Support TLSDESC to initial-exec or local-exec optimizations. Introduce a
new hook RE_LOONGARCH_RELAX_TLS_GD_TO_IE_PAGE_PC and use existing
R_RELAX_TLS_GD_TO_IE_ABS to support TLSDESC => IE, while use existing
R_RELAX_TLS_GD_TO_LE to support TLSDESC => LE.
In normal or medium code model, there are two forms of code sequences:
* pcalau12i $a0, %desc_pc_hi20(sym_desc)
* addi.d $a0, $a0, %desc_pc_lo12(sym_desc)
* ld.d $ra, $a0, %desc_ld(sym_desc)
* jirl $ra, $ra, %desc_call(sym_desc)
------
* pcaddi $a0, %desc_pcrel_20(sym_desc)
* ld.d $ra, $a0, %desc_ld(sym_desc)
* jirl $ra, $ra, %desc_call(sym_desc)
Convert to IE:
* pcalau12i $a0, %ie_pc_hi20(sym_ie)
* ld.[wd] $a0, $a0, %ie_pc_lo12(sym_ie)
Convert to LE:
* lu12i.w $a0, %le_hi20(sym_le) # le_hi20 != 0, otherwise NOP
* ori $a0 src, %le_lo12(sym_le) # le_hi20 != 0, src = $a0, otherwise src = $zero
Simplicity, whether tlsdescToIe or tlsdescToLe, we always tend to
convert the preceding instructions to NOPs, due to both forms of code
sequence (corresponding to relocation combinations:
R_LARCH_TLS_DESC_PC_HI20+R_LARCH_TLS_DESC_PC_LO12 and
R_LARCH_TLS_DESC_PCREL20_S2) have same process.
TODO: When relaxation enables, redundant NOPs can be removed. It will be
implemented in a future patch.
Note: All forms of TLSDESC code sequences should not appear interleaved
in the normal, medium or extreme code model, which compilers do not
generate and lld is unsupported. This is thanks to the guard in
PostRASchedulerList.cpp in llvm.
```
Calls are not scheduling boundaries before register allocation,
but post-ra we don't gain anything by scheduling across calls
since we don't need to worry about register pressure.
```
1369 lines
48 KiB
C++
1369 lines
48 KiB
C++
//===- LoongArch.cpp ------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "InputFiles.h"
|
|
#include "OutputSections.h"
|
|
#include "Symbols.h"
|
|
#include "SyntheticSections.h"
|
|
#include "Target.h"
|
|
#include "llvm/BinaryFormat/ELF.h"
|
|
#include "llvm/Support/LEB128.h"
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::object;
|
|
using namespace llvm::support::endian;
|
|
using namespace llvm::ELF;
|
|
using namespace lld;
|
|
using namespace lld::elf;
|
|
|
|
namespace {
|
|
class LoongArch final : public TargetInfo {
|
|
public:
|
|
LoongArch(Ctx &);
|
|
uint32_t calcEFlags() const override;
|
|
int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
|
|
void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
|
|
void writeIgotPlt(uint8_t *buf, const Symbol &s) const override;
|
|
void writePltHeader(uint8_t *buf) const override;
|
|
void writePlt(uint8_t *buf, const Symbol &sym,
|
|
uint64_t pltEntryAddr) const override;
|
|
RelType getDynRel(RelType type) const override;
|
|
RelExpr getRelExpr(RelType type, const Symbol &s,
|
|
const uint8_t *loc) const override;
|
|
bool usesOnlyLowPageBits(RelType type) const override;
|
|
void relocate(uint8_t *loc, const Relocation &rel,
|
|
uint64_t val) const override;
|
|
bool relaxOnce(int pass) const override;
|
|
RelExpr adjustTlsExpr(RelType type, RelExpr expr) const override;
|
|
void relocateAlloc(InputSectionBase &sec, uint8_t *buf) const override;
|
|
void finalizeRelax(int passes) const override;
|
|
|
|
private:
|
|
void tlsdescToIe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
|
|
void tlsdescToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
namespace {
|
|
enum Op {
|
|
SUB_W = 0x00110000,
|
|
SUB_D = 0x00118000,
|
|
BREAK = 0x002a0000,
|
|
SRLI_W = 0x00448000,
|
|
SRLI_D = 0x00450000,
|
|
ADDI_W = 0x02800000,
|
|
ADDI_D = 0x02c00000,
|
|
ANDI = 0x03400000,
|
|
ORI = 0x03800000,
|
|
LU12I_W = 0x14000000,
|
|
PCADDI = 0x18000000,
|
|
PCADDU12I = 0x1c000000,
|
|
PCALAU12I = 0x1a000000,
|
|
LD_W = 0x28800000,
|
|
LD_D = 0x28c00000,
|
|
JIRL = 0x4c000000,
|
|
B = 0x50000000,
|
|
BL = 0x54000000,
|
|
};
|
|
|
|
enum Reg {
|
|
R_ZERO = 0,
|
|
R_RA = 1,
|
|
R_TP = 2,
|
|
R_A0 = 4,
|
|
R_T0 = 12,
|
|
R_T1 = 13,
|
|
R_T2 = 14,
|
|
R_T3 = 15,
|
|
};
|
|
} // namespace
|
|
|
|
// Mask out the input's lowest 12 bits for use with `pcalau12i`, in sequences
|
|
// like `pcalau12i + addi.[wd]` or `pcalau12i + {ld,st}.*` where the `pcalau12i`
|
|
// produces a PC-relative intermediate value with the lowest 12 bits zeroed (the
|
|
// "page") for the next instruction to add in the "page offset". (`pcalau12i`
|
|
// stands for something like "PC ALigned Add Upper that starts from the 12th
|
|
// bit, Immediate".)
|
|
//
|
|
// Here a "page" is in fact just another way to refer to the 12-bit range
|
|
// allowed by the immediate field of the addi/ld/st instructions, and not
|
|
// related to the system or the kernel's actual page size. The semantics happen
|
|
// to match the AArch64 `adrp`, so the concept of "page" is borrowed here.
|
|
static uint64_t getLoongArchPage(uint64_t p) {
|
|
return p & ~static_cast<uint64_t>(0xfff);
|
|
}
|
|
|
|
static uint32_t lo12(uint32_t val) { return val & 0xfff; }
|
|
|
|
// Calculate the adjusted page delta between dest and PC.
|
|
uint64_t elf::getLoongArchPageDelta(uint64_t dest, uint64_t pc, RelType type) {
|
|
// Note that if the sequence being relocated is `pcalau12i + addi.d + lu32i.d
|
|
// + lu52i.d`, they must be adjacent so that we can infer the PC of
|
|
// `pcalau12i` when calculating the page delta for the other two instructions
|
|
// (lu32i.d and lu52i.d). Compensate all the sign-extensions is a bit
|
|
// complicated. Just use psABI recommended algorithm.
|
|
uint64_t pcalau12i_pc;
|
|
switch (type) {
|
|
case R_LARCH_PCALA64_LO20:
|
|
case R_LARCH_GOT64_PC_LO20:
|
|
case R_LARCH_TLS_IE64_PC_LO20:
|
|
case R_LARCH_TLS_DESC64_PC_LO20:
|
|
pcalau12i_pc = pc - 8;
|
|
break;
|
|
case R_LARCH_PCALA64_HI12:
|
|
case R_LARCH_GOT64_PC_HI12:
|
|
case R_LARCH_TLS_IE64_PC_HI12:
|
|
case R_LARCH_TLS_DESC64_PC_HI12:
|
|
pcalau12i_pc = pc - 12;
|
|
break;
|
|
default:
|
|
pcalau12i_pc = pc;
|
|
break;
|
|
}
|
|
uint64_t result = getLoongArchPage(dest) - getLoongArchPage(pcalau12i_pc);
|
|
if (dest & 0x800)
|
|
result += 0x1000 - 0x1'0000'0000;
|
|
if (result & 0x8000'0000)
|
|
result += 0x1'0000'0000;
|
|
return result;
|
|
}
|
|
|
|
static uint32_t hi20(uint32_t val) { return (val + 0x800) >> 12; }
|
|
|
|
static uint32_t insn(uint32_t op, uint32_t d, uint32_t j, uint32_t k) {
|
|
return op | d | (j << 5) | (k << 10);
|
|
}
|
|
|
|
// Extract bits v[begin:end], where range is inclusive.
|
|
static uint32_t extractBits(uint64_t v, uint32_t begin, uint32_t end) {
|
|
return begin == 63 ? v >> end : (v & ((1ULL << (begin + 1)) - 1)) >> end;
|
|
}
|
|
|
|
static uint32_t getD5(uint64_t v) { return extractBits(v, 4, 0); }
|
|
|
|
static uint32_t getJ5(uint64_t v) { return extractBits(v, 9, 5); }
|
|
|
|
static uint32_t setD5k16(uint32_t insn, uint32_t imm) {
|
|
uint32_t immLo = extractBits(imm, 15, 0);
|
|
uint32_t immHi = extractBits(imm, 20, 16);
|
|
return (insn & 0xfc0003e0) | (immLo << 10) | immHi;
|
|
}
|
|
|
|
static uint32_t setD10k16(uint32_t insn, uint32_t imm) {
|
|
uint32_t immLo = extractBits(imm, 15, 0);
|
|
uint32_t immHi = extractBits(imm, 25, 16);
|
|
return (insn & 0xfc000000) | (immLo << 10) | immHi;
|
|
}
|
|
|
|
static uint32_t setJ20(uint32_t insn, uint32_t imm) {
|
|
return (insn & 0xfe00001f) | (extractBits(imm, 19, 0) << 5);
|
|
}
|
|
|
|
static uint32_t setJ5(uint32_t insn, uint32_t imm) {
|
|
return (insn & 0xfffffc1f) | (extractBits(imm, 4, 0) << 5);
|
|
}
|
|
|
|
static uint32_t setK12(uint32_t insn, uint32_t imm) {
|
|
return (insn & 0xffc003ff) | (extractBits(imm, 11, 0) << 10);
|
|
}
|
|
|
|
static uint32_t setK16(uint32_t insn, uint32_t imm) {
|
|
return (insn & 0xfc0003ff) | (extractBits(imm, 15, 0) << 10);
|
|
}
|
|
|
|
static bool isJirl(uint32_t insn) {
|
|
return (insn & 0xfc000000) == JIRL;
|
|
}
|
|
|
|
static void handleUleb128(Ctx &ctx, uint8_t *loc, uint64_t val) {
|
|
const uint32_t maxcount = 1 + 64 / 7;
|
|
uint32_t count;
|
|
const char *error = nullptr;
|
|
uint64_t orig = decodeULEB128(loc, &count, nullptr, &error);
|
|
if (count > maxcount || (count == maxcount && error))
|
|
Err(ctx) << getErrorLoc(ctx, loc) << "extra space for uleb128";
|
|
uint64_t mask = count < maxcount ? (1ULL << 7 * count) - 1 : -1ULL;
|
|
encodeULEB128((orig + val) & mask, loc, count);
|
|
}
|
|
|
|
LoongArch::LoongArch(Ctx &ctx) : TargetInfo(ctx) {
|
|
// The LoongArch ISA itself does not have a limit on page sizes. According to
|
|
// the ISA manual, the PS (page size) field in MTLB entries and CSR.STLBPS is
|
|
// 6 bits wide, meaning the maximum page size is 2^63 which is equivalent to
|
|
// "unlimited".
|
|
// However, practically the maximum usable page size is constrained by the
|
|
// kernel implementation, and 64KiB is the biggest non-huge page size
|
|
// supported by Linux as of v6.4. The most widespread page size in use,
|
|
// though, is 16KiB.
|
|
defaultCommonPageSize = 16384;
|
|
defaultMaxPageSize = 65536;
|
|
write32le(trapInstr.data(), BREAK); // break 0
|
|
|
|
copyRel = R_LARCH_COPY;
|
|
pltRel = R_LARCH_JUMP_SLOT;
|
|
relativeRel = R_LARCH_RELATIVE;
|
|
iRelativeRel = R_LARCH_IRELATIVE;
|
|
|
|
if (ctx.arg.is64) {
|
|
symbolicRel = R_LARCH_64;
|
|
tlsModuleIndexRel = R_LARCH_TLS_DTPMOD64;
|
|
tlsOffsetRel = R_LARCH_TLS_DTPREL64;
|
|
tlsGotRel = R_LARCH_TLS_TPREL64;
|
|
tlsDescRel = R_LARCH_TLS_DESC64;
|
|
} else {
|
|
symbolicRel = R_LARCH_32;
|
|
tlsModuleIndexRel = R_LARCH_TLS_DTPMOD32;
|
|
tlsOffsetRel = R_LARCH_TLS_DTPREL32;
|
|
tlsGotRel = R_LARCH_TLS_TPREL32;
|
|
tlsDescRel = R_LARCH_TLS_DESC32;
|
|
}
|
|
|
|
gotRel = symbolicRel;
|
|
|
|
// .got.plt[0] = _dl_runtime_resolve, .got.plt[1] = link_map
|
|
gotPltHeaderEntriesNum = 2;
|
|
|
|
pltHeaderSize = 32;
|
|
pltEntrySize = 16;
|
|
ipltEntrySize = 16;
|
|
}
|
|
|
|
static uint32_t getEFlags(Ctx &ctx, const InputFile *f) {
|
|
if (ctx.arg.is64)
|
|
return cast<ObjFile<ELF64LE>>(f)->getObj().getHeader().e_flags;
|
|
return cast<ObjFile<ELF32LE>>(f)->getObj().getHeader().e_flags;
|
|
}
|
|
|
|
static bool inputFileHasCode(const InputFile *f) {
|
|
for (const auto *sec : f->getSections())
|
|
if (sec && sec->flags & SHF_EXECINSTR)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
uint32_t LoongArch::calcEFlags() const {
|
|
// If there are only binary input files (from -b binary), use a
|
|
// value of 0 for the ELF header flags.
|
|
if (ctx.objectFiles.empty())
|
|
return 0;
|
|
|
|
uint32_t target = 0;
|
|
const InputFile *targetFile;
|
|
for (const InputFile *f : ctx.objectFiles) {
|
|
// Do not enforce ABI compatibility if the input file does not contain code.
|
|
// This is useful for allowing linkage with data-only object files produced
|
|
// with tools like objcopy, that have zero e_flags.
|
|
if (!inputFileHasCode(f))
|
|
continue;
|
|
|
|
// Take the first non-zero e_flags as the reference.
|
|
uint32_t flags = getEFlags(ctx, f);
|
|
if (target == 0 && flags != 0) {
|
|
target = flags;
|
|
targetFile = f;
|
|
}
|
|
|
|
if ((flags & EF_LOONGARCH_ABI_MODIFIER_MASK) !=
|
|
(target & EF_LOONGARCH_ABI_MODIFIER_MASK))
|
|
ErrAlways(ctx) << f
|
|
<< ": cannot link object files with different ABI from "
|
|
<< targetFile;
|
|
|
|
// We cannot process psABI v1.x / object ABI v0 files (containing stack
|
|
// relocations), unlike ld.bfd.
|
|
//
|
|
// Instead of blindly accepting every v0 object and only failing at
|
|
// relocation processing time, just disallow interlink altogether. We
|
|
// don't expect significant usage of object ABI v0 in the wild (the old
|
|
// world may continue using object ABI v0 for a while, but as it's not
|
|
// binary-compatible with the upstream i.e. new-world ecosystem, it's not
|
|
// being considered here).
|
|
//
|
|
// There are briefly some new-world systems with object ABI v0 binaries too.
|
|
// It is because these systems were built before the new ABI was finalized.
|
|
// These are not supported either due to the extremely small number of them,
|
|
// and the few impacted users are advised to simply rebuild world or
|
|
// reinstall a recent system.
|
|
if ((flags & EF_LOONGARCH_OBJABI_MASK) != EF_LOONGARCH_OBJABI_V1)
|
|
ErrAlways(ctx) << f << ": unsupported object file ABI version";
|
|
}
|
|
|
|
return target;
|
|
}
|
|
|
|
int64_t LoongArch::getImplicitAddend(const uint8_t *buf, RelType type) const {
|
|
switch (type) {
|
|
default:
|
|
InternalErr(ctx, buf) << "cannot read addend for relocation " << type;
|
|
return 0;
|
|
case R_LARCH_32:
|
|
case R_LARCH_TLS_DTPMOD32:
|
|
case R_LARCH_TLS_DTPREL32:
|
|
case R_LARCH_TLS_TPREL32:
|
|
return SignExtend64<32>(read32le(buf));
|
|
case R_LARCH_64:
|
|
case R_LARCH_TLS_DTPMOD64:
|
|
case R_LARCH_TLS_DTPREL64:
|
|
case R_LARCH_TLS_TPREL64:
|
|
return read64le(buf);
|
|
case R_LARCH_RELATIVE:
|
|
case R_LARCH_IRELATIVE:
|
|
return ctx.arg.is64 ? read64le(buf) : read32le(buf);
|
|
case R_LARCH_NONE:
|
|
case R_LARCH_JUMP_SLOT:
|
|
// These relocations are defined as not having an implicit addend.
|
|
return 0;
|
|
case R_LARCH_TLS_DESC32:
|
|
return read32le(buf + 4);
|
|
case R_LARCH_TLS_DESC64:
|
|
return read64le(buf + 8);
|
|
}
|
|
}
|
|
|
|
void LoongArch::writeGotPlt(uint8_t *buf, const Symbol &s) const {
|
|
if (ctx.arg.is64)
|
|
write64le(buf, ctx.in.plt->getVA());
|
|
else
|
|
write32le(buf, ctx.in.plt->getVA());
|
|
}
|
|
|
|
void LoongArch::writeIgotPlt(uint8_t *buf, const Symbol &s) const {
|
|
if (ctx.arg.writeAddends) {
|
|
if (ctx.arg.is64)
|
|
write64le(buf, s.getVA(ctx));
|
|
else
|
|
write32le(buf, s.getVA(ctx));
|
|
}
|
|
}
|
|
|
|
void LoongArch::writePltHeader(uint8_t *buf) const {
|
|
// The LoongArch PLT is currently structured just like that of RISCV.
|
|
// Annoyingly, this means the PLT is still using `pcaddu12i` to perform
|
|
// PC-relative addressing (because `pcaddu12i` is the same as RISCV `auipc`),
|
|
// in contrast to the AArch64-like page-offset scheme with `pcalau12i` that
|
|
// is used everywhere else involving PC-relative operations in the LoongArch
|
|
// ELF psABI v2.00.
|
|
//
|
|
// The `pcrel_{hi20,lo12}` operators are illustrative only and not really
|
|
// supported by LoongArch assemblers.
|
|
//
|
|
// pcaddu12i $t2, %pcrel_hi20(.got.plt)
|
|
// sub.[wd] $t1, $t1, $t3
|
|
// ld.[wd] $t3, $t2, %pcrel_lo12(.got.plt) ; t3 = _dl_runtime_resolve
|
|
// addi.[wd] $t1, $t1, -pltHeaderSize-12 ; t1 = &.plt[i] - &.plt[0]
|
|
// addi.[wd] $t0, $t2, %pcrel_lo12(.got.plt)
|
|
// srli.[wd] $t1, $t1, (is64?1:2) ; t1 = &.got.plt[i] - &.got.plt[0]
|
|
// ld.[wd] $t0, $t0, Wordsize ; t0 = link_map
|
|
// jr $t3
|
|
uint32_t offset = ctx.in.gotPlt->getVA() - ctx.in.plt->getVA();
|
|
uint32_t sub = ctx.arg.is64 ? SUB_D : SUB_W;
|
|
uint32_t ld = ctx.arg.is64 ? LD_D : LD_W;
|
|
uint32_t addi = ctx.arg.is64 ? ADDI_D : ADDI_W;
|
|
uint32_t srli = ctx.arg.is64 ? SRLI_D : SRLI_W;
|
|
write32le(buf + 0, insn(PCADDU12I, R_T2, hi20(offset), 0));
|
|
write32le(buf + 4, insn(sub, R_T1, R_T1, R_T3));
|
|
write32le(buf + 8, insn(ld, R_T3, R_T2, lo12(offset)));
|
|
write32le(buf + 12,
|
|
insn(addi, R_T1, R_T1, lo12(-ctx.target->pltHeaderSize - 12)));
|
|
write32le(buf + 16, insn(addi, R_T0, R_T2, lo12(offset)));
|
|
write32le(buf + 20, insn(srli, R_T1, R_T1, ctx.arg.is64 ? 1 : 2));
|
|
write32le(buf + 24, insn(ld, R_T0, R_T0, ctx.arg.wordsize));
|
|
write32le(buf + 28, insn(JIRL, R_ZERO, R_T3, 0));
|
|
}
|
|
|
|
void LoongArch::writePlt(uint8_t *buf, const Symbol &sym,
|
|
uint64_t pltEntryAddr) const {
|
|
// See the comment in writePltHeader for reason why pcaddu12i is used instead
|
|
// of the pcalau12i that's more commonly seen in the ELF psABI v2.0 days.
|
|
//
|
|
// pcaddu12i $t3, %pcrel_hi20(f@.got.plt)
|
|
// ld.[wd] $t3, $t3, %pcrel_lo12(f@.got.plt)
|
|
// jirl $t1, $t3, 0
|
|
// nop
|
|
uint32_t offset = sym.getGotPltVA(ctx) - pltEntryAddr;
|
|
write32le(buf + 0, insn(PCADDU12I, R_T3, hi20(offset), 0));
|
|
write32le(buf + 4,
|
|
insn(ctx.arg.is64 ? LD_D : LD_W, R_T3, R_T3, lo12(offset)));
|
|
write32le(buf + 8, insn(JIRL, R_T1, R_T3, 0));
|
|
write32le(buf + 12, insn(ANDI, R_ZERO, R_ZERO, 0));
|
|
}
|
|
|
|
RelType LoongArch::getDynRel(RelType type) const {
|
|
return type == ctx.target->symbolicRel ? type
|
|
: static_cast<RelType>(R_LARCH_NONE);
|
|
}
|
|
|
|
RelExpr LoongArch::getRelExpr(const RelType type, const Symbol &s,
|
|
const uint8_t *loc) const {
|
|
switch (type) {
|
|
case R_LARCH_NONE:
|
|
case R_LARCH_MARK_LA:
|
|
case R_LARCH_MARK_PCREL:
|
|
return R_NONE;
|
|
case R_LARCH_32:
|
|
case R_LARCH_64:
|
|
case R_LARCH_ABS_HI20:
|
|
case R_LARCH_ABS_LO12:
|
|
case R_LARCH_ABS64_LO20:
|
|
case R_LARCH_ABS64_HI12:
|
|
return R_ABS;
|
|
case R_LARCH_PCALA_LO12:
|
|
// We could just R_ABS, but the JIRL instruction reuses the relocation type
|
|
// for a different purpose. The questionable usage is part of glibc 2.37
|
|
// libc_nonshared.a [1], which is linked into user programs, so we have to
|
|
// work around it for a while, even if a new relocation type may be
|
|
// introduced in the future [2].
|
|
//
|
|
// [1]: https://sourceware.org/git/?p=glibc.git;a=commitdiff;h=9f482b73f41a9a1bbfb173aad0733d1c824c788a
|
|
// [2]: https://github.com/loongson/la-abi-specs/pull/3
|
|
return isJirl(read32le(loc)) ? R_PLT : R_ABS;
|
|
case R_LARCH_TLS_DTPREL32:
|
|
case R_LARCH_TLS_DTPREL64:
|
|
return R_DTPREL;
|
|
case R_LARCH_TLS_TPREL32:
|
|
case R_LARCH_TLS_TPREL64:
|
|
case R_LARCH_TLS_LE_HI20:
|
|
case R_LARCH_TLS_LE_HI20_R:
|
|
case R_LARCH_TLS_LE_LO12:
|
|
case R_LARCH_TLS_LE_LO12_R:
|
|
case R_LARCH_TLS_LE64_LO20:
|
|
case R_LARCH_TLS_LE64_HI12:
|
|
return R_TPREL;
|
|
case R_LARCH_ADD6:
|
|
case R_LARCH_ADD8:
|
|
case R_LARCH_ADD16:
|
|
case R_LARCH_ADD32:
|
|
case R_LARCH_ADD64:
|
|
case R_LARCH_ADD_ULEB128:
|
|
case R_LARCH_SUB6:
|
|
case R_LARCH_SUB8:
|
|
case R_LARCH_SUB16:
|
|
case R_LARCH_SUB32:
|
|
case R_LARCH_SUB64:
|
|
case R_LARCH_SUB_ULEB128:
|
|
// The LoongArch add/sub relocs behave like the RISCV counterparts; reuse
|
|
// the RelExpr to avoid code duplication.
|
|
return RE_RISCV_ADD;
|
|
case R_LARCH_32_PCREL:
|
|
case R_LARCH_64_PCREL:
|
|
case R_LARCH_PCREL20_S2:
|
|
return R_PC;
|
|
case R_LARCH_B16:
|
|
case R_LARCH_B21:
|
|
case R_LARCH_B26:
|
|
case R_LARCH_CALL36:
|
|
return R_PLT_PC;
|
|
case R_LARCH_GOT_PC_HI20:
|
|
case R_LARCH_GOT64_PC_LO20:
|
|
case R_LARCH_GOT64_PC_HI12:
|
|
case R_LARCH_TLS_IE_PC_HI20:
|
|
case R_LARCH_TLS_IE64_PC_LO20:
|
|
case R_LARCH_TLS_IE64_PC_HI12:
|
|
return RE_LOONGARCH_GOT_PAGE_PC;
|
|
case R_LARCH_GOT_PC_LO12:
|
|
case R_LARCH_TLS_IE_PC_LO12:
|
|
return RE_LOONGARCH_GOT;
|
|
case R_LARCH_TLS_LD_PC_HI20:
|
|
case R_LARCH_TLS_GD_PC_HI20:
|
|
return RE_LOONGARCH_TLSGD_PAGE_PC;
|
|
case R_LARCH_PCALA_HI20:
|
|
// Why not RE_LOONGARCH_PAGE_PC, majority of references don't go through
|
|
// PLT anyway so why waste time checking only to get everything relaxed back
|
|
// to it?
|
|
//
|
|
// This is again due to the R_LARCH_PCALA_LO12 on JIRL case, where we want
|
|
// both the HI20 and LO12 to potentially refer to the PLT. But in reality
|
|
// the HI20 reloc appears earlier, and the relocs don't contain enough
|
|
// information to let us properly resolve semantics per symbol.
|
|
// Unlike RISCV, our LO12 relocs *do not* point to their corresponding HI20
|
|
// relocs, hence it is nearly impossible to 100% accurately determine each
|
|
// HI20's "flavor" without taking big performance hits, in the presence of
|
|
// edge cases (e.g. HI20 without pairing LO12; paired LO12 placed so far
|
|
// apart that relationship is not certain anymore), and programmer mistakes
|
|
// (e.g. as outlined in https://github.com/loongson/la-abi-specs/pull/3).
|
|
//
|
|
// Ideally we would scan in an extra pass for all LO12s on JIRL, then mark
|
|
// every HI20 reloc referring to the same symbol differently; this is not
|
|
// feasible with the current function signature of getRelExpr that doesn't
|
|
// allow for such inter-pass state.
|
|
//
|
|
// So, unfortunately we have to again workaround this quirk the same way as
|
|
// BFD: assuming every R_LARCH_PCALA_HI20 is potentially PLT-needing, only
|
|
// relaxing back to RE_LOONGARCH_PAGE_PC if it's known not so at a later
|
|
// stage.
|
|
return RE_LOONGARCH_PLT_PAGE_PC;
|
|
case R_LARCH_PCALA64_LO20:
|
|
case R_LARCH_PCALA64_HI12:
|
|
return RE_LOONGARCH_PAGE_PC;
|
|
case R_LARCH_GOT_HI20:
|
|
case R_LARCH_GOT_LO12:
|
|
case R_LARCH_GOT64_LO20:
|
|
case R_LARCH_GOT64_HI12:
|
|
case R_LARCH_TLS_IE_HI20:
|
|
case R_LARCH_TLS_IE_LO12:
|
|
case R_LARCH_TLS_IE64_LO20:
|
|
case R_LARCH_TLS_IE64_HI12:
|
|
return R_GOT;
|
|
case R_LARCH_TLS_LD_HI20:
|
|
return R_TLSLD_GOT;
|
|
case R_LARCH_TLS_GD_HI20:
|
|
return R_TLSGD_GOT;
|
|
case R_LARCH_TLS_LE_ADD_R:
|
|
case R_LARCH_RELAX:
|
|
return ctx.arg.relax ? R_RELAX_HINT : R_NONE;
|
|
case R_LARCH_ALIGN:
|
|
return R_RELAX_HINT;
|
|
case R_LARCH_TLS_DESC_PC_HI20:
|
|
case R_LARCH_TLS_DESC64_PC_LO20:
|
|
case R_LARCH_TLS_DESC64_PC_HI12:
|
|
return RE_LOONGARCH_TLSDESC_PAGE_PC;
|
|
case R_LARCH_TLS_DESC_PC_LO12:
|
|
case R_LARCH_TLS_DESC_LD:
|
|
case R_LARCH_TLS_DESC_HI20:
|
|
case R_LARCH_TLS_DESC_LO12:
|
|
case R_LARCH_TLS_DESC64_LO20:
|
|
case R_LARCH_TLS_DESC64_HI12:
|
|
return R_TLSDESC;
|
|
case R_LARCH_TLS_DESC_CALL:
|
|
return R_TLSDESC_CALL;
|
|
case R_LARCH_TLS_LD_PCREL20_S2:
|
|
return R_TLSLD_PC;
|
|
case R_LARCH_TLS_GD_PCREL20_S2:
|
|
return R_TLSGD_PC;
|
|
case R_LARCH_TLS_DESC_PCREL20_S2:
|
|
return R_TLSDESC_PC;
|
|
|
|
// Other known relocs that are explicitly unimplemented:
|
|
//
|
|
// - psABI v1 relocs that need a stateful stack machine to work, and not
|
|
// required when implementing psABI v2;
|
|
// - relocs that are not used anywhere (R_LARCH_{ADD,SUB}_24 [1], and the
|
|
// two GNU vtable-related relocs).
|
|
//
|
|
// [1]: https://web.archive.org/web/20230709064026/https://github.com/loongson/LoongArch-Documentation/issues/51
|
|
default:
|
|
Err(ctx) << getErrorLoc(ctx, loc) << "unknown relocation (" << type.v
|
|
<< ") against symbol " << &s;
|
|
return R_NONE;
|
|
}
|
|
}
|
|
|
|
bool LoongArch::usesOnlyLowPageBits(RelType type) const {
|
|
switch (type) {
|
|
default:
|
|
return false;
|
|
case R_LARCH_PCALA_LO12:
|
|
case R_LARCH_GOT_LO12:
|
|
case R_LARCH_GOT_PC_LO12:
|
|
case R_LARCH_TLS_IE_PC_LO12:
|
|
case R_LARCH_TLS_DESC_LO12:
|
|
case R_LARCH_TLS_DESC_PC_LO12:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
void LoongArch::relocate(uint8_t *loc, const Relocation &rel,
|
|
uint64_t val) const {
|
|
switch (rel.type) {
|
|
case R_LARCH_32_PCREL:
|
|
checkInt(ctx, loc, val, 32, rel);
|
|
[[fallthrough]];
|
|
case R_LARCH_32:
|
|
case R_LARCH_TLS_DTPREL32:
|
|
write32le(loc, val);
|
|
return;
|
|
case R_LARCH_64:
|
|
case R_LARCH_TLS_DTPREL64:
|
|
case R_LARCH_64_PCREL:
|
|
write64le(loc, val);
|
|
return;
|
|
|
|
// Relocs intended for `pcaddi`.
|
|
case R_LARCH_PCREL20_S2:
|
|
case R_LARCH_TLS_LD_PCREL20_S2:
|
|
case R_LARCH_TLS_GD_PCREL20_S2:
|
|
case R_LARCH_TLS_DESC_PCREL20_S2:
|
|
checkInt(ctx, loc, val, 22, rel);
|
|
checkAlignment(ctx, loc, val, 4, rel);
|
|
write32le(loc, setJ20(read32le(loc), val >> 2));
|
|
return;
|
|
|
|
case R_LARCH_B16:
|
|
checkInt(ctx, loc, val, 18, rel);
|
|
checkAlignment(ctx, loc, val, 4, rel);
|
|
write32le(loc, setK16(read32le(loc), val >> 2));
|
|
return;
|
|
|
|
case R_LARCH_B21:
|
|
checkInt(ctx, loc, val, 23, rel);
|
|
checkAlignment(ctx, loc, val, 4, rel);
|
|
write32le(loc, setD5k16(read32le(loc), val >> 2));
|
|
return;
|
|
|
|
case R_LARCH_B26:
|
|
checkInt(ctx, loc, val, 28, rel);
|
|
checkAlignment(ctx, loc, val, 4, rel);
|
|
write32le(loc, setD10k16(read32le(loc), val >> 2));
|
|
return;
|
|
|
|
case R_LARCH_CALL36: {
|
|
// This relocation is designed for adjacent pcaddu18i+jirl pairs that
|
|
// are patched in one time. Because of sign extension of these insns'
|
|
// immediate fields, the relocation range is [-128G - 0x20000, +128G -
|
|
// 0x20000) (of course must be 4-byte aligned).
|
|
if (((int64_t)val + 0x20000) != llvm::SignExtend64(val + 0x20000, 38))
|
|
reportRangeError(ctx, loc, rel, Twine(val), llvm::minIntN(38) - 0x20000,
|
|
llvm::maxIntN(38) - 0x20000);
|
|
checkAlignment(ctx, loc, val, 4, rel);
|
|
// Since jirl performs sign extension on the offset immediate, adds (1<<17)
|
|
// to original val to get the correct hi20.
|
|
uint32_t hi20 = extractBits(val + (1 << 17), 37, 18);
|
|
// Despite the name, the lower part is actually 18 bits with 4-byte aligned.
|
|
uint32_t lo16 = extractBits(val, 17, 2);
|
|
write32le(loc, setJ20(read32le(loc), hi20));
|
|
write32le(loc + 4, setK16(read32le(loc + 4), lo16));
|
|
return;
|
|
}
|
|
|
|
// Relocs intended for `addi`, `ld` or `st`.
|
|
case R_LARCH_PCALA_LO12:
|
|
// We have to again inspect the insn word to handle the R_LARCH_PCALA_LO12
|
|
// on JIRL case: firstly JIRL wants its immediate's 2 lowest zeroes
|
|
// removed by us (in contrast to regular R_LARCH_PCALA_LO12), secondly
|
|
// its immediate slot width is different too (16, not 12).
|
|
// In this case, process like an R_LARCH_B16, but without overflow checking
|
|
// and only taking the value's lowest 12 bits.
|
|
if (isJirl(read32le(loc))) {
|
|
checkAlignment(ctx, loc, val, 4, rel);
|
|
val = SignExtend64<12>(val);
|
|
write32le(loc, setK16(read32le(loc), val >> 2));
|
|
return;
|
|
}
|
|
[[fallthrough]];
|
|
case R_LARCH_ABS_LO12:
|
|
case R_LARCH_GOT_PC_LO12:
|
|
case R_LARCH_GOT_LO12:
|
|
case R_LARCH_TLS_LE_LO12:
|
|
case R_LARCH_TLS_IE_PC_LO12:
|
|
case R_LARCH_TLS_IE_LO12:
|
|
case R_LARCH_TLS_LE_LO12_R:
|
|
case R_LARCH_TLS_DESC_PC_LO12:
|
|
case R_LARCH_TLS_DESC_LO12:
|
|
write32le(loc, setK12(read32le(loc), extractBits(val, 11, 0)));
|
|
return;
|
|
|
|
// Relocs intended for `lu12i.w` or `pcalau12i`.
|
|
case R_LARCH_ABS_HI20:
|
|
case R_LARCH_PCALA_HI20:
|
|
case R_LARCH_GOT_PC_HI20:
|
|
case R_LARCH_GOT_HI20:
|
|
case R_LARCH_TLS_LE_HI20:
|
|
case R_LARCH_TLS_IE_PC_HI20:
|
|
case R_LARCH_TLS_IE_HI20:
|
|
case R_LARCH_TLS_LD_PC_HI20:
|
|
case R_LARCH_TLS_LD_HI20:
|
|
case R_LARCH_TLS_GD_PC_HI20:
|
|
case R_LARCH_TLS_GD_HI20:
|
|
case R_LARCH_TLS_DESC_PC_HI20:
|
|
case R_LARCH_TLS_DESC_HI20:
|
|
write32le(loc, setJ20(read32le(loc), extractBits(val, 31, 12)));
|
|
return;
|
|
case R_LARCH_TLS_LE_HI20_R:
|
|
write32le(loc, setJ20(read32le(loc), extractBits(val + 0x800, 31, 12)));
|
|
return;
|
|
|
|
// Relocs intended for `lu32i.d`.
|
|
case R_LARCH_ABS64_LO20:
|
|
case R_LARCH_PCALA64_LO20:
|
|
case R_LARCH_GOT64_PC_LO20:
|
|
case R_LARCH_GOT64_LO20:
|
|
case R_LARCH_TLS_LE64_LO20:
|
|
case R_LARCH_TLS_IE64_PC_LO20:
|
|
case R_LARCH_TLS_IE64_LO20:
|
|
case R_LARCH_TLS_DESC64_PC_LO20:
|
|
case R_LARCH_TLS_DESC64_LO20:
|
|
write32le(loc, setJ20(read32le(loc), extractBits(val, 51, 32)));
|
|
return;
|
|
|
|
// Relocs intended for `lu52i.d`.
|
|
case R_LARCH_ABS64_HI12:
|
|
case R_LARCH_PCALA64_HI12:
|
|
case R_LARCH_GOT64_PC_HI12:
|
|
case R_LARCH_GOT64_HI12:
|
|
case R_LARCH_TLS_LE64_HI12:
|
|
case R_LARCH_TLS_IE64_PC_HI12:
|
|
case R_LARCH_TLS_IE64_HI12:
|
|
case R_LARCH_TLS_DESC64_PC_HI12:
|
|
case R_LARCH_TLS_DESC64_HI12:
|
|
write32le(loc, setK12(read32le(loc), extractBits(val, 63, 52)));
|
|
return;
|
|
|
|
case R_LARCH_ADD6:
|
|
*loc = (*loc & 0xc0) | ((*loc + val) & 0x3f);
|
|
return;
|
|
case R_LARCH_ADD8:
|
|
*loc += val;
|
|
return;
|
|
case R_LARCH_ADD16:
|
|
write16le(loc, read16le(loc) + val);
|
|
return;
|
|
case R_LARCH_ADD32:
|
|
write32le(loc, read32le(loc) + val);
|
|
return;
|
|
case R_LARCH_ADD64:
|
|
write64le(loc, read64le(loc) + val);
|
|
return;
|
|
case R_LARCH_ADD_ULEB128:
|
|
handleUleb128(ctx, loc, val);
|
|
return;
|
|
case R_LARCH_SUB6:
|
|
*loc = (*loc & 0xc0) | ((*loc - val) & 0x3f);
|
|
return;
|
|
case R_LARCH_SUB8:
|
|
*loc -= val;
|
|
return;
|
|
case R_LARCH_SUB16:
|
|
write16le(loc, read16le(loc) - val);
|
|
return;
|
|
case R_LARCH_SUB32:
|
|
write32le(loc, read32le(loc) - val);
|
|
return;
|
|
case R_LARCH_SUB64:
|
|
write64le(loc, read64le(loc) - val);
|
|
return;
|
|
case R_LARCH_SUB_ULEB128:
|
|
handleUleb128(ctx, loc, -val);
|
|
return;
|
|
|
|
case R_LARCH_MARK_LA:
|
|
case R_LARCH_MARK_PCREL:
|
|
// no-op
|
|
return;
|
|
|
|
case R_LARCH_TLS_LE_ADD_R:
|
|
case R_LARCH_RELAX:
|
|
return; // Ignored (for now)
|
|
|
|
case R_LARCH_TLS_DESC_LD:
|
|
return; // nothing to do.
|
|
case R_LARCH_TLS_DESC32:
|
|
write32le(loc + 4, val);
|
|
return;
|
|
case R_LARCH_TLS_DESC64:
|
|
write64le(loc + 8, val);
|
|
return;
|
|
|
|
default:
|
|
llvm_unreachable("unknown relocation");
|
|
}
|
|
}
|
|
|
|
static bool relaxable(ArrayRef<Relocation> relocs, size_t i) {
|
|
return i + 1 < relocs.size() && relocs[i + 1].type == R_LARCH_RELAX;
|
|
}
|
|
|
|
static bool isPairRelaxable(ArrayRef<Relocation> relocs, size_t i) {
|
|
return relaxable(relocs, i) && relaxable(relocs, i + 2) &&
|
|
relocs[i].offset + 4 == relocs[i + 2].offset;
|
|
}
|
|
|
|
// Relax code sequence.
|
|
// From:
|
|
// pcalau12i $a0, %pc_hi20(sym) | %ld_pc_hi20(sym) | %gd_pc_hi20(sym)
|
|
// | %desc_pc_hi20(sym)
|
|
// addi.w/d $a0, $a0, %pc_lo12(sym) | %got_pc_lo12(sym) | %got_pc_lo12(sym)
|
|
// | %desc_pc_lo12(sym)
|
|
// To:
|
|
// pcaddi $a0, %pc_lo12(sym) | %got_pc_lo12(sym) | %got_pc_lo12(sym)
|
|
// | %desc_pcrel_20(sym)
|
|
//
|
|
// From:
|
|
// pcalau12i $a0, %got_pc_hi20(sym_got)
|
|
// ld.w/d $a0, $a0, %got_pc_lo12(sym_got)
|
|
// To:
|
|
// pcaddi $a0, %got_pc_hi20(sym_got)
|
|
static void relaxPCHi20Lo12(Ctx &ctx, const InputSection &sec, size_t i,
|
|
uint64_t loc, Relocation &rHi20, Relocation &rLo12,
|
|
uint32_t &remove) {
|
|
// check if the relocations are relaxable sequences.
|
|
if (!((rHi20.type == R_LARCH_PCALA_HI20 &&
|
|
rLo12.type == R_LARCH_PCALA_LO12) ||
|
|
(rHi20.type == R_LARCH_GOT_PC_HI20 &&
|
|
rLo12.type == R_LARCH_GOT_PC_LO12) ||
|
|
(rHi20.type == R_LARCH_TLS_GD_PC_HI20 &&
|
|
rLo12.type == R_LARCH_GOT_PC_LO12) ||
|
|
(rHi20.type == R_LARCH_TLS_LD_PC_HI20 &&
|
|
rLo12.type == R_LARCH_GOT_PC_LO12) ||
|
|
(rHi20.type == R_LARCH_TLS_DESC_PC_HI20 &&
|
|
rLo12.type == R_LARCH_TLS_DESC_PC_LO12)))
|
|
return;
|
|
|
|
// GOT references to absolute symbols can't be relaxed to use pcaddi in
|
|
// position-independent code, because these instructions produce a relative
|
|
// address.
|
|
// Meanwhile skip undefined, preemptible and STT_GNU_IFUNC symbols, because
|
|
// these symbols may be resolve in runtime.
|
|
if (rHi20.type == R_LARCH_GOT_PC_HI20 &&
|
|
(!rHi20.sym->isDefined() || rHi20.sym->isPreemptible ||
|
|
rHi20.sym->isGnuIFunc() ||
|
|
(ctx.arg.isPic && !cast<Defined>(*rHi20.sym).section)))
|
|
return;
|
|
|
|
uint64_t dest = 0;
|
|
if (rHi20.expr == RE_LOONGARCH_PLT_PAGE_PC)
|
|
dest = rHi20.sym->getPltVA(ctx);
|
|
else if (rHi20.expr == RE_LOONGARCH_PAGE_PC ||
|
|
rHi20.expr == RE_LOONGARCH_GOT_PAGE_PC)
|
|
dest = rHi20.sym->getVA(ctx);
|
|
else if (rHi20.expr == RE_LOONGARCH_TLSGD_PAGE_PC)
|
|
dest = ctx.in.got->getGlobalDynAddr(*rHi20.sym);
|
|
else if (rHi20.expr == RE_LOONGARCH_TLSDESC_PAGE_PC)
|
|
dest = ctx.in.got->getTlsDescAddr(*rHi20.sym);
|
|
else {
|
|
Err(ctx) << getErrorLoc(ctx, (const uint8_t *)loc) << "unknown expr ("
|
|
<< rHi20.expr << ") against symbol " << rHi20.sym
|
|
<< "in relaxPCHi20Lo12";
|
|
return;
|
|
}
|
|
dest += rHi20.addend;
|
|
|
|
const int64_t displace = dest - loc;
|
|
// Check if the displace aligns 4 bytes or exceeds the range of pcaddi.
|
|
if ((displace & 0x3) != 0 || !isInt<22>(displace))
|
|
return;
|
|
|
|
// Note: If we can ensure that the .o files generated by LLVM only contain
|
|
// relaxable instruction sequences with R_LARCH_RELAX, then we do not need to
|
|
// decode instructions. The relaxable instruction sequences imply the
|
|
// following constraints:
|
|
// * For relocation pairs related to got_pc, the opcodes of instructions
|
|
// must be pcalau12i + ld.w/d. In other cases, the opcodes must be pcalau12i +
|
|
// addi.w/d.
|
|
// * The destination register of pcalau12i is guaranteed to be used only by
|
|
// the immediately following instruction.
|
|
const uint32_t currInsn = read32le(sec.content().data() + rHi20.offset);
|
|
const uint32_t nextInsn = read32le(sec.content().data() + rLo12.offset);
|
|
// Check if use the same register.
|
|
if (getD5(currInsn) != getJ5(nextInsn) || getJ5(nextInsn) != getD5(nextInsn))
|
|
return;
|
|
|
|
sec.relaxAux->relocTypes[i] = R_LARCH_RELAX;
|
|
if (rHi20.type == R_LARCH_TLS_GD_PC_HI20)
|
|
sec.relaxAux->relocTypes[i + 2] = R_LARCH_TLS_GD_PCREL20_S2;
|
|
else if (rHi20.type == R_LARCH_TLS_LD_PC_HI20)
|
|
sec.relaxAux->relocTypes[i + 2] = R_LARCH_TLS_LD_PCREL20_S2;
|
|
else if (rHi20.type == R_LARCH_TLS_DESC_PC_HI20)
|
|
sec.relaxAux->relocTypes[i + 2] = R_LARCH_TLS_DESC_PCREL20_S2;
|
|
else
|
|
sec.relaxAux->relocTypes[i + 2] = R_LARCH_PCREL20_S2;
|
|
sec.relaxAux->writes.push_back(insn(PCADDI, getD5(nextInsn), 0, 0));
|
|
remove = 4;
|
|
}
|
|
|
|
// Relax code sequence.
|
|
// From:
|
|
// pcaddu18i $ra, %call36(foo)
|
|
// jirl $ra, $ra, 0
|
|
// To:
|
|
// b/bl foo
|
|
static void relaxCall36(Ctx &ctx, const InputSection &sec, size_t i,
|
|
uint64_t loc, Relocation &r, uint32_t &remove) {
|
|
const uint64_t dest =
|
|
(r.expr == R_PLT_PC ? r.sym->getPltVA(ctx) : r.sym->getVA(ctx)) +
|
|
r.addend;
|
|
|
|
const int64_t displace = dest - loc;
|
|
// Check if the displace aligns 4 bytes or exceeds the range of b[l].
|
|
if ((displace & 0x3) != 0 || !isInt<28>(displace))
|
|
return;
|
|
|
|
const uint32_t nextInsn = read32le(sec.content().data() + r.offset + 4);
|
|
if (getD5(nextInsn) == R_RA) {
|
|
// convert jirl to bl
|
|
sec.relaxAux->relocTypes[i] = R_LARCH_B26;
|
|
sec.relaxAux->writes.push_back(insn(BL, 0, 0, 0));
|
|
remove = 4;
|
|
} else if (getD5(nextInsn) == R_ZERO) {
|
|
// convert jirl to b
|
|
sec.relaxAux->relocTypes[i] = R_LARCH_B26;
|
|
sec.relaxAux->writes.push_back(insn(B, 0, 0, 0));
|
|
remove = 4;
|
|
}
|
|
}
|
|
|
|
// Relax code sequence.
|
|
// From:
|
|
// lu12i.w $rd, %le_hi20_r(sym)
|
|
// add.w/d $rd, $rd, $tp, %le_add_r(sym)
|
|
// addi/ld/st.w/d $rd, $rd, %le_lo12_r(sym)
|
|
// To:
|
|
// addi/ld/st.w/d $rd, $tp, %le_lo12_r(sym)
|
|
static void relaxTlsLe(Ctx &ctx, const InputSection &sec, size_t i,
|
|
uint64_t loc, Relocation &r, uint32_t &remove) {
|
|
uint64_t val = r.sym->getVA(ctx, r.addend);
|
|
// Check if the val exceeds the range of addi/ld/st.
|
|
if (!isInt<12>(val))
|
|
return;
|
|
uint32_t currInsn = read32le(sec.content().data() + r.offset);
|
|
switch (r.type) {
|
|
case R_LARCH_TLS_LE_HI20_R:
|
|
case R_LARCH_TLS_LE_ADD_R:
|
|
sec.relaxAux->relocTypes[i] = R_LARCH_RELAX;
|
|
remove = 4;
|
|
break;
|
|
case R_LARCH_TLS_LE_LO12_R:
|
|
sec.relaxAux->writes.push_back(setJ5(currInsn, R_TP));
|
|
sec.relaxAux->relocTypes[i] = R_LARCH_TLS_LE_LO12_R;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static bool relax(Ctx &ctx, InputSection &sec) {
|
|
const uint64_t secAddr = sec.getVA();
|
|
const MutableArrayRef<Relocation> relocs = sec.relocs();
|
|
auto &aux = *sec.relaxAux;
|
|
bool changed = false;
|
|
ArrayRef<SymbolAnchor> sa = ArrayRef(aux.anchors);
|
|
uint64_t delta = 0;
|
|
|
|
std::fill_n(aux.relocTypes.get(), relocs.size(), R_LARCH_NONE);
|
|
aux.writes.clear();
|
|
for (auto [i, r] : llvm::enumerate(relocs)) {
|
|
const uint64_t loc = secAddr + r.offset - delta;
|
|
uint32_t &cur = aux.relocDeltas[i], remove = 0;
|
|
switch (r.type) {
|
|
case R_LARCH_ALIGN: {
|
|
const uint64_t addend =
|
|
r.sym->isUndefined() ? Log2_64(r.addend) + 1 : r.addend;
|
|
const uint64_t allBytes = (1ULL << (addend & 0xff)) - 4;
|
|
const uint64_t align = 1ULL << (addend & 0xff);
|
|
const uint64_t maxBytes = addend >> 8;
|
|
const uint64_t off = loc & (align - 1);
|
|
const uint64_t curBytes = off == 0 ? 0 : align - off;
|
|
// All bytes beyond the alignment boundary should be removed.
|
|
// If emit bytes more than max bytes to emit, remove all.
|
|
if (maxBytes != 0 && curBytes > maxBytes)
|
|
remove = allBytes;
|
|
else
|
|
remove = allBytes - curBytes;
|
|
// If we can't satisfy this alignment, we've found a bad input.
|
|
if (LLVM_UNLIKELY(static_cast<int32_t>(remove) < 0)) {
|
|
Err(ctx) << getErrorLoc(ctx, (const uint8_t *)loc)
|
|
<< "insufficient padding bytes for " << r.type << ": "
|
|
<< allBytes << " bytes available for "
|
|
<< "requested alignment of " << align << " bytes";
|
|
remove = 0;
|
|
}
|
|
break;
|
|
}
|
|
case R_LARCH_PCALA_HI20:
|
|
case R_LARCH_GOT_PC_HI20:
|
|
case R_LARCH_TLS_GD_PC_HI20:
|
|
case R_LARCH_TLS_LD_PC_HI20:
|
|
case R_LARCH_TLS_DESC_PC_HI20:
|
|
// The overflow check for i+2 will be carried out in isPairRelaxable.
|
|
if (r.expr != RE_LOONGARCH_RELAX_TLS_GD_TO_IE_PAGE_PC &&
|
|
r.expr != R_RELAX_TLS_GD_TO_LE && isPairRelaxable(relocs, i))
|
|
relaxPCHi20Lo12(ctx, sec, i, loc, r, relocs[i + 2], remove);
|
|
break;
|
|
case R_LARCH_CALL36:
|
|
if (relaxable(relocs, i))
|
|
relaxCall36(ctx, sec, i, loc, r, remove);
|
|
break;
|
|
case R_LARCH_TLS_LE_HI20_R:
|
|
case R_LARCH_TLS_LE_ADD_R:
|
|
case R_LARCH_TLS_LE_LO12_R:
|
|
if (relaxable(relocs, i))
|
|
relaxTlsLe(ctx, sec, i, loc, r, remove);
|
|
break;
|
|
case R_LARCH_TLS_IE_PC_HI20:
|
|
if (relaxable(relocs, i) && r.expr == R_RELAX_TLS_IE_TO_LE &&
|
|
isUInt<12>(r.sym->getVA(ctx, r.addend)))
|
|
remove = 4;
|
|
break;
|
|
}
|
|
|
|
// For all anchors whose offsets are <= r.offset, they are preceded by
|
|
// the previous relocation whose `relocDeltas` value equals `delta`.
|
|
// Decrease their st_value and update their st_size.
|
|
for (; sa.size() && sa[0].offset <= r.offset; sa = sa.slice(1)) {
|
|
if (sa[0].end)
|
|
sa[0].d->size = sa[0].offset - delta - sa[0].d->value;
|
|
else
|
|
sa[0].d->value = sa[0].offset - delta;
|
|
}
|
|
delta += remove;
|
|
if (delta != cur) {
|
|
cur = delta;
|
|
changed = true;
|
|
}
|
|
}
|
|
|
|
for (const SymbolAnchor &a : sa) {
|
|
if (a.end)
|
|
a.d->size = a.offset - delta - a.d->value;
|
|
else
|
|
a.d->value = a.offset - delta;
|
|
}
|
|
// Inform assignAddresses that the size has changed.
|
|
if (!isUInt<32>(delta))
|
|
Fatal(ctx) << "section size decrease is too large: " << delta;
|
|
sec.bytesDropped = delta;
|
|
return changed;
|
|
}
|
|
|
|
// Convert TLS IE to LE in the normal or medium code model.
|
|
// Original code sequence:
|
|
// * pcalau12i $a0, %ie_pc_hi20(sym)
|
|
// * ld.d $a0, $a0, %ie_pc_lo12(sym)
|
|
//
|
|
// The code sequence converted is as follows:
|
|
// * lu12i.w $a0, %le_hi20(sym) # le_hi20 != 0, otherwise NOP
|
|
// * ori $a0, src, %le_lo12(sym) # le_hi20 != 0, src = $a0,
|
|
// # otherwise, src = $zero
|
|
//
|
|
// When relaxation enables, redundant NOPs can be removed.
|
|
static void tlsIeToLe(uint8_t *loc, const Relocation &rel, uint64_t val) {
|
|
assert(isInt<32>(val) &&
|
|
"val exceeds the range of medium code model in tlsIeToLe");
|
|
|
|
bool isUInt12 = isUInt<12>(val);
|
|
const uint32_t currInsn = read32le(loc);
|
|
switch (rel.type) {
|
|
case R_LARCH_TLS_IE_PC_HI20:
|
|
if (isUInt12)
|
|
write32le(loc, insn(ANDI, R_ZERO, R_ZERO, 0)); // nop
|
|
else
|
|
write32le(loc, insn(LU12I_W, getD5(currInsn), extractBits(val, 31, 12),
|
|
0)); // lu12i.w $a0, %le_hi20
|
|
break;
|
|
case R_LARCH_TLS_IE_PC_LO12:
|
|
if (isUInt12)
|
|
write32le(loc, insn(ORI, getD5(currInsn), R_ZERO,
|
|
val)); // ori $a0, $zero, %le_lo12
|
|
else
|
|
write32le(loc, insn(ORI, getD5(currInsn), getJ5(currInsn),
|
|
lo12(val))); // ori $a0, $a0, %le_lo12
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Convert TLSDESC GD/LD to IE.
|
|
// In normal or medium code model, there are two forms of code sequences:
|
|
// * pcalau12i $a0, %desc_pc_hi20(sym_desc)
|
|
// * addi.d $a0, $a0, %desc_pc_lo12(sym_desc)
|
|
// * ld.d $ra, $a0, %desc_ld(sym_desc)
|
|
// * jirl $ra, $ra, %desc_call(sym_desc)
|
|
// ------
|
|
// * pcaddi $a0, %desc_pcrel_20(a)
|
|
// * load $ra, $a0, %desc_ld(a)
|
|
// * jirl $ra, $ra, %desc_call(a)
|
|
//
|
|
// The code sequence obtained is as follows:
|
|
// * pcalau12i $a0, %ie_pc_hi20(sym_ie)
|
|
// * ld.[wd] $a0, $a0, %ie_pc_lo12(sym_ie)
|
|
//
|
|
// Simplicity, whether tlsdescToIe or tlsdescToLe, we always tend to convert the
|
|
// preceding instructions to NOPs, due to both forms of code sequence
|
|
// (corresponding to relocation combinations:
|
|
// R_LARCH_TLS_DESC_PC_HI20+R_LARCH_TLS_DESC_PC_LO12 and
|
|
// R_LARCH_TLS_DESC_PCREL20_S2) have same process.
|
|
//
|
|
// When relaxation enables, redundant NOPs can be removed.
|
|
void LoongArch::tlsdescToIe(uint8_t *loc, const Relocation &rel,
|
|
uint64_t val) const {
|
|
switch (rel.type) {
|
|
case R_LARCH_TLS_DESC_PC_HI20:
|
|
case R_LARCH_TLS_DESC_PC_LO12:
|
|
case R_LARCH_TLS_DESC_PCREL20_S2:
|
|
write32le(loc, insn(ANDI, R_ZERO, R_ZERO, 0)); // nop
|
|
break;
|
|
case R_LARCH_TLS_DESC_LD:
|
|
write32le(loc, insn(PCALAU12I, R_A0, 0, 0)); // pcalau12i $a0, %ie_pc_hi20
|
|
relocateNoSym(loc, R_LARCH_TLS_IE_PC_HI20, val);
|
|
break;
|
|
case R_LARCH_TLS_DESC_CALL:
|
|
write32le(loc, insn(ctx.arg.is64 ? LD_D : LD_W, R_A0, R_A0,
|
|
0)); // ld.[wd] $a0, $a0, %ie_pc_lo12
|
|
relocateNoSym(loc, R_LARCH_TLS_IE_PC_LO12, val);
|
|
break;
|
|
default:
|
|
llvm_unreachable("unsupported relocation for TLSDESC to IE");
|
|
}
|
|
}
|
|
|
|
// Convert TLSDESC GD/LD to LE.
|
|
// The code sequence obtained in the normal or medium code model is as follows:
|
|
// * lu12i.w $a0, %le_hi20(sym) # le_hi20 != 0, otherwise NOP
|
|
// * ori $a0, src, %le_lo12(sym) # le_hi20 != 0, src = $a0,
|
|
// # otherwise, src = $zero
|
|
// See the comment in tlsdescToIe for detailed information.
|
|
void LoongArch::tlsdescToLe(uint8_t *loc, const Relocation &rel,
|
|
uint64_t val) const {
|
|
assert(isInt<32>(val) &&
|
|
"val exceeds the range of medium code model in tlsdescToLe");
|
|
|
|
bool isUInt12 = isUInt<12>(val);
|
|
switch (rel.type) {
|
|
case R_LARCH_TLS_DESC_PC_HI20:
|
|
case R_LARCH_TLS_DESC_PC_LO12:
|
|
case R_LARCH_TLS_DESC_PCREL20_S2:
|
|
write32le(loc, insn(ANDI, R_ZERO, R_ZERO, 0)); // nop
|
|
break;
|
|
case R_LARCH_TLS_DESC_LD:
|
|
if (isUInt12)
|
|
write32le(loc, insn(ANDI, R_ZERO, R_ZERO, 0)); // nop
|
|
else
|
|
write32le(loc, insn(LU12I_W, R_A0, extractBits(val, 31, 12),
|
|
0)); // lu12i.w $a0, %le_hi20
|
|
break;
|
|
case R_LARCH_TLS_DESC_CALL:
|
|
if (isUInt12)
|
|
write32le(loc, insn(ORI, R_A0, R_ZERO, val)); // ori $a0, $zero, %le_lo12
|
|
else
|
|
write32le(loc,
|
|
insn(ORI, R_A0, R_A0, lo12(val))); // ori $a0, $a0, %le_lo12
|
|
break;
|
|
default:
|
|
llvm_unreachable("unsupported relocation for TLSDESC to LE");
|
|
}
|
|
}
|
|
|
|
// During TLSDESC GD_TO_IE, the converted code sequence always includes an
|
|
// instruction related to the Lo12 relocation (ld.[wd]). To obtain correct val
|
|
// in `getRelocTargetVA`, expr of this instruction should be adjusted to
|
|
// R_RELAX_TLS_GD_TO_IE_ABS, while expr of other instructions related to the
|
|
// Hi20 relocation (pcalau12i) should be adjusted to
|
|
// RE_LOONGARCH_RELAX_TLS_GD_TO_IE_PAGE_PC. Specifically, in the normal or
|
|
// medium code model, the instruction with relocation R_LARCH_TLS_DESC_CALL is
|
|
// the candidate of Lo12 relocation.
|
|
RelExpr LoongArch::adjustTlsExpr(RelType type, RelExpr expr) const {
|
|
if (expr == R_RELAX_TLS_GD_TO_IE) {
|
|
if (type != R_LARCH_TLS_DESC_CALL)
|
|
return RE_LOONGARCH_RELAX_TLS_GD_TO_IE_PAGE_PC;
|
|
return R_RELAX_TLS_GD_TO_IE_ABS;
|
|
}
|
|
return expr;
|
|
}
|
|
|
|
void LoongArch::relocateAlloc(InputSectionBase &sec, uint8_t *buf) const {
|
|
const unsigned bits = ctx.arg.is64 ? 64 : 32;
|
|
uint64_t secAddr = sec.getOutputSection()->addr;
|
|
if (auto *s = dyn_cast<InputSection>(&sec))
|
|
secAddr += s->outSecOff;
|
|
else if (auto *ehIn = dyn_cast<EhInputSection>(&sec))
|
|
secAddr += ehIn->getParent()->outSecOff;
|
|
bool isExtreme = false, isRelax = false;
|
|
const MutableArrayRef<Relocation> relocs = sec.relocs();
|
|
for (size_t i = 0, size = relocs.size(); i != size; ++i) {
|
|
Relocation &rel = relocs[i];
|
|
uint8_t *loc = buf + rel.offset;
|
|
uint64_t val = SignExtend64(
|
|
sec.getRelocTargetVA(ctx, rel, secAddr + rel.offset), bits);
|
|
|
|
switch (rel.expr) {
|
|
case R_RELAX_HINT:
|
|
continue;
|
|
case R_RELAX_TLS_IE_TO_LE:
|
|
if (rel.type == R_LARCH_TLS_IE_PC_HI20) {
|
|
// LoongArch does not support IE to LE optimization in the extreme code
|
|
// model. In this case, the relocs are as follows:
|
|
//
|
|
// * i -- R_LARCH_TLS_IE_PC_HI20
|
|
// * i+1 -- R_LARCH_TLS_IE_PC_LO12
|
|
// * i+2 -- R_LARCH_TLS_IE64_PC_LO20
|
|
// * i+3 -- R_LARCH_TLS_IE64_PC_HI12
|
|
isExtreme =
|
|
i + 2 < size && relocs[i + 2].type == R_LARCH_TLS_IE64_PC_LO20;
|
|
}
|
|
if (isExtreme) {
|
|
rel.expr = getRelExpr(rel.type, *rel.sym, loc);
|
|
val = SignExtend64(sec.getRelocTargetVA(ctx, rel, secAddr + rel.offset),
|
|
bits);
|
|
relocateNoSym(loc, rel.type, val);
|
|
} else {
|
|
isRelax = relaxable(relocs, i);
|
|
if (isRelax && rel.type == R_LARCH_TLS_IE_PC_HI20 && isUInt<12>(val))
|
|
continue;
|
|
tlsIeToLe(loc, rel, val);
|
|
}
|
|
continue;
|
|
case RE_LOONGARCH_RELAX_TLS_GD_TO_IE_PAGE_PC:
|
|
if (rel.type == R_LARCH_TLS_DESC_PC_HI20) {
|
|
// LoongArch does not support TLSDESC GD/LD to LE/IE optimization in the
|
|
// extreme code model. In these cases, the relocs are as follows:
|
|
//
|
|
// * i -- R_LARCH_TLS_DESC_PC_HI20
|
|
// * i+1 -- R_LARCH_TLS_DESC_PC_LO12
|
|
// * i+2 -- R_LARCH_TLS_DESC64_PC_LO20
|
|
// * i+3 -- R_LARCH_TLS_DESC64_PC_HI12
|
|
isExtreme =
|
|
i + 2 < size && relocs[i + 2].type == R_LARCH_TLS_DESC64_PC_LO20;
|
|
}
|
|
[[fallthrough]];
|
|
case R_RELAX_TLS_GD_TO_IE_ABS:
|
|
if (isExtreme) {
|
|
if (rel.type == R_LARCH_TLS_DESC_CALL)
|
|
continue;
|
|
rel.expr = getRelExpr(rel.type, *rel.sym, loc);
|
|
val = SignExtend64(sec.getRelocTargetVA(ctx, rel, secAddr + rel.offset),
|
|
bits);
|
|
relocateNoSym(loc, rel.type, val);
|
|
} else {
|
|
tlsdescToIe(loc, rel, val);
|
|
}
|
|
continue;
|
|
case R_RELAX_TLS_GD_TO_LE:
|
|
if (rel.type == R_LARCH_TLS_DESC_PC_HI20) {
|
|
isExtreme =
|
|
i + 2 < size && relocs[i + 2].type == R_LARCH_TLS_DESC64_PC_LO20;
|
|
}
|
|
if (isExtreme) {
|
|
if (rel.type == R_LARCH_TLS_DESC_CALL)
|
|
continue;
|
|
rel.expr = getRelExpr(rel.type, *rel.sym, loc);
|
|
val = SignExtend64(sec.getRelocTargetVA(ctx, rel, secAddr + rel.offset),
|
|
bits);
|
|
relocateNoSym(loc, rel.type, val);
|
|
} else {
|
|
tlsdescToLe(loc, rel, val);
|
|
}
|
|
continue;
|
|
default:
|
|
break;
|
|
}
|
|
relocate(loc, rel, val);
|
|
}
|
|
}
|
|
|
|
// When relaxing just R_LARCH_ALIGN, relocDeltas is usually changed only once in
|
|
// the absence of a linker script. For call and load/store R_LARCH_RELAX, code
|
|
// shrinkage may reduce displacement and make more relocations eligible for
|
|
// relaxation. Code shrinkage may increase displacement to a call/load/store
|
|
// target at a higher fixed address, invalidating an earlier relaxation. Any
|
|
// change in section sizes can have cascading effect and require another
|
|
// relaxation pass.
|
|
bool LoongArch::relaxOnce(int pass) const {
|
|
if (ctx.arg.relocatable)
|
|
return false;
|
|
|
|
if (pass == 0)
|
|
initSymbolAnchors(ctx);
|
|
|
|
SmallVector<InputSection *, 0> storage;
|
|
bool changed = false;
|
|
for (OutputSection *osec : ctx.outputSections) {
|
|
if (!(osec->flags & SHF_EXECINSTR))
|
|
continue;
|
|
for (InputSection *sec : getInputSections(*osec, storage))
|
|
changed |= relax(ctx, *sec);
|
|
}
|
|
return changed;
|
|
}
|
|
|
|
void LoongArch::finalizeRelax(int passes) const {
|
|
Log(ctx) << "relaxation passes: " << passes;
|
|
SmallVector<InputSection *, 0> storage;
|
|
for (OutputSection *osec : ctx.outputSections) {
|
|
if (!(osec->flags & SHF_EXECINSTR))
|
|
continue;
|
|
for (InputSection *sec : getInputSections(*osec, storage)) {
|
|
RelaxAux &aux = *sec->relaxAux;
|
|
if (!aux.relocDeltas)
|
|
continue;
|
|
|
|
MutableArrayRef<Relocation> rels = sec->relocs();
|
|
ArrayRef<uint8_t> old = sec->content();
|
|
size_t newSize = old.size() - aux.relocDeltas[rels.size() - 1];
|
|
size_t writesIdx = 0;
|
|
uint8_t *p = ctx.bAlloc.Allocate<uint8_t>(newSize);
|
|
uint64_t offset = 0;
|
|
int64_t delta = 0;
|
|
sec->content_ = p;
|
|
sec->size = newSize;
|
|
sec->bytesDropped = 0;
|
|
|
|
// Update section content: remove NOPs for R_LARCH_ALIGN and rewrite
|
|
// instructions for relaxed relocations.
|
|
for (size_t i = 0, e = rels.size(); i != e; ++i) {
|
|
uint32_t remove = aux.relocDeltas[i] - delta;
|
|
delta = aux.relocDeltas[i];
|
|
if (remove == 0 && aux.relocTypes[i] == R_LARCH_NONE)
|
|
continue;
|
|
|
|
// Copy from last location to the current relocated location.
|
|
Relocation &r = rels[i];
|
|
uint64_t size = r.offset - offset;
|
|
memcpy(p, old.data() + offset, size);
|
|
p += size;
|
|
|
|
int64_t skip = 0;
|
|
if (RelType newType = aux.relocTypes[i]) {
|
|
switch (newType) {
|
|
case R_LARCH_RELAX:
|
|
break;
|
|
case R_LARCH_PCREL20_S2:
|
|
skip = 4;
|
|
write32le(p, aux.writes[writesIdx++]);
|
|
// RelExpr is needed for relocating.
|
|
r.expr = r.sym->hasFlag(NEEDS_PLT) ? R_PLT_PC : R_PC;
|
|
break;
|
|
case R_LARCH_B26:
|
|
case R_LARCH_TLS_LE_LO12_R:
|
|
skip = 4;
|
|
write32le(p, aux.writes[writesIdx++]);
|
|
break;
|
|
case R_LARCH_TLS_GD_PCREL20_S2:
|
|
// Note: R_LARCH_TLS_LD_PCREL20_S2 must also use R_TLSGD_PC instead
|
|
// of R_TLSLD_PC due to historical reasons. In fact, right now TLSLD
|
|
// behaves exactly like TLSGD on LoongArch.
|
|
//
|
|
// This reason has also been mentioned in mold commit:
|
|
// https://github.com/rui314/mold/commit/5dfa1cf07c03bd57cb3d493b652ef22441bcd71c
|
|
case R_LARCH_TLS_LD_PCREL20_S2:
|
|
skip = 4;
|
|
write32le(p, aux.writes[writesIdx++]);
|
|
r.expr = R_TLSGD_PC;
|
|
break;
|
|
case R_LARCH_TLS_DESC_PCREL20_S2:
|
|
skip = 4;
|
|
write32le(p, aux.writes[writesIdx++]);
|
|
r.expr = R_TLSDESC_PC;
|
|
break;
|
|
default:
|
|
llvm_unreachable("unsupported type");
|
|
}
|
|
}
|
|
|
|
p += skip;
|
|
offset = r.offset + skip + remove;
|
|
}
|
|
memcpy(p, old.data() + offset, old.size() - offset);
|
|
|
|
// Subtract the previous relocDeltas value from the relocation offset.
|
|
// For a pair of R_LARCH_XXX/R_LARCH_RELAX with the same offset, decrease
|
|
// their r_offset by the same delta.
|
|
delta = 0;
|
|
for (size_t i = 0, e = rels.size(); i != e;) {
|
|
uint64_t cur = rels[i].offset;
|
|
do {
|
|
rels[i].offset -= delta;
|
|
if (aux.relocTypes[i] != R_LARCH_NONE)
|
|
rels[i].type = aux.relocTypes[i];
|
|
} while (++i != e && rels[i].offset == cur);
|
|
delta = aux.relocDeltas[i - 1];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void elf::setLoongArchTargetInfo(Ctx &ctx) {
|
|
ctx.target.reset(new LoongArch(ctx));
|
|
}
|