Files
clang-p2996/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorConversion.cpp
wren romano 221856f5cd [mlir][sparse] Moved a conditional from the RT library to the generated MLIR.
When generating code to add an element to SparseTensorCOO (e.g., when doing dense=>sparse conversion), we used to check for nonzero values on the runtime side, whereas now we generate MLIR code to do that check.

Reviewed By: aartbik

Differential Revision: https://reviews.llvm.org/D110121
2021-09-23 12:44:17 -07:00

517 lines
20 KiB
C++

//===- SparseTensorLowering.cpp - Sparse tensor primitives conversion -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Convert sparse tensor primitives to calls into a runtime support library.
// Note that this is a current implementation choice to keep the conversion
// simple. In principle, these primitives could also be converted to actual
// elaborate IR code that implements the primitives on the selected sparse
// tensor storage schemes.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/SCF.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Transforms/DialectConversion.h"
using namespace mlir;
using namespace mlir::sparse_tensor;
namespace {
//===----------------------------------------------------------------------===//
// Helper methods.
//===----------------------------------------------------------------------===//
/// Returns internal type encoding for primary storage. Keep these
/// values consistent with the sparse runtime support library.
static unsigned getPrimaryTypeEncoding(Type tp) {
if (tp.isF64())
return 1;
if (tp.isF32())
return 2;
if (tp.isInteger(64))
return 3;
if (tp.isInteger(32))
return 4;
if (tp.isInteger(16))
return 5;
if (tp.isInteger(8))
return 6;
return 0;
}
/// Returns internal type encoding for overhead storage. Keep these
/// values consistent with the sparse runtime support library.
static unsigned getOverheadTypeEncoding(unsigned width) {
switch (width) {
default:
return 1;
case 32:
return 2;
case 16:
return 3;
case 8:
return 4;
}
}
/// Returns internal dimension level type encoding. Keep these
/// values consistent with the sparse runtime support library.
static unsigned
getDimLevelTypeEncoding(SparseTensorEncodingAttr::DimLevelType dlt) {
switch (dlt) {
case SparseTensorEncodingAttr::DimLevelType::Dense:
return 0;
case SparseTensorEncodingAttr::DimLevelType::Compressed:
return 1;
case SparseTensorEncodingAttr::DimLevelType::Singleton:
return 2;
}
llvm_unreachable("Unknown SparseTensorEncodingAttr::DimLevelType");
}
/// Returns integers of given width and values as a constant tensor.
/// We cast the static shape into a dynamic shape to ensure that the
/// method signature remains uniform across different tensor dimensions.
static Value getTensor(ConversionPatternRewriter &rewriter, unsigned width,
Location loc, ArrayRef<APInt> values) {
Type etp = rewriter.getIntegerType(width);
unsigned sz = values.size();
RankedTensorType tt1 = RankedTensorType::get({sz}, etp);
RankedTensorType tt2 = RankedTensorType::get({ShapedType::kDynamicSize}, etp);
auto elts =
rewriter.create<ConstantOp>(loc, DenseElementsAttr::get(tt1, values));
return rewriter.create<tensor::CastOp>(loc, tt2, elts);
}
/// Returns a function reference (first hit also inserts into module). Sets
/// the "_emit_c_interface" on the function declaration when requested,
/// so that LLVM lowering generates a wrapper function that takes care
/// of ABI complications with passing in and returning MemRefs to C functions.
static FlatSymbolRefAttr getFunc(Operation *op, StringRef name, Type resultType,
ValueRange operands,
bool emitCInterface = false) {
MLIRContext *context = op->getContext();
auto module = op->getParentOfType<ModuleOp>();
auto result = SymbolRefAttr::get(context, name);
auto func = module.lookupSymbol<FuncOp>(result.getAttr());
if (!func) {
OpBuilder moduleBuilder(module.getBodyRegion());
func = moduleBuilder.create<FuncOp>(
op->getLoc(), name,
FunctionType::get(context, operands.getTypes(), resultType));
func.setPrivate();
if (emitCInterface)
func->setAttr("llvm.emit_c_interface", UnitAttr::get(context));
}
return result;
}
/// Generates a call into the "swiss army knife" method of the sparse runtime
/// support library for materializing sparse tensors into the computation. The
/// method returns the call value and assigns the permutation to 'perm'.
static Value genNewCall(ConversionPatternRewriter &rewriter, Operation *op,
SparseTensorEncodingAttr &enc, uint32_t action,
Value &perm, Value ptr = Value()) {
Location loc = op->getLoc();
ShapedType resType = op->getResult(0).getType().cast<ShapedType>();
SmallVector<Value, 8> params;
// Sparsity annotations in tensor constant form.
SmallVector<APInt, 4> attrs;
unsigned sz = enc.getDimLevelType().size();
for (unsigned i = 0; i < sz; i++)
attrs.push_back(
APInt(8, getDimLevelTypeEncoding(enc.getDimLevelType()[i])));
params.push_back(getTensor(rewriter, 8, loc, attrs));
// Dimension sizes array of the enveloping *dense* tensor. Useful for either
// verification of external data, or for construction of internal data.
auto shape = resType.getShape();
SmallVector<APInt, 4> sizes;
for (unsigned i = 0; i < sz; i++) {
uint64_t s = shape[i] == ShapedType::kDynamicSize ? 0 : shape[i];
sizes.push_back(APInt(64, s));
}
params.push_back(getTensor(rewriter, 64, loc, sizes));
// Dimension order permutation array. This is the "identity" permutation by
// default, or otherwise the "reverse" permutation of a given ordering, so
// that indices can be mapped quickly to the right position.
SmallVector<APInt, 4> rev(sz);
if (AffineMap p = enc.getDimOrdering()) {
for (unsigned i = 0; i < sz; i++)
rev[p.getDimPosition(i)] = APInt(64, i);
} else {
for (unsigned i = 0; i < sz; i++)
rev[i] = APInt(64, i);
}
perm = getTensor(rewriter, 64, loc, rev);
params.push_back(perm);
// Secondary and primary types encoding.
unsigned secPtr = getOverheadTypeEncoding(enc.getPointerBitWidth());
unsigned secInd = getOverheadTypeEncoding(enc.getIndexBitWidth());
unsigned primary = getPrimaryTypeEncoding(resType.getElementType());
assert(primary);
params.push_back(
rewriter.create<ConstantOp>(loc, rewriter.getI64IntegerAttr(secPtr)));
params.push_back(
rewriter.create<ConstantOp>(loc, rewriter.getI64IntegerAttr(secInd)));
params.push_back(
rewriter.create<ConstantOp>(loc, rewriter.getI64IntegerAttr(primary)));
// User action and pointer.
Type pTp = LLVM::LLVMPointerType::get(IntegerType::get(op->getContext(), 8));
if (!ptr)
ptr = rewriter.create<LLVM::NullOp>(loc, pTp);
params.push_back(
rewriter.create<ConstantOp>(loc, rewriter.getI32IntegerAttr(action)));
params.push_back(ptr);
// Generate the call to create new tensor.
StringRef name = "newSparseTensor";
auto call = rewriter.create<CallOp>(
loc, pTp, getFunc(op, name, pTp, params, /*emitCInterface=*/true),
params);
return call.getResult(0);
}
/// Generates the comparison `v != 0` where `v` is of numeric type `t`.
/// For floating types, we use the "unordered" comparator (i.e., returns
/// true if `v` is NaN).
static Value genIsNonzero(ConversionPatternRewriter &rewriter, Location loc,
Type t, Value v) {
Value zero = rewriter.create<ConstantOp>(loc, rewriter.getZeroAttr(t));
if (t.isa<FloatType>())
return rewriter.create<CmpFOp>(loc, CmpFPredicate::UNE, v, zero);
if (t.isIntOrIndex())
return rewriter.create<CmpIOp>(loc, CmpIPredicate::ne, v, zero);
llvm_unreachable("Unknown element type");
}
/// Generates a call that adds one element to a coordinate scheme.
/// In particular, this generates code like the following:
/// val = a[i1,..,ik];
/// if val != 0
/// t->add(val, [i1,..,ik], [p1,..,pk]);
static void genAddEltCall(ConversionPatternRewriter &rewriter, Operation *op,
Value ptr, Value tensor, Value ind, Value perm,
ValueRange ivs) {
StringRef name;
Type eltType = tensor.getType().cast<ShapedType>().getElementType();
if (eltType.isF64())
name = "addEltF64";
else if (eltType.isF32())
name = "addEltF32";
else if (eltType.isInteger(64))
name = "addEltI64";
else if (eltType.isInteger(32))
name = "addEltI32";
else if (eltType.isInteger(16))
name = "addEltI16";
else if (eltType.isInteger(8))
name = "addEltI8";
else
llvm_unreachable("Unknown element type");
Location loc = op->getLoc();
Value val = rewriter.create<tensor::ExtractOp>(loc, tensor, ivs);
Value cond = genIsNonzero(rewriter, loc, eltType, val);
scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, cond, /*else*/ false);
rewriter.setInsertionPointToStart(&ifOp.thenRegion().front());
unsigned i = 0;
for (auto iv : ivs) {
Value idx = rewriter.create<ConstantOp>(loc, rewriter.getIndexAttr(i++));
rewriter.create<memref::StoreOp>(loc, iv, ind, idx);
}
SmallVector<Value, 8> params;
params.push_back(ptr);
params.push_back(val);
params.push_back(ind);
params.push_back(perm);
Type pTp = LLVM::LLVMPointerType::get(IntegerType::get(op->getContext(), 8));
rewriter.create<CallOp>(
loc, pTp, getFunc(op, name, pTp, params, /*emitCInterface=*/true),
params);
}
//===----------------------------------------------------------------------===//
// Conversion rules.
//===----------------------------------------------------------------------===//
/// Sparse conversion rule for returns.
class SparseReturnConverter : public OpConversionPattern<ReturnOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ReturnOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<ReturnOp>(op, operands);
return success();
}
};
/// Sparse conversion rule for dimension accesses.
class SparseTensorToDimSizeConverter
: public OpConversionPattern<tensor::DimOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(tensor::DimOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
Type resType = op.getType();
auto enc = getSparseTensorEncoding(op.source().getType());
if (!enc)
return failure();
// Permute the dim index.
Optional<int64_t> index = op.getConstantIndex();
if (!index.hasValue())
return failure();
int64_t idx = index.getValue();
if (AffineMap p = enc.getDimOrdering())
idx = p.getPermutedPosition(idx);
// Generate the call.
StringRef name = "sparseDimSize";
SmallVector<Value, 2> params;
params.push_back(operands[0]);
params.push_back(
rewriter.create<ConstantOp>(op.getLoc(), rewriter.getIndexAttr(idx)));
rewriter.replaceOpWithNewOp<CallOp>(
op, resType, getFunc(op, name, resType, params), params);
return success();
}
};
/// Sparse conversion rule for the new operator.
class SparseTensorNewConverter : public OpConversionPattern<NewOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(NewOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
Type resType = op.getType();
auto enc = getSparseTensorEncoding(resType);
if (!enc)
return failure();
Value perm;
rewriter.replaceOp(op, genNewCall(rewriter, op, enc, 0, perm, operands[0]));
return success();
}
};
/// Sparse conversion rule for the convert operator.
class SparseTensorConvertConverter : public OpConversionPattern<ConvertOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ConvertOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
Type resType = op.getType();
auto encDst = getSparseTensorEncoding(resType);
auto encSrc = getSparseTensorEncoding(op.source().getType());
if (encDst && encSrc) {
// This is a sparse => sparse conversion, which is handled as follows:
// t = src->asCOO(); ; src to COO in dst order
// dst = newSparseTensor(t)
// Using the coordinate scheme as an intermediate does not always
// yield the fastest conversion but avoids the need for a full
// O(N^2) conversion matrix.
Value perm;
Value coo = genNewCall(rewriter, op, encDst, 3, perm, operands[0]);
rewriter.replaceOp(op, genNewCall(rewriter, op, encDst, 1, perm, coo));
return success();
}
if (!encDst || encSrc) {
// TODO: sparse => dense
return failure();
}
// This is a dense => sparse conversion, which is handled as follows:
// t = newSparseCOO()
// for i1 in dim1
// ..
// for ik in dimk
// val = a[i1,..,ik]
// if val != 0
// t->add(val, [i1,..,ik], [p1,..,pk])
// s = newSparseTensor(t)
// Note that the dense tensor traversal code is actually implemented
// using MLIR IR to avoid having to expose too much low-level
// memref traversal details to the runtime support library.
// Also note that the code below only generates the "new" ops and
// the loop-nest per se; whereas the entire body of the innermost
// loop is generated by genAddElt().
Location loc = op->getLoc();
ShapedType shape = resType.cast<ShapedType>();
auto memTp =
MemRefType::get({ShapedType::kDynamicSize}, rewriter.getIndexType());
Value perm;
Value ptr = genNewCall(rewriter, op, encDst, 2, perm);
Value tensor = operands[0];
Value arg = rewriter.create<ConstantOp>(
loc, rewriter.getIndexAttr(shape.getRank()));
Value ind = rewriter.create<memref::AllocaOp>(loc, memTp, ValueRange{arg});
SmallVector<Value> lo;
SmallVector<Value> hi;
SmallVector<Value> st;
Value zero = rewriter.create<ConstantOp>(loc, rewriter.getIndexAttr(0));
Value one = rewriter.create<ConstantOp>(loc, rewriter.getIndexAttr(1));
for (unsigned i = 0, rank = shape.getRank(); i < rank; i++) {
lo.push_back(zero);
hi.push_back(linalg::createOrFoldDimOp(rewriter, loc, tensor, i));
st.push_back(one);
}
scf::buildLoopNest(rewriter, op.getLoc(), lo, hi, st, {},
[&](OpBuilder &builder, Location loc, ValueRange ivs,
ValueRange args) -> scf::ValueVector {
genAddEltCall(rewriter, op, ptr, tensor, ind, perm,
ivs);
return {};
});
rewriter.replaceOp(op, genNewCall(rewriter, op, encDst, 1, perm, ptr));
return success();
}
};
/// Sparse conversion rule for pointer accesses.
class SparseTensorToPointersConverter
: public OpConversionPattern<ToPointersOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ToPointersOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
Type resType = op.getType();
Type eltType = resType.cast<ShapedType>().getElementType();
StringRef name;
if (eltType.isIndex())
name = "sparsePointers";
else if (eltType.isInteger(64))
name = "sparsePointers64";
else if (eltType.isInteger(32))
name = "sparsePointers32";
else if (eltType.isInteger(16))
name = "sparsePointers16";
else if (eltType.isInteger(8))
name = "sparsePointers8";
else
return failure();
rewriter.replaceOpWithNewOp<CallOp>(
op, resType,
getFunc(op, name, resType, operands, /*emitCInterface=*/true),
operands);
return success();
}
};
/// Sparse conversion rule for index accesses.
class SparseTensorToIndicesConverter : public OpConversionPattern<ToIndicesOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ToIndicesOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
Type resType = op.getType();
Type eltType = resType.cast<ShapedType>().getElementType();
StringRef name;
if (eltType.isIndex())
name = "sparseIndices";
else if (eltType.isInteger(64))
name = "sparseIndices64";
else if (eltType.isInteger(32))
name = "sparseIndices32";
else if (eltType.isInteger(16))
name = "sparseIndices16";
else if (eltType.isInteger(8))
name = "sparseIndices8";
else
return failure();
rewriter.replaceOpWithNewOp<CallOp>(
op, resType,
getFunc(op, name, resType, operands, /*emitCInterface=*/true),
operands);
return success();
}
};
/// Sparse conversion rule for value accesses.
class SparseTensorToValuesConverter : public OpConversionPattern<ToValuesOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ToValuesOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
Type resType = op.getType();
Type eltType = resType.cast<ShapedType>().getElementType();
StringRef name;
if (eltType.isF64())
name = "sparseValuesF64";
else if (eltType.isF32())
name = "sparseValuesF32";
else if (eltType.isInteger(64))
name = "sparseValuesI64";
else if (eltType.isInteger(32))
name = "sparseValuesI32";
else if (eltType.isInteger(16))
name = "sparseValuesI16";
else if (eltType.isInteger(8))
name = "sparseValuesI8";
else
return failure();
rewriter.replaceOpWithNewOp<CallOp>(
op, resType,
getFunc(op, name, resType, operands, /*emitCInterface=*/true),
operands);
return success();
}
};
/// Sparse conversion rule for tensor reconstruction.
class SparseTensorToTensorConverter : public OpConversionPattern<ToTensorOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
// Simply fold the operator into the pointer to the sparse storage scheme.
matchAndRewrite(ToTensorOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
// Check that all arguments of the tensor reconstruction operators are calls
// into the support library that query exactly the same opaque pointer.
Value ptr;
for (Value op : operands) {
if (auto call = op.getDefiningOp<CallOp>()) {
Value arg = call.getOperand(0);
if (!arg.getType().isa<LLVM::LLVMPointerType>())
return failure();
if (!ptr)
ptr = arg;
else if (arg != ptr)
return failure();
}
}
// If a single opaque pointer is found, perform the folding.
if (!ptr)
return failure();
rewriter.replaceOp(op, ptr);
return success();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Public method for populating conversion rules.
//===----------------------------------------------------------------------===//
/// Populates the given patterns list with conversion rules required for
/// the sparsification of linear algebra operations.
void mlir::populateSparseTensorConversionPatterns(TypeConverter &typeConverter,
RewritePatternSet &patterns) {
patterns.add<SparseReturnConverter, SparseTensorToDimSizeConverter,
SparseTensorNewConverter, SparseTensorConvertConverter,
SparseTensorToPointersConverter, SparseTensorToIndicesConverter,
SparseTensorToValuesConverter, SparseTensorToTensorConverter>(
typeConverter, patterns.getContext());
}