Files
clang-p2996/mlir/lib/Conversion/SCFToGPU/SCFToGPUPass.cpp
Michele Scuttari 67d0d7ac0a [MLIR] Update pass declarations to new autogenerated files
The patch introduces the required changes to update the pass declarations and definitions to use the new autogenerated files and allow dropping the old infrastructure.

Reviewed By: mehdi_amini, rriddle

Differential Review: https://reviews.llvm.org/D132838
2022-08-31 12:28:45 +02:00

83 lines
2.9 KiB
C++

//===- SCFToGPUPass.cpp - Convert a loop nest to a GPU kernel -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/SCFToGPU/SCFToGPUPass.h"
#include "mlir/Conversion/SCFToGPU/SCFToGPU.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
#include "mlir/Dialect/Complex/IR/Complex.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/Support/CommandLine.h"
namespace mlir {
#define GEN_PASS_DEF_CONVERTAFFINEFORTOGPU
#define GEN_PASS_DEF_CONVERTPARALLELLOOPTOGPU
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir
using namespace mlir;
using namespace mlir::scf;
namespace {
// A pass that traverses top-level loops in the function and converts them to
// GPU launch operations. Nested launches are not allowed, so this does not
// walk the function recursively to avoid considering nested loops.
struct ForLoopMapper : public impl::ConvertAffineForToGPUBase<ForLoopMapper> {
ForLoopMapper() = default;
ForLoopMapper(unsigned numBlockDims, unsigned numThreadDims) {
this->numBlockDims = numBlockDims;
this->numThreadDims = numThreadDims;
}
void runOnOperation() override {
for (Operation &op :
llvm::make_early_inc_range(getOperation().getBody().getOps())) {
if (auto forOp = dyn_cast<AffineForOp>(&op)) {
if (failed(convertAffineLoopNestToGPULaunch(forOp, numBlockDims,
numThreadDims)))
signalPassFailure();
}
}
}
};
struct ParallelLoopToGpuPass
: public impl::ConvertParallelLoopToGpuBase<ParallelLoopToGpuPass> {
void runOnOperation() override {
RewritePatternSet patterns(&getContext());
populateParallelLoopToGPUPatterns(patterns);
ConversionTarget target(getContext());
target.markUnknownOpDynamicallyLegal([](Operation *) { return true; });
configureParallelLoopToGPULegality(target);
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))
signalPassFailure();
finalizeParallelLoopToGPUConversion(getOperation());
}
};
} // namespace
std::unique_ptr<InterfacePass<FunctionOpInterface>>
mlir::createAffineForToGPUPass(unsigned numBlockDims, unsigned numThreadDims) {
return std::make_unique<ForLoopMapper>(numBlockDims, numThreadDims);
}
std::unique_ptr<InterfacePass<FunctionOpInterface>>
mlir::createAffineForToGPUPass() {
return std::make_unique<ForLoopMapper>();
}
std::unique_ptr<Pass> mlir::createParallelLoopToGpuPass() {
return std::make_unique<ParallelLoopToGpuPass>();
}