Files
clang-p2996/mlir/lib/Transforms/AffineDataCopyGeneration.cpp
River Riddle 1e42954032 NFC: Standardize the terminology used for parent ops/regions/etc.
There are currently several different terms used to refer to a parent IR unit in 'get' methods: getParent/getEnclosing/getContaining. This cl standardizes all of these methods to use 'getParent*'.

PiperOrigin-RevId: 262680287
2019-08-09 20:07:52 -07:00

893 lines
37 KiB
C++

//===- AffineDataCopyGeneration.cpp - Explicit memref copying pass ------*-===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file implements a pass to automatically promote accessed memref regions
// to buffers in a faster memory space that is explicitly managed, with the
// necessary data movement operations performed through either regular
// point-wise load/store's or DMAs. Such explicit copying (also referred to as
// array packing/unpacking in the literature), when done on arrays that exhibit
// reuse, results in near elimination of conflict misses, TLB misses, reduced
// use of hardware prefetch streams, and reduced false sharing. It is also
// necessary for hardware that explicitly managed levels in the memory
// hierarchy, and where DMAs may have to be used. This optimization is often
// performed on already tiled code.
//
//===----------------------------------------------------------------------===//
#include "mlir/AffineOps/AffineOps.h"
#include "mlir/Analysis/AffineStructures.h"
#include "mlir/Analysis/Utils.h"
#include "mlir/IR/Builders.h"
#include "mlir/Pass/Pass.h"
#include "mlir/StandardOps/Ops.h"
#include "mlir/Transforms/Passes.h"
#include "mlir/Transforms/Utils.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include <algorithm>
#define DEBUG_TYPE "affine-data-copy-generate"
using namespace mlir;
using llvm::SmallMapVector;
static llvm::cl::OptionCategory clOptionsCategory(DEBUG_TYPE " options");
static llvm::cl::opt<unsigned long long> clFastMemoryCapacity(
"affine-data-copy-generate-fast-mem-capacity",
llvm::cl::desc(
"Set fast memory space capacity in KiB (default: unlimited)"),
llvm::cl::cat(clOptionsCategory));
static llvm::cl::opt<bool>
clDma("affine-data-copy-generate-dma",
llvm::cl::desc("Generate DMA instead of point-wise copy"),
llvm::cl::cat(clOptionsCategory),
llvm::cl::init(true));
static llvm::cl::opt<unsigned> clFastMemorySpace(
"affine-data-copy-generate-fast-mem-space", llvm::cl::init(0),
llvm::cl::desc(
"Fast memory space identifier for copy generation (default: 1)"),
llvm::cl::cat(clOptionsCategory));
static llvm::cl::opt<bool> clSkipNonUnitStrideLoop(
"affine-data-copy-generate-skip-non-unit-stride-loops", llvm::cl::Hidden,
llvm::cl::init(false),
llvm::cl::desc("Testing purposes: avoid non-unit stride loop choice depths "
"for copy placement"),
llvm::cl::cat(clOptionsCategory));
namespace {
/// Replaces all loads and stores on memref's living in 'slowMemorySpace' by
/// introducing copy operations to transfer data into `fastMemorySpace` and
/// rewriting the original load's/store's to instead load/store from the
/// allocated fast memory buffers. Additional options specify the identifier
/// corresponding to the fast memory space and the amount of fast memory space
/// available. The pass traverses through the nesting structure, recursing to
/// inner levels if necessary to determine at what depth copies need to be
/// placed so that the allocated buffers fit within the memory capacity
/// provided.
// TODO(bondhugula): We currently can't generate copies correctly when stores
// are strided. Check for strided stores.
struct AffineDataCopyGeneration
: public FunctionPass<AffineDataCopyGeneration> {
explicit AffineDataCopyGeneration(
unsigned slowMemorySpace = 0,
unsigned fastMemorySpace = clFastMemorySpace, unsigned tagMemorySpace = 0,
int minDmaTransferSize = 1024,
uint64_t fastMemCapacityBytes =
(clFastMemoryCapacity.getNumOccurrences() > 0
? clFastMemoryCapacity * 1024 // cl-provided size is in KiB
: std::numeric_limits<uint64_t>::max()),
bool generateDma = clDma,
bool skipNonUnitStrideLoops = clSkipNonUnitStrideLoop)
: slowMemorySpace(slowMemorySpace), fastMemorySpace(fastMemorySpace),
tagMemorySpace(tagMemorySpace), minDmaTransferSize(minDmaTransferSize),
fastMemCapacityBytes(fastMemCapacityBytes), generateDma(generateDma),
skipNonUnitStrideLoops(skipNonUnitStrideLoops) {}
explicit AffineDataCopyGeneration(const AffineDataCopyGeneration &other)
: slowMemorySpace(other.slowMemorySpace),
fastMemorySpace(other.fastMemorySpace),
tagMemorySpace(other.tagMemorySpace),
minDmaTransferSize(other.minDmaTransferSize),
fastMemCapacityBytes(other.fastMemCapacityBytes),
generateDma(other.generateDma),
skipNonUnitStrideLoops(other.skipNonUnitStrideLoops) {}
void runOnFunction() override;
LogicalResult runOnBlock(Block *block);
uint64_t runOnBlock(Block::iterator begin, Block::iterator end);
LogicalResult generateCopy(const MemRefRegion &region, Block *block,
Block::iterator begin, Block::iterator end,
uint64_t *sizeInBytes, Block::iterator *nBegin,
Block::iterator *nEnd);
// List of memory regions to copy for. We need a map vector to have a
// guaranteed iteration order to write test cases. CHECK-DAG doesn't help here
// since the alloc's for example are identical except for the SSA id.
SmallMapVector<Value *, std::unique_ptr<MemRefRegion>, 4> readRegions;
SmallMapVector<Value *, std::unique_ptr<MemRefRegion>, 4> writeRegions;
// Nests that are copy in's or copy out's; the root AffineForOp of that
// nest is stored herein.
DenseSet<Operation *> copyNests;
// Map from original memref's to the fast buffers that their accesses are
// replaced with.
DenseMap<Value *, Value *> fastBufferMap;
// Slow memory space associated with copies.
const unsigned slowMemorySpace;
// Fast memory space associated with copies.
unsigned fastMemorySpace;
// Memory space associated with DMA tags.
unsigned tagMemorySpace;
// Minimum DMA transfer size supported by the target in bytes.
const int minDmaTransferSize;
// Capacity of the faster memory space.
uint64_t fastMemCapacityBytes;
// If set, generate DMA operations instead of read/write.
bool generateDma;
// If set, ignore loops with steps other than 1.
bool skipNonUnitStrideLoops;
// Constant zero index to avoid too many duplicates.
Value *zeroIndex = nullptr;
};
} // end anonymous namespace
/// Generates copies for memref's living in 'slowMemorySpace' into newly created
/// buffers in 'fastMemorySpace', and replaces memory operations to the former
/// by the latter. Only load op's handled for now.
/// TODO(bondhugula): extend this to store op's.
FunctionPassBase *mlir::createAffineDataCopyGenerationPass(
unsigned slowMemorySpace, unsigned fastMemorySpace, unsigned tagMemorySpace,
int minDmaTransferSize, uint64_t fastMemCapacityBytes) {
return new AffineDataCopyGeneration(slowMemorySpace, fastMemorySpace,
tagMemorySpace, minDmaTransferSize,
fastMemCapacityBytes);
}
// Info comprising stride and number of elements transferred every stride.
struct StrideInfo {
int64_t stride;
int64_t numEltPerStride;
};
/// Returns striding information for a copy/transfer of this region with
/// potentially multiple striding levels from outermost to innermost. For an
/// n-dimensional region, there can be at most n-1 levels of striding
/// successively nested.
// TODO(bondhugula): make this work with non-identity layout maps.
static void getMultiLevelStrides(const MemRefRegion &region,
ArrayRef<int64_t> bufferShape,
SmallVectorImpl<StrideInfo> *strideInfos) {
if (bufferShape.size() <= 1)
return;
int64_t numEltPerStride = 1;
int64_t stride = 1;
for (int d = bufferShape.size() - 1; d >= 1; d--) {
int64_t dimSize = region.memref->getType().cast<MemRefType>().getDimSize(d);
stride *= dimSize;
numEltPerStride *= bufferShape[d];
// A stride is needed only if the region has a shorter extent than the
// memref along the dimension *and* has an extent greater than one along the
// next major dimension.
if (bufferShape[d] < dimSize && bufferShape[d - 1] > 1) {
strideInfos->push_back({stride, numEltPerStride});
}
}
}
/// Construct the memref region to just include the entire memref. Returns false
/// dynamic shaped memref's for now. `numParamLoopIVs` is the number of
/// enclosing loop IVs of opInst (starting from the outermost) that the region
/// is parametric on.
static bool getFullMemRefAsRegion(Operation *opInst, unsigned numParamLoopIVs,
MemRefRegion *region) {
unsigned rank;
if (auto loadOp = dyn_cast<AffineLoadOp>(opInst)) {
rank = loadOp.getMemRefType().getRank();
region->memref = loadOp.getMemRef();
region->setWrite(false);
} else if (auto storeOp = dyn_cast<AffineStoreOp>(opInst)) {
rank = storeOp.getMemRefType().getRank();
region->memref = storeOp.getMemRef();
region->setWrite(true);
} else {
assert(false && "expected load or store op");
return false;
}
auto memRefType = region->memref->getType().cast<MemRefType>();
if (!memRefType.hasStaticShape())
return false;
auto *regionCst = region->getConstraints();
// Just get the first numSymbols IVs, which the memref region is parametric
// on.
SmallVector<AffineForOp, 4> ivs;
getLoopIVs(*opInst, &ivs);
ivs.resize(numParamLoopIVs);
SmallVector<Value *, 4> symbols;
extractForInductionVars(ivs, &symbols);
regionCst->reset(rank, numParamLoopIVs, 0);
regionCst->setIdValues(rank, rank + numParamLoopIVs, symbols);
// Memref dim sizes provide the bounds.
for (unsigned d = 0; d < rank; d++) {
auto dimSize = memRefType.getDimSize(d);
assert(dimSize > 0 && "filtered dynamic shapes above");
regionCst->addConstantLowerBound(d, 0);
regionCst->addConstantUpperBound(d, dimSize - 1);
}
return true;
}
static InFlightDiagnostic LLVM_ATTRIBUTE_UNUSED
emitRemarkForBlock(Block &block) {
return block.getParentOp()->emitRemark();
}
/// Generates a point-wise copy from/to `memref' to/from `fastMemRef' and
/// returns the outermost AffineForOp of the copy loop nest. `memIndicesStart'
/// holds the lower coordinates of the region in the original memref to copy
/// in/out. If `copyOut' is true, generates a copy-out; otherwise a copy-in.
static AffineForOp generatePointWiseCopy(Location loc, Value *memref,
Value *fastMemRef,
ArrayRef<Value *> memIndicesStart,
ArrayRef<int64_t> fastBufferShape,
bool isCopyOut, OpBuilder b) {
assert(!memIndicesStart.empty() && "only 1-d or more memrefs");
// The copy-in nest is generated as follows as an example for a 2-d region:
// for x = ...
// for y = ...
// fast_buf[x][y] = buf[mem_x + x][mem_y + y]
SmallVector<Value *, 4> fastBufIndices, memIndices;
AffineForOp copyNestRoot;
for (unsigned d = 0, e = fastBufferShape.size(); d < e; ++d) {
auto forOp = b.create<AffineForOp>(loc, 0, fastBufferShape[d]);
if (d == 0)
copyNestRoot = forOp;
b = forOp.getBodyBuilder();
fastBufIndices.push_back(forOp.getInductionVar());
// Construct the subscript for the slow memref being copied.
SmallVector<Value *, 2> operands = {memIndicesStart[d], forOp.getInductionVar()};
auto memIndex = b.create<AffineApplyOp>(
loc,
b.getAffineMap(2, 0, b.getAffineDimExpr(0) + b.getAffineDimExpr(1)),
operands);
memIndices.push_back(memIndex);
}
if (!isCopyOut) {
// Copy in.
auto load = b.create<AffineLoadOp>(loc, memref, memIndices);
b.create<AffineStoreOp>(loc, load, fastMemRef, fastBufIndices);
return copyNestRoot;
}
// Copy out.
auto load = b.create<AffineLoadOp>(loc, fastMemRef, fastBufIndices);
b.create<AffineStoreOp>(loc, load, memref, memIndices);
return copyNestRoot;
}
/// Creates a buffer in the faster memory space for the specified region;
/// generates a copy from the lower memory space to this one, and replaces all
/// loads to load from that buffer. Returns failure if copies could not be
/// generated due to yet unimplemented cases. `begin` and `end` specify the
/// insertion points where the incoming copies and outgoing copies,
/// respectively, should be inserted (the insertion happens right before the
/// insertion point). Since `begin` can itself be invalidated due to the memref
/// rewriting done from this method, the output argument `nBegin` is set to its
/// replacement (set to `begin` if no invalidation happens). Since outgoing
/// copies are inserted at `end`, the output argument `nEnd` is set to the one
/// following the original end (since the latter could have been
/// invalidated/replaced). `sizeInBytes` is set to the size of the fast buffer
/// allocated.
LogicalResult AffineDataCopyGeneration::generateCopy(
const MemRefRegion &region, Block *block, Block::iterator begin,
Block::iterator end, uint64_t *sizeInBytes, Block::iterator *nBegin,
Block::iterator *nEnd) {
*nBegin = begin;
*nEnd = end;
if (begin == end)
return success();
// Copies for read regions are going to be inserted at 'begin'.
OpBuilder prologue(block, begin);
// Copies for write regions are going to be inserted at 'end'.
OpBuilder epilogue(block, end);
OpBuilder &b = region.isWrite() ? epilogue : prologue;
// Builder to create constants at the top level.
auto func = block->getParent()->getParentOfType<FuncOp>();
OpBuilder top(func.getBody());
auto loc = region.loc;
auto *memref = region.memref;
auto memRefType = memref->getType().cast<MemRefType>();
auto layoutMaps = memRefType.getAffineMaps();
if (layoutMaps.size() > 1 ||
(layoutMaps.size() == 1 && !layoutMaps[0].isIdentity())) {
LLVM_DEBUG(llvm::dbgs() << "Non-identity layout map not yet supported\n");
return failure();
}
// Indices to use for the copying.
// Indices for the original memref being copied from/to.
SmallVector<Value *, 4> memIndices;
// Indices for the faster buffer being copied into/from.
SmallVector<Value *, 4> bufIndices;
unsigned rank = memRefType.getRank();
SmallVector<int64_t, 4> fastBufferShape;
// Compute the extents of the buffer.
std::vector<SmallVector<int64_t, 4>> lbs;
SmallVector<int64_t, 8> lbDivisors;
lbs.reserve(rank);
Optional<int64_t> numElements = region.getConstantBoundingSizeAndShape(
&fastBufferShape, &lbs, &lbDivisors);
if (!numElements.hasValue()) {
LLVM_DEBUG(llvm::dbgs() << "Non-constant region size not supported\n");
return failure();
}
if (numElements.getValue() == 0) {
LLVM_DEBUG(llvm::dbgs() << "Nothing to copy\n");
*sizeInBytes = 0;
return success();
}
const FlatAffineConstraints *cst = region.getConstraints();
// 'regionSymbols' hold values that this memory region is symbolic/paramteric
// on; these typically include loop IVs surrounding the level at which the
// copy generation is being done or other valid symbols in MLIR.
SmallVector<Value *, 8> regionSymbols;
cst->getIdValues(rank, cst->getNumIds(), &regionSymbols);
// Construct the index expressions for the fast memory buffer. The index
// expression for a particular dimension of the fast buffer is obtained by
// subtracting out the lower bound on the original memref's data region
// along the corresponding dimension.
// Index start offsets for faster memory buffer relative to the original.
SmallVector<AffineExpr, 4> offsets;
offsets.reserve(rank);
for (unsigned d = 0; d < rank; d++) {
assert(lbs[d].size() == cst->getNumCols() - rank && "incorrect bound size");
AffineExpr offset = top.getAffineConstantExpr(0);
for (unsigned j = 0, e = cst->getNumCols() - rank - 1; j < e; j++) {
offset = offset + lbs[d][j] * top.getAffineDimExpr(j);
}
assert(lbDivisors[d] > 0);
offset =
(offset + lbs[d][cst->getNumCols() - 1 - rank]).floorDiv(lbDivisors[d]);
// Set copy start location for this dimension in the lower memory space
// memref.
if (auto caf = offset.dyn_cast<AffineConstantExpr>()) {
auto indexVal = caf.getValue();
if (indexVal == 0) {
memIndices.push_back(zeroIndex);
} else {
memIndices.push_back(
top.create<ConstantIndexOp>(loc, indexVal).getResult());
}
} else {
// The coordinate for the start location is just the lower bound along the
// corresponding dimension on the memory region (stored in 'offset').
auto map = top.getAffineMap(
cst->getNumDimIds() + cst->getNumSymbolIds() - rank, 0, offset);
memIndices.push_back(b.create<AffineApplyOp>(loc, map, regionSymbols));
}
// The fast buffer is copied into at location zero; addressing is relative.
bufIndices.push_back(zeroIndex);
// Record the offsets since they are needed to remap the memory accesses of
// the original memref further below.
offsets.push_back(offset);
}
// The faster memory space buffer.
Value *fastMemRef;
// Check if a buffer was already created.
bool existingBuf = fastBufferMap.count(memref) > 0;
if (!existingBuf) {
auto fastMemRefType = top.getMemRefType(
fastBufferShape, memRefType.getElementType(), {}, fastMemorySpace);
// Create the fast memory space buffer just before the 'affine.for'
// operation.
fastMemRef = prologue.create<AllocOp>(loc, fastMemRefType).getResult();
// Record it.
fastBufferMap[memref] = fastMemRef;
// fastMemRefType is a constant shaped memref.
*sizeInBytes = getMemRefSizeInBytes(fastMemRefType).getValue();
LLVM_DEBUG(emitRemarkForBlock(*block)
<< "Creating fast buffer of type " << fastMemRefType
<< " and size " << llvm::divideCeil(*sizeInBytes, 1024)
<< " KiB\n");
} else {
// Reuse the one already created.
fastMemRef = fastBufferMap[memref];
*sizeInBytes = 0;
}
auto numElementsSSA =
top.create<ConstantIndexOp>(loc, numElements.getValue());
SmallVector<StrideInfo, 4> strideInfos;
getMultiLevelStrides(region, fastBufferShape, &strideInfos);
// TODO(bondhugula): use all stride levels once DmaStartOp is extended for
// multi-level strides.
if (strideInfos.size() > 1) {
LLVM_DEBUG(llvm::dbgs() << "Only up to one level of stride supported\n");
return failure();
}
Value *stride = nullptr;
Value *numEltPerStride = nullptr;
if (!strideInfos.empty()) {
stride = top.create<ConstantIndexOp>(loc, strideInfos[0].stride);
numEltPerStride =
top.create<ConstantIndexOp>(loc, strideInfos[0].numEltPerStride);
}
// Record the last operation just before the point where we insert the
// copy out's. We later do the memref replacement later only in [begin,
// postDomFilter] so that the original memref's in the data movement code
// themselves don't get replaced.
auto postDomFilter = std::prev(end);
// Create fully composed affine maps for each memref.
auto memAffineMap = b.getMultiDimIdentityMap(memIndices.size());
fullyComposeAffineMapAndOperands(&memAffineMap, &memIndices);
auto bufAffineMap = b.getMultiDimIdentityMap(bufIndices.size());
fullyComposeAffineMapAndOperands(&bufAffineMap, &bufIndices);
if (!generateDma) {
auto copyNest = generatePointWiseCopy(loc, memref, fastMemRef, memIndices,
fastBufferShape,
/*isCopyOut=*/region.isWrite(), b);
// Record this so that we can skip it from yet another copy.
copyNests.insert(copyNest);
if (region.isWrite())
// Since new ops are being appended (for copy out's), adjust the end to
// mark end of block range being processed.
*nEnd = Block::iterator(copyNest.getOperation());
} else {
// Create a tag (single element 1-d memref) for the DMA.
auto tagMemRefType =
top.getMemRefType({1}, top.getIntegerType(32), {}, tagMemorySpace);
auto tagMemRef = prologue.create<AllocOp>(loc, tagMemRefType);
SmallVector<Value *, 4> tagIndices({zeroIndex});
auto tagAffineMap = b.getMultiDimIdentityMap(tagIndices.size());
fullyComposeAffineMapAndOperands(&tagAffineMap, &tagIndices);
if (!region.isWrite()) {
// DMA non-blocking read from original buffer to fast buffer.
b.create<AffineDmaStartOp>(loc, memref, memAffineMap, memIndices,
fastMemRef, bufAffineMap, bufIndices,
tagMemRef, tagAffineMap, tagIndices,
numElementsSSA, stride, numEltPerStride);
} else {
// DMA non-blocking write from fast buffer to the original memref.
auto op = b.create<AffineDmaStartOp>(
loc, fastMemRef, bufAffineMap, bufIndices, memref, memAffineMap,
memIndices, tagMemRef, tagAffineMap, tagIndices, numElementsSSA,
stride, numEltPerStride);
// Since new ops are being appended (for outgoing DMAs), adjust the end to
// mark end of block range being processed.
*nEnd = Block::iterator(op.getOperation());
}
// Matching DMA wait to block on completion; tag always has a 0 index.
b.create<AffineDmaWaitOp>(loc, tagMemRef, tagAffineMap, zeroIndex,
numElementsSSA);
// Generate dealloc for the tag.
auto tagDeallocOp = epilogue.create<DeallocOp>(loc, tagMemRef);
if (*nEnd == end)
// Since new ops are being appended (for outgoing DMAs), adjust the end to
// mark end of range of the original.
*nEnd = Block::iterator(tagDeallocOp.getOperation());
}
// Generate dealloc for the buffer.
if (!existingBuf) {
auto bufDeallocOp = epilogue.create<DeallocOp>(loc, fastMemRef);
// When generating pointwise copies, `nEnd' has to be set to deallocOp on
// the fast buffer (since it marks the new end insertion point).
if (!generateDma && *nEnd == end)
*nEnd = Block::iterator(bufDeallocOp.getOperation());
}
// Replace all uses of the old memref with the faster one while remapping
// access indices (subtracting out lower bound offsets for each dimension).
// Ex: to replace load %A[%i, %j] with load %Abuf[%i - %iT, %j - %jT],
// index remap will be (%i, %j) -> (%i - %iT, %j - %jT),
// i.e., affine.apply (d0, d1, d2, d3) -> (d2-d0, d3-d1) (%iT, %jT, %i, %j),
// and (%iT, %jT) will be the 'extraOperands' for 'rep all memref uses with'.
// d2, d3 correspond to the original indices (%i, %j).
SmallVector<AffineExpr, 4> remapExprs;
remapExprs.reserve(rank);
for (unsigned i = 0; i < rank; i++) {
// The starting operands of indexRemap will be regionSymbols (the symbols on
// which the memref region is parametric); then those corresponding to
// the memref's original indices follow.
auto dimExpr = b.getAffineDimExpr(regionSymbols.size() + i);
remapExprs.push_back(dimExpr - offsets[i]);
}
auto indexRemap = b.getAffineMap(regionSymbols.size() + rank, 0, remapExprs);
// Record the begin since it may be invalidated by memref replacement.
Block::iterator prev;
bool wasAtStartOfBlock = (begin == block->begin());
if (!wasAtStartOfBlock)
prev = std::prev(begin);
// *Only* those uses within the range [begin, end) of 'block' are replaced.
replaceAllMemRefUsesWith(memref, fastMemRef,
/*extraIndices=*/{}, indexRemap,
/*extraOperands=*/regionSymbols,
/*domInstFilter=*/&*begin,
/*postDomInstFilter=*/&*postDomFilter);
*nBegin = wasAtStartOfBlock ? block->begin() : std::next(prev);
return success();
}
/// Generate copies for this block. The block is partitioned into separate
/// ranges: each range is either a sequence of one or more operations starting
/// and ending with an affine load or store op, or just an affine.forop (which
/// could have other affine for op's nested within).
LogicalResult AffineDataCopyGeneration::runOnBlock(Block *block) {
if (block->empty())
return success();
copyNests.clear();
// Every affine.forop in the block starts and ends a block range for copying.
// A contiguous sequence of operations starting and ending with a load/store
// op is also identified as a copy block range. Straightline code (a
// contiguous chunk of operations excluding AffineForOp's) are always assumed
// to not exhaust memory. As a result, this approach is conservative in some
// cases at the moment; we do a check later and report an error with location
// info.
// TODO(bondhugula): An 'affine.if' operation is being treated similar to an
// operation. 'affine.if''s could have 'affine.for's in them;
// treat them separately.
// Get to the first load, store, or for op (that is not a copy nest itself).
auto curBegin =
std::find_if(block->begin(), block->end(), [&](Operation &op) {
return (isa<AffineLoadOp>(op) || isa<AffineStoreOp>(op) ||
isa<AffineForOp>(op)) &&
copyNests.count(&op) == 0;
});
for (auto it = curBegin; it != block->end(); ++it) {
AffineForOp forOp;
if ((forOp = dyn_cast<AffineForOp>(&*it)) && copyNests.count(forOp) == 0) {
// Returns true if the footprint is known to exceed capacity.
auto exceedsCapacity = [&](AffineForOp forOp) {
Optional<int64_t> footprint =
getMemoryFootprintBytes(forOp,
/*memorySpace=*/0);
return (footprint.hasValue() &&
static_cast<uint64_t>(footprint.getValue()) >
fastMemCapacityBytes);
};
// If the memory footprint of the 'affine.for' loop is higher than fast
// memory capacity (when provided), we recurse to copy at an inner level
// until we find a depth at which footprint fits in fast mem capacity. If
// the footprint can't be calculated, we assume for now it fits. Recurse
// inside if footprint for 'forOp' exceeds capacity, or when
// skipNonUnitStrideLoops is set and the step size is not one.
bool recurseInner = skipNonUnitStrideLoops ? forOp.getStep() != 1
: exceedsCapacity(forOp);
if (recurseInner) {
// We'll recurse and do the copies at an inner level for 'forInst'.
runOnBlock(/*begin=*/curBegin, /*end=*/it);
// Recurse onto the body of this loop.
runOnBlock(forOp.getBody());
// The next block range starts right after the 'affine.for' operation.
curBegin = std::next(it);
} else {
// We have enough capacity, i.e., copies will be computed for the
// portion of the block until 'it', and for 'it', which is 'forOp'. Note
// that for the latter, the copies are placed just before this loop (for
// incoming copies) and right after (for outgoing ones).
runOnBlock(/*begin=*/curBegin, /*end=*/it);
// Inner loop copies have their own scope - we don't thus update
// consumed capacity. The footprint check above guarantees this inner
// loop's footprint fits.
runOnBlock(/*begin=*/it, /*end=*/std::next(it));
curBegin = std::next(it);
}
} else if (!isa<AffineLoadOp>(&*it) && !isa<AffineStoreOp>(&*it)) {
runOnBlock(/*begin=*/curBegin, /*end=*/it);
curBegin = std::next(it);
}
}
// Generate the copy for the final block range.
if (curBegin != block->end()) {
// Can't be a terminator because it would have been skipped above.
assert(!curBegin->isKnownTerminator() && "can't be a terminator");
runOnBlock(/*begin=*/curBegin, /*end=*/block->end());
}
return success();
}
/// Given a memref region, determine the lowest depth at which transfers can be
/// placed for it, and return the corresponding block, start and end positions
/// in the block for placing incoming (read) and outgoing (write) copies
/// respectively. The lowest depth depends on whether the region being accessed
/// is invariant with respect to one or more immediately surrounding loops.
static void
findHighestBlockForPlacement(const MemRefRegion &region, Block &block,
Block::iterator &begin, Block::iterator &end,
Block **copyPlacementBlock,
Block::iterator *copyPlacementReadStart,
Block::iterator *copyPlacementWriteStart) {
const auto *cst = region.getConstraints();
SmallVector<Value *, 4> symbols;
cst->getIdValues(cst->getNumDimIds(), cst->getNumDimAndSymbolIds(), &symbols);
SmallVector<AffineForOp, 4> enclosingFors;
getLoopIVs(*block.begin(), &enclosingFors);
// Walk up loop parents till we find an IV on which this region is
// symbolic/variant.
auto it = enclosingFors.rbegin();
for (auto e = enclosingFors.rend(); it != e; ++it) {
// TODO(bondhugula): also need to be checking this for regions symbols that
// aren't loop IVs, whether we are within their resp. defs' dominance scope.
if (llvm::is_contained(symbols, it->getInductionVar()))
break;
}
if (it != enclosingFors.rbegin()) {
auto lastInvariantIV = *std::prev(it);
*copyPlacementReadStart = Block::iterator(lastInvariantIV.getOperation());
*copyPlacementWriteStart = std::next(*copyPlacementReadStart);
*copyPlacementBlock = lastInvariantIV.getOperation()->getBlock();
} else {
*copyPlacementReadStart = begin;
*copyPlacementWriteStart = end;
*copyPlacementBlock = &block;
}
}
/// Generates copies for a contiguous sequence of operations in `block` in the
/// iterator range [begin, end). Returns the total size of the fast buffers
/// used.
// Since we generate alloc's and dealloc's for all fast buffers (before and
// after the range of operations resp.), all of the fast memory capacity is
// assumed to be available for processing this block range.
uint64_t AffineDataCopyGeneration::runOnBlock(Block::iterator begin,
Block::iterator end) {
if (begin == end)
return 0;
assert(begin->getBlock() == std::prev(end)->getBlock() &&
"Inconsistent args");
Block *block = begin->getBlock();
// Copies will be generated for this depth, i.e., symbolic in all loops
// surrounding the this block range.
unsigned copyDepth = getNestingDepth(*begin);
LLVM_DEBUG(llvm::dbgs() << "Generating copies at depth " << copyDepth
<< "\n");
readRegions.clear();
writeRegions.clear();
fastBufferMap.clear();
// To check for errors when walking the block.
bool error = false;
// Walk this range of operations to gather all memory regions.
block->walk(begin, end, [&](Operation *opInst) {
// Gather regions to allocate to buffers in faster memory space.
if (auto loadOp = dyn_cast<AffineLoadOp>(opInst)) {
if (loadOp.getMemRefType().getMemorySpace() != slowMemorySpace)
return;
} else if (auto storeOp = dyn_cast<AffineStoreOp>(opInst)) {
if (storeOp.getMemRefType().getMemorySpace() != slowMemorySpace)
return;
} else {
// Neither load nor a store op.
return;
}
// Compute the MemRefRegion accessed.
auto region = llvm::make_unique<MemRefRegion>(opInst->getLoc());
if (failed(region->compute(opInst, copyDepth))) {
LLVM_DEBUG(llvm::dbgs()
<< "Error obtaining memory region: semi-affine maps?\n");
LLVM_DEBUG(llvm::dbgs() << "over-approximating to the entire memref\n");
if (!getFullMemRefAsRegion(opInst, copyDepth, region.get())) {
LLVM_DEBUG(
opInst->emitError("Non-constant memref sizes not yet supported"));
error = true;
return;
}
}
// Each memref has a single buffer associated with it irrespective of how
// many load's and store's happen on it.
// TODO(bondhugula): in the future, when regions don't intersect and satisfy
// other properties (based on load/store regions), we could consider
// multiple buffers per memref.
// Add to the appropriate region if it's not already in it, or take a
// bounding box union with the existing one if it's already in there.
// Note that a memref may have both read and write regions - so update the
// region in the other list if one exists (write in case of read and vice
// versa) since there is a single bounding box for a memref across all reads
// and writes that happen on it.
// Attempts to update; returns true if 'region' exists in targetRegions.
auto updateRegion =
[&](const SmallMapVector<Value *, std::unique_ptr<MemRefRegion>, 4>
&targetRegions) {
auto it = targetRegions.find(region->memref);
if (it == targetRegions.end())
return false;
// Perform a union with the existing region.
if (failed(it->second->unionBoundingBox(*region))) {
LLVM_DEBUG(llvm::dbgs()
<< "Memory region bounding box failed; "
"over-approximating to the entire memref\n");
// If the union fails, we will overapproximate.
if (!getFullMemRefAsRegion(opInst, copyDepth, region.get())) {
LLVM_DEBUG(opInst->emitError(
"Non-constant memref sizes not yet supported"));
error = true;
return true;
}
it->second->getConstraints()->clearAndCopyFrom(
*region->getConstraints());
} else {
// Union was computed and stored in 'it->second': copy to 'region'.
region->getConstraints()->clearAndCopyFrom(
*it->second->getConstraints());
}
return true;
};
bool existsInRead = updateRegion(readRegions);
if (error)
return;
bool existsInWrite = updateRegion(writeRegions);
if (error)
return;
// Finally add it to the region list.
if (region->isWrite() && !existsInWrite) {
writeRegions[region->memref] = std::move(region);
} else if (!region->isWrite() && !existsInRead) {
readRegions[region->memref] = std::move(region);
}
});
if (error) {
begin->emitError(
"copy generation failed for one or more memref's in this block\n");
return 0;
}
uint64_t totalCopyBuffersSizeInBytes = 0;
bool ret = true;
auto processRegions =
[&](const SmallMapVector<Value *, std::unique_ptr<MemRefRegion>, 4>
&regions) {
for (const auto &regionEntry : regions) {
// For each region, hoist copy in/out past all invariant
// 'affine.for's.
Block::iterator copyPlacementReadStart, copyPlacementWriteStart;
Block *copyPlacementBlock;
findHighestBlockForPlacement(
*regionEntry.second, *block, begin, end, &copyPlacementBlock,
&copyPlacementReadStart, &copyPlacementWriteStart);
uint64_t sizeInBytes;
Block::iterator nBegin, nEnd;
LogicalResult iRet = generateCopy(
*regionEntry.second, copyPlacementBlock, copyPlacementReadStart,
copyPlacementWriteStart, &sizeInBytes, &nBegin, &nEnd);
if (succeeded(iRet)) {
// copyPlacmentStart/End (or begin/end) may be invalidated; use
// nBegin, nEnd to reset.
if (copyPlacementBlock == block) {
begin = nBegin;
end = nEnd;
}
totalCopyBuffersSizeInBytes += sizeInBytes;
}
ret = ret & succeeded(iRet);
}
};
processRegions(readRegions);
processRegions(writeRegions);
if (!ret) {
begin->emitError(
"copy generation failed for one or more memref's in this block\n");
return totalCopyBuffersSizeInBytes;
}
// For a range of operations, a note will be emitted at the caller.
AffineForOp forOp;
uint64_t sizeInKib = llvm::divideCeil(totalCopyBuffersSizeInBytes, 1024);
if (llvm::DebugFlag && (forOp = dyn_cast<AffineForOp>(&*begin))) {
forOp.emitRemark()
<< sizeInKib
<< " KiB of copy buffers in fast memory space for this block\n";
}
if (totalCopyBuffersSizeInBytes > fastMemCapacityBytes) {
StringRef str = "Total size of all copy buffers' for this block "
"exceeds fast memory capacity\n";
block->getParentOp()->emitError(str);
}
return totalCopyBuffersSizeInBytes;
}
void AffineDataCopyGeneration::runOnFunction() {
FuncOp f = getFunction();
OpBuilder topBuilder(f.getBody());
zeroIndex = topBuilder.create<ConstantIndexOp>(f.getLoc(), 0);
for (auto &block : f)
runOnBlock(&block);
}
static PassRegistration<AffineDataCopyGeneration>
pass("affine-data-copy-generate",
"Generate explicit copying for memory operations");