Use the RTNMAE macro (via stringify macros) to generate the name strings for runtime functions, instead of using strings. The sequence of macros generate exactly the same string as the ones used previously, but this will support future changes in runtime function names. No functional change. Reviewed By: vzakhari Differential Revision: https://reviews.llvm.org/D132652
588 lines
24 KiB
C++
588 lines
24 KiB
C++
//===- SimplifyIntrinsics.cpp -- replace intrinsics with simpler form -----===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
/// This pass looks for suitable calls to runtime library for intrinsics that
|
|
/// can be simplified/specialized and replaces with a specialized function.
|
|
///
|
|
/// For example, SUM(arr) can be specialized as a simple function with one loop,
|
|
/// compared to the three arguments (plus file & line info) that the runtime
|
|
/// call has - when the argument is a 1D-array (multiple loops may be needed
|
|
// for higher dimension arrays, of course)
|
|
///
|
|
/// The general idea is that besides making the call simpler, it can also be
|
|
/// inlined by other passes that run after this pass, which further improves
|
|
/// performance, particularly when the work done in the function is trivial
|
|
/// and small in size.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "flang/Optimizer/Builder/BoxValue.h"
|
|
#include "flang/Optimizer/Builder/FIRBuilder.h"
|
|
#include "flang/Optimizer/Builder/Todo.h"
|
|
#include "flang/Optimizer/Dialect/FIROps.h"
|
|
#include "flang/Optimizer/Dialect/FIRType.h"
|
|
#include "flang/Optimizer/Support/FIRContext.h"
|
|
#include "flang/Optimizer/Transforms/Passes.h"
|
|
#include "flang/Runtime/entry-names.h"
|
|
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
|
|
#include "mlir/IR/Matchers.h"
|
|
#include "mlir/IR/TypeUtilities.h"
|
|
#include "mlir/Pass/Pass.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
|
|
#include "mlir/Transforms/RegionUtils.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
namespace fir {
|
|
#define GEN_PASS_DEF_SIMPLIFYINTRINSICS
|
|
#include "flang/Optimizer/Transforms/Passes.h.inc"
|
|
} // namespace fir
|
|
|
|
#define RTNAME_STRINGIFY2(x) #x
|
|
#define RTNAME_STRINGIFY(x) RTNAME_STRINGIFY2(x)
|
|
#define RTNAME_STRING(x) RTNAME_STRINGIFY(RTNAME(x))
|
|
|
|
#define DEBUG_TYPE "flang-simplify-intrinsics"
|
|
|
|
namespace {
|
|
|
|
class SimplifyIntrinsicsPass
|
|
: public fir::impl::SimplifyIntrinsicsBase<SimplifyIntrinsicsPass> {
|
|
using FunctionTypeGeneratorTy =
|
|
llvm::function_ref<mlir::FunctionType(fir::FirOpBuilder &)>;
|
|
using FunctionBodyGeneratorTy =
|
|
llvm::function_ref<void(fir::FirOpBuilder &, mlir::func::FuncOp &)>;
|
|
using GenReductionBodyTy = llvm::function_ref<void(
|
|
fir::FirOpBuilder &builder, mlir::func::FuncOp &funcOp)>;
|
|
|
|
public:
|
|
/// Generate a new function implementing a simplified version
|
|
/// of a Fortran runtime function defined by \p basename name.
|
|
/// \p typeGenerator is a callback that generates the new function's type.
|
|
/// \p bodyGenerator is a callback that generates the new function's body.
|
|
/// The new function is created in the \p builder's Module.
|
|
mlir::func::FuncOp getOrCreateFunction(fir::FirOpBuilder &builder,
|
|
const mlir::StringRef &basename,
|
|
FunctionTypeGeneratorTy typeGenerator,
|
|
FunctionBodyGeneratorTy bodyGenerator);
|
|
void runOnOperation() override;
|
|
void getDependentDialects(mlir::DialectRegistry ®istry) const override;
|
|
|
|
private:
|
|
/// Helper function to replace a reduction type of call with its
|
|
/// simplified form. The actual function is generated using a callback
|
|
/// function.
|
|
/// \p call is the call to be replaced
|
|
/// \p kindMap is used to create FIROpBuilder
|
|
/// \p genBodyFunc is the callback that builds the replacement function
|
|
void simplifyReduction(fir::CallOp call, const fir::KindMapping &kindMap,
|
|
GenReductionBodyTy genBodyFunc);
|
|
};
|
|
|
|
} // namespace
|
|
|
|
/// Generate function type for the simplified version of RTNAME(Sum) and
|
|
/// similar functions with a fir.box<none> type returning \p elementType.
|
|
static mlir::FunctionType genNoneBoxType(fir::FirOpBuilder &builder,
|
|
const mlir::Type &elementType) {
|
|
mlir::Type boxType = fir::BoxType::get(builder.getNoneType());
|
|
return mlir::FunctionType::get(builder.getContext(), {boxType},
|
|
{elementType});
|
|
}
|
|
|
|
using BodyOpGeneratorTy = llvm::function_ref<mlir::Value(
|
|
fir::FirOpBuilder &, mlir::Location, const mlir::Type &, mlir::Value,
|
|
mlir::Value)>;
|
|
using InitValGeneratorTy = llvm::function_ref<mlir::Value(
|
|
fir::FirOpBuilder &, mlir::Location, const mlir::Type &)>;
|
|
|
|
/// Generate the reduction loop into \p funcOp.
|
|
///
|
|
/// \p initVal is a function, called to get the initial value for
|
|
/// the reduction value
|
|
/// \p genBody is called to fill in the actual reduciton operation
|
|
/// for example add for SUM, MAX for MAXVAL, etc.
|
|
static void genReductionLoop(fir::FirOpBuilder &builder,
|
|
mlir::func::FuncOp &funcOp,
|
|
InitValGeneratorTy initVal,
|
|
BodyOpGeneratorTy genBody) {
|
|
auto loc = mlir::UnknownLoc::get(builder.getContext());
|
|
mlir::Type elementType = funcOp.getResultTypes()[0];
|
|
builder.setInsertionPointToEnd(funcOp.addEntryBlock());
|
|
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
|
|
mlir::Block::BlockArgListType args = funcOp.front().getArguments();
|
|
mlir::Value arg = args[0];
|
|
|
|
mlir::Value zeroIdx = builder.createIntegerConstant(loc, idxTy, 0);
|
|
|
|
fir::SequenceType::Shape flatShape = {fir::SequenceType::getUnknownExtent()};
|
|
mlir::Type arrTy = fir::SequenceType::get(flatShape, elementType);
|
|
mlir::Type boxArrTy = fir::BoxType::get(arrTy);
|
|
mlir::Value array = builder.create<fir::ConvertOp>(loc, boxArrTy, arg);
|
|
auto dims =
|
|
builder.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy, array, zeroIdx);
|
|
mlir::Value len = dims.getResult(1);
|
|
mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
|
|
mlir::Value step = one;
|
|
|
|
// We use C indexing here, so len-1 as loopcount
|
|
mlir::Value loopCount = builder.create<mlir::arith::SubIOp>(loc, len, one);
|
|
mlir::Value init = initVal(builder, loc, elementType);
|
|
auto loop = builder.create<fir::DoLoopOp>(loc, zeroIdx, loopCount, step,
|
|
/*unordered=*/false,
|
|
/*finalCountValue=*/false, init);
|
|
mlir::Value reductionVal = loop.getRegionIterArgs()[0];
|
|
|
|
// Begin loop code
|
|
mlir::OpBuilder::InsertPoint loopEndPt = builder.saveInsertionPoint();
|
|
builder.setInsertionPointToStart(loop.getBody());
|
|
|
|
mlir::Type eleRefTy = builder.getRefType(elementType);
|
|
mlir::Value index = loop.getInductionVar();
|
|
mlir::Value addr =
|
|
builder.create<fir::CoordinateOp>(loc, eleRefTy, array, index);
|
|
mlir::Value elem = builder.create<fir::LoadOp>(loc, addr);
|
|
|
|
reductionVal = genBody(builder, loc, elementType, elem, reductionVal);
|
|
|
|
builder.create<fir::ResultOp>(loc, reductionVal);
|
|
// End of loop.
|
|
builder.restoreInsertionPoint(loopEndPt);
|
|
|
|
mlir::Value resultVal = loop.getResult(0);
|
|
builder.create<mlir::func::ReturnOp>(loc, resultVal);
|
|
}
|
|
|
|
/// Generate function body of the simplified version of RTNAME(Sum)
|
|
/// with signature provided by \p funcOp. The caller is responsible
|
|
/// for saving/restoring the original insertion point of \p builder.
|
|
/// \p funcOp is expected to be empty on entry to this function.
|
|
static void genRuntimeSumBody(fir::FirOpBuilder &builder,
|
|
mlir::func::FuncOp &funcOp) {
|
|
// function RTNAME(Sum)<T>_simplified(arr)
|
|
// T, dimension(:) :: arr
|
|
// T sum = 0
|
|
// integer iter
|
|
// do iter = 0, extent(arr)
|
|
// sum = sum + arr[iter]
|
|
// end do
|
|
// RTNAME(Sum)<T>_simplified = sum
|
|
// end function RTNAME(Sum)<T>_simplified
|
|
auto zero = [](fir::FirOpBuilder builder, mlir::Location loc,
|
|
mlir::Type elementType) {
|
|
return elementType.isa<mlir::FloatType>()
|
|
? builder.createRealConstant(loc, elementType,
|
|
llvm::APFloat(0.0))
|
|
: builder.createIntegerConstant(loc, elementType, 0);
|
|
};
|
|
|
|
auto genBodyOp = [](fir::FirOpBuilder builder, mlir::Location loc,
|
|
mlir::Type elementType, mlir::Value elem1,
|
|
mlir::Value elem2) -> mlir::Value {
|
|
if (elementType.isa<mlir::FloatType>())
|
|
return builder.create<mlir::arith::AddFOp>(loc, elem1, elem2);
|
|
if (elementType.isa<mlir::IntegerType>())
|
|
return builder.create<mlir::arith::AddIOp>(loc, elem1, elem2);
|
|
|
|
llvm_unreachable("unsupported type");
|
|
return {};
|
|
};
|
|
|
|
genReductionLoop(builder, funcOp, zero, genBodyOp);
|
|
}
|
|
|
|
static void genRuntimeMaxvalBody(fir::FirOpBuilder &builder,
|
|
mlir::func::FuncOp &funcOp) {
|
|
auto init = [](fir::FirOpBuilder builder, mlir::Location loc,
|
|
mlir::Type elementType) {
|
|
if (auto ty = elementType.dyn_cast<mlir::FloatType>()) {
|
|
const llvm::fltSemantics &sem = ty.getFloatSemantics();
|
|
return builder.createRealConstant(
|
|
loc, elementType, llvm::APFloat::getLargest(sem, /*Negative=*/true));
|
|
}
|
|
unsigned bits = elementType.getIntOrFloatBitWidth();
|
|
int64_t minInt = llvm::APInt::getSignedMinValue(bits).getSExtValue();
|
|
return builder.createIntegerConstant(loc, elementType, minInt);
|
|
};
|
|
|
|
auto genBodyOp = [](fir::FirOpBuilder builder, mlir::Location loc,
|
|
mlir::Type elementType, mlir::Value elem1,
|
|
mlir::Value elem2) -> mlir::Value {
|
|
if (elementType.isa<mlir::FloatType>())
|
|
return builder.create<mlir::arith::MaxFOp>(loc, elem1, elem2);
|
|
if (elementType.isa<mlir::IntegerType>())
|
|
return builder.create<mlir::arith::MaxSIOp>(loc, elem1, elem2);
|
|
|
|
llvm_unreachable("unsupported type");
|
|
return {};
|
|
};
|
|
genReductionLoop(builder, funcOp, init, genBodyOp);
|
|
}
|
|
|
|
/// Generate function type for the simplified version of RTNAME(DotProduct)
|
|
/// operating on the given \p elementType.
|
|
static mlir::FunctionType genRuntimeDotType(fir::FirOpBuilder &builder,
|
|
const mlir::Type &elementType) {
|
|
mlir::Type boxType = fir::BoxType::get(builder.getNoneType());
|
|
return mlir::FunctionType::get(builder.getContext(), {boxType, boxType},
|
|
{elementType});
|
|
}
|
|
|
|
/// Generate function body of the simplified version of RTNAME(DotProduct)
|
|
/// with signature provided by \p funcOp. The caller is responsible
|
|
/// for saving/restoring the original insertion point of \p builder.
|
|
/// \p funcOp is expected to be empty on entry to this function.
|
|
/// \p arg1ElementTy and \p arg2ElementTy specify elements types
|
|
/// of the underlying array objects - they are used to generate proper
|
|
/// element accesses.
|
|
static void genRuntimeDotBody(fir::FirOpBuilder &builder,
|
|
mlir::func::FuncOp &funcOp,
|
|
mlir::Type arg1ElementTy,
|
|
mlir::Type arg2ElementTy) {
|
|
// function RTNAME(DotProduct)<T>_simplified(arr1, arr2)
|
|
// T, dimension(:) :: arr1, arr2
|
|
// T product = 0
|
|
// integer iter
|
|
// do iter = 0, extent(arr1)
|
|
// product = product + arr1[iter] * arr2[iter]
|
|
// end do
|
|
// RTNAME(ADotProduct)<T>_simplified = product
|
|
// end function RTNAME(DotProduct)<T>_simplified
|
|
auto loc = mlir::UnknownLoc::get(builder.getContext());
|
|
mlir::Type resultElementType = funcOp.getResultTypes()[0];
|
|
builder.setInsertionPointToEnd(funcOp.addEntryBlock());
|
|
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
|
|
mlir::Value zero =
|
|
resultElementType.isa<mlir::FloatType>()
|
|
? builder.createRealConstant(loc, resultElementType, 0.0)
|
|
: builder.createIntegerConstant(loc, resultElementType, 0);
|
|
|
|
mlir::Block::BlockArgListType args = funcOp.front().getArguments();
|
|
mlir::Value arg1 = args[0];
|
|
mlir::Value arg2 = args[1];
|
|
|
|
mlir::Value zeroIdx = builder.createIntegerConstant(loc, idxTy, 0);
|
|
|
|
fir::SequenceType::Shape flatShape = {fir::SequenceType::getUnknownExtent()};
|
|
mlir::Type arrTy1 = fir::SequenceType::get(flatShape, arg1ElementTy);
|
|
mlir::Type boxArrTy1 = fir::BoxType::get(arrTy1);
|
|
mlir::Value array1 = builder.create<fir::ConvertOp>(loc, boxArrTy1, arg1);
|
|
mlir::Type arrTy2 = fir::SequenceType::get(flatShape, arg2ElementTy);
|
|
mlir::Type boxArrTy2 = fir::BoxType::get(arrTy2);
|
|
mlir::Value array2 = builder.create<fir::ConvertOp>(loc, boxArrTy2, arg2);
|
|
// This version takes the loop trip count from the first argument.
|
|
// If the first argument's box has unknown (at compilation time)
|
|
// extent, then it may be better to take the extent from the second
|
|
// argument - so that after inlining the loop may be better optimized, e.g.
|
|
// fully unrolled. This requires generating two versions of the simplified
|
|
// function and some analysis at the call site to choose which version
|
|
// is more profitable to call.
|
|
// Note that we can assume that both arguments have the same extent.
|
|
auto dims =
|
|
builder.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy, array1, zeroIdx);
|
|
mlir::Value len = dims.getResult(1);
|
|
mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
|
|
mlir::Value step = one;
|
|
|
|
// We use C indexing here, so len-1 as loopcount
|
|
mlir::Value loopCount = builder.create<mlir::arith::SubIOp>(loc, len, one);
|
|
auto loop = builder.create<fir::DoLoopOp>(loc, zeroIdx, loopCount, step,
|
|
/*unordered=*/false,
|
|
/*finalCountValue=*/false, zero);
|
|
mlir::Value sumVal = loop.getRegionIterArgs()[0];
|
|
|
|
// Begin loop code
|
|
mlir::OpBuilder::InsertPoint loopEndPt = builder.saveInsertionPoint();
|
|
builder.setInsertionPointToStart(loop.getBody());
|
|
|
|
mlir::Type eleRef1Ty = builder.getRefType(arg1ElementTy);
|
|
mlir::Value index = loop.getInductionVar();
|
|
mlir::Value addr1 =
|
|
builder.create<fir::CoordinateOp>(loc, eleRef1Ty, array1, index);
|
|
mlir::Value elem1 = builder.create<fir::LoadOp>(loc, addr1);
|
|
// Convert to the result type.
|
|
elem1 = builder.create<fir::ConvertOp>(loc, resultElementType, elem1);
|
|
|
|
mlir::Type eleRef2Ty = builder.getRefType(arg2ElementTy);
|
|
mlir::Value addr2 =
|
|
builder.create<fir::CoordinateOp>(loc, eleRef2Ty, array2, index);
|
|
mlir::Value elem2 = builder.create<fir::LoadOp>(loc, addr2);
|
|
// Convert to the result type.
|
|
elem2 = builder.create<fir::ConvertOp>(loc, resultElementType, elem2);
|
|
|
|
if (resultElementType.isa<mlir::FloatType>())
|
|
sumVal = builder.create<mlir::arith::AddFOp>(
|
|
loc, builder.create<mlir::arith::MulFOp>(loc, elem1, elem2), sumVal);
|
|
else if (resultElementType.isa<mlir::IntegerType>())
|
|
sumVal = builder.create<mlir::arith::AddIOp>(
|
|
loc, builder.create<mlir::arith::MulIOp>(loc, elem1, elem2), sumVal);
|
|
else
|
|
llvm_unreachable("unsupported type");
|
|
|
|
builder.create<fir::ResultOp>(loc, sumVal);
|
|
// End of loop.
|
|
builder.restoreInsertionPoint(loopEndPt);
|
|
|
|
mlir::Value resultVal = loop.getResult(0);
|
|
builder.create<mlir::func::ReturnOp>(loc, resultVal);
|
|
}
|
|
|
|
mlir::func::FuncOp SimplifyIntrinsicsPass::getOrCreateFunction(
|
|
fir::FirOpBuilder &builder, const mlir::StringRef &baseName,
|
|
FunctionTypeGeneratorTy typeGenerator,
|
|
FunctionBodyGeneratorTy bodyGenerator) {
|
|
// WARNING: if the function generated here changes its signature
|
|
// or behavior (the body code), we should probably embed some
|
|
// versioning information into its name, otherwise libraries
|
|
// statically linked with older versions of Flang may stop
|
|
// working with object files created with newer Flang.
|
|
// We can also avoid this by using internal linkage, but
|
|
// this may increase the size of final executable/shared library.
|
|
std::string replacementName = mlir::Twine{baseName, "_simplified"}.str();
|
|
mlir::ModuleOp module = builder.getModule();
|
|
// If we already have a function, just return it.
|
|
mlir::func::FuncOp newFunc =
|
|
fir::FirOpBuilder::getNamedFunction(module, replacementName);
|
|
mlir::FunctionType fType = typeGenerator(builder);
|
|
if (newFunc) {
|
|
assert(newFunc.getFunctionType() == fType &&
|
|
"type mismatch for simplified function");
|
|
return newFunc;
|
|
}
|
|
|
|
// Need to build the function!
|
|
auto loc = mlir::UnknownLoc::get(builder.getContext());
|
|
newFunc =
|
|
fir::FirOpBuilder::createFunction(loc, module, replacementName, fType);
|
|
auto inlineLinkage = mlir::LLVM::linkage::Linkage::LinkonceODR;
|
|
auto linkage =
|
|
mlir::LLVM::LinkageAttr::get(builder.getContext(), inlineLinkage);
|
|
newFunc->setAttr("llvm.linkage", linkage);
|
|
|
|
// Save the position of the original call.
|
|
mlir::OpBuilder::InsertPoint insertPt = builder.saveInsertionPoint();
|
|
|
|
bodyGenerator(builder, newFunc);
|
|
|
|
// Now back to where we were adding code earlier...
|
|
builder.restoreInsertionPoint(insertPt);
|
|
|
|
return newFunc;
|
|
}
|
|
|
|
fir::ConvertOp expectConvertOp(mlir::Value val) {
|
|
if (fir::ConvertOp op =
|
|
mlir::dyn_cast_or_null<fir::ConvertOp>(val.getDefiningOp()))
|
|
return op;
|
|
LLVM_DEBUG(llvm::dbgs() << "Didn't find expected fir::ConvertOp\n");
|
|
return nullptr;
|
|
}
|
|
|
|
static bool isOperandAbsent(mlir::Value val) {
|
|
if (auto op = expectConvertOp(val)) {
|
|
assert(op->getOperands().size() != 0);
|
|
return mlir::isa_and_nonnull<fir::AbsentOp>(
|
|
op->getOperand(0).getDefiningOp());
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool isZero(mlir::Value val) {
|
|
if (auto op = expectConvertOp(val)) {
|
|
assert(op->getOperands().size() != 0);
|
|
if (mlir::Operation *defOp = op->getOperand(0).getDefiningOp())
|
|
return mlir::matchPattern(defOp, mlir::m_Zero());
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static mlir::Value findShape(mlir::Value val) {
|
|
if (auto op = expectConvertOp(val)) {
|
|
assert(op->getOperands().size() != 0);
|
|
if (auto box = mlir::dyn_cast_or_null<fir::EmboxOp>(
|
|
op->getOperand(0).getDefiningOp()))
|
|
return box.getShape();
|
|
}
|
|
return {};
|
|
}
|
|
|
|
static unsigned getDimCount(mlir::Value val) {
|
|
if (mlir::Value shapeVal = findShape(val)) {
|
|
mlir::Type resType = shapeVal.getDefiningOp()->getResultTypes()[0];
|
|
return fir::getRankOfShapeType(resType);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/// Given the call operation's box argument \p val, discover
|
|
/// the element type of the underlying array object.
|
|
/// \returns the element type or llvm::None if the type cannot
|
|
/// be reliably found.
|
|
/// We expect that the argument is a result of fir.convert
|
|
/// with the destination type of !fir.box<none>.
|
|
static llvm::Optional<mlir::Type> getArgElementType(mlir::Value val) {
|
|
mlir::Operation *defOp;
|
|
do {
|
|
defOp = val.getDefiningOp();
|
|
// Analyze only sequences of convert operations.
|
|
if (!mlir::isa<fir::ConvertOp>(defOp))
|
|
return llvm::None;
|
|
val = defOp->getOperand(0);
|
|
// The convert operation is expected to convert from one
|
|
// box type to another box type.
|
|
auto boxType = val.getType().cast<fir::BoxType>();
|
|
auto elementType = fir::unwrapSeqOrBoxedSeqType(boxType);
|
|
if (!elementType.isa<mlir::NoneType>())
|
|
return elementType;
|
|
} while (true);
|
|
}
|
|
|
|
void SimplifyIntrinsicsPass::simplifyReduction(fir::CallOp call,
|
|
const fir::KindMapping &kindMap,
|
|
GenReductionBodyTy genBodyFunc) {
|
|
mlir::SymbolRefAttr callee = call.getCalleeAttr();
|
|
mlir::StringRef funcName = callee.getLeafReference().getValue();
|
|
mlir::Operation::operand_range args = call.getArgs();
|
|
// args[1] and args[2] are source filename and line number, ignored.
|
|
const mlir::Value &dim = args[3];
|
|
const mlir::Value &mask = args[4];
|
|
// dim is zero when it is absent, which is an implementation
|
|
// detail in the runtime library.
|
|
bool dimAndMaskAbsent = isZero(dim) && isOperandAbsent(mask);
|
|
unsigned rank = getDimCount(args[0]);
|
|
if (dimAndMaskAbsent && rank == 1) {
|
|
mlir::Location loc = call.getLoc();
|
|
mlir::Type type;
|
|
fir::FirOpBuilder builder(call, kindMap);
|
|
if (funcName.endswith("Integer4")) {
|
|
type = mlir::IntegerType::get(builder.getContext(), 32);
|
|
} else if (funcName.endswith("Real8")) {
|
|
type = mlir::FloatType::getF64(builder.getContext());
|
|
} else {
|
|
return;
|
|
}
|
|
auto typeGenerator = [&type](fir::FirOpBuilder &builder) {
|
|
return genNoneBoxType(builder, type);
|
|
};
|
|
mlir::func::FuncOp newFunc =
|
|
getOrCreateFunction(builder, funcName, typeGenerator, genBodyFunc);
|
|
auto newCall =
|
|
builder.create<fir::CallOp>(loc, newFunc, mlir::ValueRange{args[0]});
|
|
call->replaceAllUsesWith(newCall.getResults());
|
|
call->dropAllReferences();
|
|
call->erase();
|
|
}
|
|
}
|
|
|
|
void SimplifyIntrinsicsPass::runOnOperation() {
|
|
LLVM_DEBUG(llvm::dbgs() << "=== Begin " DEBUG_TYPE " ===\n");
|
|
mlir::ModuleOp module = getOperation();
|
|
fir::KindMapping kindMap = fir::getKindMapping(module);
|
|
module.walk([&](mlir::Operation *op) {
|
|
if (auto call = mlir::dyn_cast<fir::CallOp>(op)) {
|
|
if (mlir::SymbolRefAttr callee = call.getCalleeAttr()) {
|
|
mlir::StringRef funcName = callee.getLeafReference().getValue();
|
|
// Replace call to runtime function for SUM when it has single
|
|
// argument (no dim or mask argument) for 1D arrays with either
|
|
// Integer4 or Real8 types. Other forms are ignored.
|
|
// The new function is added to the module.
|
|
//
|
|
// Prototype for runtime call (from sum.cpp):
|
|
// RTNAME(Sum<T>)(const Descriptor &x, const char *source, int line,
|
|
// int dim, const Descriptor *mask)
|
|
//
|
|
if (funcName.startswith(RTNAME_STRING(Sum))) {
|
|
simplifyReduction(call, kindMap, genRuntimeSumBody);
|
|
return;
|
|
}
|
|
if (funcName.startswith(RTNAME_STRING(DotProduct))) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Handling " << funcName << "\n");
|
|
LLVM_DEBUG(llvm::dbgs() << "Call operation:\n"; op->dump();
|
|
llvm::dbgs() << "\n");
|
|
mlir::Operation::operand_range args = call.getArgs();
|
|
const mlir::Value &v1 = args[0];
|
|
const mlir::Value &v2 = args[1];
|
|
mlir::Location loc = call.getLoc();
|
|
fir::FirOpBuilder builder(op, kindMap);
|
|
|
|
mlir::Type type = call.getResult(0).getType();
|
|
if (!type.isa<mlir::FloatType>() && !type.isa<mlir::IntegerType>())
|
|
return;
|
|
|
|
// Try to find the element types of the boxed arguments.
|
|
auto arg1Type = getArgElementType(v1);
|
|
auto arg2Type = getArgElementType(v2);
|
|
|
|
if (!arg1Type || !arg2Type)
|
|
return;
|
|
|
|
// Support only floating point and integer arguments
|
|
// now (e.g. logical is skipped here).
|
|
if (!arg1Type->isa<mlir::FloatType>() &&
|
|
!arg1Type->isa<mlir::IntegerType>())
|
|
return;
|
|
if (!arg2Type->isa<mlir::FloatType>() &&
|
|
!arg2Type->isa<mlir::IntegerType>())
|
|
return;
|
|
|
|
auto typeGenerator = [&type](fir::FirOpBuilder &builder) {
|
|
return genRuntimeDotType(builder, type);
|
|
};
|
|
auto bodyGenerator = [&arg1Type,
|
|
&arg2Type](fir::FirOpBuilder &builder,
|
|
mlir::func::FuncOp &funcOp) {
|
|
genRuntimeDotBody(builder, funcOp, *arg1Type, *arg2Type);
|
|
};
|
|
|
|
// Suffix the function name with the element types
|
|
// of the arguments.
|
|
std::string typedFuncName(funcName);
|
|
llvm::raw_string_ostream nameOS(typedFuncName);
|
|
nameOS << "_";
|
|
arg1Type->print(nameOS);
|
|
nameOS << "_";
|
|
arg2Type->print(nameOS);
|
|
|
|
mlir::func::FuncOp newFunc = getOrCreateFunction(
|
|
builder, typedFuncName, typeGenerator, bodyGenerator);
|
|
auto newCall = builder.create<fir::CallOp>(loc, newFunc,
|
|
mlir::ValueRange{v1, v2});
|
|
call->replaceAllUsesWith(newCall.getResults());
|
|
call->dropAllReferences();
|
|
call->erase();
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "Replaced with:\n"; newCall.dump();
|
|
llvm::dbgs() << "\n");
|
|
return;
|
|
}
|
|
if (funcName.startswith(RTNAME_STRING(Maxval))) {
|
|
simplifyReduction(call, kindMap, genRuntimeMaxvalBody);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
});
|
|
LLVM_DEBUG(llvm::dbgs() << "=== End " DEBUG_TYPE " ===\n");
|
|
}
|
|
|
|
void SimplifyIntrinsicsPass::getDependentDialects(
|
|
mlir::DialectRegistry ®istry) const {
|
|
// LLVM::LinkageAttr creation requires that LLVM dialect is loaded.
|
|
registry.insert<mlir::LLVM::LLVMDialect>();
|
|
}
|
|
std::unique_ptr<mlir::Pass> fir::createSimplifyIntrinsicsPass() {
|
|
return std::make_unique<SimplifyIntrinsicsPass>();
|
|
}
|