The "Dim" prefix is a legacy left-over that no longer makes sense, since we have a very strict "Dimension" vs. "Level" definition for sparse tensor types and their storage.
116 lines
3.9 KiB
Python
116 lines
3.9 KiB
Python
# RUN: %PYTHON %s | FileCheck %s
|
|
|
|
from mlir.ir import *
|
|
from mlir.dialects import sparse_tensor as st
|
|
|
|
|
|
def run(f):
|
|
print("\nTEST:", f.__name__)
|
|
f()
|
|
return f
|
|
|
|
|
|
# CHECK-LABEL: TEST: testEncodingAttr1D
|
|
@run
|
|
def testEncodingAttr1D():
|
|
with Context() as ctx:
|
|
parsed = Attribute.parse(
|
|
"#sparse_tensor.encoding<{"
|
|
" map = (d0) -> (d0 : compressed),"
|
|
" posWidth = 16,"
|
|
" crdWidth = 32"
|
|
"}>"
|
|
)
|
|
# CHECK: #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed), posWidth = 16, crdWidth = 32 }>
|
|
print(parsed)
|
|
|
|
casted = st.EncodingAttr(parsed)
|
|
# CHECK: equal: True
|
|
print(f"equal: {casted == parsed}")
|
|
|
|
# CHECK: lvl_types: [<LevelType.compressed: 8>]
|
|
print(f"lvl_types: {casted.lvl_types}")
|
|
# CHECK: dim_to_lvl: (d0) -> (d0)
|
|
print(f"dim_to_lvl: {casted.dim_to_lvl}")
|
|
# CHECK: lvl_to_dim: (d0) -> (d0)
|
|
print(f"lvl_to_dim: {casted.lvl_to_dim}")
|
|
# CHECK: pos_width: 16
|
|
print(f"pos_width: {casted.pos_width}")
|
|
# CHECK: crd_width: 32
|
|
print(f"crd_width: {casted.crd_width}")
|
|
|
|
created = st.EncodingAttr.get(casted.lvl_types, None, None, 0, 0)
|
|
# CHECK: #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed) }>
|
|
print(created)
|
|
# CHECK: created_equal: False
|
|
print(f"created_equal: {created == casted}")
|
|
|
|
# Verify that the factory creates an instance of the proper type.
|
|
# CHECK: is_proper_instance: True
|
|
print(f"is_proper_instance: {isinstance(created, st.EncodingAttr)}")
|
|
# CHECK: created_pos_width: 0
|
|
print(f"created_pos_width: {created.pos_width}")
|
|
|
|
|
|
# CHECK-LABEL: TEST: testEncodingAttr2D
|
|
@run
|
|
def testEncodingAttr2D():
|
|
with Context() as ctx:
|
|
parsed = Attribute.parse(
|
|
"#sparse_tensor.encoding<{"
|
|
" map = (d0, d1) -> (d1 : dense, d0 : compressed),"
|
|
" posWidth = 8,"
|
|
" crdWidth = 32"
|
|
"}>"
|
|
)
|
|
# CHECK: #sparse_tensor.encoding<{ map = (d0, d1) -> (d1 : dense, d0 : compressed), posWidth = 8, crdWidth = 32 }>
|
|
print(parsed)
|
|
|
|
casted = st.EncodingAttr(parsed)
|
|
# CHECK: equal: True
|
|
print(f"equal: {casted == parsed}")
|
|
|
|
# CHECK: lvl_types: [<LevelType.dense: 4>, <LevelType.compressed: 8>]
|
|
print(f"lvl_types: {casted.lvl_types}")
|
|
# CHECK: dim_to_lvl: (d0, d1) -> (d1, d0)
|
|
print(f"dim_to_lvl: {casted.dim_to_lvl}")
|
|
# CHECK: lvl_to_dim: (d0, d1) -> (d1, d0)
|
|
print(f"lvl_to_dim: {casted.lvl_to_dim}")
|
|
# CHECK: pos_width: 8
|
|
print(f"pos_width: {casted.pos_width}")
|
|
# CHECK: crd_width: 32
|
|
print(f"crd_width: {casted.crd_width}")
|
|
|
|
created = st.EncodingAttr.get(
|
|
casted.lvl_types,
|
|
casted.dim_to_lvl,
|
|
casted.lvl_to_dim,
|
|
8,
|
|
32,
|
|
)
|
|
# CHECK: #sparse_tensor.encoding<{ map = (d0, d1) -> (d1 : dense, d0 : compressed), posWidth = 8, crdWidth = 32 }>
|
|
print(created)
|
|
# CHECK: created_equal: True
|
|
print(f"created_equal: {created == casted}")
|
|
|
|
|
|
# CHECK-LABEL: TEST: testEncodingAttrOnTensorType
|
|
@run
|
|
def testEncodingAttrOnTensorType():
|
|
with Context() as ctx, Location.unknown():
|
|
encoding = st.EncodingAttr(
|
|
Attribute.parse(
|
|
"#sparse_tensor.encoding<{"
|
|
" map = (d0) -> (d0 : compressed), "
|
|
" posWidth = 64,"
|
|
" crdWidth = 32"
|
|
"}>"
|
|
)
|
|
)
|
|
tt = RankedTensorType.get((1024,), F32Type.get(), encoding=encoding)
|
|
# CHECK: tensor<1024xf32, #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed), posWidth = 64, crdWidth = 32 }>>
|
|
print(tt)
|
|
# CHECK: #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed), posWidth = 64, crdWidth = 32 }>
|
|
print(tt.encoding)
|
|
assert tt.encoding == encoding
|