This patch adds more precise side effects to the current ops with memory effects, allowing us to determine which OpOperand/OpResult/BlockArgument the operation reads or writes, rather than just recording the reading and writing of values. This allows for convenient use of precise side effects to achieve analysis and optimization. Related discussions: https://discourse.llvm.org/t/rfc-add-operandindex-to-sideeffect-instance/79243
180 lines
7.0 KiB
C++
180 lines
7.0 KiB
C++
//=== AffineTransformOps.cpp - Implementation of Affine transformation ops ===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Affine/TransformOps/AffineTransformOps.h"
|
|
#include "mlir/Dialect/Affine/Analysis/AffineStructures.h"
|
|
#include "mlir/Dialect/Affine/Analysis/Utils.h"
|
|
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
|
#include "mlir/Dialect/Affine/IR/AffineValueMap.h"
|
|
#include "mlir/Dialect/Affine/LoopUtils.h"
|
|
#include "mlir/Dialect/Transform/IR/TransformDialect.h"
|
|
#include "mlir/Dialect/Transform/Interfaces/TransformInterfaces.h"
|
|
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::affine;
|
|
using namespace mlir::transform;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SimplifyBoundedAffineOpsOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult SimplifyBoundedAffineOpsOp::verify() {
|
|
if (getLowerBounds().size() != getBoundedValues().size())
|
|
return emitOpError() << "incorrect number of lower bounds, expected "
|
|
<< getBoundedValues().size() << " but found "
|
|
<< getLowerBounds().size();
|
|
if (getUpperBounds().size() != getBoundedValues().size())
|
|
return emitOpError() << "incorrect number of upper bounds, expected "
|
|
<< getBoundedValues().size() << " but found "
|
|
<< getUpperBounds().size();
|
|
return success();
|
|
}
|
|
|
|
namespace {
|
|
/// Simplify affine.min / affine.max ops with the given constraints. They are
|
|
/// either rewritten to affine.apply or left unchanged.
|
|
template <typename OpTy>
|
|
struct SimplifyAffineMinMaxOp : public OpRewritePattern<OpTy> {
|
|
using OpRewritePattern<OpTy>::OpRewritePattern;
|
|
SimplifyAffineMinMaxOp(MLIRContext *ctx,
|
|
const FlatAffineValueConstraints &constraints,
|
|
PatternBenefit benefit = 1)
|
|
: OpRewritePattern<OpTy>(ctx, benefit), constraints(constraints) {}
|
|
|
|
LogicalResult matchAndRewrite(OpTy op,
|
|
PatternRewriter &rewriter) const override {
|
|
FailureOr<AffineValueMap> simplified =
|
|
simplifyConstrainedMinMaxOp(op, constraints);
|
|
if (failed(simplified))
|
|
return failure();
|
|
rewriter.replaceOpWithNewOp<AffineApplyOp>(op, simplified->getAffineMap(),
|
|
simplified->getOperands());
|
|
return success();
|
|
}
|
|
|
|
const FlatAffineValueConstraints &constraints;
|
|
};
|
|
} // namespace
|
|
|
|
DiagnosedSilenceableFailure
|
|
SimplifyBoundedAffineOpsOp::apply(transform::TransformRewriter &rewriter,
|
|
TransformResults &results,
|
|
TransformState &state) {
|
|
// Get constraints for bounded values.
|
|
SmallVector<int64_t> lbs;
|
|
SmallVector<int64_t> ubs;
|
|
SmallVector<Value> boundedValues;
|
|
DenseSet<Operation *> boundedOps;
|
|
for (const auto &it : llvm::zip_equal(getBoundedValues(), getLowerBounds(),
|
|
getUpperBounds())) {
|
|
Value handle = std::get<0>(it);
|
|
for (Operation *op : state.getPayloadOps(handle)) {
|
|
if (op->getNumResults() != 1 || !op->getResult(0).getType().isIndex()) {
|
|
auto diag =
|
|
emitDefiniteFailure()
|
|
<< "expected bounded value handle to point to one or multiple "
|
|
"single-result index-typed ops";
|
|
diag.attachNote(op->getLoc()) << "multiple/non-index result";
|
|
return diag;
|
|
}
|
|
boundedValues.push_back(op->getResult(0));
|
|
boundedOps.insert(op);
|
|
lbs.push_back(std::get<1>(it));
|
|
ubs.push_back(std::get<2>(it));
|
|
}
|
|
}
|
|
|
|
// Build constraint set.
|
|
FlatAffineValueConstraints cstr;
|
|
for (const auto &it : llvm::zip(boundedValues, lbs, ubs)) {
|
|
unsigned pos;
|
|
if (!cstr.findVar(std::get<0>(it), &pos))
|
|
pos = cstr.appendSymbolVar(std::get<0>(it));
|
|
cstr.addBound(presburger::BoundType::LB, pos, std::get<1>(it));
|
|
// Note: addBound bounds are inclusive, but specified UB is exclusive.
|
|
cstr.addBound(presburger::BoundType::UB, pos, std::get<2>(it) - 1);
|
|
}
|
|
|
|
// Transform all targets.
|
|
SmallVector<Operation *> targets;
|
|
for (Operation *target : state.getPayloadOps(getTarget())) {
|
|
if (!isa<AffineMinOp, AffineMaxOp>(target)) {
|
|
auto diag = emitDefiniteFailure()
|
|
<< "target must be affine.min or affine.max";
|
|
diag.attachNote(target->getLoc()) << "target op";
|
|
return diag;
|
|
}
|
|
if (boundedOps.contains(target)) {
|
|
auto diag = emitDefiniteFailure()
|
|
<< "target op result must not be constrainted";
|
|
diag.attachNote(target->getLoc()) << "target/constrained op";
|
|
return diag;
|
|
}
|
|
targets.push_back(target);
|
|
}
|
|
SmallVector<Operation *> transformed;
|
|
RewritePatternSet patterns(getContext());
|
|
// Canonicalization patterns are needed so that affine.apply ops are composed
|
|
// with the remaining affine.min/max ops.
|
|
AffineMaxOp::getCanonicalizationPatterns(patterns, getContext());
|
|
AffineMinOp::getCanonicalizationPatterns(patterns, getContext());
|
|
patterns.insert<SimplifyAffineMinMaxOp<AffineMinOp>,
|
|
SimplifyAffineMinMaxOp<AffineMaxOp>>(getContext(), cstr);
|
|
FrozenRewritePatternSet frozenPatterns(std::move(patterns));
|
|
GreedyRewriteConfig config;
|
|
config.listener =
|
|
static_cast<RewriterBase::Listener *>(rewriter.getListener());
|
|
config.strictMode = GreedyRewriteStrictness::ExistingAndNewOps;
|
|
// Apply the simplification pattern to a fixpoint.
|
|
if (failed(applyOpPatternsAndFold(targets, frozenPatterns, config))) {
|
|
auto diag = emitDefiniteFailure()
|
|
<< "affine.min/max simplification did not converge";
|
|
return diag;
|
|
}
|
|
return DiagnosedSilenceableFailure::success();
|
|
}
|
|
|
|
void SimplifyBoundedAffineOpsOp::getEffects(
|
|
SmallVectorImpl<MemoryEffects::EffectInstance> &effects) {
|
|
consumesHandle(getTargetMutable(), effects);
|
|
for (OpOperand &operand : getBoundedValuesMutable())
|
|
onlyReadsHandle(operand, effects);
|
|
modifiesPayload(effects);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Transform op registration
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class AffineTransformDialectExtension
|
|
: public transform::TransformDialectExtension<
|
|
AffineTransformDialectExtension> {
|
|
public:
|
|
using Base::Base;
|
|
|
|
void init() {
|
|
declareGeneratedDialect<AffineDialect>();
|
|
|
|
registerTransformOps<
|
|
#define GET_OP_LIST
|
|
#include "mlir/Dialect/Affine/TransformOps/AffineTransformOps.cpp.inc"
|
|
>();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
#define GET_OP_CLASSES
|
|
#include "mlir/Dialect/Affine/TransformOps/AffineTransformOps.cpp.inc"
|
|
|
|
void mlir::affine::registerTransformDialectExtension(
|
|
DialectRegistry ®istry) {
|
|
registry.addExtensions<AffineTransformDialectExtension>();
|
|
}
|