Files
clang-p2996/lldb/source/Target/CPPLanguageRuntime.cpp
Chandler Carruth 2946cd7010 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00

346 lines
12 KiB
C++

//===-- CPPLanguageRuntime.cpp
//-------------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "lldb/Target/CPPLanguageRuntime.h"
#include <string.h>
#include "llvm/ADT/StringRef.h"
#include "lldb/Symbol/Block.h"
#include "lldb/Symbol/VariableList.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/UniqueCStringMap.h"
#include "lldb/Symbol/ClangASTContext.h"
#include "lldb/Target/ABI.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/SectionLoadList.h"
#include "lldb/Target/StackFrame.h"
#include "lldb/Target/ThreadPlanRunToAddress.h"
#include "lldb/Target/ThreadPlanStepInRange.h"
using namespace lldb;
using namespace lldb_private;
//----------------------------------------------------------------------
// Destructor
//----------------------------------------------------------------------
CPPLanguageRuntime::~CPPLanguageRuntime() {}
CPPLanguageRuntime::CPPLanguageRuntime(Process *process)
: LanguageRuntime(process) {}
bool CPPLanguageRuntime::GetObjectDescription(Stream &str,
ValueObject &object) {
// C++ has no generic way to do this.
return false;
}
bool CPPLanguageRuntime::GetObjectDescription(
Stream &str, Value &value, ExecutionContextScope *exe_scope) {
// C++ has no generic way to do this.
return false;
}
CPPLanguageRuntime::LibCppStdFunctionCallableInfo
CPPLanguageRuntime::FindLibCppStdFunctionCallableInfo(
lldb::ValueObjectSP &valobj_sp) {
LibCppStdFunctionCallableInfo optional_info;
if (!valobj_sp)
return optional_info;
// Member __f_ has type __base*, the contents of which will hold:
// 1) a vtable entry which may hold type information needed to discover the
// lambda being called
// 2) possibly hold a pointer to the callable object
// e.g.
//
// (lldb) frame var -R f_display
// (std::__1::function<void (int)>) f_display = {
// __buf_ = {
// …
// }
// __f_ = 0x00007ffeefbffa00
// }
// (lldb) memory read -fA 0x00007ffeefbffa00
// 0x7ffeefbffa00: ... `vtable for std::__1::__function::__func<void (*) ...
// 0x7ffeefbffa08: ... `print_num(int) at std_function_cppreference_exam ...
//
// We will be handling five cases below, std::function is wrapping:
//
// 1) a lambda we know at compile time. We will obtain the name of the lambda
// from the first template pameter from __func's vtable. We will look up
// the lambda's operator()() and obtain the line table entry.
// 2) a lambda we know at runtime. A pointer to the lambdas __invoke method
// will be stored after the vtable. We will obtain the lambdas name from
// this entry and lookup operator()() and obtain the line table entry.
// 3) a callable object via operator()(). We will obtain the name of the
// object from the first template parameter from __func's vtable. We will
// look up the objectc operator()() and obtain the line table entry.
// 4) a member function. A pointer to the function will stored after the
// we will obtain the name from this pointer.
// 5) a free function. A pointer to the function will stored after the vtable
// we will obtain the name from this pointer.
ValueObjectSP member__f_(
valobj_sp->GetChildMemberWithName(ConstString("__f_"), true));
if (member__f_) {
ValueObjectSP sub_member__f_(
member__f_->GetChildMemberWithName(ConstString("__f_"), true));
if (sub_member__f_)
member__f_ = sub_member__f_;
}
lldb::addr_t member__f_pointer_value = member__f_->GetValueAsUnsigned(0);
optional_info.member__f_pointer_value = member__f_pointer_value;
ExecutionContext exe_ctx(valobj_sp->GetExecutionContextRef());
Process *process = exe_ctx.GetProcessPtr();
if (process == nullptr)
return optional_info;
uint32_t address_size = process->GetAddressByteSize();
Status status;
// First item pointed to by __f_ should be the pointer to the vtable for
// a __base object.
lldb::addr_t vtable_address =
process->ReadPointerFromMemory(member__f_pointer_value, status);
if (status.Fail())
return optional_info;
lldb::addr_t address_after_vtable = member__f_pointer_value + address_size;
// As commened above we may not have a function pointer but if we do we will
// need it.
lldb::addr_t possible_function_address =
process->ReadPointerFromMemory(address_after_vtable, status);
if (status.Fail())
return optional_info;
Target &target = process->GetTarget();
if (target.GetSectionLoadList().IsEmpty())
return optional_info;
Address vtable_addr_resolved;
SymbolContext sc;
Symbol *symbol;
if (!target.GetSectionLoadList().ResolveLoadAddress(vtable_address,
vtable_addr_resolved))
return optional_info;
target.GetImages().ResolveSymbolContextForAddress(
vtable_addr_resolved, eSymbolContextEverything, sc);
symbol = sc.symbol;
if (symbol == nullptr)
return optional_info;
llvm::StringRef vtable_name(symbol->GetName().GetCString());
bool found_expected_start_string =
vtable_name.startswith("vtable for std::__1::__function::__func<");
if (!found_expected_start_string)
return optional_info;
// Given case 1 or 3 we have a vtable name, we are want to extract the first
// template parameter
//
// ... __func<main::$_0, std::__1::allocator<main::$_0> ...
// ^^^^^^^^^
//
// We do this by find the first < and , and extracting in between.
//
// This covers the case of the lambda known at compile time.
size_t first_open_angle_bracket = vtable_name.find('<') + 1;
size_t first_comma = vtable_name.find_first_of(',');
llvm::StringRef first_template_parameter =
vtable_name.slice(first_open_angle_bracket, first_comma);
Address function_address_resolved;
// Setup for cases 2, 4 and 5 we have a pointer to a function after the
// vtable. We will use a process of elimination to drop through each case
// and obtain the data we need.
if (target.GetSectionLoadList().ResolveLoadAddress(
possible_function_address, function_address_resolved)) {
target.GetImages().ResolveSymbolContextForAddress(
function_address_resolved, eSymbolContextEverything, sc);
symbol = sc.symbol;
}
auto get_name = [&first_template_parameter, &symbol]() {
// Given case 1:
//
// main::$_0
//
// we want to append ::operator()()
if (first_template_parameter.contains("$_"))
return llvm::Regex::escape(first_template_parameter.str()) +
R"(::operator\(\)\(.*\))";
if (symbol != NULL &&
symbol->GetName().GetStringRef().contains("__invoke")) {
llvm::StringRef symbol_name = symbol->GetName().GetStringRef();
size_t pos2 = symbol_name.find_last_of(':');
// Given case 2:
//
// main::$_1::__invoke(...)
//
// We want to slice off __invoke(...) and append operator()()
std::string lambda_operator =
llvm::Regex::escape(symbol_name.slice(0, pos2 + 1).str()) +
R"(operator\(\)\(.*\))";
return lambda_operator;
}
// Case 3
return first_template_parameter.str() + R"(::operator\(\)\(.*\))";
;
};
std::string func_to_match = get_name();
SymbolContextList scl;
target.GetImages().FindFunctions(RegularExpression{func_to_match}, true, true,
true, scl);
// Case 1,2 or 3
if (scl.GetSize() >= 1) {
SymbolContext sc2 = scl[0];
AddressRange range;
sc2.GetAddressRange(eSymbolContextEverything, 0, false, range);
Address address = range.GetBaseAddress();
Address addr;
if (target.ResolveLoadAddress(address.GetCallableLoadAddress(&target),
addr)) {
LineEntry line_entry;
addr.CalculateSymbolContextLineEntry(line_entry);
if (first_template_parameter.contains("$_") ||
(symbol != nullptr &&
symbol->GetName().GetStringRef().contains("__invoke"))) {
// Case 1 and 2
optional_info.callable_case = LibCppStdFunctionCallableCase::Lambda;
} else {
// Case 3
optional_info.callable_case =
LibCppStdFunctionCallableCase::CallableObject;
}
optional_info.callable_symbol = *symbol;
optional_info.callable_line_entry = line_entry;
optional_info.callable_address = addr;
return optional_info;
}
}
// Case 4 or 5
if (!symbol->GetName().GetStringRef().startswith("vtable for")) {
optional_info.callable_case =
LibCppStdFunctionCallableCase::FreeOrMemberFunction;
optional_info.callable_address = function_address_resolved;
optional_info.callable_symbol = *symbol;
return optional_info;
}
return optional_info;
}
lldb::ThreadPlanSP
CPPLanguageRuntime::GetStepThroughTrampolinePlan(Thread &thread,
bool stop_others) {
ThreadPlanSP ret_plan_sp;
lldb::addr_t curr_pc = thread.GetRegisterContext()->GetPC();
TargetSP target_sp(thread.CalculateTarget());
if (target_sp->GetSectionLoadList().IsEmpty())
return ret_plan_sp;
Address pc_addr_resolved;
SymbolContext sc;
Symbol *symbol;
if (!target_sp->GetSectionLoadList().ResolveLoadAddress(curr_pc,
pc_addr_resolved))
return ret_plan_sp;
target_sp->GetImages().ResolveSymbolContextForAddress(
pc_addr_resolved, eSymbolContextEverything, sc);
symbol = sc.symbol;
if (symbol == nullptr)
return ret_plan_sp;
llvm::StringRef function_name(symbol->GetName().GetCString());
// Handling the case where we are attempting to step into std::function.
// The behavior will be that we will attempt to obtain the wrapped
// callable via FindLibCppStdFunctionCallableInfo() and if we find it we
// will return a ThreadPlanRunToAddress to the callable. Therefore we will
// step into the wrapped callable.
//
bool found_expected_start_string =
function_name.startswith("std::__1::function<");
if (!found_expected_start_string)
return ret_plan_sp;
AddressRange range_of_curr_func;
sc.GetAddressRange(eSymbolContextEverything, 0, false, range_of_curr_func);
StackFrameSP frame = thread.GetStackFrameAtIndex(0);
if (frame) {
ValueObjectSP value_sp = frame->FindVariable(ConstString("this"));
CPPLanguageRuntime::LibCppStdFunctionCallableInfo callable_info =
FindLibCppStdFunctionCallableInfo(value_sp);
if (callable_info.callable_case != LibCppStdFunctionCallableCase::Invalid &&
value_sp->GetValueIsValid()) {
// We found the std::function wrapped callable and we have its address.
// We now create a ThreadPlan to run to the callable.
ret_plan_sp.reset(new ThreadPlanRunToAddress(
thread, callable_info.callable_address, stop_others));
return ret_plan_sp;
} else {
// We are in std::function but we could not obtain the callable.
// We create a ThreadPlan to keep stepping through using the address range
// of the current function.
ret_plan_sp.reset(new ThreadPlanStepInRange(thread, range_of_curr_func,
sc, eOnlyThisThread,
eLazyBoolYes, eLazyBoolYes));
return ret_plan_sp;
}
}
return ret_plan_sp;
}