The bufferization analysis has been improved over the last months and this workaround is no longer needed.
71 lines
2.5 KiB
C++
71 lines
2.5 KiB
C++
//===- TensorCopyInsertion.cpp - Resolve Bufferization Conflicts w/ Copies ===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Bufferization/Transforms/Passes.h"
|
|
|
|
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
|
|
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
|
|
#include "mlir/Dialect/Bufferization/Transforms/Bufferize.h"
|
|
#include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h"
|
|
#include "mlir/Dialect/Bufferization/Transforms/OneShotModuleBufferize.h"
|
|
#include "mlir/Dialect/Bufferization/Transforms/Transforms.h"
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
|
|
namespace mlir {
|
|
namespace bufferization {
|
|
#define GEN_PASS_DEF_TENSORCOPYINSERTION
|
|
#include "mlir/Dialect/Bufferization/Transforms/Passes.h.inc"
|
|
} // namespace bufferization
|
|
} // namespace mlir
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::bufferization;
|
|
|
|
LogicalResult mlir::bufferization::insertTensorCopies(
|
|
Operation *op, const OneShotBufferizationOptions &options,
|
|
BufferizationStatistics *statistics) {
|
|
OneShotAnalysisState state(op, options);
|
|
// Run normal One-Shot Bufferize analysis or One-Shot Module Bufferize
|
|
// analysis depending on whether function boundary bufferization is enabled or
|
|
// not.
|
|
if (options.bufferizeFunctionBoundaries) {
|
|
if (failed(analyzeModuleOp(cast<ModuleOp>(op), state, statistics)))
|
|
return failure();
|
|
} else {
|
|
if (failed(analyzeOp(op, state, statistics)))
|
|
return failure();
|
|
}
|
|
|
|
if (options.testAnalysisOnly)
|
|
return success();
|
|
|
|
return insertTensorCopies(op, state);
|
|
}
|
|
|
|
LogicalResult
|
|
mlir::bufferization::insertTensorCopies(Operation *op,
|
|
const AnalysisState &state) {
|
|
IRRewriter rewriter(op->getContext());
|
|
|
|
WalkResult result = op->walk([&](Operation *op) {
|
|
auto bufferizableOp = state.getOptions().dynCastBufferizableOp(op);
|
|
if (!bufferizableOp)
|
|
return WalkResult::skip();
|
|
|
|
// Find inplacability conflicts and resolve them. (Typically with explicit
|
|
// tensor copies in the form of AllocTensorOps.)
|
|
rewriter.setInsertionPoint(op);
|
|
if (failed(bufferizableOp.resolveConflicts(rewriter, state)))
|
|
return WalkResult::interrupt();
|
|
|
|
return WalkResult::advance();
|
|
});
|
|
|
|
return failure(result.wasInterrupted());
|
|
}
|