It introduces a pattern that swaps `linalg.generic + tensor.pack` to `tensor.pack + linalg.generic`. It requires all the iteration types being parallel; the indexing map of output operand is identiy. They can all be relaxed in the future. The user can decide whether the propagation should be applied or not by passing a control function. Reviewed By: mravishankar Differential Revision: https://reviews.llvm.org/D138882
249 lines
10 KiB
C++
249 lines
10 KiB
C++
//===- DataLayoutPropagation.cpp -----------------------------------------===///
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Linalg/Passes.h"
|
|
|
|
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
|
#include "mlir/Dialect/Linalg/IR/Linalg.h"
|
|
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
|
|
#include "mlir/Dialect/Linalg/Utils/Utils.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "mlir/Dialect/Tensor/Utils/Utils.h"
|
|
#include "mlir/Dialect/Utils/IndexingUtils.h"
|
|
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
|
|
|
|
namespace mlir {
|
|
#define GEN_PASS_DEF_LINALGDATALAYOUTPROPAGATION
|
|
#include "mlir/Dialect/Linalg/Passes.h.inc"
|
|
} // namespace mlir
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::linalg;
|
|
|
|
#define DEBUG_TYPE "linalg-data-layout-propagation"
|
|
|
|
namespace {
|
|
|
|
/// Returns a tuple for packed operand and indexing_map with the assumptions:
|
|
/// 1) The generic op is the producer of the pack op.
|
|
/// 2) The generic op has only one result.
|
|
/// 3) The indexing map of the output operand is identity.
|
|
/// If the operand is a scalar or packing dimensions are all irrelevant to the
|
|
/// operand, the opreand and the updated indexing map will be returned.
|
|
/// Otherwise, it returns the packed operand and the updated indexing map. E.g.,
|
|
///
|
|
/// #map0 = affine_map<(d0, d1) -> (d0, d1)>
|
|
/// #map1 = affine_map<(d0, d1) -> (d0)>
|
|
/// #map2 = affine_map<(d0, d1) -> (d1)>
|
|
/// %0 = linalg.generic {indexing_maps = [#map1, #map2, #map0],
|
|
/// iterator_types = ["parallel", "parallel"]}
|
|
/// ins(%arg0, %arg1 : tensor<?xf32>, tensor<?xf32>)
|
|
/// outs(%init : tensor<?x?xf32>) {
|
|
/// ^bb0(%arg3: f32, %arg4: f32, %arg5: f32):
|
|
/// %4 = arith.addf %arg3, %arg4 : f32
|
|
/// linalg.yield %4 : f32
|
|
/// } -> tensor<?x?xf32>
|
|
/// %1 = tensor.pack %0
|
|
/// inner_dims_pos = [0, 1]
|
|
/// inner_tiles = [8, 2]
|
|
/// into %dest : tensor<?x?xf32> -> tensor<?x?x8x2xf32>
|
|
///
|
|
/// Taking the first input operand as an example, the inner tile size of d1 is
|
|
/// 8. Thus, the below operation and `affine_map<(d0, d1, d2, d3)> ->
|
|
/// affine_map<(d1, d3)>` will be returned.
|
|
///
|
|
/// %pack = tensor.pack %arg0
|
|
/// inner_dims_pos = [0]
|
|
/// inner_tiles = [8]
|
|
/// into %init : tensor<?xf32> -> tensor<?x8xf32>
|
|
static std::tuple<Value, AffineMap>
|
|
getOrCreatePackedViewOfOperand(OpBuilder &b, Location loc,
|
|
tensor::PackOp packOp, GenericOp genericOp,
|
|
OpOperand *opOperand) {
|
|
int numOrigLoops = genericOp.getNumLoops();
|
|
int64_t numInnerLoops = packOp.getInnerDimsPos().size();
|
|
int64_t numLoops = numOrigLoops + numInnerLoops;
|
|
AffineMap origIndexingMap = genericOp.getMatchingIndexingMap(opOperand);
|
|
SmallVector<AffineExpr> exprs(origIndexingMap.getResults());
|
|
|
|
if (genericOp.isScalar(opOperand))
|
|
return std::make_tuple(
|
|
opOperand->get(),
|
|
AffineMap::get(numLoops, 0, exprs, packOp.getContext()));
|
|
|
|
llvm::SetVector<int64_t> innerDimsPosSet(packOp.getInnerDimsPos().begin(),
|
|
packOp.getInnerDimsPos().end());
|
|
// Mapping from AffinDimExpr of indexing maps to the operand shape dimension.
|
|
DenseMap<int64_t, int64_t> iterMapToDim;
|
|
for (auto [index, expr] : llvm::enumerate(origIndexingMap.getResults())) {
|
|
int64_t dimPos = expr.cast<AffineDimExpr>().getPosition();
|
|
if (!innerDimsPosSet.contains(dimPos))
|
|
continue;
|
|
iterMapToDim[dimPos] = index;
|
|
}
|
|
|
|
// Construct the information of packing data dimensions and new indexing maps
|
|
// for the operand.
|
|
SmallVector<int64_t> innerDimsPos;
|
|
SmallVector<OpFoldResult> innerTileSizes;
|
|
for (auto [index, value] : llvm::enumerate(
|
|
llvm::zip(packOp.getInnerDimsPos(), packOp.getMixedTiles()))) {
|
|
int64_t dimPos = std::get<0>(value);
|
|
if (!iterMapToDim.count(dimPos))
|
|
continue;
|
|
innerDimsPos.push_back(iterMapToDim[dimPos]);
|
|
innerTileSizes.push_back(std::get<1>(value));
|
|
exprs.push_back(b.getAffineDimExpr(numOrigLoops + index));
|
|
}
|
|
auto indexingMap = AffineMap::get(numLoops, 0, exprs, packOp.getContext());
|
|
|
|
SmallVector<int64_t> outerDimsPerm;
|
|
for (auto outDim : packOp.getOuterDimsPerm()) {
|
|
if (!iterMapToDim.count(outDim))
|
|
continue;
|
|
outerDimsPerm.push_back(iterMapToDim[outDim]);
|
|
}
|
|
|
|
// The operand does not have dimensions that relates to pack op.
|
|
if (innerDimsPos.empty() && outerDimsPerm.empty())
|
|
return std::make_tuple(opOperand->get(), indexingMap);
|
|
|
|
auto empty = tensor::PackOp::createDestinationTensor(
|
|
b, loc, opOperand->get(), innerTileSizes, innerDimsPos, outerDimsPerm);
|
|
auto packedOperand = b.create<tensor::PackOp>(
|
|
loc, opOperand->get(), empty, innerDimsPos, innerTileSizes,
|
|
packOp.getPaddingValue(), outerDimsPerm);
|
|
return std::make_tuple(packedOperand, indexingMap);
|
|
}
|
|
|
|
/// Bubbles up tensor.pack op through elementwise generic op. This
|
|
/// swap pack(generic) to generic(pack). The new generic op works on packed
|
|
/// domain; pack ops are created for input and output operands. E.g.,
|
|
///
|
|
/// #map0 = affine_map<(d0, d1) -> (d0, d1)>
|
|
/// %0 = tensor.dim %arg0, %c0 : tensor<?x?xf32>
|
|
/// %1 = tensor.dim %arg0, %c1 : tensor<?x?xf32>
|
|
/// %2 = tensor.empty(%0, %1) : tensor<?x?xf32>
|
|
/// %3 = linalg.generic {indexing_maps = [#map0, #map0],
|
|
/// iterator_types = ["parallel", "parallel"]}
|
|
/// ins(%arg0 : tensor<?x?xf32>)
|
|
/// outs(%2 : tensor<?x?xf32>) {
|
|
/// ^bb0(%arg3: f32, %arg4: f32):
|
|
/// %4 = arith.addf %arg3, %arg3 : f32
|
|
/// linalg.yield %4 : f32
|
|
/// } -> tensor<?x?xf32>
|
|
/// %4 = tensor.pack %3
|
|
/// inner_dims_pos = [0, 1]
|
|
/// inner_tiles = [8, 2]
|
|
/// into %dest : tensor<?x?xf32> -> tensor<?x?x8x2xf32>
|
|
///
|
|
/// will be converted to
|
|
///
|
|
/// #map = affine_map<()[s0] -> (s0 ceildiv 8)>
|
|
/// #map1 = affine_map<()[s0] -> (s0 ceildiv 2)>
|
|
/// #map2 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
|
|
/// %dim = tensor.dim %arg0, %c0 : tensor<?x?xf32>
|
|
/// %dim_0 = tensor.dim %arg0, %c1 : tensor<?x?xf32>
|
|
/// %0 = affine.apply #map()[%dim]
|
|
/// %1 = affine.apply #map1()[%dim_0]
|
|
/// %2 = tensor.empty(%0, %1) : tensor<?x?x8x2xf32>
|
|
/// %pack = tensor.pack %arg0
|
|
/// inner_dims_pos = [0, 1]
|
|
/// inner_tiles = [8, 2]
|
|
/// into %2 : tensor<?x?xf32> -> tensor<?x?x8x2xf32>
|
|
/// %3 = linalg.generic {indexing_maps = [#map2, #map2],
|
|
/// iterator_types = ["parallel", "parallel", "parallel", "parallel"]}
|
|
/// ins(%pack : tensor<?x?x8x2xf32>)
|
|
/// outs(%arg1 : tensor<?x?x8x2xf32>) {
|
|
/// ^bb0(%in: f32, %out: f32):
|
|
/// %4 = arith.addf %in, %in : f32
|
|
/// linalg.yield %4 : f32
|
|
/// } -> tensor<?x?x8x2xf32>
|
|
static FailureOr<GenericOp>
|
|
bubbleUpPackOpThroughElemGenericOp(RewriterBase &rewriter,
|
|
tensor::PackOp packOp) {
|
|
auto genericOp = packOp.getSource().getDefiningOp<GenericOp>();
|
|
if (!genericOp)
|
|
return failure();
|
|
|
|
if (!isElementwise(genericOp))
|
|
return failure();
|
|
|
|
// TODO: Relax the restriction. We are able to bubble up the pack op through
|
|
// multi-result generic op. It just needs more work.
|
|
if (genericOp.getNumResults() != 1)
|
|
return failure();
|
|
|
|
// TODO: Add an option for allowing padding values. It could introduce
|
|
// undefined behavior if we unconditionally propagate pack op through all
|
|
// the ops. E.g., if the padding value is zero and there are division ops in
|
|
// a generic op. Some values of padding area could be NaN (0/0).
|
|
if (packOp.getPaddingValue())
|
|
return failure();
|
|
|
|
OpOperand *opOperand = genericOp.getDpsInitOperand(0);
|
|
// TODO: Add support for all permutation indexing maps.
|
|
if (!genericOp.getMatchingIndexingMap(opOperand).isIdentity())
|
|
return rewriter.notifyMatchFailure(
|
|
packOp, "the result of generic op does not have identity indexing_map");
|
|
|
|
Location loc = packOp.getLoc();
|
|
SmallVector<Value> inputOperands;
|
|
SmallVector<AffineMap> indexingMaps;
|
|
for (OpOperand *inputOperand : genericOp.getDpsInputOperands()) {
|
|
auto [packedOperand, packedIndexingMap] = getOrCreatePackedViewOfOperand(
|
|
rewriter, loc, packOp, genericOp, inputOperand);
|
|
inputOperands.push_back(packedOperand);
|
|
indexingMaps.push_back(packedIndexingMap);
|
|
}
|
|
|
|
int64_t numLoops = genericOp.getNumLoops();
|
|
int64_t numInnerLoops = packOp.getInnerDimsPos().size();
|
|
int64_t newNumLoops = numLoops + numInnerLoops;
|
|
SmallVector<utils::IteratorType> iterTypes =
|
|
genericOp.getIteratorTypesArray();
|
|
iterTypes.append(numInnerLoops, utils::IteratorType::parallel);
|
|
|
|
SmallVector<AffineExpr> outExprs(
|
|
genericOp.getMatchingIndexingMap(opOperand).getResults());
|
|
for (int i = 0; i < numInnerLoops; ++i)
|
|
outExprs.push_back(rewriter.getAffineDimExpr(numLoops + i));
|
|
indexingMaps.push_back(
|
|
AffineMap::get(newNumLoops, 0, outExprs, rewriter.getContext()));
|
|
|
|
auto newGenericOp = rewriter.create<linalg::GenericOp>(
|
|
loc, packOp.getDestType(), inputOperands, packOp.getDest(), indexingMaps,
|
|
iterTypes, /*bodyBuild=*/nullptr,
|
|
linalg::getPrunedAttributeList(genericOp));
|
|
rewriter.cloneRegionBefore(genericOp.getRegion(), newGenericOp.getRegion(),
|
|
newGenericOp.getRegion().begin());
|
|
return newGenericOp;
|
|
}
|
|
|
|
// Wrapper pattern that applies bubbleUpPackOpThroughElemGenericOp method.
|
|
struct BubbleUpPackOpThroughElemGenericOpPattern
|
|
: public OpRewritePattern<tensor::PackOp> {
|
|
using OpRewritePattern<tensor::PackOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(tensor::PackOp packOp,
|
|
PatternRewriter &rewriter) const override {
|
|
auto genericOp = bubbleUpPackOpThroughElemGenericOp(rewriter, packOp);
|
|
if (failed(genericOp))
|
|
return failure();
|
|
rewriter.replaceOp(packOp, genericOp.value().getResults());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
void mlir::linalg::populateDataLayoutPropagationPatterns(
|
|
RewritePatternSet &patterns) {
|
|
patterns.insert<BubbleUpPackOpThroughElemGenericOpPattern>(
|
|
patterns.getContext());
|
|
}
|