TLite is a lightweight, statically linkable[1], model evaluator, supporting a subset of what the full tensorflow library does, sufficient for the types of scenarios we envision having. It is also faster. We still use saved models as "source of truth" - 'release' mode's AOT starts from a saved model; and the ML training side operates in terms of saved models. Using TFLite solves the following problems compared to using the full TF C API: - a compiler-friendly implementation for runtime-loadable (as opposed to AOT-embedded) models: it's statically linked; it can be built via cmake; - solves an issue we had when building the compiler with both AOT and full TF C API support, whereby, due to a packaging issue on the TF side, we needed to have the pip package and the TF C API library at the same version. We have no such constraints now. The main liability is it supporting a subset of what the full TF framework does. We do not expect that to cause an issue, but should that be the case, we can always revert back to using the full framework (after also figuring out a way to address the problems that motivated the move to TFLite). Details: This change switches the development mode to TFLite. Models are still expected to be placed in a directory - i.e. the parameters to clang don't change; what changes is the directory content: we still need an `output_spec.json` file; but instead of the saved_model protobuf and the `variables` directory, we now just have one file, `model.tflite`. The change includes a utility showing how to take a saved model and convert it to TFLite, which it uses for testing. The full TF implementation can still be built (not side-by-side). We intend to remove it shortly, after patching downstream dependencies. The build behavior, however, prioritizes TFLite - i.e. trying to enable both full TF C API and TFLite will just pick TFLite. [1] thanks to @petrhosek's changes to TFLite's cmake support and its deps!
233 lines
7.6 KiB
C++
233 lines
7.6 KiB
C++
//===- TFUtils.cpp - tensorflow evaluation utilities ----------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements utilities for interfacing with tensorflow C APIs.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "llvm/Config/config.h"
|
|
#if defined(LLVM_HAVE_TFLITE)
|
|
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/Analysis/Utils/TFUtils.h"
|
|
#include "llvm/Support/Base64.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/JSON.h"
|
|
#include "llvm/Support/MemoryBuffer.h"
|
|
#include "llvm/Support/Path.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
#include "tensorflow/lite/interpreter.h"
|
|
#include "tensorflow/lite/kernels/register.h"
|
|
#include "tensorflow/lite/model.h"
|
|
#include "tensorflow/lite/model_builder.h"
|
|
#include "tensorflow/lite/op_resolver.h"
|
|
|
|
#include <cassert>
|
|
#include <numeric>
|
|
|
|
using namespace llvm;
|
|
|
|
namespace llvm {
|
|
class EvaluationResultImpl {
|
|
public:
|
|
EvaluationResultImpl(const std::vector<const TfLiteTensor *> &Outputs)
|
|
: Outputs(Outputs){};
|
|
|
|
const TfLiteTensor *getOutput(size_t I) { return Outputs[I]; }
|
|
|
|
EvaluationResultImpl(const EvaluationResultImpl &) = delete;
|
|
EvaluationResultImpl(EvaluationResultImpl &&Other) = delete;
|
|
|
|
private:
|
|
const std::vector<const TfLiteTensor *> Outputs;
|
|
};
|
|
|
|
class TFModelEvaluatorImpl {
|
|
public:
|
|
TFModelEvaluatorImpl(StringRef SavedModelPath,
|
|
const std::vector<TensorSpec> &InputSpecs,
|
|
function_ref<TensorSpec(size_t)> GetOutputSpecs,
|
|
size_t OutputSpecsSize, const char *Tags);
|
|
|
|
bool isValid() const { return IsValid; }
|
|
size_t outputSize() const { return Output.size(); }
|
|
|
|
std::unique_ptr<EvaluationResultImpl> evaluate() {
|
|
Interpreter->Invoke();
|
|
return std::make_unique<EvaluationResultImpl>(Output);
|
|
}
|
|
|
|
const std::vector<TfLiteTensor *> &getInput() const { return Input; }
|
|
|
|
~TFModelEvaluatorImpl();
|
|
|
|
private:
|
|
std::unique_ptr<tflite::FlatBufferModel> Model;
|
|
|
|
/// The objects necessary for carrying out an evaluation of the SavedModel.
|
|
/// They are expensive to set up, and we maintain them accross all the
|
|
/// evaluations of the model.
|
|
std::unique_ptr<tflite::Interpreter> Interpreter;
|
|
|
|
/// The input tensors. We set up the tensors once and just mutate theirs
|
|
/// scalars before each evaluation. The input tensors keep their value after
|
|
/// an evaluation.
|
|
std::vector<TfLiteTensor *> Input;
|
|
|
|
/// The output nodes.
|
|
std::vector<const TfLiteTensor *> Output;
|
|
|
|
void invalidate() { IsValid = false; }
|
|
|
|
bool IsValid = true;
|
|
|
|
/// Reusable utility for ensuring we can bind the requested Name to a node in
|
|
/// the SavedModel Graph.
|
|
bool checkReportAndInvalidate(const TfLiteTensor *Tensor,
|
|
const TensorSpec &Spec);
|
|
};
|
|
|
|
} // namespace llvm
|
|
|
|
TFModelEvaluatorImpl::TFModelEvaluatorImpl(
|
|
StringRef SavedModelPath, const std::vector<TensorSpec> &InputSpecs,
|
|
function_ref<TensorSpec(size_t)> GetOutputSpecs, size_t OutputSpecsSize,
|
|
const char *Tags = "serve")
|
|
: Input(InputSpecs.size()), Output(OutputSpecsSize) {
|
|
// FIXME: make ErrorReporter a member (may also need subclassing
|
|
// StatefulErrorReporter) to easily get the latest error status, for
|
|
// debugging.
|
|
tflite::StderrReporter ErrorReporter;
|
|
SmallVector<char, 128> TFLitePathBuff;
|
|
llvm::sys::path::append(TFLitePathBuff, SavedModelPath, "model.tflite");
|
|
StringRef TFLitePath(TFLitePathBuff.data(), TFLitePathBuff.size());
|
|
Model = tflite::FlatBufferModel::BuildFromFile(TFLitePath.str().c_str(),
|
|
&ErrorReporter);
|
|
if (!Model) {
|
|
invalidate();
|
|
return;
|
|
}
|
|
|
|
tflite::ops::builtin::BuiltinOpResolver Resolver;
|
|
tflite::InterpreterBuilder Builder(*Model, Resolver);
|
|
Builder(&Interpreter);
|
|
|
|
if (!Interpreter ||
|
|
Interpreter->AllocateTensors() != TfLiteStatus::kTfLiteOk) {
|
|
invalidate();
|
|
return;
|
|
}
|
|
// Known inputs and outputs
|
|
StringMap<int> InputsMap;
|
|
StringMap<int> OutputsMap;
|
|
for (size_t I = 0; I < Interpreter->inputs().size(); ++I)
|
|
InputsMap[Interpreter->GetInputName(I)] = I;
|
|
for (size_t I = 0; I < Interpreter->outputs().size(); ++I)
|
|
OutputsMap[Interpreter->GetOutputName(I)] = I;
|
|
|
|
for (size_t I = 0; I < InputSpecs.size(); ++I) {
|
|
auto &InputSpec = InputSpecs[I];
|
|
auto MapI = InputsMap.find(InputSpec.name() + ":" +
|
|
std::to_string(InputSpec.port()));
|
|
if (MapI == InputsMap.end()) {
|
|
Input[I] = nullptr;
|
|
continue;
|
|
}
|
|
Input[I] = Interpreter->tensor(MapI->second);
|
|
if (!checkReportAndInvalidate(Input[I], InputSpec))
|
|
return;
|
|
std::memset(Input[I]->data.data, 0,
|
|
InputSpecs[I].getTotalTensorBufferSize());
|
|
}
|
|
|
|
for (size_t I = 0; I < OutputSpecsSize; ++I) {
|
|
auto OutputSpec = GetOutputSpecs(I);
|
|
Output[I] = Interpreter->output_tensor(
|
|
OutputsMap[OutputSpec.name() + ":" +
|
|
std::to_string(OutputSpec.port())]);
|
|
if (!checkReportAndInvalidate(Output[I], OutputSpec))
|
|
return;
|
|
}
|
|
}
|
|
|
|
TFModelEvaluator::TFModelEvaluator(
|
|
StringRef SavedModelPath, const std::vector<TensorSpec> &InputSpecs,
|
|
function_ref<TensorSpec(size_t)> GetOutputSpecs, size_t OutputSpecsSize,
|
|
const char *Tags)
|
|
: Impl(new TFModelEvaluatorImpl(SavedModelPath, InputSpecs, GetOutputSpecs,
|
|
OutputSpecsSize, Tags)) {
|
|
if (!Impl->isValid())
|
|
Impl.reset();
|
|
}
|
|
|
|
TFModelEvaluator::TFModelEvaluator(StringRef SavedModelPath,
|
|
const std::vector<TensorSpec> &InputSpecs,
|
|
const std::vector<TensorSpec> &OutputSpecs,
|
|
const char *Tags)
|
|
: TFModelEvaluator(
|
|
SavedModelPath, InputSpecs, [&](size_t I) { return OutputSpecs[I]; },
|
|
OutputSpecs.size(), Tags) {}
|
|
|
|
TFModelEvaluatorImpl::~TFModelEvaluatorImpl() {}
|
|
|
|
bool TFModelEvaluatorImpl::checkReportAndInvalidate(const TfLiteTensor *Tensor,
|
|
const TensorSpec &Spec) {
|
|
if (!Tensor) {
|
|
errs() << "Could not find TF_Output named: " + Spec.name();
|
|
IsValid = false;
|
|
}
|
|
if (Spec.getTotalTensorBufferSize() != Tensor->bytes)
|
|
IsValid = false;
|
|
|
|
// If the total sizes match, there could still be a mismatch in the shape.
|
|
// We ignore that for now.
|
|
|
|
return IsValid;
|
|
}
|
|
|
|
Optional<TFModelEvaluator::EvaluationResult> TFModelEvaluator::evaluate() {
|
|
if (!isValid())
|
|
return None;
|
|
return EvaluationResult(Impl->evaluate());
|
|
}
|
|
|
|
void *TFModelEvaluator::getUntypedInput(size_t Index) {
|
|
TfLiteTensor *T = Impl->getInput()[Index];
|
|
if (!T)
|
|
return nullptr;
|
|
return T->data.data;
|
|
}
|
|
|
|
TFModelEvaluator::EvaluationResult::EvaluationResult(
|
|
std::unique_ptr<EvaluationResultImpl> Impl)
|
|
: Impl(std::move(Impl)) {}
|
|
|
|
TFModelEvaluator::EvaluationResult::EvaluationResult(EvaluationResult &&Other)
|
|
: Impl(std::move(Other.Impl)) {}
|
|
|
|
TFModelEvaluator::EvaluationResult &
|
|
TFModelEvaluator::EvaluationResult::operator=(EvaluationResult &&Other) {
|
|
Impl = std::move(Other.Impl);
|
|
return *this;
|
|
}
|
|
|
|
void *TFModelEvaluator::EvaluationResult::getUntypedTensorValue(size_t Index) {
|
|
return Impl->getOutput(Index)->data.data;
|
|
}
|
|
|
|
const void *
|
|
TFModelEvaluator::EvaluationResult::getUntypedTensorValue(size_t Index) const {
|
|
return Impl->getOutput(Index)->data.data;
|
|
}
|
|
|
|
TFModelEvaluator::EvaluationResult::~EvaluationResult() {}
|
|
TFModelEvaluator::~TFModelEvaluator() {}
|
|
|
|
#endif // defined(LLVM_HAVE_TF_API)
|