Files
clang-p2996/flang/lib/Optimizer/Transforms/AbstractResult.cpp
Michele Scuttari 67d0d7ac0a [MLIR] Update pass declarations to new autogenerated files
The patch introduces the required changes to update the pass declarations and definitions to use the new autogenerated files and allow dropping the old infrastructure.

Reviewed By: mehdi_amini, rriddle

Differential Review: https://reviews.llvm.org/D132838
2022-08-31 12:28:45 +02:00

321 lines
13 KiB
C++

//===- AbstractResult.cpp - Conversion of Abstract Function Result --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Optimizer/Dialect/FIRDialect.h"
#include "flang/Optimizer/Dialect/FIROps.h"
#include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/Optimizer/Transforms/Passes.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/IR/Diagnostics.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/Passes.h"
#include "llvm/ADT/TypeSwitch.h"
namespace fir {
#define GEN_PASS_DEF_ABSTRACTRESULTONFUNCOPT
#define GEN_PASS_DEF_ABSTRACTRESULTONGLOBALOPT
#include "flang/Optimizer/Transforms/Passes.h.inc"
} // namespace fir
#define DEBUG_TYPE "flang-abstract-result-opt"
namespace fir {
namespace {
static mlir::Type getResultArgumentType(mlir::Type resultType,
bool shouldBoxResult) {
return llvm::TypeSwitch<mlir::Type, mlir::Type>(resultType)
.Case<fir::SequenceType, fir::RecordType>(
[&](mlir::Type type) -> mlir::Type {
if (shouldBoxResult)
return fir::BoxType::get(type);
return fir::ReferenceType::get(type);
})
.Case<fir::BoxType>([](mlir::Type type) -> mlir::Type {
return fir::ReferenceType::get(type);
})
.Default([](mlir::Type) -> mlir::Type {
llvm_unreachable("bad abstract result type");
});
}
static mlir::FunctionType getNewFunctionType(mlir::FunctionType funcTy,
bool shouldBoxResult) {
auto resultType = funcTy.getResult(0);
auto argTy = getResultArgumentType(resultType, shouldBoxResult);
llvm::SmallVector<mlir::Type> newInputTypes = {argTy};
newInputTypes.append(funcTy.getInputs().begin(), funcTy.getInputs().end());
return mlir::FunctionType::get(funcTy.getContext(), newInputTypes,
/*resultTypes=*/{});
}
static bool mustEmboxResult(mlir::Type resultType, bool shouldBoxResult) {
return resultType.isa<fir::SequenceType, fir::RecordType>() &&
shouldBoxResult;
}
class CallOpConversion : public mlir::OpRewritePattern<fir::CallOp> {
public:
using OpRewritePattern::OpRewritePattern;
CallOpConversion(mlir::MLIRContext *context, bool shouldBoxResult)
: OpRewritePattern(context), shouldBoxResult{shouldBoxResult} {}
mlir::LogicalResult
matchAndRewrite(fir::CallOp callOp,
mlir::PatternRewriter &rewriter) const override {
auto loc = callOp.getLoc();
auto result = callOp->getResult(0);
if (!result.hasOneUse()) {
mlir::emitError(loc,
"calls with abstract result must have exactly one user");
return mlir::failure();
}
auto saveResult =
mlir::dyn_cast<fir::SaveResultOp>(result.use_begin().getUser());
if (!saveResult) {
mlir::emitError(
loc, "calls with abstract result must be used in fir.save_result");
return mlir::failure();
}
auto argType = getResultArgumentType(result.getType(), shouldBoxResult);
auto buffer = saveResult.getMemref();
mlir::Value arg = buffer;
if (mustEmboxResult(result.getType(), shouldBoxResult))
arg = rewriter.create<fir::EmboxOp>(
loc, argType, buffer, saveResult.getShape(), /*slice*/ mlir::Value{},
saveResult.getTypeparams());
llvm::SmallVector<mlir::Type> newResultTypes;
if (callOp.getCallee()) {
llvm::SmallVector<mlir::Value> newOperands = {arg};
newOperands.append(callOp.getOperands().begin(),
callOp.getOperands().end());
rewriter.create<fir::CallOp>(loc, *callOp.getCallee(), newResultTypes,
newOperands);
} else {
// Indirect calls.
llvm::SmallVector<mlir::Type> newInputTypes = {argType};
for (auto operand : callOp.getOperands().drop_front())
newInputTypes.push_back(operand.getType());
auto funTy = mlir::FunctionType::get(callOp.getContext(), newInputTypes,
newResultTypes);
llvm::SmallVector<mlir::Value> newOperands;
newOperands.push_back(
rewriter.create<fir::ConvertOp>(loc, funTy, callOp.getOperand(0)));
newOperands.push_back(arg);
newOperands.append(callOp.getOperands().begin() + 1,
callOp.getOperands().end());
rewriter.create<fir::CallOp>(loc, mlir::SymbolRefAttr{}, newResultTypes,
newOperands);
}
callOp->dropAllReferences();
rewriter.eraseOp(callOp);
return mlir::success();
}
private:
bool shouldBoxResult;
};
class SaveResultOpConversion
: public mlir::OpRewritePattern<fir::SaveResultOp> {
public:
using OpRewritePattern::OpRewritePattern;
SaveResultOpConversion(mlir::MLIRContext *context)
: OpRewritePattern(context) {}
mlir::LogicalResult
matchAndRewrite(fir::SaveResultOp op,
mlir::PatternRewriter &rewriter) const override {
rewriter.eraseOp(op);
return mlir::success();
}
};
class ReturnOpConversion : public mlir::OpRewritePattern<mlir::func::ReturnOp> {
public:
using OpRewritePattern::OpRewritePattern;
ReturnOpConversion(mlir::MLIRContext *context, mlir::Value newArg)
: OpRewritePattern(context), newArg{newArg} {}
mlir::LogicalResult
matchAndRewrite(mlir::func::ReturnOp ret,
mlir::PatternRewriter &rewriter) const override {
rewriter.setInsertionPoint(ret);
auto returnedValue = ret.getOperand(0);
bool replacedStorage = false;
if (auto *op = returnedValue.getDefiningOp())
if (auto load = mlir::dyn_cast<fir::LoadOp>(op)) {
auto resultStorage = load.getMemref();
load.getMemref().replaceAllUsesWith(newArg);
replacedStorage = true;
if (auto *alloc = resultStorage.getDefiningOp())
if (alloc->use_empty())
rewriter.eraseOp(alloc);
}
// The result storage may have been optimized out by a memory to
// register pass, this is possible for fir.box results, or fir.record
// with no length parameters. Simply store the result in the result storage.
// at the return point.
if (!replacedStorage)
rewriter.create<fir::StoreOp>(ret.getLoc(), returnedValue, newArg);
rewriter.replaceOpWithNewOp<mlir::func::ReturnOp>(ret);
return mlir::success();
}
private:
mlir::Value newArg;
};
class AddrOfOpConversion : public mlir::OpRewritePattern<fir::AddrOfOp> {
public:
using OpRewritePattern::OpRewritePattern;
AddrOfOpConversion(mlir::MLIRContext *context, bool shouldBoxResult)
: OpRewritePattern(context), shouldBoxResult{shouldBoxResult} {}
mlir::LogicalResult
matchAndRewrite(fir::AddrOfOp addrOf,
mlir::PatternRewriter &rewriter) const override {
auto oldFuncTy = addrOf.getType().cast<mlir::FunctionType>();
auto newFuncTy = getNewFunctionType(oldFuncTy, shouldBoxResult);
auto newAddrOf = rewriter.create<fir::AddrOfOp>(addrOf.getLoc(), newFuncTy,
addrOf.getSymbol());
// Rather than converting all op a function pointer might transit through
// (e.g calls, stores, loads, converts...), cast new type to the abstract
// type. A conversion will be added when calling indirect calls of abstract
// types.
rewriter.replaceOpWithNewOp<fir::ConvertOp>(addrOf, oldFuncTy, newAddrOf);
return mlir::success();
}
private:
bool shouldBoxResult;
};
/// @brief Base CRTP class for AbstractResult pass family.
/// Contains common logic for abstract result conversion in a reusable fashion.
/// @tparam Pass target class that implements operation-specific logic.
/// @tparam PassBase base class template for the pass generated by TableGen.
/// The `Pass` class must define runOnSpecificOperation(OpTy, bool,
/// mlir::RewritePatternSet&, mlir::ConversionTarget&) member function.
/// This function should implement operation-specific functionality.
template <typename Pass, template <typename> class PassBase>
class AbstractResultOptTemplate : public PassBase<Pass> {
public:
void runOnOperation() override {
auto *context = &this->getContext();
auto op = this->getOperation();
mlir::RewritePatternSet patterns(context);
mlir::ConversionTarget target = *context;
const bool shouldBoxResult = this->passResultAsBox.getValue();
auto &self = static_cast<Pass &>(*this);
self.runOnSpecificOperation(op, shouldBoxResult, patterns, target);
// Convert the calls and, if needed, the ReturnOp in the function body.
target.addLegalDialect<fir::FIROpsDialect, mlir::arith::ArithmeticDialect,
mlir::func::FuncDialect>();
target.addIllegalOp<fir::SaveResultOp>();
target.addDynamicallyLegalOp<fir::CallOp>([](fir::CallOp call) {
return !hasAbstractResult(call.getFunctionType());
});
target.addDynamicallyLegalOp<fir::AddrOfOp>([](fir::AddrOfOp addrOf) {
if (auto funTy = addrOf.getType().dyn_cast<mlir::FunctionType>())
return !hasAbstractResult(funTy);
return true;
});
target.addDynamicallyLegalOp<fir::DispatchOp>([](fir::DispatchOp dispatch) {
if (dispatch->getNumResults() != 1)
return true;
auto resultType = dispatch->getResult(0).getType();
if (resultType.isa<fir::SequenceType, fir::BoxType, fir::RecordType>()) {
TODO(dispatch.getLoc(), "dispatchOp with abstract results");
return false;
}
return true;
});
patterns.insert<CallOpConversion>(context, shouldBoxResult);
patterns.insert<SaveResultOpConversion>(context);
patterns.insert<AddrOfOpConversion>(context, shouldBoxResult);
if (mlir::failed(
mlir::applyPartialConversion(op, target, std::move(patterns)))) {
mlir::emitError(op.getLoc(), "error in converting abstract results\n");
this->signalPassFailure();
}
}
};
class AbstractResultOnFuncOpt
: public AbstractResultOptTemplate<AbstractResultOnFuncOpt,
fir::impl::AbstractResultOnFuncOptBase> {
public:
void runOnSpecificOperation(mlir::func::FuncOp func, bool shouldBoxResult,
mlir::RewritePatternSet &patterns,
mlir::ConversionTarget &target) {
auto loc = func.getLoc();
auto *context = &getContext();
// Convert function type itself if it has an abstract result.
auto funcTy = func.getFunctionType().cast<mlir::FunctionType>();
if (hasAbstractResult(funcTy)) {
func.setType(getNewFunctionType(funcTy, shouldBoxResult));
if (!func.empty()) {
// Insert new argument.
mlir::OpBuilder rewriter(context);
auto resultType = funcTy.getResult(0);
auto argTy = getResultArgumentType(resultType, shouldBoxResult);
mlir::Value newArg = func.front().insertArgument(0u, argTy, loc);
if (mustEmboxResult(resultType, shouldBoxResult)) {
auto bufferType = fir::ReferenceType::get(resultType);
rewriter.setInsertionPointToStart(&func.front());
newArg = rewriter.create<fir::BoxAddrOp>(loc, bufferType, newArg);
}
patterns.insert<ReturnOpConversion>(context, newArg);
target.addDynamicallyLegalOp<mlir::func::ReturnOp>(
[](mlir::func::ReturnOp ret) { return ret.operands().empty(); });
}
}
}
};
inline static bool containsFunctionTypeWithAbstractResult(mlir::Type type) {
return mlir::TypeSwitch<mlir::Type, bool>(type)
.Case([](fir::BoxProcType boxProc) {
return fir::hasAbstractResult(
boxProc.getEleTy().cast<mlir::FunctionType>());
})
.Case([](fir::PointerType pointer) {
return fir::hasAbstractResult(
pointer.getEleTy().cast<mlir::FunctionType>());
})
.Default([](auto &&) { return false; });
}
class AbstractResultOnGlobalOpt
: public AbstractResultOptTemplate<
AbstractResultOnGlobalOpt, fir::impl::AbstractResultOnGlobalOptBase> {
public:
void runOnSpecificOperation(fir::GlobalOp global, bool,
mlir::RewritePatternSet &,
mlir::ConversionTarget &) {
if (containsFunctionTypeWithAbstractResult(global.getType())) {
TODO(global->getLoc(), "support for procedure pointers");
}
}
};
} // end anonymous namespace
} // namespace fir
std::unique_ptr<mlir::Pass> fir::createAbstractResultOnFuncOptPass() {
return std::make_unique<AbstractResultOnFuncOpt>();
}
std::unique_ptr<mlir::Pass> fir::createAbstractResultOnGlobalOptPass() {
return std::make_unique<AbstractResultOnGlobalOpt>();
}