Files
clang-p2996/mlir/test/python/dialects/sparse_tensor/dialect.py
Aart Bik 1944c4f76b [mlir][sparse] rename DimLevelType to LevelType (#73561)
The "Dim" prefix is a legacy left-over that no longer makes sense, since
we have a very strict "Dimension" vs. "Level" definition for sparse
tensor types and their storage.
2023-11-27 14:27:52 -08:00

116 lines
3.9 KiB
Python

# RUN: %PYTHON %s | FileCheck %s
from mlir.ir import *
from mlir.dialects import sparse_tensor as st
def run(f):
print("\nTEST:", f.__name__)
f()
return f
# CHECK-LABEL: TEST: testEncodingAttr1D
@run
def testEncodingAttr1D():
with Context() as ctx:
parsed = Attribute.parse(
"#sparse_tensor.encoding<{"
" map = (d0) -> (d0 : compressed),"
" posWidth = 16,"
" crdWidth = 32"
"}>"
)
# CHECK: #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed), posWidth = 16, crdWidth = 32 }>
print(parsed)
casted = st.EncodingAttr(parsed)
# CHECK: equal: True
print(f"equal: {casted == parsed}")
# CHECK: lvl_types: [<LevelType.compressed: 8>]
print(f"lvl_types: {casted.lvl_types}")
# CHECK: dim_to_lvl: (d0) -> (d0)
print(f"dim_to_lvl: {casted.dim_to_lvl}")
# CHECK: lvl_to_dim: (d0) -> (d0)
print(f"lvl_to_dim: {casted.lvl_to_dim}")
# CHECK: pos_width: 16
print(f"pos_width: {casted.pos_width}")
# CHECK: crd_width: 32
print(f"crd_width: {casted.crd_width}")
created = st.EncodingAttr.get(casted.lvl_types, None, None, 0, 0)
# CHECK: #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed) }>
print(created)
# CHECK: created_equal: False
print(f"created_equal: {created == casted}")
# Verify that the factory creates an instance of the proper type.
# CHECK: is_proper_instance: True
print(f"is_proper_instance: {isinstance(created, st.EncodingAttr)}")
# CHECK: created_pos_width: 0
print(f"created_pos_width: {created.pos_width}")
# CHECK-LABEL: TEST: testEncodingAttr2D
@run
def testEncodingAttr2D():
with Context() as ctx:
parsed = Attribute.parse(
"#sparse_tensor.encoding<{"
" map = (d0, d1) -> (d1 : dense, d0 : compressed),"
" posWidth = 8,"
" crdWidth = 32"
"}>"
)
# CHECK: #sparse_tensor.encoding<{ map = (d0, d1) -> (d1 : dense, d0 : compressed), posWidth = 8, crdWidth = 32 }>
print(parsed)
casted = st.EncodingAttr(parsed)
# CHECK: equal: True
print(f"equal: {casted == parsed}")
# CHECK: lvl_types: [<LevelType.dense: 4>, <LevelType.compressed: 8>]
print(f"lvl_types: {casted.lvl_types}")
# CHECK: dim_to_lvl: (d0, d1) -> (d1, d0)
print(f"dim_to_lvl: {casted.dim_to_lvl}")
# CHECK: lvl_to_dim: (d0, d1) -> (d1, d0)
print(f"lvl_to_dim: {casted.lvl_to_dim}")
# CHECK: pos_width: 8
print(f"pos_width: {casted.pos_width}")
# CHECK: crd_width: 32
print(f"crd_width: {casted.crd_width}")
created = st.EncodingAttr.get(
casted.lvl_types,
casted.dim_to_lvl,
casted.lvl_to_dim,
8,
32,
)
# CHECK: #sparse_tensor.encoding<{ map = (d0, d1) -> (d1 : dense, d0 : compressed), posWidth = 8, crdWidth = 32 }>
print(created)
# CHECK: created_equal: True
print(f"created_equal: {created == casted}")
# CHECK-LABEL: TEST: testEncodingAttrOnTensorType
@run
def testEncodingAttrOnTensorType():
with Context() as ctx, Location.unknown():
encoding = st.EncodingAttr(
Attribute.parse(
"#sparse_tensor.encoding<{"
" map = (d0) -> (d0 : compressed), "
" posWidth = 64,"
" crdWidth = 32"
"}>"
)
)
tt = RankedTensorType.get((1024,), F32Type.get(), encoding=encoding)
# CHECK: tensor<1024xf32, #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed), posWidth = 64, crdWidth = 32 }>>
print(tt)
# CHECK: #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed), posWidth = 64, crdWidth = 32 }>
print(tt.encoding)
assert tt.encoding == encoding