Files
clang-p2996/mlir/lib/Dialect/SCF/Transforms/LoopSpecialization.cpp
Michele Scuttari 67d0d7ac0a [MLIR] Update pass declarations to new autogenerated files
The patch introduces the required changes to update the pass declarations and definitions to use the new autogenerated files and allow dropping the old infrastructure.

Reviewed By: mehdi_amini, rriddle

Differential Review: https://reviews.llvm.org/D132838
2022-08-31 12:28:45 +02:00

288 lines
11 KiB
C++

//===- LoopSpecialization.cpp - scf.parallel/SCR.for specialization -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Specializes parallel loops and for loops for easier unrolling and
// vectorization.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/SCF/Transforms/Passes.h"
#include "mlir/Dialect/Affine/Analysis/AffineStructures.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SCF/Transforms/Transforms.h"
#include "mlir/Dialect/SCF/Utils/AffineCanonicalizationUtils.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/DenseMap.h"
namespace mlir {
#define GEN_PASS_DEF_SCFFORLOOPPEELING
#define GEN_PASS_DEF_SCFFORLOOPSPECIALIZATION
#define GEN_PASS_DEF_SCFPARALLELLOOPSPECIALIZATION
#include "mlir/Dialect/SCF/Transforms/Passes.h.inc"
} // namespace mlir
using namespace mlir;
using scf::ForOp;
using scf::ParallelOp;
/// Rewrite a parallel loop with bounds defined by an affine.min with a constant
/// into 2 loops after checking if the bounds are equal to that constant. This
/// is beneficial if the loop will almost always have the constant bound and
/// that version can be fully unrolled and vectorized.
static void specializeParallelLoopForUnrolling(ParallelOp op) {
SmallVector<int64_t, 2> constantIndices;
constantIndices.reserve(op.getUpperBound().size());
for (auto bound : op.getUpperBound()) {
auto minOp = bound.getDefiningOp<AffineMinOp>();
if (!minOp)
return;
int64_t minConstant = std::numeric_limits<int64_t>::max();
for (AffineExpr expr : minOp.getMap().getResults()) {
if (auto constantIndex = expr.dyn_cast<AffineConstantExpr>())
minConstant = std::min(minConstant, constantIndex.getValue());
}
if (minConstant == std::numeric_limits<int64_t>::max())
return;
constantIndices.push_back(minConstant);
}
OpBuilder b(op);
BlockAndValueMapping map;
Value cond;
for (auto bound : llvm::zip(op.getUpperBound(), constantIndices)) {
Value constant =
b.create<arith::ConstantIndexOp>(op.getLoc(), std::get<1>(bound));
Value cmp = b.create<arith::CmpIOp>(op.getLoc(), arith::CmpIPredicate::eq,
std::get<0>(bound), constant);
cond = cond ? b.create<arith::AndIOp>(op.getLoc(), cond, cmp) : cmp;
map.map(std::get<0>(bound), constant);
}
auto ifOp = b.create<scf::IfOp>(op.getLoc(), cond, /*withElseRegion=*/true);
ifOp.getThenBodyBuilder().clone(*op.getOperation(), map);
ifOp.getElseBodyBuilder().clone(*op.getOperation());
op.erase();
}
/// Rewrite a for loop with bounds defined by an affine.min with a constant into
/// 2 loops after checking if the bounds are equal to that constant. This is
/// beneficial if the loop will almost always have the constant bound and that
/// version can be fully unrolled and vectorized.
static void specializeForLoopForUnrolling(ForOp op) {
auto bound = op.getUpperBound();
auto minOp = bound.getDefiningOp<AffineMinOp>();
if (!minOp)
return;
int64_t minConstant = std::numeric_limits<int64_t>::max();
for (AffineExpr expr : minOp.getMap().getResults()) {
if (auto constantIndex = expr.dyn_cast<AffineConstantExpr>())
minConstant = std::min(minConstant, constantIndex.getValue());
}
if (minConstant == std::numeric_limits<int64_t>::max())
return;
OpBuilder b(op);
BlockAndValueMapping map;
Value constant = b.create<arith::ConstantIndexOp>(op.getLoc(), minConstant);
Value cond = b.create<arith::CmpIOp>(op.getLoc(), arith::CmpIPredicate::eq,
bound, constant);
map.map(bound, constant);
auto ifOp = b.create<scf::IfOp>(op.getLoc(), cond, /*withElseRegion=*/true);
ifOp.getThenBodyBuilder().clone(*op.getOperation(), map);
ifOp.getElseBodyBuilder().clone(*op.getOperation());
op.erase();
}
/// Rewrite a for loop with bounds/step that potentially do not divide evenly
/// into a for loop where the step divides the iteration space evenly, followed
/// by an scf.if for the last (partial) iteration (if any).
///
/// This function rewrites the given scf.for loop in-place and creates a new
/// scf.if operation for the last iteration. It replaces all uses of the
/// unpeeled loop with the results of the newly generated scf.if.
///
/// The newly generated scf.if operation is returned via `ifOp`. The boundary
/// at which the loop is split (new upper bound) is returned via `splitBound`.
/// The return value indicates whether the loop was rewritten or not.
static LogicalResult peelForLoop(RewriterBase &b, ForOp forOp,
ForOp &partialIteration, Value &splitBound) {
RewriterBase::InsertionGuard guard(b);
auto lbInt = getConstantIntValue(forOp.getLowerBound());
auto ubInt = getConstantIntValue(forOp.getUpperBound());
auto stepInt = getConstantIntValue(forOp.getStep());
// No specialization necessary if step already divides upper bound evenly.
if (lbInt && ubInt && stepInt && (*ubInt - *lbInt) % *stepInt == 0)
return failure();
// No specialization necessary if step size is 1.
if (stepInt == static_cast<int64_t>(1))
return failure();
auto loc = forOp.getLoc();
AffineExpr sym0, sym1, sym2;
bindSymbols(b.getContext(), sym0, sym1, sym2);
// New upper bound: %ub - (%ub - %lb) mod %step
auto modMap = AffineMap::get(0, 3, {sym1 - ((sym1 - sym0) % sym2)});
b.setInsertionPoint(forOp);
splitBound = b.createOrFold<AffineApplyOp>(loc, modMap,
ValueRange{forOp.getLowerBound(),
forOp.getUpperBound(),
forOp.getStep()});
// Create ForOp for partial iteration.
b.setInsertionPointAfter(forOp);
partialIteration = cast<ForOp>(b.clone(*forOp.getOperation()));
partialIteration.getLowerBoundMutable().assign(splitBound);
forOp.replaceAllUsesWith(partialIteration->getResults());
partialIteration.getInitArgsMutable().assign(forOp->getResults());
// Set new upper loop bound.
b.updateRootInPlace(
forOp, [&]() { forOp.getUpperBoundMutable().assign(splitBound); });
return success();
}
template <typename OpTy, bool IsMin>
static void rewriteAffineOpAfterPeeling(RewriterBase &rewriter, ForOp forOp,
ForOp partialIteration,
Value previousUb) {
Value mainIv = forOp.getInductionVar();
Value partialIv = partialIteration.getInductionVar();
assert(forOp.getStep() == partialIteration.getStep() &&
"expected same step in main and partial loop");
Value step = forOp.getStep();
forOp.walk([&](OpTy affineOp) {
AffineMap map = affineOp.getAffineMap();
(void)scf::rewritePeeledMinMaxOp(rewriter, affineOp, map,
affineOp.operands(), IsMin, mainIv,
previousUb, step,
/*insideLoop=*/true);
});
partialIteration.walk([&](OpTy affineOp) {
AffineMap map = affineOp.getAffineMap();
(void)scf::rewritePeeledMinMaxOp(rewriter, affineOp, map,
affineOp.operands(), IsMin, partialIv,
previousUb, step, /*insideLoop=*/false);
});
}
LogicalResult mlir::scf::peelAndCanonicalizeForLoop(RewriterBase &rewriter,
ForOp forOp,
ForOp &partialIteration) {
Value previousUb = forOp.getUpperBound();
Value splitBound;
if (failed(peelForLoop(rewriter, forOp, partialIteration, splitBound)))
return failure();
// Rewrite affine.min and affine.max ops.
rewriteAffineOpAfterPeeling<AffineMinOp, /*IsMin=*/true>(
rewriter, forOp, partialIteration, previousUb);
rewriteAffineOpAfterPeeling<AffineMaxOp, /*IsMin=*/false>(
rewriter, forOp, partialIteration, previousUb);
return success();
}
static constexpr char kPeeledLoopLabel[] = "__peeled_loop__";
static constexpr char kPartialIterationLabel[] = "__partial_iteration__";
namespace {
struct ForLoopPeelingPattern : public OpRewritePattern<ForOp> {
ForLoopPeelingPattern(MLIRContext *ctx, bool skipPartial)
: OpRewritePattern<ForOp>(ctx), skipPartial(skipPartial) {}
LogicalResult matchAndRewrite(ForOp forOp,
PatternRewriter &rewriter) const override {
// Do not peel already peeled loops.
if (forOp->hasAttr(kPeeledLoopLabel))
return failure();
if (skipPartial) {
// No peeling of loops inside the partial iteration of another peeled
// loop.
Operation *op = forOp.getOperation();
while ((op = op->getParentOfType<scf::ForOp>())) {
if (op->hasAttr(kPartialIterationLabel))
return failure();
}
}
// Apply loop peeling.
scf::ForOp partialIteration;
if (failed(peelAndCanonicalizeForLoop(rewriter, forOp, partialIteration)))
return failure();
// Apply label, so that the same loop is not rewritten a second time.
partialIteration->setAttr(kPeeledLoopLabel, rewriter.getUnitAttr());
rewriter.updateRootInPlace(forOp, [&]() {
forOp->setAttr(kPeeledLoopLabel, rewriter.getUnitAttr());
});
partialIteration->setAttr(kPartialIterationLabel, rewriter.getUnitAttr());
return success();
}
/// If set to true, loops inside partial iterations of another peeled loop
/// are not peeled. This reduces the size of the generated code. Partial
/// iterations are not usually performance critical.
/// Note: Takes into account the entire chain of parent operations, not just
/// the direct parent.
bool skipPartial;
};
} // namespace
namespace {
struct ParallelLoopSpecialization
: public impl::SCFParallelLoopSpecializationBase<
ParallelLoopSpecialization> {
void runOnOperation() override {
getOperation()->walk(
[](ParallelOp op) { specializeParallelLoopForUnrolling(op); });
}
};
struct ForLoopSpecialization
: public impl::SCFForLoopSpecializationBase<ForLoopSpecialization> {
void runOnOperation() override {
getOperation()->walk([](ForOp op) { specializeForLoopForUnrolling(op); });
}
};
struct ForLoopPeeling : public impl::SCFForLoopPeelingBase<ForLoopPeeling> {
void runOnOperation() override {
auto *parentOp = getOperation();
MLIRContext *ctx = parentOp->getContext();
RewritePatternSet patterns(ctx);
patterns.add<ForLoopPeelingPattern>(ctx, skipPartial);
(void)applyPatternsAndFoldGreedily(parentOp, std::move(patterns));
// Drop the markers.
parentOp->walk([](Operation *op) {
op->removeAttr(kPeeledLoopLabel);
op->removeAttr(kPartialIterationLabel);
});
}
};
} // namespace
std::unique_ptr<Pass> mlir::createParallelLoopSpecializationPass() {
return std::make_unique<ParallelLoopSpecialization>();
}
std::unique_ptr<Pass> mlir::createForLoopSpecializationPass() {
return std::make_unique<ForLoopSpecialization>();
}
std::unique_ptr<Pass> mlir::createForLoopPeelingPass() {
return std::make_unique<ForLoopPeeling>();
}