
}
};
struct LowerSparseOpsToForeachPass
: public impl::LowerSparseOpsToForeachBase<LowerSparseOpsToForeachPass> {
LowerSparseOpsToForeachPass() = default;
LowerSparseOpsToForeachPass(const LowerSparseOpsToForeachPass &pass) =
default;
LowerSparseOpsToForeachPass(bool enableRT, bool convert) {
enableRuntimeLibrary = enableRT;
enableConvert = convert;
}
void runOnOperation() override {
auto *ctx = &getContext();
RewritePatternSet patterns(ctx);
populateLowerSparseOpsToForeachPatterns(patterns, enableRuntimeLibrary,
enableConvert);
(void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns));
}
};
struct LowerForeachToSCFPass
: public impl::LowerForeachToSCFBase<LowerForeachToSCFPass> {
LowerForeachToSCFPass() = default;
LowerForeachToSCFPass(const LowerForeachToSCFPass &pass) = default;
void runOnOperation() override {
auto *ctx = &getContext();
RewritePatternSet patterns(ctx);
populateLowerForeachToSCFPatterns(patterns);
(void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns));
}
};
struct SparseTensorConversionPass
: public impl::SparseTensorConversionPassBase<SparseTensorConversionPass> {
SparseTensorConversionPass() = default;
SparseTensorConversionPass(const SparseTensorConversionPass &pass) = default;
void runOnOperation() override {
auto *ctx = &getContext();
RewritePatternSet patterns(ctx);
SparseTensorTypeToPtrConverter converter;
ConversionTarget target(*ctx);
// Everything in the sparse dialect must go!
target.addIllegalDialect<SparseTensorDialect>();
// All dynamic rules below accept new function, call, return, and various
// tensor and bufferization operations as legal output of the rewriting
// provided that all sparse tensor types have been fully rewritten.
target.addDynamicallyLegalOp<func::FuncOp>([&](func::FuncOp op) {
return converter.isSignatureLegal(op.getFunctionType());
});
target.addDynamicallyLegalOp<func::CallOp>([&](func::CallOp op) {
return converter.isSignatureLegal(op.getCalleeType());
});
target.addDynamicallyLegalOp<func::ReturnOp>([&](func::ReturnOp op) {
return converter.isLegal(op.getOperandTypes());
});
target.addDynamicallyLegalOp<tensor::DimOp>([&](tensor::DimOp op) {
return converter.isLegal(op.getOperandTypes());
});
target.addDynamicallyLegalOp<tensor::CastOp>([&](tensor::CastOp op) {
return converter.isLegal(op.getSource().getType()) &&
converter.isLegal(op.getDest().getType());
});
target.addDynamicallyLegalOp<tensor::ExpandShapeOp>(
[&](tensor::ExpandShapeOp op) {
return converter.isLegal(op.getSrc().getType()) &&
converter.isLegal(op.getResult().getType());
});
target.addDynamicallyLegalOp<tensor::CollapseShapeOp>(
[&](tensor::CollapseShapeOp op) {
return converter.isLegal(op.getSrc().getType()) &&
converter.isLegal(op.getResult().getType());
});
target.addDynamicallyLegalOp<bufferization::AllocTensorOp>(
[&](bufferization::AllocTensorOp op) {
return converter.isLegal(op.getType());
});
target.addDynamicallyLegalOp<bufferization::DeallocTensorOp>(
[&](bufferization::DeallocTensorOp op) {
return converter.isLegal(op.getTensor().getType());
});
// The following operations and dialects may be introduced by the
// rewriting rules, and are therefore marked as legal.
target.addLegalOp<complex::ConstantOp, complex::NotEqualOp, linalg::FillOp,
linalg::YieldOp, tensor::ExtractOp,
tensor::FromElementsOp>();
target.addLegalDialect<
arith::ArithDialect, bufferization::BufferizationDialect,
LLVM::LLVMDialect, memref::MemRefDialect, scf::SCFDialect>();
// Populate with rules and apply rewriting rules.
populateFunctionOpInterfaceTypeConversionPattern<func::FuncOp>(patterns,
converter);
populateCallOpTypeConversionPattern(patterns, converter);
scf::populateSCFStructuralTypeConversionsAndLegality(converter, patterns,
target);
populateSparseTensorConversionPatterns(converter, patterns);
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))
signalPassFailure();
}
};
struct SparseTensorCodegenPass
: public impl::SparseTensorCodegenBase<SparseTensorCodegenPass> {
SparseTensorCodegenPass() = default;
SparseTensorCodegenPass(const SparseTensorCodegenPass &pass) = default;
SparseTensorCodegenPass(bool createDeallocs, bool enableInit) {
createSparseDeallocs = createDeallocs;
enableBufferInitialization = enableInit;
}
void runOnOperation() override {
auto *ctx = &getContext();
RewritePatternSet patterns(ctx);
SparseTensorTypeToBufferConverter converter;
ConversionTarget target(*ctx);
// Most ops in the sparse dialect must go!
target.addIllegalDialect<SparseTensorDialect>();
target.addLegalOp<SortOp>();
target.addLegalOp<PushBackOp>();
// Storage specifier outlives sparse tensor pipeline.
target.addLegalOp<GetStorageSpecifierOp>();
target.addLegalOp<SetStorageSpecifierOp>();
target.addLegalOp<StorageSpecifierInitOp>();
// Note that tensor::FromElementsOp might be yield after lowering unpack.
target.addLegalOp<tensor::FromElementsOp>();
// All dynamic rules below accept new function, call, return, and
// various tensor and bufferization operations as legal output of the
// rewriting provided that all sparse tensor types have been fully
// rewritten.
target.addDynamicallyLegalOp<func::FuncOp>([&](func::FuncOp op) {
return converter.isSignatureLegal(op.getFunctionType());
});
target.addDynamicallyLegalOp<func::CallOp>([&](func::CallOp op) {
return converter.isSignatureLegal(op.getCalleeType());
});
target.addDynamicallyLegalOp<func::ReturnOp>([&](func::ReturnOp op) {
return converter.isLegal(op.getOperandTypes());
});
target.addDynamicallyLegalOp<bufferization::AllocTensorOp>(
[&](bufferization::AllocTensorOp op) {
return converter.isLegal(op.getType());
});
target.addDynamicallyLegalOp<bufferization::DeallocTensorOp>(
[&](bufferization::DeallocTensorOp op) {
return converter.isLegal(op.getTensor().getType());
});
// The following operations and dialects may be introduced by the
// codegen rules, and are therefore marked as legal.
target.addLegalOp<linalg::FillOp>();
target.addLegalDialect<
arith::ArithDialect, bufferization::BufferizationDialect,
complex::ComplexDialect, memref::MemRefDialect, scf::SCFDialect>();
target.addLegalOp<UnrealizedConversionCastOp>();
// Populate with rules and apply rewriting rules.
populateFunctionOpInterfaceTypeConversionPattern<func::FuncOp>(patterns,
converter);
scf::populateSCFStructuralTypeConversionsAndLegality(converter, patterns,
target);
populateSparseTensorCodegenPatterns(
converter, patterns, createSparseDeallocs, enableBufferInitialization);
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))
signalPassFailure();
}
};
struct SparseBufferRewritePass
: public impl::SparseBufferRewriteBase<SparseBufferRewritePass> {
SparseBufferRewritePass() = default;
SparseBufferRewritePass(const SparseBufferRewritePass &pass) = default;
SparseBufferRewritePass(bool enableInit) {
enableBufferInitialization = enableInit;
}
void runOnOperation() override {
auto *ctx = &getContext();
RewritePatternSet patterns(ctx);
populateSparseBufferRewriting(patterns, enableBufferInitialization);
(void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns));
}
};
struct SparseVectorizationPass
: public impl::SparseVectorizationBase<SparseVectorizationPass> {
SparseVectorizationPass() = default;
SparseVectorizationPass(const SparseVectorizationPass &pass) = default;
SparseVectorizationPass(unsigned vl, bool vla, bool sidx32) {
vectorLength = vl;
enableVLAVectorization = vla;
enableSIMDIndex32 = sidx32;
}
void runOnOperation() override {
if (vectorLength == 0)
return signalPassFailure();
auto *ctx = &getContext();
RewritePatternSet patterns(ctx);
populateSparseVectorizationPatterns(
patterns, vectorLength, enableVLAVectorization, enableSIMDIndex32);
vector::populateVectorToVectorCanonicalizationPatterns(patterns);
(void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns));
}
};
struct SparseGPUCodegenPass
: public impl::SparseGPUCodegenBase<SparseGPUCodegenPass> {
SparseGPUCodegenPass() = default;
SparseGPUCodegenPass(const SparseGPUCodegenPass &pass) = default;
SparseGPUCodegenPass(unsigned nT, bool enableRT) {
numThreads = nT;
enableRuntimeLibrary = enableRT;
}
void runOnOperation() override {
auto *ctx = &getContext();
RewritePatternSet patterns(ctx);
if (numThreads == 0)
populateSparseGPULibgenPatterns(patterns, enableRuntimeLibrary);
else
populateSparseGPUCodegenPatterns(patterns, numThreads);
(void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns));
}
};
struct StorageSpecifierToLLVMPass
: public impl::StorageSpecifierToLLVMBase<StorageSpecifierToLLVMPass> {
StorageSpecifierToLLVMPass() = default;
void runOnOperation() override {
auto *ctx = &getContext();
ConversionTarget target(*ctx);
RewritePatternSet patterns(ctx);
StorageSpecifierToLLVMTypeConverter converter;
// All ops in the sparse dialect must go!
target.addIllegalDialect<SparseTensorDialect>();
target.addDynamicallyLegalOp<func::FuncOp>([&](func::FuncOp op) {
return converter.isSignatureLegal(op.getFunctionType());
});
target.addDynamicallyLegalOp<func::CallOp>([&](func::CallOp op) {
return converter.isSignatureLegal(op.getCalleeType());
});
target.addDynamicallyLegalOp<func::ReturnOp>([&](func::ReturnOp op) {
return converter.isLegal(op.getOperandTypes());
});
target.addLegalDialect<arith::ArithDialect, LLVM::LLVMDialect>();
populateFunctionOpInterfaceTypeConversionPattern<func::FuncOp>(patterns,
converter);
populateCallOpTypeConversionPattern(patterns, converter);
populateBranchOpInterfaceTypeConversionPattern(patterns, converter);
populateReturnOpTypeConversionPattern(patterns, converter);
scf::populateSCFStructuralTypeConversionsAndLegality(converter, patterns,
target);
populateStorageSpecifierToLLVMPatterns(converter, patterns);
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))
signalPassFailure();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Pass creation methods.
//===----------------------------------------------------------------------===//
std::unique_ptr<Pass> mlir::createSparseReinterpretMapPass() {
return std::make_unique<SparseReinterpretMap>();
}
std::unique_ptr<Pass>
mlir::createSparseReinterpretMapPass(ReinterpretMapScope scope) {
SparseReinterpretMapOptions options;
options.scope = scope;
return std::make_unique<SparseReinterpretMap>(options);
}
std::unique_ptr<Pass> mlir::createPreSparsificationRewritePass() {
return std::make_unique<PreSparsificationRewritePass>();
}
std::unique_ptr<Pass> mlir::createSparsificationPass() {
return std::make_unique<SparsificationPass>();
}
std::unique_ptr<Pass>
mlir::createSparsificationPass(const SparsificationOptions &options) {
return std::make_unique<SparsificationPass>(options);
}
std::unique_ptr<Pass> mlir::createStageSparseOperationsPass() {
return std::make_unique<StageSparseOperationsPass>();
}
std::unique_ptr<Pass> mlir::createLowerSparseOpsToForeachPass() {
return std::make_unique<LowerSparseOpsToForeachPass>();
}
std::unique_ptr<Pass>
mlir::createLowerSparseOpsToForeachPass(bool enableRT, bool enableConvert) {
return std::make_unique<LowerSparseOpsToForeachPass>(enableRT, enableConvert);
}
std::unique_ptr<Pass> mlir::createLowerForeachToSCFPass() {
return std::make_unique<LowerForeachToSCFPass>();
}
std::unique_ptr<Pass> mlir::createSparseTensorConversionPass() {
return std::make_unique<SparseTensorConversionPass>();
}
std::unique_ptr<Pass> mlir::createSparseTensorCodegenPass() {
return std::make_unique<SparseTensorCodegenPass>();
}
std::unique_ptr<Pass>
mlir::createSparseTensorCodegenPass(bool createSparseDeallocs,
bool enableBufferInitialization) {
return std::make_unique<SparseTensorCodegenPass>(createSparseDeallocs,
enableBufferInitialization);
}
std::unique_ptr<Pass> mlir::createSparseBufferRewritePass() {
return std::make_unique<SparseBufferRewritePass>();
}
std::unique_ptr<Pass>
mlir::createSparseBufferRewritePass(bool enableBufferInitialization) {
return std::make_unique<SparseBufferRewritePass>(enableBufferInitialization);
}
std::unique_ptr<Pass> mlir::createSparseVectorizationPass() {
return std::make_unique<SparseVectorizationPass>();
}
std::unique_ptr<Pass>
mlir::createSparseVectorizationPass(unsigned vectorLength,
bool enableVLAVectorization,
bool enableSIMDIndex32) {
return std::make_unique<SparseVectorizationPass>(
vectorLength, enableVLAVectorization, enableSIMDIndex32);
}
std::unique_ptr<Pass> mlir::createSparseGPUCodegenPass() {
return std::make_unique<SparseGPUCodegenPass>();
}
std::unique_ptr<Pass> mlir::createSparseGPUCodegenPass(unsigned numThreads,
bool enableRT) {
return std::make_unique<SparseGPUCodegenPass>(numThreads, enableRT);
}
std::unique_ptr<Pass> mlir::createStorageSpecifierToLLVMPass() {
return std::make_unique<StorageSpecifierToLLVMPass>();
}