This PR attempts to consolidate the different topological sort utilities into one place. It adds them to the analysis folder because the `SliceAnalysis` uses some of these. There are now two different sorting strategies: 1. Sort only according to SSA use-def chains 2. Sort while taking regions into account. This requires a much more elaborate traversal and cannot be applied on graph regions that easily. This additionally reimplements the region aware topological sorting because the previous implementation had an exponential space complexity. I'm open to suggestions on how to combine this further or how to fuse the test passes.
284 lines
10 KiB
C++
284 lines
10 KiB
C++
//===-- SROA.cpp - Scalar Replacement Of Aggregates -------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Transforms/SROA.h"
|
|
#include "mlir/Analysis/DataLayoutAnalysis.h"
|
|
#include "mlir/Analysis/SliceAnalysis.h"
|
|
#include "mlir/Analysis/TopologicalSortUtils.h"
|
|
#include "mlir/Interfaces/MemorySlotInterfaces.h"
|
|
#include "mlir/Transforms/Passes.h"
|
|
|
|
namespace mlir {
|
|
#define GEN_PASS_DEF_SROA
|
|
#include "mlir/Transforms/Passes.h.inc"
|
|
} // namespace mlir
|
|
|
|
#define DEBUG_TYPE "sroa"
|
|
|
|
using namespace mlir;
|
|
|
|
namespace {
|
|
|
|
/// Information computed by destructurable memory slot analysis used to perform
|
|
/// actual destructuring of the slot. This struct is only constructed if
|
|
/// destructuring is possible, and contains the necessary data to perform it.
|
|
struct MemorySlotDestructuringInfo {
|
|
/// Set of the indices that are actually used when accessing the subelements.
|
|
SmallPtrSet<Attribute, 8> usedIndices;
|
|
/// Blocking uses of a given user of the memory slot that must be eliminated.
|
|
DenseMap<Operation *, SmallPtrSet<OpOperand *, 4>> userToBlockingUses;
|
|
/// List of potentially indirect accessors of the memory slot that need
|
|
/// rewiring.
|
|
SmallVector<DestructurableAccessorOpInterface> accessors;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
/// Computes information for slot destructuring. This will compute whether this
|
|
/// slot can be destructured and data to perform the destructuring. Returns
|
|
/// nothing if the slot cannot be destructured or if there is no useful work to
|
|
/// be done.
|
|
static std::optional<MemorySlotDestructuringInfo>
|
|
computeDestructuringInfo(DestructurableMemorySlot &slot,
|
|
const DataLayout &dataLayout) {
|
|
assert(isa<DestructurableTypeInterface>(slot.elemType));
|
|
|
|
if (slot.ptr.use_empty())
|
|
return {};
|
|
|
|
MemorySlotDestructuringInfo info;
|
|
|
|
SmallVector<MemorySlot> usedSafelyWorklist;
|
|
|
|
auto scheduleAsBlockingUse = [&](OpOperand &use) {
|
|
SmallPtrSetImpl<OpOperand *> &blockingUses =
|
|
info.userToBlockingUses.getOrInsertDefault(use.getOwner());
|
|
blockingUses.insert(&use);
|
|
};
|
|
|
|
// Initialize the analysis with the immediate users of the slot.
|
|
for (OpOperand &use : slot.ptr.getUses()) {
|
|
if (auto accessor =
|
|
dyn_cast<DestructurableAccessorOpInterface>(use.getOwner())) {
|
|
if (accessor.canRewire(slot, info.usedIndices, usedSafelyWorklist,
|
|
dataLayout)) {
|
|
info.accessors.push_back(accessor);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// If it cannot be shown that the operation uses the slot safely, maybe it
|
|
// can be promoted out of using the slot?
|
|
scheduleAsBlockingUse(use);
|
|
}
|
|
|
|
SmallPtrSet<OpOperand *, 16> visited;
|
|
while (!usedSafelyWorklist.empty()) {
|
|
MemorySlot mustBeUsedSafely = usedSafelyWorklist.pop_back_val();
|
|
for (OpOperand &subslotUse : mustBeUsedSafely.ptr.getUses()) {
|
|
if (!visited.insert(&subslotUse).second)
|
|
continue;
|
|
Operation *subslotUser = subslotUse.getOwner();
|
|
|
|
if (auto memOp = dyn_cast<SafeMemorySlotAccessOpInterface>(subslotUser))
|
|
if (succeeded(memOp.ensureOnlySafeAccesses(
|
|
mustBeUsedSafely, usedSafelyWorklist, dataLayout)))
|
|
continue;
|
|
|
|
// If it cannot be shown that the operation uses the slot safely, maybe it
|
|
// can be promoted out of using the slot?
|
|
scheduleAsBlockingUse(subslotUse);
|
|
}
|
|
}
|
|
|
|
SetVector<Operation *> forwardSlice;
|
|
mlir::getForwardSlice(slot.ptr, &forwardSlice);
|
|
for (Operation *user : forwardSlice) {
|
|
// If the next operation has no blocking uses, everything is fine.
|
|
if (!info.userToBlockingUses.contains(user))
|
|
continue;
|
|
|
|
SmallPtrSet<OpOperand *, 4> &blockingUses = info.userToBlockingUses[user];
|
|
auto promotable = dyn_cast<PromotableOpInterface>(user);
|
|
|
|
// An operation that has blocking uses must be promoted. If it is not
|
|
// promotable, destructuring must fail.
|
|
if (!promotable)
|
|
return {};
|
|
|
|
SmallVector<OpOperand *> newBlockingUses;
|
|
// If the operation decides it cannot deal with removing the blocking uses,
|
|
// destructuring must fail.
|
|
if (!promotable.canUsesBeRemoved(blockingUses, newBlockingUses, dataLayout))
|
|
return {};
|
|
|
|
// Then, register any new blocking uses for coming operations.
|
|
for (OpOperand *blockingUse : newBlockingUses) {
|
|
assert(llvm::is_contained(user->getResults(), blockingUse->get()));
|
|
|
|
SmallPtrSetImpl<OpOperand *> &newUserBlockingUseSet =
|
|
info.userToBlockingUses.getOrInsertDefault(blockingUse->getOwner());
|
|
newUserBlockingUseSet.insert(blockingUse);
|
|
}
|
|
}
|
|
|
|
return info;
|
|
}
|
|
|
|
/// Performs the destructuring of a destructible slot given associated
|
|
/// destructuring information. The provided slot will be destructured in
|
|
/// subslots as specified by its allocator.
|
|
static void destructureSlot(
|
|
DestructurableMemorySlot &slot,
|
|
DestructurableAllocationOpInterface allocator, OpBuilder &builder,
|
|
const DataLayout &dataLayout, MemorySlotDestructuringInfo &info,
|
|
SmallVectorImpl<DestructurableAllocationOpInterface> &newAllocators,
|
|
const SROAStatistics &statistics) {
|
|
OpBuilder::InsertionGuard guard(builder);
|
|
|
|
builder.setInsertionPointToStart(slot.ptr.getParentBlock());
|
|
DenseMap<Attribute, MemorySlot> subslots =
|
|
allocator.destructure(slot, info.usedIndices, builder, newAllocators);
|
|
|
|
if (statistics.slotsWithMemoryBenefit &&
|
|
slot.elementPtrs.size() != info.usedIndices.size())
|
|
(*statistics.slotsWithMemoryBenefit)++;
|
|
|
|
if (statistics.maxSubelementAmount)
|
|
statistics.maxSubelementAmount->updateMax(slot.elementPtrs.size());
|
|
|
|
SetVector<Operation *> usersToRewire;
|
|
for (Operation *user : llvm::make_first_range(info.userToBlockingUses))
|
|
usersToRewire.insert(user);
|
|
for (DestructurableAccessorOpInterface accessor : info.accessors)
|
|
usersToRewire.insert(accessor);
|
|
usersToRewire = mlir::topologicalSort(usersToRewire);
|
|
|
|
llvm::SmallVector<Operation *> toErase;
|
|
for (Operation *toRewire : llvm::reverse(usersToRewire)) {
|
|
builder.setInsertionPointAfter(toRewire);
|
|
if (auto accessor = dyn_cast<DestructurableAccessorOpInterface>(toRewire)) {
|
|
if (accessor.rewire(slot, subslots, builder, dataLayout) ==
|
|
DeletionKind::Delete)
|
|
toErase.push_back(accessor);
|
|
continue;
|
|
}
|
|
|
|
auto promotable = cast<PromotableOpInterface>(toRewire);
|
|
if (promotable.removeBlockingUses(info.userToBlockingUses[promotable],
|
|
builder) == DeletionKind::Delete)
|
|
toErase.push_back(promotable);
|
|
}
|
|
|
|
for (Operation *toEraseOp : toErase)
|
|
toEraseOp->erase();
|
|
|
|
assert(slot.ptr.use_empty() && "after destructuring, the original slot "
|
|
"pointer should no longer be used");
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "[sroa] Destructured memory slot: " << slot.ptr
|
|
<< "\n");
|
|
|
|
if (statistics.destructuredAmount)
|
|
(*statistics.destructuredAmount)++;
|
|
|
|
std::optional<DestructurableAllocationOpInterface> newAllocator =
|
|
allocator.handleDestructuringComplete(slot, builder);
|
|
// Add newly created allocators to the worklist for further processing.
|
|
if (newAllocator)
|
|
newAllocators.push_back(*newAllocator);
|
|
}
|
|
|
|
LogicalResult mlir::tryToDestructureMemorySlots(
|
|
ArrayRef<DestructurableAllocationOpInterface> allocators,
|
|
OpBuilder &builder, const DataLayout &dataLayout,
|
|
SROAStatistics statistics) {
|
|
bool destructuredAny = false;
|
|
|
|
SmallVector<DestructurableAllocationOpInterface> workList(allocators.begin(),
|
|
allocators.end());
|
|
SmallVector<DestructurableAllocationOpInterface> newWorkList;
|
|
newWorkList.reserve(allocators.size());
|
|
// Destructuring a slot can allow for further destructuring of other
|
|
// slots, destructuring is tried until no destructuring succeeds.
|
|
while (true) {
|
|
bool changesInThisRound = false;
|
|
|
|
for (DestructurableAllocationOpInterface allocator : workList) {
|
|
bool destructuredAnySlot = false;
|
|
for (DestructurableMemorySlot slot : allocator.getDestructurableSlots()) {
|
|
std::optional<MemorySlotDestructuringInfo> info =
|
|
computeDestructuringInfo(slot, dataLayout);
|
|
if (!info)
|
|
continue;
|
|
|
|
destructureSlot(slot, allocator, builder, dataLayout, *info,
|
|
newWorkList, statistics);
|
|
destructuredAnySlot = true;
|
|
|
|
// A break is required, since destructuring a slot may invalidate the
|
|
// remaning slots of an allocator.
|
|
break;
|
|
}
|
|
if (!destructuredAnySlot)
|
|
newWorkList.push_back(allocator);
|
|
changesInThisRound |= destructuredAnySlot;
|
|
}
|
|
|
|
if (!changesInThisRound)
|
|
break;
|
|
destructuredAny |= changesInThisRound;
|
|
|
|
// Swap the vector's backing memory and clear the entries in newWorkList
|
|
// afterwards. This ensures that additional heap allocations can be avoided.
|
|
workList.swap(newWorkList);
|
|
newWorkList.clear();
|
|
}
|
|
|
|
return success(destructuredAny);
|
|
}
|
|
|
|
namespace {
|
|
|
|
struct SROA : public impl::SROABase<SROA> {
|
|
using impl::SROABase<SROA>::SROABase;
|
|
|
|
void runOnOperation() override {
|
|
Operation *scopeOp = getOperation();
|
|
|
|
SROAStatistics statistics{&destructuredAmount, &slotsWithMemoryBenefit,
|
|
&maxSubelementAmount};
|
|
|
|
auto &dataLayoutAnalysis = getAnalysis<DataLayoutAnalysis>();
|
|
const DataLayout &dataLayout = dataLayoutAnalysis.getAtOrAbove(scopeOp);
|
|
bool changed = false;
|
|
|
|
for (Region ®ion : scopeOp->getRegions()) {
|
|
if (region.getBlocks().empty())
|
|
continue;
|
|
|
|
OpBuilder builder(®ion.front(), region.front().begin());
|
|
|
|
SmallVector<DestructurableAllocationOpInterface> allocators;
|
|
// Build a list of allocators to attempt to destructure the slots of.
|
|
region.walk([&](DestructurableAllocationOpInterface allocator) {
|
|
allocators.emplace_back(allocator);
|
|
});
|
|
|
|
// Attempt to destructure as many slots as possible.
|
|
if (succeeded(tryToDestructureMemorySlots(allocators, builder, dataLayout,
|
|
statistics)))
|
|
changed = true;
|
|
}
|
|
if (!changed)
|
|
markAllAnalysesPreserved();
|
|
}
|
|
};
|
|
|
|
} // namespace
|