Files
clang-p2996/mlir/lib/Bytecode/Writer/IRNumbering.cpp
Jeff Niu fb771fe315 [mlir] Slightly optimize bytecode op numbering (#88310)
If the bytecode encoding supports properties, then the dictionary
attribute is always the raw dictionary attribute of the operation,
regardless of what it contains. Otherwise, get the dictionary attribute
from the op: if the op does not have properties, then it returns the raw
dictionary, otherwise it returns the combined inherent and discardable
attributes.
2024-04-10 23:34:48 +02:00

608 lines
23 KiB
C++

//===- IRNumbering.cpp - MLIR Bytecode IR numbering -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "IRNumbering.h"
#include "mlir/Bytecode/BytecodeImplementation.h"
#include "mlir/Bytecode/BytecodeOpInterface.h"
#include "mlir/Bytecode/Encoding.h"
#include "mlir/IR/AsmState.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/OpDefinition.h"
using namespace mlir;
using namespace mlir::bytecode::detail;
//===----------------------------------------------------------------------===//
// NumberingDialectWriter
//===----------------------------------------------------------------------===//
struct IRNumberingState::NumberingDialectWriter : public DialectBytecodeWriter {
NumberingDialectWriter(
IRNumberingState &state,
llvm::StringMap<std::unique_ptr<DialectVersion>> &dialectVersionMap)
: state(state), dialectVersionMap(dialectVersionMap) {}
void writeAttribute(Attribute attr) override { state.number(attr); }
void writeOptionalAttribute(Attribute attr) override {
if (attr)
state.number(attr);
}
void writeType(Type type) override { state.number(type); }
void writeResourceHandle(const AsmDialectResourceHandle &resource) override {
state.number(resource.getDialect(), resource);
}
/// Stubbed out methods that are not used for numbering.
void writeVarInt(uint64_t) override {}
void writeSignedVarInt(int64_t value) override {}
void writeAPIntWithKnownWidth(const APInt &value) override {}
void writeAPFloatWithKnownSemantics(const APFloat &value) override {}
void writeOwnedString(StringRef) override {
// TODO: It might be nice to prenumber strings and sort by the number of
// references. This could potentially be useful for optimizing things like
// file locations.
}
void writeOwnedBlob(ArrayRef<char> blob) override {}
void writeOwnedBool(bool value) override {}
int64_t getBytecodeVersion() const override {
return state.getDesiredBytecodeVersion();
}
FailureOr<const DialectVersion *>
getDialectVersion(StringRef dialectName) const override {
auto dialectEntry = dialectVersionMap.find(dialectName);
if (dialectEntry == dialectVersionMap.end())
return failure();
return dialectEntry->getValue().get();
}
/// The parent numbering state that is populated by this writer.
IRNumberingState &state;
/// A map containing dialect version information for each dialect to emit.
llvm::StringMap<std::unique_ptr<DialectVersion>> &dialectVersionMap;
};
//===----------------------------------------------------------------------===//
// IR Numbering
//===----------------------------------------------------------------------===//
/// Group and sort the elements of the given range by their parent dialect. This
/// grouping is applied to sub-sections of the ranged defined by how many bytes
/// it takes to encode a varint index to that sub-section.
template <typename T>
static void groupByDialectPerByte(T range) {
if (range.empty())
return;
// A functor used to sort by a given dialect, with a desired dialect to be
// ordered first (to better enable sharing of dialects across byte groups).
auto sortByDialect = [](unsigned dialectToOrderFirst, const auto &lhs,
const auto &rhs) {
if (lhs->dialect->number == dialectToOrderFirst)
return rhs->dialect->number != dialectToOrderFirst;
if (rhs->dialect->number == dialectToOrderFirst)
return false;
return lhs->dialect->number < rhs->dialect->number;
};
unsigned dialectToOrderFirst = 0;
size_t elementsInByteGroup = 0;
auto iterRange = range;
for (unsigned i = 1; i < 9; ++i) {
// Update the number of elements in the current byte grouping. Reminder
// that varint encodes 7-bits per byte, so that's how we compute the
// number of elements in each byte grouping.
elementsInByteGroup = (1ULL << (7ULL * i)) - elementsInByteGroup;
// Slice out the sub-set of elements that are in the current byte grouping
// to be sorted.
auto byteSubRange = iterRange.take_front(elementsInByteGroup);
iterRange = iterRange.drop_front(byteSubRange.size());
// Sort the sub range for this byte.
llvm::stable_sort(byteSubRange, [&](const auto &lhs, const auto &rhs) {
return sortByDialect(dialectToOrderFirst, lhs, rhs);
});
// Update the dialect to order first to be the dialect at the end of the
// current grouping. This seeks to allow larger dialect groupings across
// byte boundaries.
dialectToOrderFirst = byteSubRange.back()->dialect->number;
// If the data range is now empty, we are done.
if (iterRange.empty())
break;
}
// Assign the entry numbers based on the sort order.
for (auto [idx, value] : llvm::enumerate(range))
value->number = idx;
}
IRNumberingState::IRNumberingState(Operation *op,
const BytecodeWriterConfig &config)
: config(config) {
computeGlobalNumberingState(op);
// Number the root operation.
number(*op);
// A worklist of region contexts to number and the next value id before that
// region.
SmallVector<std::pair<Region *, unsigned>, 8> numberContext;
// Functor to push the regions of the given operation onto the numbering
// context.
auto addOpRegionsToNumber = [&](Operation *op) {
MutableArrayRef<Region> regions = op->getRegions();
if (regions.empty())
return;
// Isolated regions don't share value numbers with their parent, so we can
// start numbering these regions at zero.
unsigned opFirstValueID = isIsolatedFromAbove(op) ? 0 : nextValueID;
for (Region &region : regions)
numberContext.emplace_back(&region, opFirstValueID);
};
addOpRegionsToNumber(op);
// Iteratively process each of the nested regions.
while (!numberContext.empty()) {
Region *region;
std::tie(region, nextValueID) = numberContext.pop_back_val();
number(*region);
// Traverse into nested regions.
for (Operation &op : region->getOps())
addOpRegionsToNumber(&op);
}
// Number each of the dialects. For now this is just in the order they were
// found, given that the number of dialects on average is small enough to fit
// within a singly byte (128). If we ever have real world use cases that have
// a huge number of dialects, this could be made more intelligent.
for (auto [idx, dialect] : llvm::enumerate(dialects))
dialect.second->number = idx;
// Number each of the recorded components within each dialect.
// First sort by ref count so that the most referenced elements are first. We
// try to bias more heavily used elements to the front. This allows for more
// frequently referenced things to be encoded using smaller varints.
auto sortByRefCountFn = [](const auto &lhs, const auto &rhs) {
return lhs->refCount > rhs->refCount;
};
llvm::stable_sort(orderedAttrs, sortByRefCountFn);
llvm::stable_sort(orderedOpNames, sortByRefCountFn);
llvm::stable_sort(orderedTypes, sortByRefCountFn);
// After that, we apply a secondary ordering based on the parent dialect. This
// ordering is applied to sub-sections of the element list defined by how many
// bytes it takes to encode a varint index to that sub-section. This allows
// for more efficiently encoding components of the same dialect (e.g. we only
// have to encode the dialect reference once).
groupByDialectPerByte(llvm::MutableArrayRef(orderedAttrs));
groupByDialectPerByte(llvm::MutableArrayRef(orderedOpNames));
groupByDialectPerByte(llvm::MutableArrayRef(orderedTypes));
// Finalize the numbering of the dialect resources.
finalizeDialectResourceNumberings(op);
}
void IRNumberingState::computeGlobalNumberingState(Operation *rootOp) {
// A simple state struct tracking data used when walking operations.
struct StackState {
/// The operation currently being walked.
Operation *op;
/// The numbering of the operation.
OperationNumbering *numbering;
/// A flag indicating if the current state or one of its parents has
/// unresolved isolation status. This is tracked separately from the
/// isIsolatedFromAbove bit on `numbering` because we need to be able to
/// handle the given case:
/// top.op {
/// %value = ...
/// middle.op {
/// %value2 = ...
/// inner.op {
/// // Here we mark `inner.op` as not isolated. Note `middle.op`
/// // isn't known not isolated yet.
/// use.op %value2
///
/// // Here inner.op is already known to be non-isolated, but
/// // `middle.op` is now also discovered to be non-isolated.
/// use.op %value
/// }
/// }
/// }
bool hasUnresolvedIsolation;
};
// Compute a global operation ID numbering according to the pre-order walk of
// the IR. This is used as reference to construct use-list orders.
unsigned operationID = 0;
// Walk each of the operations within the IR, tracking a stack of operations
// as we recurse into nested regions. This walk method hooks in at two stages
// during the walk:
//
// BeforeAllRegions:
// Here we generate a numbering for the operation and push it onto the
// stack if it has regions. We also compute the isolation status of parent
// regions at this stage. This is done by checking the parent regions of
// operands used by the operation, and marking each region between the
// the operand region and the current as not isolated. See
// StackState::hasUnresolvedIsolation above for an example.
//
// AfterAllRegions:
// Here we pop the operation from the stack, and if it hasn't been marked
// as non-isolated, we mark it as so. A non-isolated use would have been
// found while walking the regions, so it is safe to mark the operation at
// this point.
//
SmallVector<StackState> opStack;
rootOp->walk([&](Operation *op, const WalkStage &stage) {
// After visiting all nested regions, we pop the operation from the stack.
if (op->getNumRegions() && stage.isAfterAllRegions()) {
// If no non-isolated uses were found, we can safely mark this operation
// as isolated from above.
OperationNumbering *numbering = opStack.pop_back_val().numbering;
if (!numbering->isIsolatedFromAbove.has_value())
numbering->isIsolatedFromAbove = true;
return;
}
// When visiting before nested regions, we process "IsolatedFromAbove"
// checks and compute the number for this operation.
if (!stage.isBeforeAllRegions())
return;
// Update the isolation status of parent regions if any have yet to be
// resolved.
if (!opStack.empty() && opStack.back().hasUnresolvedIsolation) {
Region *parentRegion = op->getParentRegion();
for (Value operand : op->getOperands()) {
Region *operandRegion = operand.getParentRegion();
if (operandRegion == parentRegion)
continue;
// We've found a use of an operand outside of the current region,
// walk the operation stack searching for the parent operation,
// marking every region on the way as not isolated.
Operation *operandContainerOp = operandRegion->getParentOp();
auto it = std::find_if(
opStack.rbegin(), opStack.rend(), [=](const StackState &it) {
// We only need to mark up to the container region, or the first
// that has an unresolved status.
return !it.hasUnresolvedIsolation || it.op == operandContainerOp;
});
assert(it != opStack.rend() && "expected to find the container");
for (auto &state : llvm::make_range(opStack.rbegin(), it)) {
// If we stopped at a region that knows its isolation status, we can
// stop updating the isolation status for the parent regions.
state.hasUnresolvedIsolation = it->hasUnresolvedIsolation;
state.numbering->isIsolatedFromAbove = false;
}
}
}
// Compute the number for this op and push it onto the stack.
auto *numbering =
new (opAllocator.Allocate()) OperationNumbering(operationID++);
if (op->hasTrait<OpTrait::IsIsolatedFromAbove>())
numbering->isIsolatedFromAbove = true;
operations.try_emplace(op, numbering);
if (op->getNumRegions()) {
opStack.emplace_back(StackState{
op, numbering, !numbering->isIsolatedFromAbove.has_value()});
}
});
}
void IRNumberingState::number(Attribute attr) {
auto it = attrs.insert({attr, nullptr});
if (!it.second) {
++it.first->second->refCount;
return;
}
auto *numbering = new (attrAllocator.Allocate()) AttributeNumbering(attr);
it.first->second = numbering;
orderedAttrs.push_back(numbering);
// Check for OpaqueAttr, which is a dialect-specific attribute that didn't
// have a registered dialect when it got created. We don't want to encode this
// as the builtin OpaqueAttr, we want to encode it as if the dialect was
// actually loaded.
if (OpaqueAttr opaqueAttr = dyn_cast<OpaqueAttr>(attr)) {
numbering->dialect = &numberDialect(opaqueAttr.getDialectNamespace());
return;
}
numbering->dialect = &numberDialect(&attr.getDialect());
// If this attribute will be emitted using the bytecode format, perform a
// dummy writing to number any nested components.
// TODO: We don't allow custom encodings for mutable attributes right now.
if (!attr.hasTrait<AttributeTrait::IsMutable>()) {
// Try overriding emission with callbacks.
for (const auto &callback : config.getAttributeWriterCallbacks()) {
NumberingDialectWriter writer(*this, config.getDialectVersionMap());
// The client has the ability to override the group name through the
// callback.
std::optional<StringRef> groupNameOverride;
if (succeeded(callback->write(attr, groupNameOverride, writer))) {
if (groupNameOverride.has_value())
numbering->dialect = &numberDialect(*groupNameOverride);
return;
}
}
if (const auto *interface = numbering->dialect->interface) {
NumberingDialectWriter writer(*this, config.getDialectVersionMap());
if (succeeded(interface->writeAttribute(attr, writer)))
return;
}
}
// If this attribute will be emitted using the fallback, number the nested
// dialect resources. We don't number everything (e.g. no nested
// attributes/types), because we don't want to encode things we won't decode
// (the textual format can't really share much).
AsmState tempState(attr.getContext());
llvm::raw_null_ostream dummyOS;
attr.print(dummyOS, tempState);
// Number the used dialect resources.
for (const auto &it : tempState.getDialectResources())
number(it.getFirst(), it.getSecond().getArrayRef());
}
void IRNumberingState::number(Block &block) {
// Number the arguments of the block.
for (BlockArgument arg : block.getArguments()) {
valueIDs.try_emplace(arg, nextValueID++);
number(arg.getLoc());
number(arg.getType());
}
// Number the operations in this block.
unsigned &numOps = blockOperationCounts[&block];
for (Operation &op : block) {
number(op);
++numOps;
}
}
auto IRNumberingState::numberDialect(Dialect *dialect) -> DialectNumbering & {
DialectNumbering *&numbering = registeredDialects[dialect];
if (!numbering) {
numbering = &numberDialect(dialect->getNamespace());
numbering->interface = dyn_cast<BytecodeDialectInterface>(dialect);
numbering->asmInterface = dyn_cast<OpAsmDialectInterface>(dialect);
}
return *numbering;
}
auto IRNumberingState::numberDialect(StringRef dialect) -> DialectNumbering & {
DialectNumbering *&numbering = dialects[dialect];
if (!numbering) {
numbering = new (dialectAllocator.Allocate())
DialectNumbering(dialect, dialects.size() - 1);
}
return *numbering;
}
void IRNumberingState::number(Region &region) {
if (region.empty())
return;
size_t firstValueID = nextValueID;
// Number the blocks within this region.
size_t blockCount = 0;
for (auto it : llvm::enumerate(region)) {
blockIDs.try_emplace(&it.value(), it.index());
number(it.value());
++blockCount;
}
// Remember the number of blocks and values in this region.
regionBlockValueCounts.try_emplace(&region, blockCount,
nextValueID - firstValueID);
}
void IRNumberingState::number(Operation &op) {
// Number the components of an operation that won't be numbered elsewhere
// (e.g. we don't number operands, regions, or successors here).
number(op.getName());
for (OpResult result : op.getResults()) {
valueIDs.try_emplace(result, nextValueID++);
number(result.getType());
}
// Prior to a version with native property encoding, or when properties are
// not used, we need to number also the merged dictionary containing both the
// inherent and discardable attribute.
DictionaryAttr dictAttr;
if (config.getDesiredBytecodeVersion() >= bytecode::kNativePropertiesEncoding)
dictAttr = op.getRawDictionaryAttrs();
else
dictAttr = op.getAttrDictionary();
// Only number the operation's dictionary if it isn't empty.
if (!dictAttr.empty())
number(dictAttr);
// Visit the operation properties (if any) to make sure referenced attributes
// are numbered.
if (config.getDesiredBytecodeVersion() >=
bytecode::kNativePropertiesEncoding &&
op.getPropertiesStorageSize()) {
if (op.isRegistered()) {
// Operation that have properties *must* implement this interface.
auto iface = cast<BytecodeOpInterface>(op);
NumberingDialectWriter writer(*this, config.getDialectVersionMap());
iface.writeProperties(writer);
} else {
// Unregistered op are storing properties as an optional attribute.
if (Attribute prop = *op.getPropertiesStorage().as<Attribute *>())
number(prop);
}
}
number(op.getLoc());
}
void IRNumberingState::number(OperationName opName) {
OpNameNumbering *&numbering = opNames[opName];
if (numbering) {
++numbering->refCount;
return;
}
DialectNumbering *dialectNumber = nullptr;
if (Dialect *dialect = opName.getDialect())
dialectNumber = &numberDialect(dialect);
else
dialectNumber = &numberDialect(opName.getDialectNamespace());
numbering =
new (opNameAllocator.Allocate()) OpNameNumbering(dialectNumber, opName);
orderedOpNames.push_back(numbering);
}
void IRNumberingState::number(Type type) {
auto it = types.insert({type, nullptr});
if (!it.second) {
++it.first->second->refCount;
return;
}
auto *numbering = new (typeAllocator.Allocate()) TypeNumbering(type);
it.first->second = numbering;
orderedTypes.push_back(numbering);
// Check for OpaqueType, which is a dialect-specific type that didn't have a
// registered dialect when it got created. We don't want to encode this as the
// builtin OpaqueType, we want to encode it as if the dialect was actually
// loaded.
if (OpaqueType opaqueType = dyn_cast<OpaqueType>(type)) {
numbering->dialect = &numberDialect(opaqueType.getDialectNamespace());
return;
}
numbering->dialect = &numberDialect(&type.getDialect());
// If this type will be emitted using the bytecode format, perform a dummy
// writing to number any nested components.
// TODO: We don't allow custom encodings for mutable types right now.
if (!type.hasTrait<TypeTrait::IsMutable>()) {
// Try overriding emission with callbacks.
for (const auto &callback : config.getTypeWriterCallbacks()) {
NumberingDialectWriter writer(*this, config.getDialectVersionMap());
// The client has the ability to override the group name through the
// callback.
std::optional<StringRef> groupNameOverride;
if (succeeded(callback->write(type, groupNameOverride, writer))) {
if (groupNameOverride.has_value())
numbering->dialect = &numberDialect(*groupNameOverride);
return;
}
}
// If this attribute will be emitted using the bytecode format, perform a
// dummy writing to number any nested components.
if (const auto *interface = numbering->dialect->interface) {
NumberingDialectWriter writer(*this, config.getDialectVersionMap());
if (succeeded(interface->writeType(type, writer)))
return;
}
}
// If this type will be emitted using the fallback, number the nested dialect
// resources. We don't number everything (e.g. no nested attributes/types),
// because we don't want to encode things we won't decode (the textual format
// can't really share much).
AsmState tempState(type.getContext());
llvm::raw_null_ostream dummyOS;
type.print(dummyOS, tempState);
// Number the used dialect resources.
for (const auto &it : tempState.getDialectResources())
number(it.getFirst(), it.getSecond().getArrayRef());
}
void IRNumberingState::number(Dialect *dialect,
ArrayRef<AsmDialectResourceHandle> resources) {
DialectNumbering &dialectNumber = numberDialect(dialect);
assert(
dialectNumber.asmInterface &&
"expected dialect owning a resource to implement OpAsmDialectInterface");
for (const auto &resource : resources) {
// Check if this is a newly seen resource.
if (!dialectNumber.resources.insert(resource))
return;
auto *numbering =
new (resourceAllocator.Allocate()) DialectResourceNumbering(
dialectNumber.asmInterface->getResourceKey(resource));
dialectNumber.resourceMap.insert({numbering->key, numbering});
dialectResources.try_emplace(resource, numbering);
}
}
int64_t IRNumberingState::getDesiredBytecodeVersion() const {
return config.getDesiredBytecodeVersion();
}
namespace {
/// A dummy resource builder used to number dialect resources.
struct NumberingResourceBuilder : public AsmResourceBuilder {
NumberingResourceBuilder(DialectNumbering *dialect, unsigned &nextResourceID)
: dialect(dialect), nextResourceID(nextResourceID) {}
~NumberingResourceBuilder() override = default;
void buildBlob(StringRef key, ArrayRef<char>, uint32_t) final {
numberEntry(key);
}
void buildBool(StringRef key, bool) final { numberEntry(key); }
void buildString(StringRef key, StringRef) final {
// TODO: We could pre-number the value string here as well.
numberEntry(key);
}
/// Number the dialect entry for the given key.
void numberEntry(StringRef key) {
// TODO: We could pre-number resource key strings here as well.
auto *it = dialect->resourceMap.find(key);
if (it != dialect->resourceMap.end()) {
it->second->number = nextResourceID++;
it->second->isDeclaration = false;
}
}
DialectNumbering *dialect;
unsigned &nextResourceID;
};
} // namespace
void IRNumberingState::finalizeDialectResourceNumberings(Operation *rootOp) {
unsigned nextResourceID = 0;
for (DialectNumbering &dialect : getDialects()) {
if (!dialect.asmInterface)
continue;
NumberingResourceBuilder entryBuilder(&dialect, nextResourceID);
dialect.asmInterface->buildResources(rootOp, dialect.resources,
entryBuilder);
// Number any resources that weren't added by the dialect. This can happen
// if there was no backing data to the resource, but we still want these
// resource references to roundtrip, so we number them and indicate that the
// data is missing.
for (const auto &it : dialect.resourceMap)
if (it.second->isDeclaration)
it.second->number = nextResourceID++;
}
}