Files
clang-p2996/llvm/test/Transforms/Inline/always-inline.ll
Sebastian Peryt 99c9b37d11 [NFC][1/n] Remove -enable-new-pm=0 flags from lit tests
This is the first patch in a series intended for removing flag
-enable-new-pm=0 from lit tests. This is part of a bigger
effort of completely removing legacy code related to legacy
pass manager in favor of currently default new pass manager.

In this patch flag has been removed only from tests where no significant
change has been required because checks has been duplicated for
both PMs.

Reviewed By: fhahn

Differential Revision: https://reviews.llvm.org/D134150
2022-09-19 09:57:37 -07:00

364 lines
8.2 KiB
LLVM

; The new pass manager doesn't re-use any threshold based infrastructure for
; the always inliner, but test that we get the correct result.
; RUN: opt < %s -inline-threshold=0 -passes=always-inline -S | FileCheck %s --check-prefix=CHECK
; RUN: opt < %s -inline-threshold=20000000 -passes=always-inline -S | FileCheck %s --check-prefix=CHECK
; RUN: opt < %s -inline-threshold=-20000000 -passes=always-inline -S | FileCheck %s --check-prefix=CHECK
define internal i32 @inner1() alwaysinline {
; CHECK-NOT: @inner1(
ret i32 1
}
define i32 @outer1() {
; CHECK-LABEL: @outer1(
; CHECK-NOT: call
; CHECK: ret
%r = call i32 @inner1()
ret i32 %r
}
; The always inliner can't DCE arbitrary internal functions. PR2945
define internal i32 @pr2945() nounwind {
; CHECK-LABEL: @pr2945(
ret i32 0
}
define internal void @inner2(i32 %N) alwaysinline {
; CHECK-NOT: @inner2(
%P = alloca i32, i32 %N
ret void
}
define void @outer2(i32 %N) {
; The always inliner (unlike the normal one) should be willing to inline
; a function with a dynamic alloca into one without a dynamic alloca.
; rdar://6655932
;
; CHECK-LABEL: @outer2(
; CHECK-NOT: call void @inner2
; CHECK: ret void
call void @inner2( i32 %N )
ret void
}
declare i32 @a() returns_twice
declare i32 @b() returns_twice
; Cannot alwaysinline when that would introduce a returns_twice call.
define internal i32 @inner3() alwaysinline {
; CHECK-LABEL: @inner3(
entry:
%call = call i32 @a() returns_twice
%add = add nsw i32 1, %call
ret i32 %add
}
define i32 @outer3() {
entry:
; CHECK-LABEL: @outer3(
; CHECK-NOT: call i32 @a
; CHECK: ret
%call = call i32 @inner3()
%add = add nsw i32 1, %call
ret i32 %add
}
define internal i32 @inner4() alwaysinline returns_twice {
; CHECK-NOT: @inner4(
entry:
%call = call i32 @b() returns_twice
%add = add nsw i32 1, %call
ret i32 %add
}
define i32 @outer4() {
entry:
; CHECK-LABEL: @outer4(
; CHECK: call i32 @b()
; CHECK: ret
%call = call i32 @inner4() returns_twice
%add = add nsw i32 1, %call
ret i32 %add
}
; We can't inline this even though it has alwaysinline!
define internal i32 @inner5(i8* %addr) alwaysinline {
; CHECK-LABEL: @inner5(
entry:
indirectbr i8* %addr, [ label %one, label %two ]
one:
ret i32 42
two:
ret i32 44
}
define i32 @outer5(i32 %x) {
; CHECK-LABEL: @outer5(
; CHECK: call i32 @inner5
; CHECK: ret
%cmp = icmp slt i32 %x, 42
%addr = select i1 %cmp, i8* blockaddress(@inner5, %one), i8* blockaddress(@inner5, %two)
%call = call i32 @inner5(i8* %addr)
ret i32 %call
}
; We never inline a function that calls itself recursively.
define internal void @inner6(i32 %x) alwaysinline {
; CHECK-LABEL: @inner6(
entry:
%icmp = icmp slt i32 %x, 0
br i1 %icmp, label %return, label %bb
bb:
%sub = sub nsw i32 %x, 1
call void @inner6(i32 %sub)
ret void
return:
ret void
}
define void @outer6() {
; CHECK-LABEL: @outer6(
; CHECK: call void @inner6(i32 42)
; CHECK: ret
entry:
call void @inner6(i32 42)
ret void
}
; This is not an alwaysinline function and is actually external.
define i32 @inner7() {
; CHECK-LABEL: @inner7(
ret i32 1
}
define i32 @outer7() {
; CHECK-LABEL: @outer7(
; CHECK-NOT: call
; CHECK: ret
%r = call i32 @inner7() alwaysinline
ret i32 %r
}
define internal float* @inner8(float* nocapture align 128 %a) alwaysinline {
; CHECK-NOT: @inner8(
ret float* %a
}
define float @outer8(float* nocapture %a) {
; CHECK-LABEL: @outer8(
; CHECK-NOT: call float* @inner8
; CHECK: ret
%inner_a = call float* @inner8(float* %a)
%f = load float, float* %inner_a, align 4
ret float %f
}
; The 'inner9*' and 'outer9' functions are designed to check that we remove
; a function that is inlined by the always inliner even when it is used by
; a complex constant expression prior to being inlined.
; The 'a' function gets used in a complex constant expression that, despite
; being constant folded, means it isn't dead. As a consequence it shouldn't be
; deleted. If it is, then the constant expression needs to become more complex
; to accurately test this scenario.
define internal void @inner9a(i1 %b) alwaysinline {
; CHECK-LABEL: @inner9a(
entry:
ret void
}
define internal void @inner9b(i1 %b) alwaysinline {
; CHECK-NOT: @inner9b(
entry:
ret void
}
declare void @dummy9(i1 %b)
define void @outer9() {
; CHECK-LABEL: @outer9(
entry:
; First we use @inner9a in a complex constant expression that may get folded
; but won't get removed, and then we call it which will get inlined. Despite
; this the function can't be deleted because of the constant expression
; usage.
%sink = alloca i1
store volatile i1 icmp eq (i64 ptrtoint (void (i1)* @inner9a to i64), i64 ptrtoint(void (i1)* @dummy9 to i64)), i1* %sink
; CHECK: store volatile
call void @inner9a(i1 false)
; CHECK-NOT: call void @inner9a
; Next we call @inner9b passing in a constant expression. This constant
; expression will in fact be removed by inlining, so we should also be able
; to delete the function.
call void @inner9b(i1 icmp eq (i64 ptrtoint (void (i1)* @inner9b to i64), i64 ptrtoint(void (i1)* @dummy9 to i64)))
; CHECK-NOT: @inner9b
ret void
; CHECK: ret void
}
; The 'inner10' and 'outer10' functions test a frustrating consequence of the
; current 'alwaysinline' semantic model. Because such functions are allowed to
; be external functions, it may be necessary to both inline all of their uses
; and leave them in the final output. These tests can be removed if and when
; we restrict alwaysinline further.
define void @inner10() alwaysinline {
; CHECK-LABEL: @inner10(
entry:
ret void
}
define void @outer10() {
; CHECK-LABEL: @outer10(
entry:
call void @inner10()
; CHECK-NOT: call void @inner10
ret void
; CHECK: ret void
}
; The 'inner11' and 'outer11' functions test another dimension of non-internal
; functions with alwaysinline. These functions use external linkages that we can
; actually remove safely and so we should.
define linkonce void @inner11a() alwaysinline {
; CHECK-NOT: @inner11a(
entry:
ret void
}
define available_externally void @inner11b() alwaysinline {
; CHECK-NOT: @inner11b(
entry:
ret void
}
define void @outer11() {
; CHECK-LABEL: @outer11(
entry:
call void @inner11a()
call void @inner11b()
; CHECK-NOT: call void @inner11a
; CHECK-NOT: call void @inner11b
ret void
; CHECK: ret void
}
; The 'inner12' and 'outer12' functions test that we don't remove functions
; which are part of a comdat group even if they otherwise seem dead.
$comdat12 = comdat any
define linkonce void @inner12() alwaysinline comdat($comdat12) {
; CHECK-LABEL: @inner12(
ret void
}
define void @outer12() comdat($comdat12) {
; CHECK-LABEL: @outer12(
entry:
call void @inner12()
; CHECK-NOT: call void @inner12
ret void
; CHECK: ret void
}
; The 'inner13*' and 'outer13' functions test that we do remove functions
; which are part of a comdat group where all of the members are removed during
; always inlining.
$comdat13 = comdat any
define linkonce void @inner13a() alwaysinline comdat($comdat13) {
; CHECK-NOT: @inner13a(
ret void
}
define linkonce void @inner13b() alwaysinline comdat($comdat13) {
; CHECK-NOT: @inner13b(
ret void
}
define void @outer13() {
; CHECK-LABEL: @outer13(
entry:
call void @inner13a()
call void @inner13b()
; CHECK-NOT: call void @inner13a
; CHECK-NOT: call void @inner13b
ret void
; CHECK: ret void
}
define void @inner14() readnone nounwind {
; CHECK: define void @inner14
ret void
}
define void @outer14() {
; CHECK: call void @inner14
call void @inner14()
ret void
}
define internal i32 @inner15() {
; CHECK: @inner15(
ret i32 1
}
define i32 @outer15() {
; CHECK-LABEL: @outer15(
; CHECK: call
%r = call i32 @inner15() noinline
ret i32 %r
}
define internal i32 @inner16() alwaysinline {
; CHECK: @inner16(
ret i32 1
}
define i32 @outer16() {
; CHECK-LABEL: @outer16(
; CHECK: call
%r = call i32 @inner16() noinline
ret i32 %r
}
define i32 @inner17() alwaysinline {
; CHECK: @inner17(
ret i32 1
}
define i32 @outer17() {
; CHECK-LABEL: @outer17(
; CHECK: call
%r = call i32 @inner17() noinline
ret i32 %r
}
define i32 @inner18() noinline {
; CHECK: @inner18(
ret i32 1
}
define i32 @outer18() {
; CHECK-LABEL: @outer18(
; CHECK-NOT: call
; CHECK: ret
%r = call i32 @inner18() alwaysinline
ret i32 %r
}