On AArch64, we create optional/weak relocations that may not be processed due to the relocated value overflow. When the overflow happens, we used to enforce patching for all functions in the binary via --force-patch option. This PR relaxes the requirement, and enforces patching only for functions that are target of optional relocations. Moreover, if the compact code model is used, the relocation overflow is guaranteed not to happen and the patching will be skipped.
258 lines
9.2 KiB
C++
258 lines
9.2 KiB
C++
//===- bolt/unittest/Core/BinaryContext.cpp -------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "bolt/Core/BinaryContext.h"
|
|
#include "bolt/Utils/CommandLineOpts.h"
|
|
#include "llvm/BinaryFormat/ELF.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
|
|
#include "llvm/Support/TargetSelect.h"
|
|
#include "gtest/gtest.h"
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::object;
|
|
using namespace llvm::ELF;
|
|
using namespace bolt;
|
|
|
|
namespace {
|
|
struct BinaryContextTester : public testing::TestWithParam<Triple::ArchType> {
|
|
void SetUp() override {
|
|
initalizeLLVM();
|
|
prepareElf();
|
|
initializeBOLT();
|
|
}
|
|
|
|
protected:
|
|
void initalizeLLVM() {
|
|
#define BOLT_TARGET(target) \
|
|
LLVMInitialize##target##TargetInfo(); \
|
|
LLVMInitialize##target##TargetMC(); \
|
|
LLVMInitialize##target##AsmParser(); \
|
|
LLVMInitialize##target##Disassembler(); \
|
|
LLVMInitialize##target##Target(); \
|
|
LLVMInitialize##target##AsmPrinter();
|
|
|
|
#include "bolt/Core/TargetConfig.def"
|
|
}
|
|
|
|
void prepareElf() {
|
|
memcpy(ElfBuf, "\177ELF", 4);
|
|
ELF64LE::Ehdr *EHdr = reinterpret_cast<typename ELF64LE::Ehdr *>(ElfBuf);
|
|
EHdr->e_ident[llvm::ELF::EI_CLASS] = llvm::ELF::ELFCLASS64;
|
|
EHdr->e_ident[llvm::ELF::EI_DATA] = llvm::ELF::ELFDATA2LSB;
|
|
EHdr->e_machine = GetParam() == Triple::aarch64 ? EM_AARCH64 : EM_X86_64;
|
|
MemoryBufferRef Source(StringRef(ElfBuf, sizeof(ElfBuf)), "ELF");
|
|
ObjFile = cantFail(ObjectFile::createObjectFile(Source));
|
|
}
|
|
|
|
void initializeBOLT() {
|
|
Relocation::Arch = ObjFile->makeTriple().getArch();
|
|
BC = cantFail(BinaryContext::createBinaryContext(
|
|
ObjFile->makeTriple(), std::make_shared<orc::SymbolStringPool>(),
|
|
ObjFile->getFileName(), nullptr, true,
|
|
DWARFContext::create(*ObjFile.get()), {llvm::outs(), llvm::errs()}));
|
|
ASSERT_FALSE(!BC);
|
|
}
|
|
|
|
char ElfBuf[sizeof(typename ELF64LE::Ehdr)] = {};
|
|
std::unique_ptr<ObjectFile> ObjFile;
|
|
std::unique_ptr<BinaryContext> BC;
|
|
};
|
|
} // namespace
|
|
|
|
#ifdef X86_AVAILABLE
|
|
|
|
INSTANTIATE_TEST_SUITE_P(X86, BinaryContextTester,
|
|
::testing::Values(Triple::x86_64));
|
|
|
|
#endif
|
|
|
|
#ifdef AARCH64_AVAILABLE
|
|
|
|
INSTANTIATE_TEST_SUITE_P(AArch64, BinaryContextTester,
|
|
::testing::Values(Triple::aarch64));
|
|
|
|
TEST_P(BinaryContextTester, FlushPendingRelocCALL26) {
|
|
if (GetParam() != Triple::aarch64)
|
|
GTEST_SKIP();
|
|
|
|
// This test checks that encodeValueAArch64 used by flushPendingRelocations
|
|
// returns correctly encoded values for CALL26 relocation for both backward
|
|
// and forward branches.
|
|
//
|
|
// The offsets layout is:
|
|
// 4: func1
|
|
// 8: bl func1
|
|
// 12: bl func2
|
|
// 16: func2
|
|
|
|
constexpr size_t DataSize = 20;
|
|
uint8_t *Data = new uint8_t[DataSize];
|
|
BinarySection &BS = BC->registerOrUpdateSection(
|
|
".text", ELF::SHT_PROGBITS, ELF::SHF_EXECINSTR | ELF::SHF_ALLOC, Data,
|
|
DataSize, 4);
|
|
MCSymbol *RelSymbol1 = BC->getOrCreateGlobalSymbol(4, "Func1");
|
|
ASSERT_TRUE(RelSymbol1);
|
|
BS.addPendingRelocation(
|
|
Relocation{8, RelSymbol1, ELF::R_AARCH64_CALL26, 0, 0});
|
|
MCSymbol *RelSymbol2 = BC->getOrCreateGlobalSymbol(16, "Func2");
|
|
ASSERT_TRUE(RelSymbol2);
|
|
BS.addPendingRelocation(
|
|
Relocation{12, RelSymbol2, ELF::R_AARCH64_CALL26, 0, 0});
|
|
|
|
SmallVector<char> Vect(DataSize);
|
|
raw_svector_ostream OS(Vect);
|
|
|
|
BS.flushPendingRelocations(OS, [&](const MCSymbol *S) {
|
|
return S == RelSymbol1 ? 4 : S == RelSymbol2 ? 16 : 0;
|
|
});
|
|
|
|
const uint8_t Func1Call[4] = {255, 255, 255, 151};
|
|
const uint8_t Func2Call[4] = {1, 0, 0, 148};
|
|
|
|
EXPECT_FALSE(memcmp(Func1Call, &Vect[8], 4)) << "Wrong backward call value\n";
|
|
EXPECT_FALSE(memcmp(Func2Call, &Vect[12], 4)) << "Wrong forward call value\n";
|
|
}
|
|
|
|
TEST_P(BinaryContextTester, FlushPendingRelocJUMP26) {
|
|
if (GetParam() != Triple::aarch64)
|
|
GTEST_SKIP();
|
|
|
|
// This test checks that encodeValueAArch64 used by flushPendingRelocations
|
|
// returns correctly encoded values for R_AARCH64_JUMP26 relocation for both
|
|
// backward and forward branches.
|
|
//
|
|
// The offsets layout is:
|
|
// 4: func1
|
|
// 8: b func1
|
|
// 12: b func2
|
|
// 16: func2
|
|
|
|
const uint64_t Size = 20;
|
|
char *Data = new char[Size];
|
|
BinarySection &BS = BC->registerOrUpdateSection(
|
|
".text", ELF::SHT_PROGBITS, ELF::SHF_EXECINSTR | ELF::SHF_ALLOC,
|
|
(uint8_t *)Data, Size, 4);
|
|
MCSymbol *RelSymbol1 = BC->getOrCreateGlobalSymbol(4, "Func1");
|
|
ASSERT_TRUE(RelSymbol1);
|
|
BS.addPendingRelocation(
|
|
Relocation{8, RelSymbol1, ELF::R_AARCH64_JUMP26, 0, 0});
|
|
MCSymbol *RelSymbol2 = BC->getOrCreateGlobalSymbol(16, "Func2");
|
|
ASSERT_TRUE(RelSymbol2);
|
|
BS.addPendingRelocation(
|
|
Relocation{12, RelSymbol2, ELF::R_AARCH64_JUMP26, 0, 0});
|
|
|
|
SmallVector<char> Vect(Size);
|
|
raw_svector_ostream OS(Vect);
|
|
|
|
BS.flushPendingRelocations(OS, [&](const MCSymbol *S) {
|
|
return S == RelSymbol1 ? 4 : S == RelSymbol2 ? 16 : 0;
|
|
});
|
|
|
|
const uint8_t Func1Call[4] = {255, 255, 255, 23};
|
|
const uint8_t Func2Call[4] = {1, 0, 0, 20};
|
|
|
|
EXPECT_FALSE(memcmp(Func1Call, &Vect[8], 4))
|
|
<< "Wrong backward branch value\n";
|
|
EXPECT_FALSE(memcmp(Func2Call, &Vect[12], 4))
|
|
<< "Wrong forward branch value\n";
|
|
}
|
|
|
|
TEST_P(BinaryContextTester,
|
|
FlushOptionalOutOfRangePendingRelocCALL26_ForcePatchOn) {
|
|
if (GetParam() != Triple::aarch64)
|
|
GTEST_SKIP();
|
|
|
|
// Tests that flushPendingRelocations can skip flushing any optional pending
|
|
// relocations that cannot be encoded, given that PatchEntries runs.
|
|
opts::ForcePatch = true;
|
|
|
|
opts::Verbosity = 1;
|
|
testing::internal::CaptureStdout();
|
|
|
|
BinarySection &BS = BC->registerOrUpdateSection(
|
|
".text", ELF::SHT_PROGBITS, ELF::SHF_EXECINSTR | ELF::SHF_ALLOC);
|
|
MCSymbol *RelSymbol = BC->getOrCreateGlobalSymbol(4, "Func");
|
|
ASSERT_TRUE(RelSymbol);
|
|
Relocation Reloc{8, RelSymbol, ELF::R_AARCH64_CALL26, 0, 0};
|
|
Reloc.setOptional();
|
|
BS.addPendingRelocation(Reloc);
|
|
|
|
SmallVector<char> Vect;
|
|
raw_svector_ostream OS(Vect);
|
|
|
|
// Resolve relocation symbol to a high value so encoding will be out of range.
|
|
BS.flushPendingRelocations(OS, [&](const MCSymbol *S) { return 0x800000F; });
|
|
outs().flush();
|
|
std::string CapturedStdOut = testing::internal::GetCapturedStdout();
|
|
EXPECT_EQ(CapturedStdOut,
|
|
"BOLT-INFO: skipped 1 out-of-range optional relocations\n");
|
|
}
|
|
|
|
#endif
|
|
|
|
TEST_P(BinaryContextTester, BaseAddress) {
|
|
// Check that base address calculation is correct for a binary with the
|
|
// following segment layout:
|
|
BC->SegmentMapInfo[0] =
|
|
SegmentInfo{0, 0x10e8c2b4, 0, 0x10e8c2b4, 0x1000, true};
|
|
BC->SegmentMapInfo[0x10e8d2b4] =
|
|
SegmentInfo{0x10e8d2b4, 0x3952faec, 0x10e8c2b4, 0x3952faec, 0x1000, true};
|
|
BC->SegmentMapInfo[0x4a3bddc0] =
|
|
SegmentInfo{0x4a3bddc0, 0x148e828, 0x4a3bbdc0, 0x148e828, 0x1000, true};
|
|
BC->SegmentMapInfo[0x4b84d5e8] =
|
|
SegmentInfo{0x4b84d5e8, 0x294f830, 0x4b84a5e8, 0x3d3820, 0x1000, true};
|
|
|
|
std::optional<uint64_t> BaseAddress =
|
|
BC->getBaseAddressForMapping(0x7f13f5556000, 0x10e8c000);
|
|
ASSERT_TRUE(BaseAddress.has_value());
|
|
ASSERT_EQ(*BaseAddress, 0x7f13e46c9000ULL);
|
|
|
|
BaseAddress = BC->getBaseAddressForMapping(0x7f13f5556000, 0x137a000);
|
|
ASSERT_FALSE(BaseAddress.has_value());
|
|
}
|
|
|
|
TEST_P(BinaryContextTester, BaseAddress2) {
|
|
// Check that base address calculation is correct for a binary if the
|
|
// alignment in ELF file are different from pagesize.
|
|
// The segment layout is as follows:
|
|
BC->SegmentMapInfo[0] = SegmentInfo{0, 0x2177c, 0, 0x2177c, 0x10000, true};
|
|
BC->SegmentMapInfo[0x31860] =
|
|
SegmentInfo{0x31860, 0x370, 0x21860, 0x370, 0x10000, true};
|
|
BC->SegmentMapInfo[0x41c20] =
|
|
SegmentInfo{0x41c20, 0x1f8, 0x21c20, 0x1f8, 0x10000, true};
|
|
BC->SegmentMapInfo[0x54e18] =
|
|
SegmentInfo{0x54e18, 0x51, 0x24e18, 0x51, 0x10000, true};
|
|
|
|
std::optional<uint64_t> BaseAddress =
|
|
BC->getBaseAddressForMapping(0xaaaaea444000, 0x21000);
|
|
ASSERT_TRUE(BaseAddress.has_value());
|
|
ASSERT_EQ(*BaseAddress, 0xaaaaea413000ULL);
|
|
|
|
BaseAddress = BC->getBaseAddressForMapping(0xaaaaea444000, 0x11000);
|
|
ASSERT_FALSE(BaseAddress.has_value());
|
|
}
|
|
|
|
TEST_P(BinaryContextTester, BaseAddressSegmentsSmallerThanAlignment) {
|
|
// Check that the correct segment is used to compute the base address
|
|
// when multiple segments are close together in the ELF file (closer
|
|
// than the required alignment in the process space).
|
|
// See https://github.com/llvm/llvm-project/issues/109384
|
|
BC->SegmentMapInfo[0] = SegmentInfo{0, 0x1d1c, 0, 0x1d1c, 0x10000, false};
|
|
BC->SegmentMapInfo[0x11d40] =
|
|
SegmentInfo{0x11d40, 0x11e0, 0x1d40, 0x11e0, 0x10000, true};
|
|
BC->SegmentMapInfo[0x22f20] =
|
|
SegmentInfo{0x22f20, 0x10e0, 0x2f20, 0x1f0, 0x10000, false};
|
|
BC->SegmentMapInfo[0x33110] =
|
|
SegmentInfo{0x33110, 0x89, 0x3110, 0x88, 0x10000, false};
|
|
|
|
std::optional<uint64_t> BaseAddress =
|
|
BC->getBaseAddressForMapping(0xaaaaaaab1000, 0x1000);
|
|
ASSERT_TRUE(BaseAddress.has_value());
|
|
ASSERT_EQ(*BaseAddress, 0xaaaaaaaa0000ULL);
|
|
}
|