Cyclic function call graphs are generally not supported by One-Shot Bufferize. However, they can be allowed when a function does not have tensor arguments or results. This is because it is then no longer necessary that the callee will be bufferized before the caller.
686 lines
27 KiB
MLIR
686 lines
27 KiB
MLIR
// Note: Default is function-boundary-type-conversion=infer-layout-map
|
|
// RUN: mlir-opt %s -one-shot-bufferize="bufferize-function-boundaries=1" -canonicalize -drop-equivalent-buffer-results -split-input-file | FileCheck %s
|
|
|
|
// Run fuzzer with different seeds.
|
|
// RUN: mlir-opt %s -one-shot-bufferize="bufferize-function-boundaries=1 test-analysis-only analysis-fuzzer-seed=23" -split-input-file -o /dev/null
|
|
// RUN: mlir-opt %s -one-shot-bufferize="bufferize-function-boundaries=1 test-analysis-only analysis-fuzzer-seed=59" -split-input-file -o /dev/null
|
|
// RUN: mlir-opt %s -one-shot-bufferize="bufferize-function-boundaries=1 test-analysis-only analysis-fuzzer-seed=91" -split-input-file -o /dev/null
|
|
|
|
// Test bufferization using memref types that have no layout map.
|
|
// RUN: mlir-opt %s -one-shot-bufferize="bufferize-function-boundaries=1 unknown-type-conversion=identity-layout-map function-boundary-type-conversion=identity-layout-map" -split-input-file | FileCheck %s --check-prefix=CHECK-NO-LAYOUT-MAP
|
|
|
|
// Test bufferization using memref types that have fully dynamic layout maps.
|
|
// RUN: mlir-opt %s -one-shot-bufferize="bufferize-function-boundaries=1 function-boundary-type-conversion=fully-dynamic-layout-map" -split-input-file | FileCheck %s --check-prefix=CHECK-FULLY-DYNAMIC-LAYOUT-MAP
|
|
|
|
|
|
// Bufferization of bodiless function with no tensor return value.
|
|
|
|
// CHECK-LABEL: func private @private_func(memref<?xf32, strided<[?], offset: ?>>
|
|
// CHECK-NO-LAYOUT-MAP-LABEL: func private @private_func(memref<?xf32>)
|
|
func.func private @private_func(tensor<?xf32>) -> ()
|
|
|
|
// CHECK-LABEL: func private @private_func_2d(memref<?x?xf32, strided<[?, ?], offset: ?>>
|
|
// CHECK-NO-LAYOUT-MAP-LABEL: func private @private_func_2d(memref<?x?xf32>)
|
|
func.func private @private_func_2d(tensor<?x?xf32>) -> ()
|
|
|
|
// CHECK-LABEL: func @empty_func() {
|
|
// CHECK-NO-LAYOUT-MAP-LABEL: func @empty_func() {
|
|
// CHECK-FULLY-DYNAMIC-LAYOUT-MAP-LABEL: func @empty_func() {
|
|
func.func @empty_func() -> () {
|
|
return
|
|
}
|
|
|
|
// -----
|
|
|
|
// A bodiless function that returns something that is not a tensor.
|
|
|
|
// CHECK: func private @external_func_with_return_val(memref<4xi32, strided{{.*}}>) -> f32
|
|
// CHECK-FULLY-DYNAMIC-LAYOUT-MAP-LABEL: func private @external_func_with_return_val(memref<4xi32,
|
|
// CHECK-FULLY-DYNAMIC-LAYOUT-MAP-SAME: strided<[?], offset: ?>>
|
|
// CHECK-NO-LAYOUT-MAP-LABEL: func private @external_func_with_return_val(memref<4xi32>)
|
|
func.func private @external_func_with_return_val(tensor<4xi32>) -> f32
|
|
|
|
// -----
|
|
|
|
// A function that returns a non-equivalent tensor with layout map.
|
|
|
|
// CHECK-LABEL: func @return_extract_slice(%{{.*}}) -> memref<2x?xf32, strided<[10, 1], offset: ?>>
|
|
// CHECK: %[[alloc:.*]] = memref.alloc() {{.*}} : memref<20x10xf32>
|
|
// CHECK: %[[subview:.*]] = memref.subview {{.*}} : memref<20x10xf32> to memref<2x?xf32, strided<[10, 1], offset: ?>>
|
|
// CHECK: return %[[subview]]
|
|
|
|
// CHECK-NO-LAYOUT-MAP-LABEL: func @return_extract_slice(%{{.*}}) -> memref<2x?xf32>
|
|
// CHECK-NO-LAYOUT-MAP: %[[alloc:.*]] = memref.alloc() {{.*}} : memref<20x10xf32>
|
|
// CHECK-NO-LAYOUT-MAP: %[[subview:.*]] = memref.subview {{.*}} : memref<20x10xf32> to memref<2x?xf32, strided<[10, 1], offset: ?>>
|
|
// CHECK-NO-LAYOUT-MAP: %[[alloc_no_layout:.*]] = memref.alloc(%{{.*}}) : memref<2x?xf32>
|
|
// CHECK-NO-LAYOUT-MAP: memref.copy %[[subview]], %[[alloc_no_layout]]
|
|
// TODO: %alloc should be deallocated here, but we currently do not dealloc
|
|
// buffers that are inserted due to to_tensor/to_memref canonicalization (when
|
|
// the buffer types have different layout maps).
|
|
// CHECK-NO-LAYOUT-MAP: return %[[alloc_no_layout]]
|
|
|
|
// CHECK-FULLY-DYNAMIC-LAYOUT-MAP-LABEL: func @return_extract_slice(%{{.*}}) -> memref<2x?xf32,
|
|
// CHECK-FULLY-DYNAMIC-LAYOUT-MAP-SAME: strided<[?, ?], offset: ?>> {
|
|
func.func @return_extract_slice(%idx: index, %sz: index) -> (tensor<2x?xf32>)
|
|
{
|
|
%t = bufferization.alloc_tensor() : tensor<20x10xf32>
|
|
%0 = tensor.extract_slice %t[%idx, %idx][2, %sz][1, 1]
|
|
: tensor<20x10xf32> to tensor<2x?xf32>
|
|
return %0 : tensor<2x?xf32>
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK-LABEL: func private @private_func
|
|
// CHECK-NO-LAYOUT-MAP-LABEL: func private @private_func(memref<?xf32>) -> f32
|
|
func.func private @private_func(tensor<?xf32>) -> (f32)
|
|
|
|
// private_func may modify the buffer arg, but that's OK because %t is writable.
|
|
// No alloc/copy should be inserted.
|
|
|
|
// CHECK-LABEL: func @main(
|
|
// CHECK-SAME: %[[t:.*]]: memref<?xf32
|
|
// CHECK-NOT: alloc
|
|
// CHECK-NOT: copy
|
|
// CHECK: call @private_func(%[[t]])
|
|
func.func @main(%t: tensor<?xf32> {bufferization.writable = true}) -> (f32) {
|
|
%0 = call @private_func(%t) : (tensor<?xf32>) -> (f32)
|
|
return %0 : f32
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK-LABEL: func private @private_func
|
|
func.func private @private_func(tensor<?xf32>) -> (f32)
|
|
|
|
// private_func may modify the buffer arg, %t is not writable. A copy is needed.
|
|
|
|
// CHECK-LABEL: func @main(
|
|
// CHECK-SAME: %[[t:.*]]: memref<?xf32
|
|
// CHECK: %[[alloc:.*]] = memref.alloc
|
|
// CHECK-DAG: memref.copy %[[t]], %[[alloc]]
|
|
// CHECK-DAG: %[[casted:.*]] = memref.cast %[[alloc]]
|
|
// CHECK: call @private_func(%[[casted]])
|
|
func.func @main(%t: tensor<?xf32> {bufferization.writable = false}) -> (f32) {
|
|
%0 = call @private_func(%t) : (tensor<?xf32>) -> (f32)
|
|
return %0 : f32
|
|
}
|
|
|
|
// -----
|
|
|
|
// Test bufferization of a function without tensor args.
|
|
|
|
// CHECK-LABEL: func @func_without_tensor_args
|
|
func.func @func_without_tensor_args(%v : vector<10xf32>) -> () {
|
|
// CHECK: %[[alloc:.*]] = memref.alloc()
|
|
%0 = bufferization.alloc_tensor() : tensor<10xf32>
|
|
|
|
%c0 = arith.constant 0 : index
|
|
// CHECK: vector.transfer_write %{{.*}}, %[[alloc]]
|
|
%1 = vector.transfer_write %v, %0[%c0] : vector<10xf32>, tensor<10xf32>
|
|
|
|
%cst = arith.constant 0.0 : f32
|
|
// CHECK: vector.transfer_read %[[alloc]]
|
|
%r = vector.transfer_read %1[%c0], %cst : tensor<10xf32>, vector<11xf32>
|
|
|
|
vector.print %r : vector<11xf32>
|
|
return
|
|
}
|
|
|
|
// -----
|
|
|
|
// Bufferization of a function that is reading and writing. %t0 is writable, so
|
|
// no copy should be inserted.
|
|
|
|
// CHECK-LABEL: func @inner_func(
|
|
// CHECK-SAME: %[[arg0:.*]]: memref<?xf32
|
|
func.func @inner_func(%t: tensor<?xf32>) -> (tensor<?xf32>, f32) {
|
|
// CHECK-NOT: copy
|
|
%f = arith.constant 1.0 : f32
|
|
%c0 = arith.constant 0 : index
|
|
%c1 = arith.constant 1 : index
|
|
// CHECK: memref.store %{{.*}}, %[[arg0]]
|
|
%0 = tensor.insert %f into %t[%c0] : tensor<?xf32>
|
|
// CHECK: %[[load:.*]] = memref.load %[[arg0]]
|
|
%1 = tensor.extract %0[%c1] : tensor<?xf32>
|
|
// CHECK: return %[[load]] : f32
|
|
return %0, %1 : tensor<?xf32>, f32
|
|
}
|
|
|
|
// CHECK-LABEL: func @call_func_with_non_tensor_return(
|
|
// CHECK-SAME: %[[arg0:.*]]: memref<?xf32
|
|
func.func @call_func_with_non_tensor_return(
|
|
%t0: tensor<?xf32> {bufferization.writable = true}) -> (f32, tensor<?xf32>) {
|
|
// CHECK-NOT: alloc
|
|
// CHECK-NOT: copy
|
|
// CHECK: %[[call:.*]] = call @inner_func(%[[arg0]])
|
|
%0, %1 = call @inner_func(%t0) : (tensor<?xf32>) -> (tensor<?xf32>, f32)
|
|
// CHECK: return %[[call]] : f32
|
|
return %1, %0 : f32, tensor<?xf32>
|
|
}
|
|
|
|
// -----
|
|
|
|
// Bufferization of a function that is reading and writing. %t0 is not writable,
|
|
// so a copy is needed.
|
|
|
|
// CHECK-LABEL: func @inner_func(
|
|
// CHECK-SAME: %[[arg0:.*]]: memref<?xf32
|
|
func.func @inner_func(%t: tensor<?xf32>) -> (tensor<?xf32>, f32) {
|
|
// CHECK-NOT: copy
|
|
%f = arith.constant 1.0 : f32
|
|
%c0 = arith.constant 0 : index
|
|
%c1 = arith.constant 1 : index
|
|
// CHECK: memref.store %{{.*}}, %[[arg0]]
|
|
%0 = tensor.insert %f into %t[%c0] : tensor<?xf32>
|
|
// CHECK: %[[load:.*]] = memref.load %[[arg0]]
|
|
%1 = tensor.extract %0[%c1] : tensor<?xf32>
|
|
// CHECK: return %[[load]] : f32
|
|
return %0, %1 : tensor<?xf32>, f32
|
|
}
|
|
|
|
// CHECK-LABEL: func @call_func_with_non_tensor_return(
|
|
// CHECK-SAME: %[[arg0:.*]]: memref<?xf32
|
|
func.func @call_func_with_non_tensor_return(
|
|
%t0: tensor<?xf32> {bufferization.writable = false}) -> (f32, tensor<?xf32>) {
|
|
// CHECK: %[[alloc:.*]] = memref.alloc
|
|
// CHECK-DAG: memref.copy %[[arg0]], %[[alloc]]
|
|
// CHECK-DAG: %[[casted:.*]] = memref.cast %[[alloc]]
|
|
// CHECK: %[[call:.*]] = call @inner_func(%[[casted]])
|
|
%0, %1 = call @inner_func(%t0) : (tensor<?xf32>) -> (tensor<?xf32>, f32)
|
|
|
|
// Note: The tensor return value cannot fold away because the CallOp
|
|
// bufferized out-of-place.
|
|
// CHECK: return %[[call]], %[[casted]] : f32, memref<?xf32
|
|
return %1, %0 : f32, tensor<?xf32>
|
|
}
|
|
|
|
// -----
|
|
|
|
// A chain of function calls. The last function f0 is potentially writing to the
|
|
// buffer. This becomes a problem when bufferizing main and a copy must be
|
|
// inserted then. (No copies in the other functions.)
|
|
|
|
// CHECK-LABEL: func private @f0(
|
|
func.func private @f0(tensor<?xf32>) -> (f32)
|
|
|
|
// CHECK-LABEL: func @f1(
|
|
// CHECK-SAME: %[[t1:.*]]: memref<?xf32
|
|
// CHECK: %[[r1:.*]] = call @f0(%[[t1]])
|
|
// CHECK: return %[[r1]]
|
|
func.func @f1(%t: tensor<?xf32>) -> (f32) {
|
|
%0 = call @f0(%t) : (tensor<?xf32>) -> (f32)
|
|
return %0 : f32
|
|
}
|
|
|
|
// CHECK-LABEL: func @f2(
|
|
// CHECK-SAME: %[[t2:.*]]: memref<?xf32
|
|
// CHECK: %[[r2:.*]] = call @f1(%[[t2]])
|
|
// CHECK: return %[[r2]]
|
|
func.func @f2(%t: tensor<?xf32>) -> (f32) {
|
|
%0 = call @f1(%t) : (tensor<?xf32>) -> (f32)
|
|
return %0 : f32
|
|
}
|
|
|
|
// CHECK-LABEL: func @main(
|
|
// CHECK-SAME: %[[t3:.*]]: memref<?xf32
|
|
// CHECK: %[[alloc:.*]] = memref.alloc
|
|
// CHECK-DAG: memref.copy %[[t3]], %[[alloc]]
|
|
// CHECK-DAG: %[[casted:.*]] = memref.cast %[[alloc]]
|
|
// CHECK: call @f2(%[[casted]])
|
|
func.func @main(%t: tensor<?xf32> {bufferization.writable = false}) -> (f32) {
|
|
%0 = call @f2(%t) : (tensor<?xf32>) -> (f32)
|
|
return %0 : f32
|
|
}
|
|
|
|
// -----
|
|
|
|
// This function does not read, just write. We need an alloc, but no copy.
|
|
|
|
// CHECK-LABEL: func @does_not_read(
|
|
// CHECK-NOT: alloc
|
|
// CHECK-NOT: copy
|
|
func.func @does_not_read(%t: tensor<?xf32>) -> tensor<?xf32> {
|
|
%f0 = arith.constant 0.0 : f32
|
|
%r = linalg.fill ins(%f0 : f32) outs(%t : tensor<?xf32>) -> tensor<?xf32>
|
|
return %r : tensor<?xf32>
|
|
}
|
|
|
|
// CHECK-LABEL: func @main(
|
|
// CHECK-SAME: %[[t:.*]]: memref<?xf32
|
|
// CHECK: %[[alloc:.*]] = memref.alloc
|
|
// CHECK-NOT: copy
|
|
// CHECK: %[[casted:.*]] = memref.cast %[[alloc]]
|
|
// CHECK-NOT: copy
|
|
// CHECK: call @does_not_read(%[[casted]])
|
|
// CHECK: %[[r:.*]] = memref.load %[[casted]]
|
|
func.func @main(%t: tensor<?xf32> {bufferization.writable = false}) -> f32 {
|
|
%0 = call @does_not_read(%t) : (tensor<?xf32>) -> (tensor<?xf32>)
|
|
%idx = arith.constant 4 : index
|
|
%r = tensor.extract %0[%idx] : tensor<?xf32>
|
|
return %r : f32
|
|
}
|
|
|
|
// -----
|
|
|
|
// Alloc and copy must be inserted because the arith.constant is read-only.
|
|
|
|
// CHECK: memref.global "private" constant @__constant_4xi32 : memref<4xi32> = dense<[1, 2, 3, 4]>
|
|
// CHECK: func private @some_external_func(memref<4xi32, strided<[?], offset: ?>>)
|
|
func.func private @some_external_func(tensor<4xi32>)
|
|
|
|
// CHECK: func @main()
|
|
func.func @main() {
|
|
// CHECK-DAG: %[[A:.*]] = memref.get_global @__constant_4xi32 : memref<4xi32>
|
|
%A = arith.constant dense<[1, 2, 3, 4]> : tensor<4xi32>
|
|
|
|
// CHECK-DAG: %[[alloc:.*]] = memref.alloc
|
|
// CHECK-DAG: %[[B:.*]] = memref.cast %[[alloc]] : memref<4xi32> to memref<4xi32, strided<[?], offset: ?>>
|
|
// CHECK-DAG: memref.copy %[[A]], %[[alloc]]
|
|
// CHECK: call @some_external_func(%[[B]]) : (memref<4xi32, strided<[?], offset: ?>>) -> ()
|
|
call @some_external_func(%A) : (tensor<4xi32>) -> ()
|
|
|
|
return
|
|
}
|
|
|
|
// -----
|
|
|
|
// Alloc and copy must be inserted because the arith.constant is read-only. The
|
|
// function call is inside of an scf.execute_region.
|
|
|
|
// CHECK: memref.global "private" constant @__constant_4xi32 : memref<4xi32> = dense<[1, 2, 3, 4]>
|
|
// CHECK: func private @some_external_func_within_scf_execute(memref<4xi32, strided<[?], offset: ?>>)
|
|
func.func private @some_external_func_within_scf_execute(tensor<4xi32>)
|
|
|
|
// CHECK: func @main()
|
|
func.func @main() {
|
|
// CHECK-DAG: %[[A:.*]] = memref.get_global @__constant_4xi32 : memref<4xi32>
|
|
%A = arith.constant dense<[1, 2, 3, 4]> : tensor<4xi32>
|
|
|
|
// Note: The scf.execute_region canonicalizes away.
|
|
|
|
// CHECK-DAG: %[[alloc:.*]] = memref.alloc
|
|
// CHECK-DAG: %[[B:.*]] = memref.cast %[[alloc]] : memref<4xi32> to memref<4xi32, strided<[?], offset: ?>>
|
|
// CHECK-DAG: memref.copy %[[A]], %[[alloc]]
|
|
// CHECK: call @some_external_func_within_scf_execute(%[[B]]) : (memref<4xi32, strided<[?], offset: ?>>) -> ()
|
|
scf.execute_region {
|
|
func.call @some_external_func_within_scf_execute(%A) : (tensor<4xi32>) -> ()
|
|
scf.yield
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
// -----
|
|
|
|
// A write inside an scf.execute_region. An equivalent tensor is yielded.
|
|
|
|
// CHECK-LABEL: func @execute_region_test(
|
|
// CHECK-SAME: %[[m1:.*]]: memref<?xf32
|
|
func.func @execute_region_test(%t1 : tensor<?xf32>)
|
|
-> (f32, tensor<?xf32>, f32)
|
|
{
|
|
%f1 = arith.constant 0.0 : f32
|
|
%f2 = arith.constant 1.0 : f32
|
|
%idx = arith.constant 7 : index
|
|
|
|
// scf.execute_region is canonicalized away after bufferization. So just the
|
|
// memref.store is left over.
|
|
|
|
// CHECK-NOT: alloc
|
|
// CHECK-NOT: copy
|
|
// CHECK: memref.store %{{.*}}, %[[m1]][%{{.*}}]
|
|
%0, %1, %2 = scf.execute_region -> (f32, tensor<?xf32>, f32) {
|
|
%t2 = tensor.insert %f2 into %t1[%idx] : tensor<?xf32>
|
|
scf.yield %f1, %t2, %f2 : f32, tensor<?xf32>, f32
|
|
}
|
|
|
|
// CHECK: return %{{.*}}, %{{.*}} : f32, f32
|
|
return %0, %1, %2 : f32, tensor<?xf32>, f32
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK: func private @some_external_func(memref<?xf32, strided<[?], offset: ?>>)
|
|
func.func private @some_external_func(tensor<?xf32>)
|
|
|
|
// CHECK: func @scf_for_with_tensor_insert_slice(
|
|
// CHECK-SAME: %[[A:[a-zA-Z0-9]*]]: memref<?xf32, strided<[?], offset: ?>>
|
|
// CHECK-SAME: %[[B:[a-zA-Z0-9]*]]: memref<?xf32, strided<[?], offset: ?>>
|
|
// CHECK-SAME: %[[C:[a-zA-Z0-9]*]]: memref<4xf32, strided<[?], offset: ?>>
|
|
func.func @scf_for_with_tensor_insert_slice(
|
|
%A : tensor<?xf32>, %B : tensor<?xf32>, %C : tensor<4xf32>,
|
|
%lb : index, %ub : index, %step : index)
|
|
-> (tensor<?xf32>, tensor<?xf32>)
|
|
{
|
|
// CHECK-NEXT: scf.for
|
|
%r0:2 = scf.for %i = %lb to %ub step %step iter_args(%tA = %A, %tB = %B)
|
|
-> (tensor<?xf32>, tensor<?xf32>)
|
|
{
|
|
// CHECK-NEXT: %[[SVA:.*]] = memref.subview %[[A]]
|
|
// CHECK-NEXT: memref.copy %[[C]], %[[SVA]] : memref<4xf32, strided<[?], offset: ?>> to memref<4xf32, strided<[?], offset: ?>>
|
|
%ttA = tensor.insert_slice %C into %tA[%i][4][1] : tensor<4xf32> into tensor<?xf32>
|
|
|
|
// CHECK-NEXT: %[[SVB:.*]] = memref.subview %[[B]]
|
|
// CHECK-NEXT: memref.copy %[[C]], %[[SVB]] : memref<4xf32, strided<[?], offset: ?>> to memref<4xf32, strided<[?], offset: ?>>
|
|
%ttB = tensor.insert_slice %C into %tB[%i][4][1] : tensor<4xf32> into tensor<?xf32>
|
|
|
|
// scf.yield is empty and is elided
|
|
// CHECK-NOT: scf.yield
|
|
scf.yield %ttA, %ttB : tensor<?xf32>, tensor<?xf32>
|
|
}
|
|
|
|
// Swaparoo requires bufferizing the whole function to figure out who's who.
|
|
return %r0#1, %r0#0: tensor<?xf32>, tensor<?xf32>
|
|
}
|
|
|
|
// CHECK: func @bar(
|
|
// CHECK-SAME: %[[A:[a-zA-Z0-9]*]]: memref<?xf32, strided<[?], offset: ?>>
|
|
// CHECK-SAME: %[[B:[a-zA-Z0-9]*]]: memref<?xf32, strided<[?], offset: ?>>
|
|
// CHECK-SAME: %[[C:[a-zA-Z0-9]*]]: memref<4xf32, strided<[?], offset: ?>>
|
|
func.func @bar(
|
|
%A : tensor<?xf32> {bufferization.writable = true},
|
|
%B : tensor<?xf32> {bufferization.writable = true},
|
|
%C : tensor<4xf32> {bufferization.writable = true},
|
|
%lb : index, %ub : index, %step : index)
|
|
-> (tensor<?xf32>, tensor<?xf32>)
|
|
{
|
|
// CHECK-DAG: call @scf_for_with_tensor_insert_slice(%[[A]], %[[B]], %[[C]]
|
|
%r0:2 = call @scf_for_with_tensor_insert_slice(%A, %B, %C, %lb, %ub, %step) :
|
|
(tensor<?xf32>, tensor<?xf32>, tensor<4xf32>, index, index, index)
|
|
-> (tensor<?xf32>, tensor<?xf32>)
|
|
|
|
// %r0#0 requires a copy because we have no idea what the function is doing.
|
|
// CHECK-DAG: %[[alloc:.*]] = memref.alloc
|
|
// CHECK-DAG: %[[casted:.*]] = memref.cast %[[alloc]]
|
|
// CHECK-DAG: memref.copy %[[B]], %[[alloc]]
|
|
// CHECK-NEXT: call @some_external_func(%[[casted]]) : (memref<?xf32, strided<[?], offset: ?>>) -> ()
|
|
call @some_external_func(%r0#0) : (tensor<?xf32>) -> ()
|
|
|
|
// CHECK: return
|
|
return %r0#0, %r0#1: tensor<?xf32>, tensor<?xf32>
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK: func @init_and_dot(
|
|
// CHECK-SAME: %[[A:[a-zA-Z0-9]*]]: memref<64xf32, strided<[?], offset: ?>>
|
|
// CHECK-SAME: %[[B:[a-zA-Z0-9]*]]: memref<64xf32, strided<[?], offset: ?>>
|
|
// CHECK-SAME: %[[C:[a-zA-Z0-9]*]]: memref<f32, strided<[], offset: ?>>
|
|
func.func @init_and_dot(%a: tensor<64xf32>, %b: tensor<64xf32>, %c: tensor<f32>) -> tensor<f32> {
|
|
// CHECK-NEXT: %[[C0:.*]] = arith.constant 0{{.*}} : f32
|
|
%v0 = arith.constant 0.0 : f32
|
|
|
|
// CHECK-NEXT: linalg.fill ins(%[[C0]] : f32) outs(%[[C]] : memref<f32, strided<[], offset: ?>>)
|
|
%d = linalg.fill ins(%v0 : f32) outs(%c : tensor<f32>) -> tensor<f32>
|
|
|
|
// CHECK-NEXT: linalg.dot ins(%[[A]], %[[B]] : memref<64xf32, strided<[?], offset: ?>>, memref<64xf32, strided<[?], offset: ?>>) outs(%[[C]] : memref<f32, strided<[], offset: ?>>)
|
|
%e = linalg.dot ins(%a, %b : tensor<64xf32>,tensor<64xf32>)
|
|
outs(%d: tensor<f32>) -> tensor<f32>
|
|
|
|
// CHECK-NEXT: return
|
|
return %e : tensor<f32>
|
|
}
|
|
|
|
// CHECK: func @main()
|
|
func.func @main() {
|
|
// CHECK-DAG: %[[C0:.*]] = arith.constant 0{{.*}} : f32
|
|
// CHECK-DAG: %[[C1:.*]] = arith.constant 1{{.*}} : f32
|
|
// CHECK-DAG: %[[C2:.*]] = arith.constant 2{{.*}} : f32
|
|
%v0 = arith.constant 0.0 : f32
|
|
%v1 = arith.constant 1.0 : f32
|
|
%v2 = arith.constant 2.0 : f32
|
|
|
|
// CHECK-NEXT: %[[A:.*]] = memref.alloc() {alignment = 64 : i64} : memref<64xf32>
|
|
// CHECK-NEXT: %[[B:.*]] = memref.alloc() {alignment = 64 : i64} : memref<64xf32>
|
|
// CHECK-NEXT: %[[C:.*]] = memref.alloc() {alignment = 64 : i64} : memref<f32>
|
|
// CHECK-DAG: %[[cA:.*]] = memref.cast %[[A]] : memref<64xf32> to memref<64xf32, strided<[?], offset: ?>>
|
|
// CHECK-DAG: %[[cB:.*]] = memref.cast %[[B]] : memref<64xf32> to memref<64xf32, strided<[?], offset: ?>>
|
|
// CHECK-DAG: %[[cC:.*]] = memref.cast %[[C]] : memref<f32> to memref<f32, strided<[], offset: ?>>
|
|
%A = bufferization.alloc_tensor() : tensor<64xf32>
|
|
%B = bufferization.alloc_tensor() : tensor<64xf32>
|
|
%C = bufferization.alloc_tensor() : tensor<f32>
|
|
|
|
// CHECK-DAG: linalg.fill ins(%[[C1]] : f32) outs(%[[A]] : memref<64xf32>)
|
|
// CHECK-DAG: linalg.fill ins(%[[C2]] : f32) outs(%[[B]] : memref<64xf32>)
|
|
// CHECK-DAG: linalg.fill ins(%[[C0]] : f32) outs(%[[C]] : memref<f32>)
|
|
%AA = linalg.fill ins(%v1 : f32) outs(%A : tensor<64xf32>) -> tensor<64xf32>
|
|
%BB = linalg.fill ins(%v2 : f32) outs(%B : tensor<64xf32>) -> tensor<64xf32>
|
|
%CC = linalg.fill ins(%v0 : f32) outs(%C : tensor<f32>) -> tensor<f32>
|
|
|
|
// CHECK-NEXT: call @init_and_dot(%[[cA]], %[[cB]], %[[cC]])
|
|
%res = call @init_and_dot(%AA, %BB, %CC) :
|
|
(tensor<64xf32>, tensor<64xf32>, tensor<f32>) -> tensor<f32>
|
|
|
|
// CHECK-NEXT: %[[dC:.*]] = memref.cast %[[cC]] : memref<f32, {{.*}}> to memref<*xf32>
|
|
%res2 = tensor.cast %res: tensor<f32> to tensor<*xf32>
|
|
|
|
// CHECK-NEXT: call @printMemrefF32(%[[dC]]) : (memref<*xf32>) -> ()
|
|
call @printMemrefF32(%res2) : (tensor<*xf32>) -> ()
|
|
|
|
// CHECK-NEXT: return
|
|
return
|
|
}
|
|
|
|
// CHECK: func private @printMemrefF32(memref<*xf32>)
|
|
func.func private @printMemrefF32(tensor<*xf32>)
|
|
|
|
// -----
|
|
|
|
// CHECK: func private @external_func(memref<?xf32, strided<[?], offset: ?>>)
|
|
func.func private @external_func(tensor<?xf32>)
|
|
|
|
// CHECK: func @callee(
|
|
// CHECK-SAME: %[[A:[0-9a-zA-Z]*]]: memref<?xf32>
|
|
// CHECK-SAME: %[[B:[0-9a-zA-Z]*]]: memref<?xf32, strided<[?], offset: ?>>
|
|
// CHECK-SAME: %[[C:[0-9a-zA-Z]*]]: memref<?xf32, strided<[?], offset: ?>>
|
|
func.func @callee(
|
|
%A : tensor<?xf32> {bufferization.buffer_layout = affine_map<(i)[s0, s1] -> (i)>},
|
|
%B : tensor<?xf32>,
|
|
%C : tensor<?xf32>) {
|
|
// CHECK-NEXT: %[[CASTED:.*]] = memref.cast %[[A]] : memref<?xf32> to memref<?xf32, strided<[?], offset: ?>>
|
|
// CHECK-NEXT: call @external_func(%[[CASTED]]) : (memref<?xf32, strided<[?], offset: ?>>) -> ()
|
|
call @external_func(%A) : (tensor<?xf32>) -> ()
|
|
|
|
// CHECK-NEXT: call @external_func(%[[B]]) : (memref<?xf32, strided<[?], offset: ?>>) -> ()
|
|
call @external_func(%B) : (tensor<?xf32>) -> ()
|
|
|
|
// CHECK-NEXT: call @external_func(%[[C]]) : (memref<?xf32, strided<[?], offset: ?>>) -> ()
|
|
call @external_func(%C) : (tensor<?xf32>) -> ()
|
|
|
|
return
|
|
}
|
|
|
|
// CHECK: func @entry(
|
|
// CHECK-SAME: %[[A:[0-9a-zA-Z]*]]: memref<?xf32>
|
|
// CHECK-SAME: %[[B:[0-9a-zA-Z]*]]: memref<?xf32>
|
|
// CHECK-SAME: %[[C:[0-9a-zA-Z]*]]: memref<?xf32, strided<[?], offset: ?>>
|
|
func.func @entry(%A : tensor<?xf32> {bufferization.buffer_layout = affine_map<(i)[s0, s1] -> (i)>, bufferization.writable = false},
|
|
%B : tensor<?xf32> {bufferization.buffer_layout = affine_map<(i)[s0, s1] -> (i)>, bufferization.writable = false},
|
|
%C : tensor<?xf32> {bufferization.writable = false}) {
|
|
// Note: `callee` does not write to its bbArg directly, but `external_func`
|
|
// does. Inside `callee`, the writes via `external_func` do not cause a
|
|
// conflict. However, inside `entry`, the writes do cause a conflict because
|
|
// %A, %B and %C are not inplaceable. This test case shows that this kind of
|
|
// conflict detection has a "transitive" nature.
|
|
// CHECK-DAG: %[[ALLOC_A:.*]] = memref.alloc
|
|
// CHECK-DAG: %[[CASTED_A:.*]] = memref.cast %[[ALLOC_A]]
|
|
// CHECK-DAG: %[[ALLOC_B:.*]] = memref.alloc
|
|
// CHECK-DAG: %[[CASTED_B:.*]] = memref.cast %[[ALLOC_B]]
|
|
// CHECK-DAG: %[[ALLOC_C:.*]] = memref.alloc
|
|
// CHECK-DAG: %[[CASTED_C:.*]] = memref.cast %[[ALLOC_C]]
|
|
// CHECK-DAG: memref.copy %[[A]], %[[ALLOC_A]]
|
|
// CHECK-DAG: memref.copy %[[B]], %[[ALLOC_B]]
|
|
// CHECK-DAG: memref.copy %[[C]], %[[ALLOC_C]]
|
|
// CHECK-NEXT: call @callee(%[[CASTED_A]], %[[CASTED_B]], %[[CASTED_C]])
|
|
call @callee(%A, %B, %C) : (tensor<?xf32>, tensor<?xf32>, tensor<?xf32>) -> ()
|
|
return
|
|
}
|
|
|
|
// -----
|
|
|
|
// No alloc or copy inside of the loop.
|
|
|
|
// CHECK-LABEL: func @inner_func(
|
|
// CHECK-SAME: %[[arg0:.*]]: memref<?xf32
|
|
func.func @inner_func(%t: tensor<?xf32>) -> tensor<?xf32> {
|
|
%f = arith.constant 1.0 : f32
|
|
%c0 = arith.constant 0 : index
|
|
// CHECK: memref.store %{{.*}}, %[[arg0]]
|
|
%0 = tensor.insert %f into %t[%c0] : tensor<?xf32>
|
|
return %0 : tensor<?xf32>
|
|
}
|
|
|
|
// CHECK-LABEL: func @equivalent_func_arg(
|
|
// CHECK-SAME: %[[arg0:.*]]: memref<?xf32
|
|
func.func @equivalent_func_arg(%t0: tensor<?xf32> {bufferization.writable = true},
|
|
%c0: index, %c10: index, %c1: index) -> tensor<?xf32> {
|
|
// CHECK-NOT: alloc
|
|
// CHECK-NOT: copy
|
|
// CHECK: scf.for {{.*}} iter_args(%[[t1:.*]] = %[[arg0]])
|
|
%1 = scf.for %iv = %c0 to %c10 step %c1 iter_args(%t1 = %t0) -> (tensor<?xf32>) {
|
|
// CHECK: call @inner_func(%[[t1]])
|
|
%3 = func.call @inner_func(%t1) : (tensor<?xf32>) -> tensor<?xf32>
|
|
// CHECK: scf.yield %[[t1]]
|
|
scf.yield %3 : tensor<?xf32>
|
|
}
|
|
return %1: tensor<?xf32>
|
|
}
|
|
|
|
// -----
|
|
|
|
// inner_func_2 modifies the bbArg, but the loop yields the original value. A
|
|
// buffer copy must be inserted inside the loop.
|
|
|
|
// CHECK-LABEL: func @inner_func_2(
|
|
// CHECK-SAME: %[[arg0:.*]]: memref<?xf32
|
|
func.func @inner_func_2(%t: tensor<?xf32>) -> tensor<?xf32> {
|
|
%f = arith.constant 1.0 : f32
|
|
%c0 = arith.constant 0 : index
|
|
// CHECK: memref.store %{{.*}}, %[[arg0]]
|
|
%0 = tensor.insert %f into %t[%c0] : tensor<?xf32>
|
|
return %0 : tensor<?xf32>
|
|
}
|
|
|
|
// CHECK-LABEL: func @equivalent_func_arg_2(
|
|
// CHECK-SAME: %[[arg0:.*]]: memref<?xf32
|
|
func.func @equivalent_func_arg_2(%t0: tensor<?xf32> {bufferization.writable = true},
|
|
%c0: index, %c10: index, %c1: index) -> tensor<?xf32> {
|
|
// CHECK: scf.for {{.*}} {
|
|
%1 = scf.for %iv = %c0 to %c10 step %c1 iter_args(%t1 = %t0) -> (tensor<?xf32>) {
|
|
// CHECK: %[[alloc:.*]] = memref.alloc
|
|
// CHECK-DAG: %[[casted:.*]] = memref.cast %[[alloc]]
|
|
// CHECK-DAG: memref.copy %[[arg0]], %[[alloc]]
|
|
// CHECK: call @inner_func_2(%[[casted]])
|
|
// CHECK-NOT: scf.yield
|
|
%3 = func.call @inner_func_2(%t1) : (tensor<?xf32>) -> tensor<?xf32>
|
|
scf.yield %t1 : tensor<?xf32>
|
|
}
|
|
return %1: tensor<?xf32>
|
|
}
|
|
|
|
// -----
|
|
|
|
// Bufferize without fully dynamic layout maps.
|
|
|
|
// CHECK-LABEL: func @transfer_read(%{{.*}}: memref<?xf32, strided{{.*}}>) -> vector<4xf32> {
|
|
// CHECK-NO-LAYOUT-MAP-LABEL: func @transfer_read(%{{.*}}: memref<?xf32>) -> vector<4xf32>
|
|
func.func @transfer_read(
|
|
%A : tensor<?xf32> {bufferization.writable = false})
|
|
-> (vector<4xf32>)
|
|
{
|
|
%c0 = arith.constant 0 : index
|
|
%f0 = arith.constant 0.0 : f32
|
|
|
|
// CHECK: %[[RES:.*]] = vector.transfer_read {{.*}} : memref<?xf32, strided{{.*}}>, vector<4xf32>
|
|
%0 = vector.transfer_read %A[%c0], %f0 : tensor<?xf32>, vector<4xf32>
|
|
|
|
// CHECK: return %[[RES]] : vector<4xf32>
|
|
return %0 : vector<4xf32>
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK-LABEL: func @main(
|
|
func.func @main() {
|
|
// CHECK: %[[const:.*]] = memref.get_global
|
|
%t = arith.constant dense<[1.0, 2.0, 3.0]> : tensor<3xf32>
|
|
// CHECK: %[[alloc:.*]] = memref.alloc
|
|
// CHECK: memref.copy %[[const]], %[[alloc]]
|
|
// CHECK: %[[casted:.*]] = memref.cast %[[alloc]] : memref<3xf32> to memref<*xf32>
|
|
%unranked = tensor.cast %t : tensor<3xf32> to tensor<*xf32>
|
|
// CHECK: call @maybe_writing_func(%[[casted]])
|
|
func.call @maybe_writing_func(%unranked) : (tensor<*xf32>) -> ()
|
|
return
|
|
}
|
|
|
|
// This function may write to buffer(%ptr).
|
|
func.func private @maybe_writing_func(%ptr : tensor<*xf32>)
|
|
|
|
// -----
|
|
|
|
// Test if other callables are left intact and don't cause trouble.
|
|
|
|
llvm.func @llvm_func()
|
|
|
|
func.func @call_llvm_func() {
|
|
llvm.call @llvm_func() : () -> ()
|
|
return
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK-LABEL: func @to_memref_op_unsupported(
|
|
// CHECK-SAME: %[[arg0:.*]]: memref<?xf32,
|
|
func.func @to_memref_op_unsupported(
|
|
%t1: tensor<?xf32> {bufferization.writable = true}, %idx1: index,
|
|
%idx2: index, %idx3: index, %v1: vector<5xf32>) -> (vector<5xf32>) {
|
|
|
|
// Insert a copy because we cannot analyze what happens with the result of a
|
|
// to_memref op.
|
|
// CHECK: %[[alloc:.*]] = memref.alloc
|
|
// CHECK: memref.copy %[[arg0]], %[[alloc]]
|
|
%0 = bufferization.to_memref %t1 : memref<?xf32>
|
|
// CHECK: "test.foo"(%[[alloc]])
|
|
"test.foo"(%0) : (memref<?xf32>) -> ()
|
|
|
|
// CHECK: vector.transfer_read %[[arg0]]
|
|
%cst = arith.constant 0.0 : f32
|
|
%r1 = vector.transfer_read %t1[%idx3], %cst : tensor<?xf32>, vector<5xf32>
|
|
|
|
return %r1 : vector<5xf32>
|
|
}
|
|
|
|
// -----
|
|
|
|
// Note: The cf.br canonicalizes away, so there's nothing to check here. There
|
|
// is a detailed test in ControlFlow/bufferize.mlir.
|
|
|
|
// CHECK-LABEL: func @br_in_func(
|
|
func.func @br_in_func(%t: tensor<5xf32>) -> tensor<5xf32> {
|
|
cf.br ^bb1(%t : tensor<5xf32>)
|
|
^bb1(%arg1 : tensor<5xf32>):
|
|
func.return %arg1 : tensor<5xf32>
|
|
}
|
|
|
|
// -----
|
|
|
|
// Cyclic call graphs with tensors are not supported by One-Shot Bufferize.
|
|
// However, if a function signature does not have any tensor arguments or
|
|
// results, calls to that function are not seen as an "edge" in the fuction
|
|
// call graph.
|
|
|
|
// CHECK-LABEL: func.func @foo(%{{.*}}: memref<5xf32>) -> memref<5xf32>
|
|
func.func @foo(%m: memref<5xf32>) -> memref<5xf32> {
|
|
%0 = tensor.empty() : tensor<5xf32>
|
|
%1 = func.call @bar(%0, %m)
|
|
: (tensor<5xf32>, memref<5xf32>) -> (memref<5xf32>)
|
|
return %1 : memref<5xf32>
|
|
}
|
|
|
|
// CHECK: func.func @bar(%{{.*}}: memref<5xf32, strided<[?], offset: ?>>, %arg1: memref<5xf32>) -> memref<5xf32>
|
|
func.func @bar(%t: tensor<5xf32>, %m: memref<5xf32>) -> memref<5xf32> {
|
|
%0 = func.call @foo(%m) : (memref<5xf32>) -> (memref<5xf32>)
|
|
return %0 : memref<5xf32>
|
|
}
|