Files
clang-p2996/llvm/lib/Target/AMDGPU/SIPostRABundler.cpp
Austin Kerbow b0f4678b90 [AMDGPU] Add iglp_opt builtin and MFMA GEMM Opt strategy
Adds a builtin that serves as an optimization hint to apply specific optimized
DAG mutations during scheduling. This also disables any other mutations or
clustering that may interfere with the desired pipeline. The first optimization
strategy that is added here is designed to improve the performance of small gemm
kernels on gfx90a.

Reviewed By: jrbyrnes

Differential Revision: https://reviews.llvm.org/D132079
2022-08-19 15:38:36 -07:00

228 lines
6.8 KiB
C++

//===-- SIPostRABundler.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This pass creates bundles of memory instructions to protect adjacent loads
/// and stores from being rescheduled apart from each other post-RA.
///
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "GCNSubtarget.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
using namespace llvm;
#define DEBUG_TYPE "si-post-ra-bundler"
namespace {
class SIPostRABundler : public MachineFunctionPass {
public:
static char ID;
public:
SIPostRABundler() : MachineFunctionPass(ID) {
initializeSIPostRABundlerPass(*PassRegistry::getPassRegistry());
}
bool runOnMachineFunction(MachineFunction &MF) override;
StringRef getPassName() const override {
return "SI post-RA bundler";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
MachineFunctionPass::getAnalysisUsage(AU);
}
private:
const SIRegisterInfo *TRI;
SmallSet<Register, 16> Defs;
void collectUsedRegUnits(const MachineInstr &MI,
BitVector &UsedRegUnits) const;
bool isBundleCandidate(const MachineInstr &MI) const;
bool isDependentLoad(const MachineInstr &MI) const;
bool canBundle(const MachineInstr &MI, const MachineInstr &NextMI) const;
};
constexpr uint64_t MemFlags = SIInstrFlags::MTBUF | SIInstrFlags::MUBUF |
SIInstrFlags::SMRD | SIInstrFlags::DS |
SIInstrFlags::FLAT | SIInstrFlags::MIMG;
} // End anonymous namespace.
INITIALIZE_PASS(SIPostRABundler, DEBUG_TYPE, "SI post-RA bundler", false, false)
char SIPostRABundler::ID = 0;
char &llvm::SIPostRABundlerID = SIPostRABundler::ID;
FunctionPass *llvm::createSIPostRABundlerPass() {
return new SIPostRABundler();
}
bool SIPostRABundler::isDependentLoad(const MachineInstr &MI) const {
if (!MI.mayLoad())
return false;
for (const MachineOperand &Op : MI.explicit_operands()) {
if (!Op.isReg())
continue;
Register Reg = Op.getReg();
for (Register Def : Defs)
if (TRI->regsOverlap(Reg, Def))
return true;
}
return false;
}
void SIPostRABundler::collectUsedRegUnits(const MachineInstr &MI,
BitVector &UsedRegUnits) const {
if (MI.isDebugInstr())
return;
for (const MachineOperand &Op : MI.operands()) {
if (!Op.isReg() || !Op.readsReg())
continue;
Register Reg = Op.getReg();
assert(!Op.getSubReg() &&
"subregister indexes should not be present after RA");
for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
UsedRegUnits.set(*Units);
}
}
bool SIPostRABundler::isBundleCandidate(const MachineInstr &MI) const {
const uint64_t IMemFlags = MI.getDesc().TSFlags & MemFlags;
return IMemFlags != 0 && MI.mayLoadOrStore() && !MI.isBundled();
}
bool SIPostRABundler::canBundle(const MachineInstr &MI,
const MachineInstr &NextMI) const {
const uint64_t IMemFlags = MI.getDesc().TSFlags & MemFlags;
return (IMemFlags != 0 && MI.mayLoadOrStore() && !NextMI.isBundled() &&
NextMI.mayLoad() == MI.mayLoad() && NextMI.mayStore() == MI.mayStore() &&
((NextMI.getDesc().TSFlags & MemFlags) == IMemFlags) &&
!isDependentLoad(NextMI));
}
bool SIPostRABundler::runOnMachineFunction(MachineFunction &MF) {
if (skipFunction(MF.getFunction()))
return false;
TRI = MF.getSubtarget<GCNSubtarget>().getRegisterInfo();
BitVector BundleUsedRegUnits(TRI->getNumRegUnits());
BitVector KillUsedRegUnits(TRI->getNumRegUnits());
bool Changed = false;
for (MachineBasicBlock &MBB : MF) {
bool HasIGLPInstrs =
std::any_of(MBB.instr_begin(), MBB.instr_end(), [](MachineInstr &MI) {
unsigned Opc = MI.getOpcode();
return (Opc == AMDGPU::SCHED_GROUP_BARRIER ||
Opc == AMDGPU::IGLP_OPT);
});
// Don't cluster with IGLP instructions.
if (HasIGLPInstrs)
continue;
MachineBasicBlock::instr_iterator Next;
MachineBasicBlock::instr_iterator B = MBB.instr_begin();
MachineBasicBlock::instr_iterator E = MBB.instr_end();
for (auto I = B; I != E; I = Next) {
Next = std::next(I);
if (!isBundleCandidate(*I))
continue;
assert(Defs.empty());
if (I->getNumExplicitDefs() != 0)
Defs.insert(I->defs().begin()->getReg());
MachineBasicBlock::instr_iterator BundleStart = I;
MachineBasicBlock::instr_iterator BundleEnd = I;
unsigned ClauseLength = 1;
for (I = Next; I != E; I = Next) {
Next = std::next(I);
assert(BundleEnd != I);
if (canBundle(*BundleEnd, *I)) {
BundleEnd = I;
if (I->getNumExplicitDefs() != 0)
Defs.insert(I->defs().begin()->getReg());
++ClauseLength;
} else if (!I->isMetaInstruction()) {
// Allow meta instructions in between bundle candidates, but do not
// start or end a bundle on one.
//
// TODO: It may be better to move meta instructions like dbg_value
// after the bundle. We're relying on the memory legalizer to unbundle
// these.
break;
}
}
Next = std::next(BundleEnd);
if (ClauseLength > 1) {
Changed = true;
// Before register allocation, kills are inserted after potential soft
// clauses to hint register allocation. Look for kills that look like
// this, and erase them.
if (Next != E && Next->isKill()) {
// TODO: Should maybe back-propagate kill flags to the bundle.
for (const MachineInstr &BundleMI : make_range(BundleStart, Next))
collectUsedRegUnits(BundleMI, BundleUsedRegUnits);
BundleUsedRegUnits.flip();
while (Next != E && Next->isKill()) {
MachineInstr &Kill = *Next;
collectUsedRegUnits(Kill, KillUsedRegUnits);
KillUsedRegUnits &= BundleUsedRegUnits;
// Erase the kill if it's a subset of the used registers.
//
// TODO: Should we just remove all kills? Is there any real reason to
// keep them after RA?
if (KillUsedRegUnits.none()) {
++Next;
Kill.eraseFromParent();
} else
break;
KillUsedRegUnits.reset();
}
BundleUsedRegUnits.reset();
}
finalizeBundle(MBB, BundleStart, Next);
}
Defs.clear();
}
}
return Changed;
}