This is a new attempt at #69320. The transform dialect stores a "library module" that the preload pass can populate. Until now, each pass registered an additional module by simply pushing it to a vector; however, the interpreter only used the first of them. This commit turns the registration into "loading", i.e., each newly added module gets merged into the existing one. This allows the loading to be split into several passes, and using the library in the interpreter now takes all of them into account. While this design avoids repeated merging every time the library is accessed, it requires that the implementation of merging modules lives in the TransformDialect target (since it at the dialect depend on each other). This resolves https://github.com/llvm/llvm-project/issues/69111.
245 lines
9.6 KiB
C++
245 lines
9.6 KiB
C++
//===- Utils.cpp - Utils related to the transform dialect -------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Transform/IR/Utils.h"
|
|
#include "mlir/Dialect/Transform/IR/TransformDialect.h"
|
|
#include "mlir/IR/Verifier.h"
|
|
#include "mlir/Interfaces/FunctionInterfaces.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
using namespace mlir;
|
|
|
|
#define DEBUG_TYPE "transform-dialect-utils"
|
|
#define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE << "]: ")
|
|
|
|
/// Return whether `func1` can be merged into `func2`. For that to work
|
|
/// `func1` has to be a declaration (aka has to be external) and `func2`
|
|
/// either has to be a declaration as well, or it has to be public (otherwise,
|
|
/// it wouldn't be visible by `func1`).
|
|
static bool canMergeInto(FunctionOpInterface func1, FunctionOpInterface func2) {
|
|
return func1.isExternal() && (func2.isPublic() || func2.isExternal());
|
|
}
|
|
|
|
/// Merge `func1` into `func2`. The two ops must be inside the same parent op
|
|
/// and mergable according to `canMergeInto`. The function erases `func1` such
|
|
/// that only `func2` exists when the function returns.
|
|
static InFlightDiagnostic mergeInto(FunctionOpInterface func1,
|
|
FunctionOpInterface func2) {
|
|
assert(canMergeInto(func1, func2));
|
|
assert(func1->getParentOp() == func2->getParentOp() &&
|
|
"expected func1 and func2 to be in the same parent op");
|
|
|
|
// Check that function signatures match.
|
|
if (func1.getFunctionType() != func2.getFunctionType()) {
|
|
return func1.emitError()
|
|
<< "external definition has a mismatching signature ("
|
|
<< func2.getFunctionType() << ")";
|
|
}
|
|
|
|
// Check and merge argument attributes.
|
|
MLIRContext *context = func1->getContext();
|
|
auto *td = context->getLoadedDialect<transform::TransformDialect>();
|
|
StringAttr consumedName = td->getConsumedAttrName();
|
|
StringAttr readOnlyName = td->getReadOnlyAttrName();
|
|
for (unsigned i = 0, e = func1.getNumArguments(); i < e; ++i) {
|
|
bool isExternalConsumed = func2.getArgAttr(i, consumedName) != nullptr;
|
|
bool isExternalReadonly = func2.getArgAttr(i, readOnlyName) != nullptr;
|
|
bool isConsumed = func1.getArgAttr(i, consumedName) != nullptr;
|
|
bool isReadonly = func1.getArgAttr(i, readOnlyName) != nullptr;
|
|
if (!isExternalConsumed && !isExternalReadonly) {
|
|
if (isConsumed)
|
|
func2.setArgAttr(i, consumedName, UnitAttr::get(context));
|
|
else if (isReadonly)
|
|
func2.setArgAttr(i, readOnlyName, UnitAttr::get(context));
|
|
continue;
|
|
}
|
|
|
|
if ((isExternalConsumed && !isConsumed) ||
|
|
(isExternalReadonly && !isReadonly)) {
|
|
return func1.emitError()
|
|
<< "external definition has mismatching consumption "
|
|
"annotations for argument #"
|
|
<< i;
|
|
}
|
|
}
|
|
|
|
// `func1` is the external one, so we can remove it.
|
|
assert(func1.isExternal());
|
|
func1->erase();
|
|
|
|
return InFlightDiagnostic();
|
|
}
|
|
|
|
InFlightDiagnostic
|
|
transform::detail::mergeSymbolsInto(Operation *target,
|
|
OwningOpRef<Operation *> other) {
|
|
assert(target->hasTrait<OpTrait::SymbolTable>() &&
|
|
"requires target to implement the 'SymbolTable' trait");
|
|
assert(other->hasTrait<OpTrait::SymbolTable>() &&
|
|
"requires target to implement the 'SymbolTable' trait");
|
|
|
|
SymbolTable targetSymbolTable(target);
|
|
SymbolTable otherSymbolTable(*other);
|
|
|
|
// Step 1:
|
|
//
|
|
// Rename private symbols in both ops in order to resolve conflicts that can
|
|
// be resolved that way.
|
|
LLVM_DEBUG(DBGS() << "renaming private symbols to resolve conflicts:\n");
|
|
// TODO: Do we *actually* need to test in both directions?
|
|
for (auto &&[symbolTable, otherSymbolTable] : llvm::zip(
|
|
SmallVector<SymbolTable *, 2>{&targetSymbolTable, &otherSymbolTable},
|
|
SmallVector<SymbolTable *, 2>{&otherSymbolTable,
|
|
&targetSymbolTable})) {
|
|
Operation *symbolTableOp = symbolTable->getOp();
|
|
for (Operation &op : symbolTableOp->getRegion(0).front()) {
|
|
auto symbolOp = dyn_cast<SymbolOpInterface>(op);
|
|
if (!symbolOp)
|
|
continue;
|
|
StringAttr name = symbolOp.getNameAttr();
|
|
LLVM_DEBUG(DBGS() << " found @" << name.getValue() << "\n");
|
|
|
|
// Check if there is a colliding op in the other module.
|
|
auto collidingOp =
|
|
cast_or_null<SymbolOpInterface>(otherSymbolTable->lookup(name));
|
|
if (!collidingOp)
|
|
continue;
|
|
|
|
LLVM_DEBUG(DBGS() << " collision found for @" << name.getValue());
|
|
|
|
// Collisions are fine if both opt are functions and can be merged.
|
|
if (auto funcOp = dyn_cast<FunctionOpInterface>(op),
|
|
collidingFuncOp =
|
|
dyn_cast<FunctionOpInterface>(collidingOp.getOperation());
|
|
funcOp && collidingFuncOp) {
|
|
if (canMergeInto(funcOp, collidingFuncOp) ||
|
|
canMergeInto(collidingFuncOp, funcOp)) {
|
|
LLVM_DEBUG(llvm::dbgs() << " but both ops are functions and "
|
|
"will be merged\n");
|
|
continue;
|
|
}
|
|
|
|
// If they can't be merged, proceed like any other collision.
|
|
LLVM_DEBUG(llvm::dbgs() << " and both ops are function definitions");
|
|
}
|
|
|
|
// Collision can be resolved by renaming if one of the ops is private.
|
|
auto renameToUnique =
|
|
[&](SymbolOpInterface op, SymbolOpInterface otherOp,
|
|
SymbolTable &symbolTable,
|
|
SymbolTable &otherSymbolTable) -> InFlightDiagnostic {
|
|
LLVM_DEBUG(llvm::dbgs() << ", renaming\n");
|
|
FailureOr<StringAttr> maybeNewName =
|
|
symbolTable.renameToUnique(op, {&otherSymbolTable});
|
|
if (failed(maybeNewName)) {
|
|
InFlightDiagnostic diag = op->emitError("failed to rename symbol");
|
|
diag.attachNote(otherOp->getLoc())
|
|
<< "attempted renaming due to collision with this op";
|
|
return diag;
|
|
}
|
|
LLVM_DEBUG(DBGS() << " renamed to @" << maybeNewName->getValue()
|
|
<< "\n");
|
|
return InFlightDiagnostic();
|
|
};
|
|
|
|
if (symbolOp.isPrivate()) {
|
|
InFlightDiagnostic diag = renameToUnique(
|
|
symbolOp, collidingOp, *symbolTable, *otherSymbolTable);
|
|
if (failed(diag))
|
|
return diag;
|
|
continue;
|
|
}
|
|
if (collidingOp.isPrivate()) {
|
|
InFlightDiagnostic diag = renameToUnique(
|
|
collidingOp, symbolOp, *otherSymbolTable, *symbolTable);
|
|
if (failed(diag))
|
|
return diag;
|
|
continue;
|
|
}
|
|
LLVM_DEBUG(llvm::dbgs() << ", emitting error\n");
|
|
InFlightDiagnostic diag = symbolOp.emitError()
|
|
<< "doubly defined symbol @" << name.getValue();
|
|
diag.attachNote(collidingOp->getLoc()) << "previously defined here";
|
|
return diag;
|
|
}
|
|
}
|
|
|
|
// TODO: This duplicates pass infrastructure. We should split this pass into
|
|
// several and let the pass infrastructure do the verification.
|
|
for (auto *op : SmallVector<Operation *>{target, *other}) {
|
|
if (failed(mlir::verify(op)))
|
|
return op->emitError() << "failed to verify input op after renaming";
|
|
}
|
|
|
|
// Step 2:
|
|
//
|
|
// Move all ops from `other` into target and merge public symbols.
|
|
LLVM_DEBUG(DBGS() << "moving all symbols into target\n");
|
|
{
|
|
SmallVector<SymbolOpInterface> opsToMove;
|
|
for (Operation &op : other->getRegion(0).front()) {
|
|
if (auto symbol = dyn_cast<SymbolOpInterface>(op))
|
|
opsToMove.push_back(symbol);
|
|
}
|
|
|
|
for (SymbolOpInterface op : opsToMove) {
|
|
// Remember potentially colliding op in the target module.
|
|
auto collidingOp = cast_or_null<SymbolOpInterface>(
|
|
targetSymbolTable.lookup(op.getNameAttr()));
|
|
|
|
// Move op even if we get a collision.
|
|
LLVM_DEBUG(DBGS() << " moving @" << op.getName());
|
|
op->moveBefore(&target->getRegion(0).front(),
|
|
target->getRegion(0).front().end());
|
|
|
|
// If there is no collision, we are done.
|
|
if (!collidingOp) {
|
|
LLVM_DEBUG(llvm::dbgs() << " without collision\n");
|
|
continue;
|
|
}
|
|
|
|
// The two colliding ops must both be functions because we have already
|
|
// emitted errors otherwise earlier.
|
|
auto funcOp = cast<FunctionOpInterface>(op.getOperation());
|
|
auto collidingFuncOp =
|
|
cast<FunctionOpInterface>(collidingOp.getOperation());
|
|
|
|
// Both ops are in the target module now and can be treated
|
|
// symmetrically, so w.l.o.g. we can reduce to merging `funcOp` into
|
|
// `collidingFuncOp`.
|
|
if (!canMergeInto(funcOp, collidingFuncOp)) {
|
|
std::swap(funcOp, collidingFuncOp);
|
|
}
|
|
assert(canMergeInto(funcOp, collidingFuncOp));
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << " with collision, trying to keep op at "
|
|
<< collidingFuncOp.getLoc() << ":\n"
|
|
<< collidingFuncOp << "\n");
|
|
|
|
// Update symbol table. This works with or without the previous `swap`.
|
|
targetSymbolTable.remove(funcOp);
|
|
targetSymbolTable.insert(collidingFuncOp);
|
|
assert(targetSymbolTable.lookup(funcOp.getName()) == collidingFuncOp);
|
|
|
|
// Do the actual merging.
|
|
{
|
|
InFlightDiagnostic diag = mergeInto(funcOp, collidingFuncOp);
|
|
if (failed(diag))
|
|
return diag;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (failed(mlir::verify(target)))
|
|
return target->emitError()
|
|
<< "failed to verify target op after merging symbols";
|
|
|
|
LLVM_DEBUG(DBGS() << "done merging ops\n");
|
|
return InFlightDiagnostic();
|
|
}
|