Files
clang-p2996/mlir/lib/Dialect/Bufferization/Transforms/TensorCopyInsertion.cpp
Matthias Springer c1fef4e88a [mlir][bufferization] Make TensorCopyInsertionPass a test pass
TensorCopyInsertion should not have been exposed as a pass. This was a flaw in the original design. It is a preparation step for bufferization and certain transforms (that would otherwise be legal) are illegal between TensorCopyInsertion and actual rewrite to MemRef ops. Therefore, even if broken down as two separate steps internally, they should be exposed as a single pass.

This change affects the sparse compiler, which uses `TensorCopyInsertionPass`. A new `SparsificationAndBufferizationPass` is added to replace all passes in the sparse tensor pipeline from `TensorCopyInsertionPass` until the actual bufferization (rewrite to memref/non-tensor). It is generally unsafe to run arbitrary passes in-between, in particular passes that hoist tensor ops out of loops or change SSA use-def chains along tensor ops.

Differential Revision: https://reviews.llvm.org/D138915
2022-12-02 15:38:02 +01:00

164 lines
5.8 KiB
C++

//===- TensorCopyInsertion.cpp - Resolve Bufferization Conflicts w/ Copies ===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Bufferization/Transforms/Passes.h"
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Bufferization/Transforms/Bufferize.h"
#include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h"
#include "mlir/Dialect/Bufferization/Transforms/OneShotModuleBufferize.h"
#include "mlir/Dialect/Bufferization/Transforms/Transforms.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
namespace mlir {
namespace bufferization {
#define GEN_PASS_DEF_TENSORCOPYINSERTION
#include "mlir/Dialect/Bufferization/Transforms/Passes.h.inc"
} // namespace bufferization
} // namespace mlir
using namespace mlir;
using namespace mlir::bufferization;
/// Resolve all operands that are also used inside of repetitive regions of the
/// same op. Such cases are not fully supported by One-Shot Bufferize.
///
/// E.g.:
/// %r = scf.for ... iter_args(%t = %tensor) -> tensor<?xf32> {
/// "some_use"(%tensor)
/// ...
/// }
///
/// Is converted to:
/// %tensor_copy = bufferization.alloc_tensor copy(%tensor)
/// %r = scf.for ... iter_args(%t = %tensor) -> tensor<?xf32> {
/// "some_use"(%tensor_copy)
/// ...
/// }
static void
resolveUsesInRepetitiveRegions(Operation *op,
const BufferizationOptions &options) {
IRRewriter rewriter(op->getContext());
AnalysisState state(options);
// Look for repetitive ops (loops).
op->walk([&](BufferizableOpInterface bufferizableOp) {
// Skip filtered ops.
if (!options.isOpAllowed(bufferizableOp.getOperation()))
return WalkResult::advance();
// Find all operands that are also used inside of a repetitive region of
// this op.
for (OpOperand &opOperand : bufferizableOp->getOpOperands()) {
Value operand = opOperand.get();
// Skip non-tensor operands.
if (!operand.getType().isa<TensorType>())
continue;
// Skip operands that do not bufferize to memory writes.
if (!bufferizableOp.bufferizesToMemoryWrite(opOperand, state))
continue;
// Gather all uses inside repetitive regions.
SmallVector<OpOperand *> usesInsideRegion;
for (OpOperand &use : operand.getUses()) {
Operation *owner = use.getOwner();
if (!bufferizableOp->isProperAncestor(owner))
continue;
for (Region &r : bufferizableOp->getRegions()) {
if (r.findAncestorOpInRegion(*owner) &&
bufferizableOp.isRepetitiveRegion(r.getRegionNumber())) {
usesInsideRegion.push_back(&use);
break;
}
}
}
// Nothing to do if the operand is not used inside a repetitive region.
if (usesInsideRegion.empty())
continue;
// Insert a tensor copy and replace all uses inside of repetitive regions.
rewriter.setInsertionPoint(bufferizableOp);
auto tensorCopy = rewriter.create<AllocTensorOp>(
bufferizableOp->getLoc(), operand.getType().cast<TensorType>(),
/*dynamicSizes=*/ValueRange(),
/*copy=*/operand, /*memory_space=*/IntegerAttr());
for (OpOperand *use : usesInsideRegion)
use->set(tensorCopy);
}
return WalkResult::advance();
});
}
LogicalResult mlir::bufferization::insertTensorCopies(
Operation *op, const OneShotBufferizationOptions &options) {
// Preprocessing: Resolve currently unsupported bufferization cases.
resolveUsesInRepetitiveRegions(op, options);
OneShotAnalysisState state(op, options);
// Run normal One-Shot Bufferize analysis or One-Shot Module Bufferize
// analysis depending on whether function boundary bufferization is enabled or
// not.
if (options.bufferizeFunctionBoundaries) {
if (failed(analyzeModuleOp(cast<ModuleOp>(op), state)))
return failure();
} else {
if (failed(analyzeOp(op, state)))
return failure();
}
if (options.testAnalysisOnly)
return success();
return insertTensorCopies(op, state);
}
LogicalResult
mlir::bufferization::insertTensorCopies(Operation *op,
const AnalysisState &state) {
IRRewriter rewriter(op->getContext());
StringRef escapeAttrName = BufferizationDialect::kEscapeAttrName;
WalkResult result = op->walk([&](Operation *op) {
auto bufferizableOp = state.getOptions().dynCastBufferizableOp(op);
if (!bufferizableOp)
return WalkResult::skip();
// Find allocations without an `escape` attribute and add the attribute
// based on analysis results.
if (!op->hasAttr(escapeAttrName)) {
SmallVector<bool> escapeAttrValue;
bool foundTensorResult = false;
for (OpResult opResult : op->getOpResults()) {
if (!opResult.getType().isa<TensorType>() ||
!bufferizableOp.bufferizesToAllocation(opResult)) {
escapeAttrValue.push_back(false);
continue;
}
foundTensorResult = true;
bool escape = !state.getOptions().createDeallocs ||
state.isTensorYielded(opResult);
escapeAttrValue.push_back(escape);
}
if (foundTensorResult)
op->setAttr(escapeAttrName, rewriter.getBoolArrayAttr(escapeAttrValue));
}
// Find inplacability conflicts and resolve them. (Typically with explicit
// tensor copies in the form of AllocTensorOps.)
rewriter.setInsertionPoint(op);
if (failed(bufferizableOp.resolveConflicts(rewriter, state)))
return WalkResult::interrupt();
return WalkResult::advance();
});
return failure(result.wasInterrupted());
}