Files
clang-p2996/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorConversion.cpp
Aart Bik 22212ca745 [mlir][sparse] simplify some header code (#70989)
This is a first revision in a small series of changes that removes
duplications between direct encoding methods and sparse tensor type
wrapper methods (in favor of the latter abstraction, since it provides
more safety). The goal is to simply end up with "just" SparseTensorType
2023-11-02 09:31:11 -07:00

758 lines
32 KiB
C++

//===- SparseTensorConversion.cpp - Sparse tensor primitives conversion ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// A pass that converts sparse tensor primitives into calls into a runtime
// support library. Sparse tensor types are converted into opaque pointers
// to the underlying sparse storage schemes. The use of opaque pointers
// together with runtime support library keeps the conversion relatively
// simple, but at the expense of IR opacity, which obscures opportunities
// for subsequent optimization of the IR. An alternative is provided by
// the SparseTensorCodegen pass.
//
//===----------------------------------------------------------------------===//
#include "CodegenUtils.h"
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SparseTensor/IR/Enums.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensorType.h"
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Transforms/DialectConversion.h"
using namespace mlir;
using namespace mlir::sparse_tensor;
namespace {
//===----------------------------------------------------------------------===//
// Helper methods.
//===----------------------------------------------------------------------===//
/// Maps each sparse tensor type to an opaque pointer.
static std::optional<Type> convertSparseTensorTypes(Type type) {
if (getSparseTensorEncoding(type) != nullptr)
return LLVM::LLVMPointerType::get(type.getContext());
return std::nullopt;
}
/// Replaces the `op` with a `CallOp` to the `getFunc()` function reference.
static func::CallOp replaceOpWithFuncCall(RewriterBase &rewriter, Operation *op,
StringRef name, TypeRange resultType,
ValueRange operands,
EmitCInterface emitCInterface) {
auto fn = getFunc(op->getParentOfType<ModuleOp>(), name, resultType, operands,
emitCInterface);
return rewriter.replaceOpWithNewOp<func::CallOp>(op, resultType, fn,
operands);
}
/// Generates call to lookup a level-size. N.B., this only generates
/// the raw function call, and therefore (intentionally) does not perform
/// any dim<->lvl conversion or other logic.
static Value genLvlSizeCall(OpBuilder &builder, Location loc, Value tensor,
uint64_t lvl) {
StringRef name = "sparseLvlSize";
SmallVector<Value, 2> params{tensor, constantIndex(builder, loc, lvl)};
Type iTp = builder.getIndexType();
return createFuncCall(builder, loc, name, iTp, params, EmitCInterface::Off)
.getResult(0);
}
/// Generates call to lookup a dimension-size. N.B., this only generates
/// the raw function call, and therefore (intentionally) does not perform
/// any dim<->lvl conversion or other logic.
static Value genDimSizeCall(OpBuilder &builder, Location loc, Value tensor,
uint64_t dim) {
StringRef name = "sparseDimSize";
SmallVector<Value, 2> params{tensor, constantIndex(builder, loc, dim)};
Type iTp = builder.getIndexType();
return createFuncCall(builder, loc, name, iTp, params, EmitCInterface::Off)
.getResult(0);
}
/// Looks up a level-size by returning a statically-computed constant
/// (when possible), or by calling `genLvlSizeCall` (when dynamic).
static Value createOrFoldLvlCall(OpBuilder &builder, Location loc,
SparseTensorType stt, Value tensor,
Level lvl) {
// Only sparse tensors have "levels" to query.
assert(stt.hasEncoding());
// TODO: The following implementation only handles permutations;
// we'll need to generalize this to handle arbitrary AffineExpr.
//
// There's no need to assert `isPermutation` here: because
// `getDimPosition` checks that the expr isa `AffineDimExpr`,
// which is all we care about (for supporting permutations).
const Dimension dim =
stt.isIdentity() ? lvl : stt.getDimToLvl().getDimPosition(lvl);
const Size sz = stt.getDynamicDimSize(dim);
if (!ShapedType::isDynamic(sz))
return constantIndex(builder, loc, sz);
// If we cannot statically compute the size from the shape, then we
// must dynamically query it. (In principle we could also dynamically
// compute it, but since we already did so to construct the `tensor`
// in the first place, we might as well query rather than recompute.)
return genLvlSizeCall(builder, loc, tensor, lvl);
}
/// Looks up a dimension-size by returning a constant from the shape
/// (for static sizes), or by calling `genDimSizeCall` (for dynamic sizes
/// of sparse tensors) or `linalg::createOrFoldDimOp` (for dynamic sizes
/// of dense tensors).
static Value createOrFoldDimCall(OpBuilder &builder, Location loc,
SparseTensorType stt, Value tensor,
Dimension dim) {
const Size sz = stt.getDynamicDimSize(dim);
if (!ShapedType::isDynamic(sz))
return constantIndex(builder, loc, sz);
if (stt.hasEncoding())
return genDimSizeCall(builder, loc, tensor, dim);
return linalg::createOrFoldDimOp(builder, loc, tensor, dim);
}
/// Populates the array with the dimension-sizes of the given tensor.
static void fillDimSizes(OpBuilder &builder, Location loc, SparseTensorType stt,
Value tensor, SmallVectorImpl<Value> &out) {
const Dimension dimRank = stt.getDimRank();
out.clear();
out.reserve(dimRank);
for (Dimension d = 0; d < dimRank; d++)
out.push_back(createOrFoldDimCall(builder, loc, stt, tensor, d));
}
/// Returns an array with the dimension-sizes of the given tensor.
/// If the *tensor* parameters is null, the tensor type is assumed to have a
/// static shape.
static SmallVector<Value> getDimSizes(OpBuilder &builder, Location loc,
SparseTensorType stt,
Value tensor = Value()) {
SmallVector<Value> out;
fillDimSizes(builder, loc, stt, tensor, out);
return out;
}
/// Generates an uninitialized buffer of the given size and type,
/// but returns it as type `memref<? x $tp>` (rather than as type
/// `memref<$sz x $tp>`). Unlike temporary buffers on the stack,
/// this buffer must be explicitly deallocated by client.
static Value genAlloc(RewriterBase &rewriter, Location loc, Value sz, Type tp) {
auto memTp = MemRefType::get({ShapedType::kDynamic}, tp);
return rewriter.create<memref::AllocOp>(loc, memTp, ValueRange{sz});
}
/// Generates a temporary buffer for the level-types of the given encoding.
static Value genLvlTypesBuffer(OpBuilder &builder, Location loc,
SparseTensorType stt) {
SmallVector<Value> lvlTypes;
lvlTypes.reserve(stt.getLvlRank());
for (const auto dlt : stt.getEncoding().getLvlTypes())
lvlTypes.push_back(constantDimLevelTypeEncoding(builder, loc, dlt));
return allocaBuffer(builder, loc, lvlTypes);
}
/// Extracts the bare (aligned) pointers that point to the tensor.
static Value extractBarePtrFromTensor(OpBuilder &builder, Location loc,
Value tensor) {
auto buf = genToMemref(builder, loc, tensor);
return builder.create<memref::ExtractAlignedPointerAsIndexOp>(loc, buf);
}
/// Generates a temporary buffer for the level-types of the given encoding.
static Value genLvlPtrsBuffers(OpBuilder &builder, Location loc,
ValueRange lvlTensors, Value valTensor) {
SmallVector<Value> lvlBarePtrs;
lvlBarePtrs.reserve(lvlTensors.size() + 1);
// Passing in lvl buffer pointers.
for (const auto lvl : lvlTensors)
lvlBarePtrs.push_back(extractBarePtrFromTensor(builder, loc, lvl));
// Passing in value buffer pointers.
lvlBarePtrs.push_back(extractBarePtrFromTensor(builder, loc, valTensor));
Value idxPtr = builder.create<memref::ExtractAlignedPointerAsIndexOp>(
loc, allocaBuffer(builder, loc, lvlBarePtrs));
Value idxCast =
builder.create<arith::IndexCastOp>(loc, builder.getI64Type(), idxPtr);
return builder.create<LLVM::IntToPtrOp>(loc, getOpaquePointerType(builder),
idxCast);
}
/// This class abstracts over the API of `_mlir_ciface_newSparseTensor`:
/// the "swiss army knife" method of the sparse runtime support library
/// for materializing sparse tensors into the computation. This abstraction
/// reduces the need for modifications when the API changes.
class NewCallParams final {
public:
/// Allocates the `ValueRange` for the `func::CallOp` parameters.
NewCallParams(OpBuilder &builder, Location loc)
: builder(builder), loc(loc), pTp(getOpaquePointerType(builder)) {}
/// Initializes all static parameters (i.e., those which indicate
/// type-level information such as the encoding and sizes), generating
/// MLIR buffers as needed, and returning `this` for method chaining.
NewCallParams &genBuffers(SparseTensorType stt,
ArrayRef<Value> dimSizesValues,
Value dimSizesBuffer = Value()) {
assert(dimSizesValues.size() == static_cast<size_t>(stt.getDimRank()));
// Sparsity annotations.
params[kParamLvlTypes] = genLvlTypesBuffer(builder, loc, stt);
// Construct dimSizes, lvlSizes, dim2lvl, and lvl2dim buffers.
params[kParamDimSizes] = dimSizesBuffer
? dimSizesBuffer
: allocaBuffer(builder, loc, dimSizesValues);
params[kParamLvlSizes] =
genMapBuffers(builder, loc, stt, dimSizesValues, params[kParamDimSizes],
params[kParamDim2Lvl], params[kParamLvl2Dim]);
// Secondary and primary types encoding.
const auto enc = stt.getEncoding();
params[kParamPosTp] = constantPosTypeEncoding(builder, loc, enc);
params[kParamCrdTp] = constantCrdTypeEncoding(builder, loc, enc);
params[kParamValTp] =
constantPrimaryTypeEncoding(builder, loc, stt.getElementType());
// Return `this` for method chaining.
return *this;
}
/// Checks whether all the static parameters have been initialized.
bool isInitialized() const {
for (unsigned i = 0; i < kNumStaticParams; ++i)
if (!params[i])
return false;
return true;
}
/// Generates a function call, with the current static parameters
/// and the given dynamic arguments.
Value genNewCall(Action action, Value ptr = Value()) {
assert(isInitialized() && "Must initialize before genNewCall");
StringRef name = "newSparseTensor";
params[kParamAction] = constantAction(builder, loc, action);
params[kParamPtr] = ptr ? ptr : builder.create<LLVM::ZeroOp>(loc, pTp);
return createFuncCall(builder, loc, name, pTp, params, EmitCInterface::On)
.getResult(0);
}
private:
static constexpr unsigned kNumStaticParams = 8;
static constexpr unsigned kNumDynamicParams = 2;
static constexpr unsigned kNumParams = kNumStaticParams + kNumDynamicParams;
static constexpr unsigned kParamDimSizes = 0;
static constexpr unsigned kParamLvlSizes = 1;
static constexpr unsigned kParamLvlTypes = 2;
static constexpr unsigned kParamDim2Lvl = 3;
static constexpr unsigned kParamLvl2Dim = 4;
static constexpr unsigned kParamPosTp = 5;
static constexpr unsigned kParamCrdTp = 6;
static constexpr unsigned kParamValTp = 7;
static constexpr unsigned kParamAction = 8;
static constexpr unsigned kParamPtr = 9;
OpBuilder &builder;
Location loc;
Type pTp;
Value params[kNumParams];
};
/// Generates a call to obtain the values array.
static Value genValuesCall(OpBuilder &builder, Location loc, ShapedType tp,
ValueRange ptr) {
SmallString<15> name{"sparseValues",
primaryTypeFunctionSuffix(tp.getElementType())};
return createFuncCall(builder, loc, name, tp, ptr, EmitCInterface::On)
.getResult(0);
}
//===----------------------------------------------------------------------===//
// Conversion rules.
//===----------------------------------------------------------------------===//
/// Sparse conversion rule for returns.
class SparseReturnConverter : public OpConversionPattern<func::ReturnOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(func::ReturnOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<func::ReturnOp>(op, adaptor.getOperands());
return success();
}
};
/// Sparse conversion rule for accessing level-sizes.
class SparseTensorLvlOpConverter : public OpConversionPattern<LvlOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(LvlOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
const auto stt = getSparseTensorType(op.getSource());
// Only rewrite sparse DimOp.
if (!stt.hasEncoding())
return failure();
// Only rewrite DimOp with constant index.
std::optional<int64_t> lvl = op.getConstantLvlIndex();
if (!lvl)
return failure();
// By now, if the level size is constant, the operation should have already
// been folded by LvlOp's folder, so we generate the call unconditionally.
Value src = adaptor.getOperands()[0];
rewriter.replaceOp(op, genLvlSizeCall(rewriter, op.getLoc(), src, *lvl));
return success();
}
};
/// Sparse conversion rule for trivial tensor casts.
class SparseCastConverter : public OpConversionPattern<tensor::CastOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(tensor::CastOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Only rewrite identically annotated source/dest.
auto encDst = getSparseTensorEncoding(op.getType());
auto encSrc = getSparseTensorEncoding(op.getSource().getType());
if (!encDst || encDst != encSrc)
return failure();
rewriter.replaceOp(op, adaptor.getOperands());
return success();
}
};
class SparseReMapConverter : public OpConversionPattern<ReinterpretMapOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ReinterpretMapOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Simply fold the operation.
rewriter.replaceOp(op, adaptor.getSource());
return success();
}
};
/// Sparse conversion rule for the new operator.
class SparseTensorNewConverter : public OpConversionPattern<NewOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(NewOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
const auto stt = getSparseTensorType(op);
if (!stt.hasEncoding())
return failure();
// Construct the `reader` opening method calls.
SmallVector<Value> dimShapesValues;
Value dimSizesBuffer;
Value reader = genReader(rewriter, loc, stt, adaptor.getOperands()[0],
dimShapesValues, dimSizesBuffer);
// Use the `reader` to parse the file.
Value tensor = NewCallParams(rewriter, loc)
.genBuffers(stt, dimShapesValues, dimSizesBuffer)
.genNewCall(Action::kFromReader, reader);
// Free the memory for `reader`.
createFuncCall(rewriter, loc, "delSparseTensorReader", {}, {reader},
EmitCInterface::Off);
rewriter.replaceOp(op, tensor);
return success();
}
};
/// Sparse conversion rule for the alloc operator.
/// TODO(springerm): remove when bufferization.alloc_tensor is gone
class SparseTensorAllocConverter
: public OpConversionPattern<bufferization::AllocTensorOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(bufferization::AllocTensorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (op.getCopy())
return rewriter.notifyMatchFailure(op,
"sparse tensor copy not implemented");
Location loc = op.getLoc();
const auto stt = getSparseTensorType(op);
if (!stt.hasEncoding())
return failure();
// Gather all dimension sizes as SSA values.
const Dimension dimRank = stt.getDimRank();
SmallVector<Value> dimSizes;
dimSizes.reserve(dimRank);
unsigned operandCtr = 0;
for (Dimension d = 0; d < dimRank; ++d) {
dimSizes.push_back(
stt.isDynamicDim(d)
? adaptor.getOperands()[operandCtr++]
: constantIndex(rewriter, loc, op.getStaticSize(d)));
}
// Generate the call to construct empty tensor. The sizes are
// explicitly defined by the arguments to the alloc operator.
rewriter.replaceOp(op, NewCallParams(rewriter, loc)
.genBuffers(stt, dimSizes)
.genNewCall(Action::kEmpty));
return success();
}
};
/// Sparse conversion rule for the empty tensor.
class SparseTensorEmptyConverter : public OpConversionPattern<tensor::EmptyOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(tensor::EmptyOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
const auto stt = getSparseTensorType(op);
if (!stt.hasEncoding())
return failure();
// Gather all dimension sizes as SSA values.
const Dimension dimRank = stt.getDimRank();
SmallVector<Value> dimSizes;
dimSizes.reserve(dimRank);
auto shape = op.getType().getShape();
unsigned operandCtr = 0;
for (Dimension d = 0; d < dimRank; ++d) {
dimSizes.push_back(stt.isDynamicDim(d)
? adaptor.getOperands()[operandCtr++]
: constantIndex(rewriter, loc, shape[d]));
}
// Generate the call to construct empty tensor. The sizes are
// explicitly defined by the arguments to the alloc operator.
rewriter.replaceOp(op, NewCallParams(rewriter, loc)
.genBuffers(stt, dimSizes)
.genNewCall(Action::kEmpty));
return success();
}
};
/// Sparse conversion rule for the convert operator.
class SparseTensorReorderCOOConverter
: public OpConversionPattern<ReorderCOOOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ReorderCOOOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
const Location loc = op->getLoc();
const auto srcTp = getSparseTensorType(op.getInputCoo());
const auto dstTp = getSparseTensorType(op);
const Value src = adaptor.getInputCoo();
NewCallParams params(rewriter, loc);
SmallVector<Value> dimSizes = getDimSizes(rewriter, loc, srcTp, src);
rewriter.replaceOp(op, params.genBuffers(dstTp, dimSizes)
.genNewCall(Action::kSortCOOInPlace, src));
return success();
}
};
/// Sparse conversion rule for the dealloc operator.
class SparseTensorDeallocConverter
: public OpConversionPattern<bufferization::DeallocTensorOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(bufferization::DeallocTensorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (!getSparseTensorType(op.getTensor()).hasEncoding())
return failure();
StringRef name = "delSparseTensor";
createFuncCall(rewriter, op->getLoc(), name, {}, adaptor.getOperands(),
EmitCInterface::Off);
rewriter.eraseOp(op);
return success();
}
};
/// Sparse conversion rule for position accesses.
class SparseTensorToPositionsConverter
: public OpConversionPattern<ToPositionsOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ToPositionsOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Type resTp = op.getType();
Type posTp = cast<ShapedType>(resTp).getElementType();
SmallString<17> name{"sparsePositions", overheadTypeFunctionSuffix(posTp)};
Value lvl = constantIndex(rewriter, op->getLoc(), op.getLevel());
replaceOpWithFuncCall(rewriter, op, name, resTp, {adaptor.getTensor(), lvl},
EmitCInterface::On);
return success();
}
};
/// Sparse conversion rule for coordinate accesses.
class SparseTensorToCoordinatesConverter
: public OpConversionPattern<ToCoordinatesOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ToCoordinatesOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// TODO: use `SparseTensorType::getCrdType` instead.
Type resType = op.getType();
const Type crdTp = cast<ShapedType>(resType).getElementType();
SmallString<19> name{"sparseCoordinates",
overheadTypeFunctionSuffix(crdTp)};
Location loc = op->getLoc();
Value lvl = constantIndex(rewriter, loc, op.getLevel());
// The function returns a MemRef without a layout.
MemRefType callRetType = get1DMemRefType(crdTp, false);
SmallVector<Value> operands{adaptor.getTensor(), lvl};
auto fn = getFunc(op->getParentOfType<ModuleOp>(), name, callRetType,
operands, EmitCInterface::On);
Value callRet =
rewriter.create<func::CallOp>(loc, callRetType, fn, operands)
.getResult(0);
// Cast the MemRef type to the type expected by the users, though these
// two types should be compatible at runtime.
if (resType != callRetType)
callRet = rewriter.create<memref::CastOp>(loc, resType, callRet);
rewriter.replaceOp(op, callRet);
return success();
}
};
/// Sparse conversion rule for value accesses.
class SparseTensorToValuesConverter : public OpConversionPattern<ToValuesOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ToValuesOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto resType = cast<ShapedType>(op.getType());
rewriter.replaceOp(op, genValuesCall(rewriter, op.getLoc(), resType,
adaptor.getOperands()));
return success();
}
};
/// Sparse conversion rule for number of entries operator.
class SparseNumberOfEntriesConverter
: public OpConversionPattern<NumberOfEntriesOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(NumberOfEntriesOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
// Query values array size for the actually stored values size.
Type eltType = cast<ShapedType>(op.getTensor().getType()).getElementType();
auto resTp = MemRefType::get({ShapedType::kDynamic}, eltType);
Value values = genValuesCall(rewriter, loc, resTp, adaptor.getOperands());
rewriter.replaceOpWithNewOp<memref::DimOp>(op, values,
constantIndex(rewriter, loc, 0));
return success();
}
};
/// Sparse conversion rule for tensor rematerialization.
class SparseTensorLoadConverter : public OpConversionPattern<LoadOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(LoadOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (op.getHasInserts()) {
// Finalize any pending insertions.
StringRef name = "endLexInsert";
createFuncCall(rewriter, op->getLoc(), name, {}, adaptor.getOperands(),
EmitCInterface::Off);
}
rewriter.replaceOp(op, adaptor.getOperands());
return success();
}
};
/// Sparse conversion rule for the insertion operator.
class SparseTensorInsertConverter : public OpConversionPattern<InsertOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(InsertOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Note that the current regime only allows for strict lexicographic
// coordinate order. All values are passed by reference through stack
// allocated memrefs.
Location loc = op->getLoc();
const auto stt = getSparseTensorType(op.getTensor());
const auto elemTp = stt.getElementType();
const Level lvlRank = stt.getLvlRank();
Value lvlCoords, vref;
{
OpBuilder::InsertionGuard guard(rewriter);
Operation *loop = op;
// Finds the outermost loop.
while (auto l = loop->getParentOfType<LoopLikeOpInterface>())
loop = l;
if (llvm::isa<LoopLikeOpInterface>(loop)) {
// Hoists alloca outside the loop to avoid stack overflow.
rewriter.setInsertionPoint(loop);
}
lvlCoords = genAlloca(rewriter, loc, lvlRank, rewriter.getIndexType());
vref = genAllocaScalar(rewriter, loc, elemTp);
}
storeAll(rewriter, loc, lvlCoords, adaptor.getLvlCoords());
rewriter.create<memref::StoreOp>(loc, adaptor.getValue(), vref);
SmallString<12> name{"lexInsert", primaryTypeFunctionSuffix(elemTp)};
createFuncCall(rewriter, loc, name, {},
{adaptor.getTensor(), lvlCoords, vref}, EmitCInterface::On);
rewriter.replaceOp(op, adaptor.getTensor());
return success();
}
};
/// Sparse conversion rule for the expand operator.
class SparseTensorExpandConverter : public OpConversionPattern<ExpandOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ExpandOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
const auto srcTp = getSparseTensorType(op.getTensor());
Type eltType = srcTp.getElementType();
Type boolType = rewriter.getIntegerType(1);
Type idxType = rewriter.getIndexType();
// All initialization should be done on entry of the loop nest.
rewriter.setInsertionPointAfter(op.getTensor().getDefiningOp());
// Get the cardinality of valid coordinates for the innermost level.
Value sz = createOrFoldLvlCall(rewriter, loc, srcTp, adaptor.getTensor(),
srcTp.getLvlRank() - 1);
// Allocate temporary buffers for values, filled-switch, and coordinates.
// We do not use stack buffers for this, since the expanded size may
// be rather large (as it envelops a single expanded dense dimension).
Value values = genAlloc(rewriter, loc, sz, eltType);
Value filled = genAlloc(rewriter, loc, sz, boolType);
Value lastLvlCoordinates = genAlloc(rewriter, loc, sz, idxType);
Value zero = constantZero(rewriter, loc, idxType);
// Reset the values/filled-switch to all-zero/false. Note that this
// introduces an O(N) operation into the computation, but this reset
// operation is amortized over the innermost loops for the access
// pattern expansion. As noted in the operation doc, we would like
// to amortize this setup cost even between kernels.
rewriter.create<linalg::FillOp>(
loc, ValueRange{constantZero(rewriter, loc, eltType)},
ValueRange{values});
rewriter.create<linalg::FillOp>(
loc, ValueRange{constantZero(rewriter, loc, boolType)},
ValueRange{filled});
// Replace expansion op with these buffers and initial coordinate.
assert(op.getNumResults() == 4);
rewriter.replaceOp(op, {values, filled, lastLvlCoordinates, zero});
return success();
}
};
/// Sparse conversion rule for the compress operator.
class SparseTensorCompressConverter : public OpConversionPattern<CompressOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(CompressOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
// Note that this method call resets the values/filled-switch back to
// all-zero/false by only iterating over the set elements, so the
// complexity remains proportional to the sparsity of the expanded
// access pattern.
Value values = adaptor.getValues();
Value filled = adaptor.getFilled();
Value added = adaptor.getAdded();
Value count = adaptor.getCount();
Value tensor = adaptor.getTensor();
const auto stt = getSparseTensorType(op.getTensor());
const Type elemTp = stt.getElementType();
const Level lvlRank = stt.getLvlRank();
auto lvlCoords = genAlloca(rewriter, loc, lvlRank, rewriter.getIndexType());
storeAll(rewriter, loc, lvlCoords, adaptor.getLvlCoords());
SmallString<12> name{"expInsert", primaryTypeFunctionSuffix(elemTp)};
createFuncCall(rewriter, loc, name, {},
{tensor, lvlCoords, values, filled, added, count},
EmitCInterface::On);
rewriter.replaceOp(op, adaptor.getTensor());
// Deallocate the buffers on exit of the loop nest.
Operation *parent = getTop(op);
rewriter.setInsertionPointAfter(parent);
rewriter.create<memref::DeallocOp>(loc, values);
rewriter.create<memref::DeallocOp>(loc, filled);
rewriter.create<memref::DeallocOp>(loc, added);
return success();
}
};
/// Sparse conversion rule for the sparse_tensor.pack operator.
class SparseTensorAssembleConverter : public OpConversionPattern<AssembleOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AssembleOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
const Location loc = op->getLoc();
const auto dstTp = getSparseTensorType(op.getResult());
// AssembleOps always returns a static shaped tensor result.
assert(dstTp.hasStaticDimShape());
SmallVector<Value> dimSizes = getDimSizes(rewriter, loc, dstTp);
Value dst =
NewCallParams(rewriter, loc)
.genBuffers(dstTp.withoutDimToLvl(), dimSizes)
.genNewCall(Action::kPack,
genLvlPtrsBuffers(rewriter, loc, adaptor.getLevels(),
adaptor.getValues()));
rewriter.replaceOp(op, dst);
return success();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Sparse tensor type conversion into opaque pointer.
//===----------------------------------------------------------------------===//
mlir::SparseTensorTypeToPtrConverter::SparseTensorTypeToPtrConverter() {
addConversion([](Type type) { return type; });
addConversion(convertSparseTensorTypes);
}
//===----------------------------------------------------------------------===//
// Public method for populating conversion rules.
//===----------------------------------------------------------------------===//
/// Populates the given patterns list with conversion rules required for
/// the sparsification of linear algebra operations.
void mlir::populateSparseTensorConversionPatterns(TypeConverter &typeConverter,
RewritePatternSet &patterns) {
patterns
.add<SparseReturnConverter, SparseTensorLvlOpConverter,
SparseCastConverter, SparseReMapConverter, SparseTensorNewConverter,
SparseTensorAllocConverter, SparseTensorEmptyConverter,
SparseTensorDeallocConverter, SparseTensorReorderCOOConverter,
SparseTensorToPositionsConverter, SparseTensorToCoordinatesConverter,
SparseTensorToValuesConverter, SparseNumberOfEntriesConverter,
SparseTensorLoadConverter, SparseTensorInsertConverter,
SparseTensorExpandConverter, SparseTensorCompressConverter,
SparseTensorAssembleConverter>(typeConverter, patterns.getContext());
}