Files
clang-p2996/polly/lib/Support/ScopHelper.cpp
Johannes Doerfert 0fe35dd088 [Fix] Rewire the Region after a unconditional entry edge is created
We use SplitEdge to split a conditional entry edge of the SCoP region.
  However, SplitEdge can cause two different situations (depending on
  whether or not the edge is critical). This patch tests
  which one is present and deals with the former unhandled one.

  It also refactors and unifies the case we have to change the basic
  blocks of the SCoP to new ones (see replaceScopAndRegionEntry).

llvm-svn: 217802
2014-09-15 18:34:45 +00:00

176 lines
5.4 KiB
C++

//===- ScopHelper.cpp - Some Helper Functions for Scop. ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Small functions that help with Scop and LLVM-IR.
//
//===----------------------------------------------------------------------===//
#include "polly/Support/ScopHelper.h"
#include "polly/ScopInfo.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/RegionInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/IR/CFG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
using namespace llvm;
#define DEBUG_TYPE "polly-scop-helper"
// Helper function for Scop
// TODO: Add assertion to not allow parameter to be null
//===----------------------------------------------------------------------===//
// Temporary Hack for extended region tree.
// Cast the region to loop if there is a loop have the same header and exit.
Loop *polly::castToLoop(const Region &R, LoopInfo &LI) {
BasicBlock *entry = R.getEntry();
if (!LI.isLoopHeader(entry))
return 0;
Loop *L = LI.getLoopFor(entry);
BasicBlock *exit = L->getExitBlock();
// Is the loop with multiple exits?
if (!exit)
return 0;
if (exit != R.getExit()) {
// SubRegion/ParentRegion with the same entry.
assert((R.getNode(R.getEntry())->isSubRegion() ||
R.getParent()->getEntry() == entry) &&
"Expect the loop is the smaller or bigger region");
return 0;
}
return L;
}
Value *polly::getPointerOperand(Instruction &Inst) {
if (LoadInst *load = dyn_cast<LoadInst>(&Inst))
return load->getPointerOperand();
else if (StoreInst *store = dyn_cast<StoreInst>(&Inst))
return store->getPointerOperand();
else if (GetElementPtrInst *gep = dyn_cast<GetElementPtrInst>(&Inst))
return gep->getPointerOperand();
return 0;
}
bool polly::hasInvokeEdge(const PHINode *PN) {
for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
if (InvokeInst *II = dyn_cast<InvokeInst>(PN->getIncomingValue(i)))
if (II->getParent() == PN->getIncomingBlock(i))
return true;
return false;
}
BasicBlock *polly::createSingleExitEdge(Region *R, Pass *P) {
BasicBlock *BB = R->getExit();
SmallVector<BasicBlock *, 4> Preds;
for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI)
if (R->contains(*PI))
Preds.push_back(*PI);
return SplitBlockPredecessors(BB, Preds, ".region", P);
}
static void replaceScopAndRegionEntry(polly::Scop *S, BasicBlock *OldEntry,
BasicBlock *NewEntry) {
for (polly::ScopStmt *Stmt : *S)
if (Stmt->getBasicBlock() == OldEntry) {
Stmt->setBasicBlock(NewEntry);
break;
}
S->getRegion().replaceEntryRecursive(NewEntry);
}
BasicBlock *polly::simplifyRegion(Scop *S, Pass *P) {
Region *R = &S->getRegion();
// The entering block for the region.
BasicBlock *EnteringBB = R->getEnteringBlock();
BasicBlock *OldEntry = R->getEntry();
BasicBlock *NewEntry = nullptr;
// Create single entry edge if the region has multiple entry edges.
if (!EnteringBB) {
NewEntry = SplitBlock(OldEntry, OldEntry->begin(), P);
EnteringBB = OldEntry;
}
// Create an unconditional entry edge.
if (EnteringBB->getTerminator()->getNumSuccessors() != 1) {
BasicBlock *EntryBB = NewEntry ? NewEntry : OldEntry;
BasicBlock *SplitEdgeBB = SplitEdge(EnteringBB, EntryBB, P);
// Once the edge between EnteringBB and EntryBB is split, two cases arise.
// The first is simple. The new block is inserted between EnteringBB and
// EntryBB. In this case no further action is needed. However it might
// happen (if the splitted edge is not critical) that the new block is
// inserted __after__ EntryBB causing the following situation:
//
// EnteringBB
// |
// / \
// | \-> some_other_BB_not_in_R
// V
// EntryBB
// |
// V
// SplitEdgeBB
//
// In this case we need to swap the role of EntryBB and SplitEdgeBB.
// Check which case SplitEdge produced:
if (SplitEdgeBB->getTerminator()->getSuccessor(0) == EntryBB) {
// First (simple) case.
EnteringBB = SplitEdgeBB;
} else {
// Second (complicated) case.
NewEntry = SplitEdgeBB;
EnteringBB = EntryBB;
}
EnteringBB->setName("polly.entering.block");
}
if (NewEntry)
replaceScopAndRegionEntry(S, OldEntry, NewEntry);
// Create single exit edge if the region has multiple exit edges.
if (!R->getExitingBlock()) {
BasicBlock *NewExit = createSingleExitEdge(R, P);
for (auto &&SubRegion : *R)
SubRegion->replaceExitRecursive(NewExit);
}
return EnteringBB;
}
void polly::splitEntryBlockForAlloca(BasicBlock *EntryBlock, Pass *P) {
// Find first non-alloca instruction. Every basic block has a non-alloc
// instruction, as every well formed basic block has a terminator.
BasicBlock::iterator I = EntryBlock->begin();
while (isa<AllocaInst>(I))
++I;
// SplitBlock updates DT, DF and LI.
BasicBlock *NewEntry = SplitBlock(EntryBlock, I, P);
if (RegionInfoPass *RIP = P->getAnalysisIfAvailable<RegionInfoPass>())
RIP->getRegionInfo().splitBlock(NewEntry, EntryBlock);
}