Files
clang-p2996/mlir/lib/Dialect/SCF/Transforms/LoopPipelining.cpp
Michele Scuttari 67d0d7ac0a [MLIR] Update pass declarations to new autogenerated files
The patch introduces the required changes to update the pass declarations and definitions to use the new autogenerated files and allow dropping the old infrastructure.

Reviewed By: mehdi_amini, rriddle

Differential Review: https://reviews.llvm.org/D132838
2022-08-31 12:28:45 +02:00

490 lines
20 KiB
C++

//===- LoopPipelining.cpp - Code to perform loop software pipelining-------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements loop software pipelining
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SCF/Transforms/Patterns.h"
#include "mlir/Dialect/SCF/Transforms/Transforms.h"
#include "mlir/Dialect/SCF/Utils/Utils.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Support/MathExtras.h"
#include "llvm/ADT/MapVector.h"
using namespace mlir;
using namespace mlir::scf;
namespace {
/// Helper to keep internal information during pipelining transformation.
struct LoopPipelinerInternal {
/// Coarse liverange information for ops used across stages.
struct LiverangeInfo {
unsigned lastUseStage = 0;
unsigned defStage = 0;
};
protected:
ForOp forOp;
unsigned maxStage = 0;
DenseMap<Operation *, unsigned> stages;
std::vector<Operation *> opOrder;
int64_t ub;
int64_t lb;
int64_t step;
PipeliningOption::AnnotationlFnType annotateFn = nullptr;
bool peelEpilogue;
PipeliningOption::PredicateOpFn predicateFn = nullptr;
// When peeling the kernel we generate several version of each value for
// different stage of the prologue. This map tracks the mapping between
// original Values in the loop and the different versions
// peeled from the loop.
DenseMap<Value, llvm::SmallVector<Value>> valueMapping;
/// Assign a value to `valueMapping`, this means `val` represents the version
/// `idx` of `key` in the epilogue.
void setValueMapping(Value key, Value el, int64_t idx);
public:
/// Initalize the information for the given `op`, return true if it
/// satisfies the pre-condition to apply pipelining.
bool initializeLoopInfo(ForOp op, const PipeliningOption &options);
/// Emits the prologue, this creates `maxStage - 1` part which will contain
/// operations from stages [0; i], where i is the part index.
void emitPrologue(PatternRewriter &rewriter);
/// Gather liverange information for Values that are used in a different stage
/// than its definition.
llvm::MapVector<Value, LiverangeInfo> analyzeCrossStageValues();
scf::ForOp createKernelLoop(
const llvm::MapVector<Value, LiverangeInfo> &crossStageValues,
PatternRewriter &rewriter,
llvm::DenseMap<std::pair<Value, unsigned>, unsigned> &loopArgMap);
/// Emits the pipelined kernel. This clones loop operations following user
/// order and remaps operands defined in a different stage as their use.
void createKernel(
scf::ForOp newForOp,
const llvm::MapVector<Value, LiverangeInfo> &crossStageValues,
const llvm::DenseMap<std::pair<Value, unsigned>, unsigned> &loopArgMap,
PatternRewriter &rewriter);
/// Emits the epilogue, this creates `maxStage - 1` part which will contain
/// operations from stages [i; maxStage], where i is the part index.
llvm::SmallVector<Value> emitEpilogue(PatternRewriter &rewriter);
};
bool LoopPipelinerInternal::initializeLoopInfo(
ForOp op, const PipeliningOption &options) {
forOp = op;
auto upperBoundCst =
forOp.getUpperBound().getDefiningOp<arith::ConstantIndexOp>();
auto lowerBoundCst =
forOp.getLowerBound().getDefiningOp<arith::ConstantIndexOp>();
auto stepCst = forOp.getStep().getDefiningOp<arith::ConstantIndexOp>();
if (!upperBoundCst || !lowerBoundCst || !stepCst)
return false;
ub = upperBoundCst.value();
lb = lowerBoundCst.value();
step = stepCst.value();
peelEpilogue = options.peelEpilogue;
predicateFn = options.predicateFn;
if (!peelEpilogue && predicateFn == nullptr)
return false;
int64_t numIteration = ceilDiv(ub - lb, step);
std::vector<std::pair<Operation *, unsigned>> schedule;
options.getScheduleFn(forOp, schedule);
if (schedule.empty())
return false;
opOrder.reserve(schedule.size());
for (auto &opSchedule : schedule) {
maxStage = std::max(maxStage, opSchedule.second);
stages[opSchedule.first] = opSchedule.second;
opOrder.push_back(opSchedule.first);
}
if (numIteration <= maxStage)
return false;
// All operations need to have a stage.
if (forOp
.walk([this](Operation *op) {
if (op != forOp.getOperation() && !isa<scf::YieldOp>(op) &&
stages.find(op) == stages.end())
return WalkResult::interrupt();
return WalkResult::advance();
})
.wasInterrupted())
return false;
// Only support loop carried dependency with a distance of 1. This means the
// source of all the scf.yield operands needs to be defined by operations in
// the loop.
if (llvm::any_of(forOp.getBody()->getTerminator()->getOperands(),
[this](Value operand) {
Operation *def = operand.getDefiningOp();
return !def || stages.find(def) == stages.end();
}))
return false;
annotateFn = options.annotateFn;
return true;
}
void LoopPipelinerInternal::emitPrologue(PatternRewriter &rewriter) {
// Initialize the iteration argument to the loop initiale values.
for (BlockArgument &arg : forOp.getRegionIterArgs()) {
OpOperand &operand = forOp.getOpOperandForRegionIterArg(arg);
setValueMapping(arg, operand.get(), 0);
}
auto yield = cast<scf::YieldOp>(forOp.getBody()->getTerminator());
for (int64_t i = 0; i < maxStage; i++) {
// special handling for induction variable as the increment is implicit.
Value iv =
rewriter.create<arith::ConstantIndexOp>(forOp.getLoc(), lb + i * step);
setValueMapping(forOp.getInductionVar(), iv, i);
for (Operation *op : opOrder) {
if (stages[op] > i)
continue;
Operation *newOp = rewriter.clone(*op);
for (unsigned opIdx = 0; opIdx < op->getNumOperands(); opIdx++) {
auto it = valueMapping.find(op->getOperand(opIdx));
if (it != valueMapping.end())
newOp->setOperand(opIdx, it->second[i - stages[op]]);
}
if (annotateFn)
annotateFn(newOp, PipeliningOption::PipelinerPart::Prologue, i);
for (unsigned destId : llvm::seq(unsigned(0), op->getNumResults())) {
setValueMapping(op->getResult(destId), newOp->getResult(destId),
i - stages[op]);
// If the value is a loop carried dependency update the loop argument
// mapping.
for (OpOperand &operand : yield->getOpOperands()) {
if (operand.get() != op->getResult(destId))
continue;
setValueMapping(forOp.getRegionIterArgs()[operand.getOperandNumber()],
newOp->getResult(destId), i - stages[op] + 1);
}
}
}
}
}
llvm::MapVector<Value, LoopPipelinerInternal::LiverangeInfo>
LoopPipelinerInternal::analyzeCrossStageValues() {
llvm::MapVector<Value, LoopPipelinerInternal::LiverangeInfo> crossStageValues;
for (Operation *op : opOrder) {
unsigned stage = stages[op];
for (OpOperand &operand : op->getOpOperands()) {
Operation *def = operand.get().getDefiningOp();
if (!def)
continue;
auto defStage = stages.find(def);
if (defStage == stages.end() || defStage->second == stage)
continue;
assert(stage > defStage->second);
LiverangeInfo &info = crossStageValues[operand.get()];
info.defStage = defStage->second;
info.lastUseStage = std::max(info.lastUseStage, stage);
}
}
return crossStageValues;
}
scf::ForOp LoopPipelinerInternal::createKernelLoop(
const llvm::MapVector<Value, LoopPipelinerInternal::LiverangeInfo>
&crossStageValues,
PatternRewriter &rewriter,
llvm::DenseMap<std::pair<Value, unsigned>, unsigned> &loopArgMap) {
// Creates the list of initial values associated to values used across
// stages. The initial values come from the prologue created above.
// Keep track of the kernel argument associated to each version of the
// values passed to the kernel.
llvm::SmallVector<Value> newLoopArg;
// For existing loop argument initialize them with the right version from the
// prologue.
for (const auto &retVal :
llvm::enumerate(forOp.getBody()->getTerminator()->getOperands())) {
Operation *def = retVal.value().getDefiningOp();
assert(def && "Only support loop carried dependencies of distance 1");
unsigned defStage = stages[def];
Value valueVersion = valueMapping[forOp.getRegionIterArgs()[retVal.index()]]
[maxStage - defStage];
assert(valueVersion);
newLoopArg.push_back(valueVersion);
}
for (auto escape : crossStageValues) {
LiverangeInfo &info = escape.second;
Value value = escape.first;
for (unsigned stageIdx = 0; stageIdx < info.lastUseStage - info.defStage;
stageIdx++) {
Value valueVersion =
valueMapping[value][maxStage - info.lastUseStage + stageIdx];
assert(valueVersion);
newLoopArg.push_back(valueVersion);
loopArgMap[std::make_pair(value, info.lastUseStage - info.defStage -
stageIdx)] = newLoopArg.size() - 1;
}
}
// Create the new kernel loop. When we peel the epilgue we need to peel
// `numStages - 1` iterations. Then we adjust the upper bound to remove those
// iterations.
Value newUb = forOp.getUpperBound();
if (peelEpilogue)
newUb = rewriter.create<arith::ConstantIndexOp>(forOp.getLoc(),
ub - maxStage * step);
auto newForOp =
rewriter.create<scf::ForOp>(forOp.getLoc(), forOp.getLowerBound(), newUb,
forOp.getStep(), newLoopArg);
return newForOp;
}
void LoopPipelinerInternal::createKernel(
scf::ForOp newForOp,
const llvm::MapVector<Value, LoopPipelinerInternal::LiverangeInfo>
&crossStageValues,
const llvm::DenseMap<std::pair<Value, unsigned>, unsigned> &loopArgMap,
PatternRewriter &rewriter) {
valueMapping.clear();
// Create the kernel, we clone instruction based on the order given by
// user and remap operands coming from a previous stages.
rewriter.setInsertionPoint(newForOp.getBody(), newForOp.getBody()->begin());
BlockAndValueMapping mapping;
mapping.map(forOp.getInductionVar(), newForOp.getInductionVar());
for (const auto &arg : llvm::enumerate(forOp.getRegionIterArgs())) {
mapping.map(arg.value(), newForOp.getRegionIterArgs()[arg.index()]);
}
SmallVector<Value> predicates(maxStage + 1, nullptr);
if (!peelEpilogue) {
// Create a predicate for each stage except the last stage.
for (unsigned i = 0; i < maxStage; i++) {
Value c = rewriter.create<arith::ConstantIndexOp>(
newForOp.getLoc(), ub - (maxStage - i) * step);
Value pred = rewriter.create<arith::CmpIOp>(
newForOp.getLoc(), arith::CmpIPredicate::slt,
newForOp.getInductionVar(), c);
predicates[i] = pred;
}
}
for (Operation *op : opOrder) {
int64_t useStage = stages[op];
auto *newOp = rewriter.clone(*op, mapping);
for (OpOperand &operand : op->getOpOperands()) {
// Special case for the induction variable uses. We replace it with a
// version incremented based on the stage where it is used.
if (operand.get() == forOp.getInductionVar()) {
rewriter.setInsertionPoint(newOp);
Value offset = rewriter.create<arith::ConstantIndexOp>(
forOp.getLoc(), (maxStage - stages[op]) * step);
Value iv = rewriter.create<arith::AddIOp>(
forOp.getLoc(), newForOp.getInductionVar(), offset);
newOp->setOperand(operand.getOperandNumber(), iv);
rewriter.setInsertionPointAfter(newOp);
continue;
}
auto arg = operand.get().dyn_cast<BlockArgument>();
if (arg && arg.getOwner() == forOp.getBody()) {
// If the value is a loop carried value coming from stage N + 1 remap,
// it will become a direct use.
Value ret = forOp.getBody()->getTerminator()->getOperand(
arg.getArgNumber() - 1);
Operation *dep = ret.getDefiningOp();
if (!dep)
continue;
auto stageDep = stages.find(dep);
if (stageDep == stages.end() || stageDep->second == useStage)
continue;
assert(stageDep->second == useStage + 1);
newOp->setOperand(operand.getOperandNumber(),
mapping.lookupOrDefault(ret));
continue;
}
// For operands defined in a previous stage we need to remap it to use
// the correct region argument. We look for the right version of the
// Value based on the stage where it is used.
Operation *def = operand.get().getDefiningOp();
if (!def)
continue;
auto stageDef = stages.find(def);
if (stageDef == stages.end() || stageDef->second == useStage)
continue;
auto remap = loopArgMap.find(
std::make_pair(operand.get(), useStage - stageDef->second));
assert(remap != loopArgMap.end());
newOp->setOperand(operand.getOperandNumber(),
newForOp.getRegionIterArgs()[remap->second]);
}
if (predicates[useStage]) {
newOp = predicateFn(newOp, predicates[useStage], rewriter);
// Remap the results to the new predicated one.
for (auto values : llvm::zip(op->getResults(), newOp->getResults()))
mapping.map(std::get<0>(values), std::get<1>(values));
}
rewriter.setInsertionPointAfter(newOp);
if (annotateFn)
annotateFn(newOp, PipeliningOption::PipelinerPart::Kernel, 0);
}
// Collect the Values that need to be returned by the forOp. For each
// value we need to have `LastUseStage - DefStage` number of versions
// returned.
// We create a mapping between original values and the associated loop
// returned values that will be needed by the epilogue.
llvm::SmallVector<Value> yieldOperands;
for (Value retVal : forOp.getBody()->getTerminator()->getOperands()) {
yieldOperands.push_back(mapping.lookupOrDefault(retVal));
}
for (auto &it : crossStageValues) {
int64_t version = maxStage - it.second.lastUseStage + 1;
unsigned numVersionReturned = it.second.lastUseStage - it.second.defStage;
// add the original verstion to yield ops.
// If there is a liverange spanning across more than 2 stages we need to add
// extra arg.
for (unsigned i = 1; i < numVersionReturned; i++) {
setValueMapping(it.first, newForOp->getResult(yieldOperands.size()),
version++);
yieldOperands.push_back(
newForOp.getBody()->getArguments()[yieldOperands.size() + 1 +
newForOp.getNumInductionVars()]);
}
setValueMapping(it.first, newForOp->getResult(yieldOperands.size()),
version++);
yieldOperands.push_back(mapping.lookupOrDefault(it.first));
}
// Map the yield operand to the forOp returned value.
for (const auto &retVal :
llvm::enumerate(forOp.getBody()->getTerminator()->getOperands())) {
Operation *def = retVal.value().getDefiningOp();
assert(def && "Only support loop carried dependencies of distance 1");
unsigned defStage = stages[def];
setValueMapping(forOp.getRegionIterArgs()[retVal.index()],
newForOp->getResult(retVal.index()),
maxStage - defStage + 1);
}
rewriter.create<scf::YieldOp>(forOp.getLoc(), yieldOperands);
}
llvm::SmallVector<Value>
LoopPipelinerInternal::emitEpilogue(PatternRewriter &rewriter) {
llvm::SmallVector<Value> returnValues(forOp->getNumResults());
// Emit different versions of the induction variable. They will be
// removed by dead code if not used.
for (int64_t i = 0; i < maxStage; i++) {
Value newlastIter = rewriter.create<arith::ConstantIndexOp>(
forOp.getLoc(), lb + step * ((((ub - 1) - lb) / step) - i));
setValueMapping(forOp.getInductionVar(), newlastIter, maxStage - i);
}
// Emit `maxStage - 1` epilogue part that includes operations fro stages
// [i; maxStage].
for (int64_t i = 1; i <= maxStage; i++) {
for (Operation *op : opOrder) {
if (stages[op] < i)
continue;
Operation *newOp = rewriter.clone(*op);
for (unsigned opIdx = 0; opIdx < op->getNumOperands(); opIdx++) {
auto it = valueMapping.find(op->getOperand(opIdx));
if (it != valueMapping.end()) {
Value v = it->second[maxStage - stages[op] + i];
assert(v);
newOp->setOperand(opIdx, v);
}
}
if (annotateFn)
annotateFn(newOp, PipeliningOption::PipelinerPart::Epilogue, i - 1);
for (unsigned destId : llvm::seq(unsigned(0), op->getNumResults())) {
setValueMapping(op->getResult(destId), newOp->getResult(destId),
maxStage - stages[op] + i);
// If the value is a loop carried dependency update the loop argument
// mapping and keep track of the last version to replace the original
// forOp uses.
for (OpOperand &operand :
forOp.getBody()->getTerminator()->getOpOperands()) {
if (operand.get() != op->getResult(destId))
continue;
unsigned version = maxStage - stages[op] + i + 1;
// If the version is greater than maxStage it means it maps to the
// original forOp returned value.
if (version > maxStage) {
returnValues[operand.getOperandNumber()] = newOp->getResult(destId);
continue;
}
setValueMapping(forOp.getRegionIterArgs()[operand.getOperandNumber()],
newOp->getResult(destId), version);
}
}
}
}
return returnValues;
}
void LoopPipelinerInternal::setValueMapping(Value key, Value el, int64_t idx) {
auto it = valueMapping.find(key);
// If the value is not in the map yet add a vector big enough to store all
// versions.
if (it == valueMapping.end())
it =
valueMapping
.insert(std::make_pair(key, llvm::SmallVector<Value>(maxStage + 1)))
.first;
it->second[idx] = el;
}
} // namespace
FailureOr<ForOp> ForLoopPipeliningPattern::returningMatchAndRewrite(
ForOp forOp, PatternRewriter &rewriter) const {
LoopPipelinerInternal pipeliner;
if (!pipeliner.initializeLoopInfo(forOp, options))
return failure();
// 1. Emit prologue.
pipeliner.emitPrologue(rewriter);
// 2. Track values used across stages. When a value cross stages it will
// need to be passed as loop iteration arguments.
// We first collect the values that are used in a different stage than where
// they are defined.
llvm::MapVector<Value, LoopPipelinerInternal::LiverangeInfo>
crossStageValues = pipeliner.analyzeCrossStageValues();
// Mapping between original loop values used cross stage and the block
// arguments associated after pipelining. A Value may map to several
// arguments if its liverange spans across more than 2 stages.
llvm::DenseMap<std::pair<Value, unsigned>, unsigned> loopArgMap;
// 3. Create the new kernel loop and return the block arguments mapping.
ForOp newForOp =
pipeliner.createKernelLoop(crossStageValues, rewriter, loopArgMap);
// Create the kernel block, order ops based on user choice and remap
// operands.
pipeliner.createKernel(newForOp, crossStageValues, loopArgMap, rewriter);
llvm::SmallVector<Value> returnValues =
newForOp.getResults().take_front(forOp->getNumResults());
if (options.peelEpilogue) {
// 4. Emit the epilogue after the new forOp.
rewriter.setInsertionPointAfter(newForOp);
returnValues = pipeliner.emitEpilogue(rewriter);
}
// 5. Erase the original loop and replace the uses with the epilogue output.
if (forOp->getNumResults() > 0)
rewriter.replaceOp(forOp, returnValues);
else
rewriter.eraseOp(forOp);
return newForOp;
}
void mlir::scf::populateSCFLoopPipeliningPatterns(
RewritePatternSet &patterns, const PipeliningOption &options) {
patterns.add<ForLoopPipeliningPattern>(options, patterns.getContext());
}