Files
clang-p2996/mlir/lib/Dialect/Bufferization/Transforms/OneShotAnalysis.cpp
Matthias Springer 2e210034da [mlir][bufferize] Fix repetitive region conflict detection
This fixes a bug where a required buffer copy was not inserted.

Not only written aliases, but also read aliases should be taken into account when computing common enclosing repetitive regions. Furthermore, for writing ops, it does not matter where the destination tensor is defined, but where the op itself is located.

Differential Revision: https://reviews.llvm.org/D135420
2022-10-07 16:39:03 +09:00

1087 lines
43 KiB
C++

//===- OneShotAnalysis.cpp - One-Shot (Single Pass) Analysis --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// One-Shot Analysis analyzes function bodies. Function boundaries (FuncOp
// bbArgs, CallOps, ReturnOps) are treated as "unknown" ops.
// ModuleBufferization.cpp is an extension of One-Shot Analysis for simple
// call graphs.
//
// One-Shot Bufferize consists of two phases.
//
// 1. Analyze ops to decide which OpResults can bufferize inplace, i.e., without
// inserting buffer copies. The analysis queries op bufferization semantics
// via `BufferizableOpInterface`.
// 2. Bufferize ops by calling `BufferizableOpInterface::bufferize`. This
// function does not generate buffer copies for OpResults that were decided
// to bufferize inplace during the analysis phase.
//
// This file contains only the analysis. The actual bufferization is implemented
// via `bufferizeOp` (Bufferize.h). For convenience, this file also contains a
// helper function `runOneShotBufferize` that analyzes an op (and its nested
// ops) and then bufferizes it.
//
// Inplace bufferization decisions are passed from the analysis to the
// bufferization phase via `AnalysisState` and `BufferizationAliasInfo`.
// They can be printed for debugging purposes with `testAnalysisOnly`.
//
// Ops that do not implement `BufferizableOpInterface` can be analyzed but are
// treated conservatively. E.g., the analysis has to assume that their tensor
// OpOperands bufferize to memory writes. While such ops can be analyzed, they
// are not bufferized and remain in the IR. to_tensor and to_memref ops are
// inserted at the bufferization boundary.
//
// This analysis caters to high-performance codegen where buffer reuse is deemed
// critical: the analysis should fail if the bufferized form of the function
// needs to return a buffer, unless `allowReturnAllocs` is enabled.
#include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h"
#include <random>
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Bufferization/Transforms/Bufferize.h"
#include "mlir/Dialect/Bufferization/Transforms/TensorCopyInsertion.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/IR/AsmState.h"
#include "mlir/IR/Dominance.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Interfaces/ControlFlowInterfaces.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SetVector.h"
using namespace mlir;
using namespace mlir::bufferization;
static bool isaTensor(Type t) { return t.isa<TensorType>(); }
//===----------------------------------------------------------------------===//
// Bufferization-specific attribute manipulation.
// These are for testing and debugging only. Bufferization information is
// stored in BufferizationAliasInfo. When run with `testAnalysisOnly`, the IR
// is annotated with the results of the analysis (copied from
// BufferizationAliasInfo), so that they can be checked in tests.
//===----------------------------------------------------------------------===//
/// Attribute marker to specify op results that can be bufferized inPlace.
constexpr StringLiteral kInPlaceResultsAttrName = "__inplace_operands_attr__";
/// Mark whether OpOperand will be bufferized inplace.
static void setInPlaceOpOperand(OpOperand &opOperand, bool inPlace) {
Operation *op = opOperand.getOwner();
auto attr =
op->getAttr(kInPlaceResultsAttrName).dyn_cast_or_null<ArrayAttr>();
SmallVector<StringRef> inPlaceVector;
if (attr) {
inPlaceVector = SmallVector<StringRef>(
llvm::to_vector<4>(attr.getAsValueRange<StringAttr>()));
} else {
inPlaceVector = SmallVector<StringRef>(op->getNumOperands(), "none");
for (OpOperand &opOperand : op->getOpOperands())
if (opOperand.get().getType().isa<TensorType>())
inPlaceVector[opOperand.getOperandNumber()] = "false";
}
inPlaceVector[opOperand.getOperandNumber()] = inPlace ? "true" : "false";
op->setAttr(kInPlaceResultsAttrName,
OpBuilder(op).getStrArrayAttr(inPlaceVector));
}
//===----------------------------------------------------------------------===//
// BufferizationAliasInfo
//===----------------------------------------------------------------------===//
BufferizationAliasInfo::BufferizationAliasInfo(Operation *rootOp) {
rootOp->walk([&](Operation *op) {
for (Value v : op->getResults())
if (v.getType().isa<TensorType>())
createAliasInfoEntry(v);
for (Region &r : op->getRegions())
for (Block &b : r.getBlocks())
for (auto bbArg : b.getArguments())
if (bbArg.getType().isa<TensorType>())
createAliasInfoEntry(bbArg);
});
}
/// Add a new entry for `v` in the `aliasInfo` and `equivalentInfo`. In the
/// beginning the alias and equivalence sets only contain `v` itself.
void BufferizationAliasInfo::createAliasInfoEntry(Value v) {
aliasInfo.insert(v);
equivalentInfo.insert(v);
}
/// Insert an info entry for `newValue` and merge its alias set with that of
/// `alias`.
void BufferizationAliasInfo::insertNewBufferAlias(Value newValue, Value alias) {
createAliasInfoEntry(newValue);
aliasInfo.unionSets(newValue, alias);
}
/// Insert an info entry for `newValue` and merge its alias set with that of
/// `alias`. Additionally, merge their equivalence classes.
void BufferizationAliasInfo::insertNewBufferEquivalence(Value newValue,
Value alias) {
insertNewBufferAlias(newValue, alias);
equivalentInfo.unionSets(newValue, alias);
}
/// Return `true` if a value was marked as in-place bufferized.
bool BufferizationAliasInfo::isInPlace(OpOperand &operand) const {
return inplaceBufferized.contains(&operand);
}
/// Set the inPlace bufferization spec to true.
void BufferizationAliasInfo::bufferizeInPlace(OpOperand &operand,
AnalysisState &state) {
markInPlace(operand);
for (OpResult result : state.getAliasingOpResult(operand))
aliasInfo.unionSets(result, operand.get());
}
/// Set the inPlace bufferization spec to false.
void BufferizationAliasInfo::bufferizeOutOfPlace(OpOperand &operand) {
assert(!inplaceBufferized.contains(&operand) &&
"OpOperand was already decided to bufferize inplace");
}
/// Apply `fun` to all the members of the equivalence class of `v`.
void BufferizationAliasInfo::applyOnEquivalenceClass(
Value v, function_ref<void(Value)> fun) const {
auto leaderIt = equivalentInfo.findLeader(v);
for (auto mit = leaderIt, meit = equivalentInfo.member_end(); mit != meit;
++mit) {
fun(*mit);
}
}
/// Apply `fun` to all aliases of `v`.
void BufferizationAliasInfo::applyOnAliases(
Value v, function_ref<void(Value)> fun) const {
auto leaderIt = aliasInfo.findLeader(v);
for (auto mit = leaderIt, meit = aliasInfo.member_end(); mit != meit; ++mit) {
fun(*mit);
}
}
BufferizationAliasInfo::EquivalenceClassRangeType
BufferizationAliasInfo::getAliases(Value v) const {
DenseSet<Value> res;
auto it = aliasInfo.findValue(aliasInfo.getLeaderValue(v));
for (auto mit = aliasInfo.member_begin(it), meit = aliasInfo.member_end();
mit != meit; ++mit) {
res.insert(static_cast<Value>(*mit));
}
return BufferizationAliasInfo::EquivalenceClassRangeType(
aliasInfo.member_begin(it), aliasInfo.member_end());
}
//===----------------------------------------------------------------------===//
// OneShotAnalysisState
//===----------------------------------------------------------------------===//
OneShotAnalysisState::OneShotAnalysisState(
Operation *op, const OneShotBufferizationOptions &options)
: AnalysisState(options), aliasInfo(op) {
// Set up alias sets for OpResults that must bufferize in-place. This should
// be done before making any other bufferization decisions.
op->walk([&](BufferizableOpInterface bufferizableOp) {
if (!options.isOpAllowed(bufferizableOp))
return WalkResult::skip();
for (OpOperand &opOperand : bufferizableOp->getOpOperands()) {
if (opOperand.get().getType().isa<TensorType>())
if (bufferizableOp.mustBufferizeInPlace(opOperand, *this)) {
for (OpResult opResult :
bufferizableOp.getAliasingOpResult(opOperand, *this))
aliasInfo.unionAliasSets(opOperand.get(), opResult);
aliasInfo.markInPlace(opOperand);
}
}
return WalkResult::advance();
});
}
bool OneShotAnalysisState::isInPlace(OpOperand &opOperand) const {
return aliasInfo.isInPlace(opOperand);
}
bool OneShotAnalysisState::areEquivalentBufferizedValues(Value v1,
Value v2) const {
return aliasInfo.areEquivalentBufferizedValues(v1, v2);
}
bool OneShotAnalysisState::areAliasingBufferizedValues(Value v1,
Value v2) const {
return aliasInfo.areAliasingBufferizedValues(v1, v2);
}
// Gather yielded tensors in `yieldedTensors` by querying all aliases. This is
// to ensure that such information is available during bufferization time.
// Alias information can no longer be queried through BufferizationAliasInfo
// once we have started modifying the IR.
void OneShotAnalysisState::gatherYieldedTensors(Operation *op) {
op->walk([&](Operation *returnOp) {
if (!isRegionReturnLike(returnOp) || !getOptions().isOpAllowed(returnOp))
return WalkResult::advance();
for (OpOperand &returnValOperand : returnOp->getOpOperands()) {
Value returnVal = returnValOperand.get();
// Skip non-tensor values.
if (!returnVal.getType().isa<TensorType>())
continue;
// Add all aliases of the returned value. But only the ones that are in
// the same block.
aliasInfo.applyOnAliases(returnVal, [&](Value v) {
if (auto bbArg = v.dyn_cast<BlockArgument>()) {
if (bbArg.getOwner()->getParentOp() == returnOp->getParentOp())
yieldedTensors.insert(bbArg);
return;
}
Operation *definingOp = v.getDefiningOp();
if (definingOp->getParentOp() == returnOp->getParentOp())
yieldedTensors.insert(v);
});
}
return WalkResult::advance();
});
}
void OneShotAnalysisState::gatherUndefinedTensorUses(Operation *op) {
op->walk([&](Operation *op) {
// Skip unknown ops.
auto bufferizableOp = getOptions().dynCastBufferizableOp(op);
if (!bufferizableOp)
return WalkResult::skip();
// Check all tensor OpResults.
for (OpResult opResult : op->getOpResults()) {
if (!opResult.getType().isa<TensorType>())
continue;
// If there is no preceding memory write, the tensor contents are
// undefined.
// Note: If `findLastPrecedingWrite` reaches the end of the reverse SSA
// use-def chain, it returns that value, regardless of whether it is a
// memory write or not.
SetVector<Value> lastWrites = findLastPrecedingWrite(opResult);
bool isUndefined = llvm::none_of(lastWrites, [&](Value lastWrite) {
if (auto bufferizableOp = getOptions().dynCastBufferizableOp(lastWrite))
return bufferizableOp.isMemoryWrite(lastWrite.cast<OpResult>(),
*this);
return true;
});
if (isUndefined)
for (OpOperand &use : opResult.getUses())
undefinedTensorUses.insert(&use);
}
return WalkResult::advance();
});
}
bool OneShotAnalysisState::hasUndefinedContents(OpOperand *opOperand) const {
return undefinedTensorUses.contains(opOperand);
}
bool OneShotAnalysisState::isTensorYielded(Value tensor) const {
return yieldedTensors.contains(tensor);
}
bool OneShotAnalysisState::isValueWritten(Value value) const {
bool isWritten = false;
aliasInfo.applyOnAliases(value, [&](Value val) {
for (OpOperand &use : val.getUses())
if (isInPlace(use) && bufferizesToMemoryWrite(use))
isWritten = true;
});
return isWritten;
}
bool OneShotAnalysisState::isWritable(Value value) const {
// TODO: Out-of-place bufferized value could be considered writable.
if (auto bufferizableOp = getOptions().dynCastBufferizableOp(value))
return bufferizableOp.isWritable(value, *this);
// Query BufferizableOpInterface to see if the BlockArgument is writable.
if (auto bbArg = value.dyn_cast<BlockArgument>())
if (auto bufferizableOp =
getOptions().dynCastBufferizableOp(bbArg.getOwner()->getParentOp()))
return bufferizableOp.isWritable(bbArg, *this);
// Not a bufferizable op: The conservative answer is "not writable".
return false;
}
//===----------------------------------------------------------------------===//
// Bufferization-specific alias analysis.
//===----------------------------------------------------------------------===//
/// Return true if opOperand has been decided to bufferize in-place.
static bool isInplaceMemoryWrite(OpOperand &opOperand,
const BufferizationAliasInfo &aliasInfo,
const AnalysisState &state) {
// OpOperands that do not bufferize to a memory write do not write in-place.
if (!state.bufferizesToMemoryWrite(opOperand))
return false;
// Check current bufferization decisions.
return aliasInfo.isInPlace(opOperand);
}
/// Return true if `a` happens before `b`, i.e., `a` or one of its ancestors
/// properly dominates `b` and `b` is not inside `a`.
static bool happensBefore(Operation *a, Operation *b,
const DominanceInfo &domInfo) {
do {
// TODO: Instead of isProperAncestor + properlyDominates, we should use
// properlyDominatesImpl(a, b, /*enclosingOpOk=*/false)
if (a->isProperAncestor(b))
return false;
if (domInfo.properlyDominates(a, b))
return true;
} while ((a = a->getParentOp()));
return false;
}
static Region *
getEnclosingRepetitiveRegion(Operation *op,
const BufferizationOptions &options) {
while (Region *region = op->getParentRegion()) {
op = region->getParentOp();
if (auto bufferizableOp = options.dynCastBufferizableOp(op))
if (bufferizableOp.isRepetitiveRegion(region->getRegionNumber()))
return region;
}
return nullptr;
}
static Region *
getEnclosingRepetitiveRegion(Value value, const BufferizationOptions &options) {
Region *region = value.getParentRegion();
while (region) {
Operation *op = region->getParentOp();
if (auto bufferizableOp = options.dynCastBufferizableOp(op))
if (bufferizableOp.isRepetitiveRegion(region->getRegionNumber()))
return region;
region = op->getParentRegion();
}
return nullptr;
}
/// Return `true` if the given tensor value is a memory write. Most values are
/// tensor writes, but ops that define a tensor SSA value without specifying its
/// contents (e.g., alloc_tensor) are not.
static bool isMemoryWrite(Value value, const AnalysisState &state) {
auto opResult = value.dyn_cast<OpResult>();
if (!opResult)
return true;
auto bufferizableOp = state.getOptions().dynCastBufferizableOp(value);
if (!bufferizableOp)
return true;
return bufferizableOp.isMemoryWrite(opResult, state);
}
/// Return `true` if op dominance can be used to rule out read-after-write
/// conflicts wrt. the given reads and writes.
///
/// Op dominance can often be used to rule out potential conflicts such as
/// "read" happens before "write". E.g., the following IR is not a RaW conflict
/// because the the read happens *before* the write.
///
/// %0 = ... : tensor<?xf32>
/// "reading_op"(%0) : tensor<?xf32>
/// %1 = "writing_op"(%0) : tensor<?xf32> -> tensor<?xf32>
///
/// This is no longer true inside loops (or repetitive regions). In such cases,
/// there may not be a meaningful `happensBefore` relationship because ops
/// could be executed multiple times. E.g.:
///
/// %0 = ... : tensor<?xf32>
/// scf.for ... {
/// "reading_op"(%0) : tensor<?xf32>
/// %1 = "writing_op"(%0) : tensor<?xf32> -> tensor<?xf32>
/// ...
/// }
///
/// In the above example, reading_op happens before writing_op according to
/// op dominance. However, both ops may happen multiple times; in
/// particular, the second execution of reading_op happens after the first
/// execution of writing_op. This is problematic because the tensor %0 they
/// operate on (i.e., the "definition") is defined outside of the loop.
///
/// Counter example:
///
/// scf.for ... {
/// %0 = ... : tensor<?xf32>
/// "reading_op"(%0) : tensor<?xf32>
/// %1 = "writing_op"(%0) : tensor<?xf32> -> tensor<?xf32>
/// ...
/// }
///
/// In this example, the definition %0 is in the same repetitive region as
/// "writing_op", so op dominance can be used to compute the `happensBefore`
/// relationship.
///
/// This functions finds the closest enclosing repetitive region of all buffer
/// writes wrt. the given given tensor reads and writes. If this is the same
/// region (nullptr in case of "no repetitive region" found at all), op
/// dominance can be used. Otherwise, it cannot be used.
///
/// Example: The common enclosing repetitive region is the scf.for loop.
/// Op dominance can be used.
/// scf.for ... {
/// %0 = tensor.generate
/// "read"(%0)
/// }
///
/// Example: The common enclosing repetitive region is nullptr: There is no
/// repetitive region around the tensor.generate. Op dominance can be
/// used.
/// %0 = tensor.generate
/// scf.for ... { "read"(%0) }
///
/// Example: The common enclosing repetitive regions of tensor.generate and
/// "write" differ. Op dominance cannot be used.
/// %0 = tensor.generate
/// scf.for ... {
/// "read"(%0)
/// "write"(%0)
/// }
///
/// Example: The common enclosing repetitive regions of tensor.generate and
/// "write" differ, but there is no read of %0, so op dominance can be
/// used.
/// %0 = tensor.generate
/// scf.for ... {
/// "write"(%0)
/// }
///
/// Note: iter_args of loops are not aliases of their respective block
/// arguments, so op domanice can be used when analyzing ops that operate
/// on them.
bool canUseOpDominance(const DenseSet<OpOperand *> &usesRead,
const DenseSet<OpOperand *> &usesWrite,
const AnalysisState &state) {
const BufferizationOptions &options = state.getOptions();
Optional<Region *> commonEnclosingRegion = None;
// In case of a write, take the region in which the write takes place.
for (OpOperand *uWrite : usesWrite) {
Region *r = getEnclosingRepetitiveRegion(uWrite->getOwner(), options);
if (!commonEnclosingRegion.has_value()) {
commonEnclosingRegion = r;
continue;
}
if (*commonEnclosingRegion != r)
return false;
}
// In case of a read, take the region which the read value is defined.
for (OpOperand *uRead : usesRead) {
// Optimization: Skip reads of values that have no defined contents.
if (!isMemoryWrite(uRead->get(), state))
continue;
Region *r = getEnclosingRepetitiveRegion(uRead->get(), options);
if (!commonEnclosingRegion.has_value()) {
commonEnclosingRegion = r;
continue;
}
if (*commonEnclosingRegion != r)
return false;
}
return commonEnclosingRegion.has_value();
}
/// Annotate IR with details about the detected RaW conflict.
static void annotateConflict(OpOperand *uRead, OpOperand *uConflictingWrite,
Value lastWrite) {
static uint64_t counter = 0;
Operation *readingOp = uRead->getOwner();
Operation *conflictingWritingOp = uConflictingWrite->getOwner();
OpBuilder b(conflictingWritingOp->getContext());
std::string id = "C_" + std::to_string(counter++);
std::string conflictingWriteAttr =
id +
"[CONFL-WRITE: " + std::to_string(uConflictingWrite->getOperandNumber()) +
"]";
conflictingWritingOp->setAttr(conflictingWriteAttr, b.getUnitAttr());
std::string readAttr =
id + "[READ: " + std::to_string(uRead->getOperandNumber()) + "]";
readingOp->setAttr(readAttr, b.getUnitAttr());
if (auto opResult = lastWrite.dyn_cast<OpResult>()) {
std::string lastWriteAttr = id + "[LAST-WRITE: result " +
std::to_string(opResult.getResultNumber()) +
"]";
opResult.getDefiningOp()->setAttr(lastWriteAttr, b.getUnitAttr());
} else {
auto bbArg = lastWrite.cast<BlockArgument>();
std::string lastWriteAttr =
id + "[LAST-WRITE: bbArg " + std::to_string(bbArg.getArgNumber()) + "]";
bbArg.getOwner()->getParentOp()->setAttr(lastWriteAttr, b.getUnitAttr());
}
}
/// Given sets of uses and writes, return true if there is a RaW conflict under
/// the assumption that all given reads/writes alias the same buffer and that
/// all given writes bufferize inplace.
///
/// A conflict is: According to SSA use-def chains, a read R is supposed to read
/// the result of a write W1. But because of bufferization decisions, R actually
/// reads another write W2.
static bool hasReadAfterWriteInterference(
const DenseSet<OpOperand *> &usesRead,
const DenseSet<OpOperand *> &usesWrite, const DominanceInfo &domInfo,
AnalysisState &state, const BufferizationAliasInfo &aliasInfo) {
const BufferizationOptions &options = state.getOptions();
// Check if op dominance can be used to rule out read-after-write conflicts.
bool useDominance = canUseOpDominance(usesRead, usesWrite, state);
for (OpOperand *uRead : usesRead) {
Operation *readingOp = uRead->getOwner();
// Find most recent writes of uRead by following the SSA use-def chain.
// E.g.:
//
// %0 = "writing_op"(%t) : tensor<?x32> -> tensor<?xf32>
// %1 = "aliasing_op"(%0) : tensor<?x32> -> tensor<?xf32>
// %2 = "reading_op"(%1) : : tensor<?x32> -> not_a_tensor_type
//
// In the above example, if uRead is the OpOperand of reading_op, lastWrite
// is %0. Note that operations that create an alias but do not write (such
// as ExtractSliceOp) are skipped.
SetVector<Value> lastWrites = state.findLastPrecedingWrite(uRead->get());
// Look for conflicting memory writes. Potential conflicts are writes to an
// alias that have been decided to bufferize inplace.
for (OpOperand *uConflictingWrite : usesWrite) {
// Throughout this loop, check for multiple requirements that have to be
// met for uConflictingWrite to be an actual conflict.
Operation *conflictingWritingOp = uConflictingWrite->getOwner();
// No conflict if the readingOp dominates conflictingWritingOp, i.e., the
// write is not visible when reading.
//
// Note: If ops are executed multiple times (e.g., because they are inside
// a loop), there may be no meaningful `happensBefore` relationship.
if (useDominance &&
happensBefore(readingOp, conflictingWritingOp, domInfo))
continue;
// No conflict if the reading use equals the use of the conflicting write.
// A use cannot conflict with itself.
//
// Note: Just being the same op is not enough. It has to be the same use.
// Note: If the op is executed multiple times (e.g., because it is inside
// a loop), it may be conflicting with itself.
if (useDominance && uConflictingWrite == uRead)
continue;
// No conflict if the op interface says so.
if (auto bufferizableOp = options.dynCastBufferizableOp(readingOp))
if (bufferizableOp.isNotConflicting(uRead, uConflictingWrite, state))
continue;
if (conflictingWritingOp != readingOp)
if (auto bufferizableOp =
options.dynCastBufferizableOp(conflictingWritingOp))
if (bufferizableOp.isNotConflicting(uRead, uConflictingWrite, state))
continue;
// Ops are not conflicting if they are in mutually exclusive regions.
//
// Note: If ops are executed multiple times (e.g., because they are inside
// a loop), mutually exclusive regions may be executed multiple
// times.
if (useDominance &&
insideMutuallyExclusiveRegions(readingOp, conflictingWritingOp))
continue;
// Check all possible last writes.
for (Value lastWrite : lastWrites) {
// No conflict if the conflicting write happens before the last
// write.
if (Operation *writingOp = lastWrite.getDefiningOp()) {
if (happensBefore(conflictingWritingOp, writingOp, domInfo))
// conflictingWritingOp happens before writingOp. No conflict.
continue;
// No conflict if conflictingWritingOp is contained in writingOp.
if (writingOp->isProperAncestor(conflictingWritingOp))
continue;
} else {
auto bbArg = lastWrite.cast<BlockArgument>();
Block *block = bbArg.getOwner();
if (!block->findAncestorOpInBlock(*conflictingWritingOp))
// conflictingWritingOp happens outside of the block. No
// conflict.
continue;
}
// No conflict if the conflicting write and the last write are the same
// use.
SmallVector<OpResult> aliasingOpResult =
state.getAliasingOpResult(*uConflictingWrite);
if (aliasingOpResult.size() == 1 && aliasingOpResult[0] == lastWrite)
continue;
// All requirements are met. Conflict found!
if (options.printConflicts)
annotateConflict(uRead, uConflictingWrite, lastWrite);
return true;
}
}
}
return false;
}
// Helper function to iterate on aliases of `root` and capture the writes.
static void getAliasingInplaceWrites(DenseSet<OpOperand *> &res, Value root,
const BufferizationAliasInfo &aliasInfo,
const AnalysisState &state) {
aliasInfo.applyOnAliases(root, [&](Value alias) {
for (auto &use : alias.getUses())
// Inplace write to a value that aliases root.
if (isInplaceMemoryWrite(use, aliasInfo, state))
res.insert(&use);
});
}
// Helper function to iterate on aliases of `root` and capture the reads.
static void getAliasingReads(DenseSet<OpOperand *> &res, Value root,
const BufferizationAliasInfo &aliasInfo,
const AnalysisState &state) {
aliasInfo.applyOnAliases(root, [&](Value alias) {
for (auto &use : alias.getUses())
// Read to a value that aliases root.
if (state.bufferizesToMemoryRead(use))
res.insert(&use);
});
}
/// Return true if bufferizing `operand` inplace would create a conflict. A read
/// R and a write W of the same alias set is a conflict if inplace bufferization
/// of W changes the value read by R to a value different from the one that
/// would be expected by tracing back R's origin through SSA use-def chains.
/// A conflict can only be introduced by a new alias and/or an inplace
/// bufferization decision.
///
/// Example:
/// %0 = tensor.extract_slice %t[...][...][1, 1] {inplace?}
/// %1 = vector.transfer_write %v1, %t {inplace} : vector<5xf32>, tensor<?xf32>
/// %e = tensor.extract_slice %1
/// %2 = vector.transfer_write %v2, %0 {inplace} : vector<6xf32>, tensor<?xf32>
/// %3 = vector.transfer_read %e, %cst : tensor<?xf32>, vector<7xf32>
///
/// In the above example, the two TransferWriteOps have already been decided to
/// bufferize inplace. Bufferizing the ExtractSliceOp inplace would create a
/// conflict because:
/// * According to SSA use-def chains, we expect to read the result of %1.
/// * However, adding an alias {%0, %t} would mean that the second
/// TransferWriteOp overwrites the first one. Therefore, the TransferReadOp
/// would no longer be reading the result of %1.
///
/// If `checkConsistencyOnly` is true, this function checks if there is a
/// read-after-write conflict without bufferizing `operand` inplace. This would
/// indicate a problem with the current inplace bufferization decisions.
///
/// Note: If `checkConsistencyOnly`, this function may be called with a null
/// OpResult. In that case, only the consistency of bufferization decisions
/// involving aliases of the given OpOperand are checked.
static bool wouldCreateReadAfterWriteInterference(
OpOperand &operand, const DominanceInfo &domInfo, AnalysisState &state,
const BufferizationAliasInfo &aliasInfo,
bool checkConsistencyOnly = false) {
// Collect reads and writes of all aliases of OpOperand and OpResult.
DenseSet<OpOperand *> usesRead, usesWrite;
getAliasingReads(usesRead, operand.get(), aliasInfo, state);
getAliasingInplaceWrites(usesWrite, operand.get(), aliasInfo, state);
for (OpResult result : state.getAliasingOpResult(operand)) {
getAliasingReads(usesRead, result, aliasInfo, state);
getAliasingInplaceWrites(usesWrite, result, aliasInfo, state);
}
if (!checkConsistencyOnly && state.bufferizesToMemoryWrite(operand))
usesWrite.insert(&operand);
return hasReadAfterWriteInterference(usesRead, usesWrite, domInfo, state,
aliasInfo);
}
/// Check the reverse SSA use-def chain (following aliasing OpOperands) for
/// non-writable tensor values. Stop searching when an out-of-place bufferized
/// OpOperand was found (or when the OpOperand was not bufferized yet).
/// `currentOpOperand` is assumed to be in-place, even if that decision was not
/// materialized in `aliasInfo` yet.
static bool
hasPrecedingAliasingNonWritableTensor(Value value, OpOperand *currentOpOperand,
const BufferizationAliasInfo &aliasInfo,
const OneShotAnalysisState &state) {
SmallVector<Value> worklist;
worklist.push_back(value);
while (!worklist.empty()) {
Value nextVal = worklist.pop_back_val();
if (!state.isWritable(nextVal))
return true;
// If `nextVal` is not a BlockArgument: End of use-def chain reached.
auto opResult = nextVal.dyn_cast<OpResult>();
if (!opResult)
continue;
// Follow reverse SSA use-def chain.
SmallVector<OpOperand *> aliasingOpOperands =
state.getAliasingOpOperand(opResult);
for (OpOperand *opOperand : aliasingOpOperands)
if (aliasInfo.isInPlace(*opOperand) || currentOpOperand == opOperand)
worklist.push_back(opOperand->get());
}
return false;
}
/// Return true if bufferizing `operand` inplace would create a write to a
/// non-writable buffer.
static bool wouldCreateWriteToNonWritableBuffer(
OpOperand &operand, const BufferizationAliasInfo &aliasInfo,
OneShotAnalysisState &state, bool checkConsistencyOnly = false) {
// Collect writes of all aliases of OpOperand and OpResult.
DenseSet<OpOperand *> usesWrite;
getAliasingInplaceWrites(usesWrite, operand.get(), aliasInfo, state);
for (OpResult result : state.getAliasingOpResult(operand)) {
getAliasingInplaceWrites(usesWrite, result, aliasInfo, state);
}
if (!checkConsistencyOnly && state.bufferizesToMemoryWrite(operand))
usesWrite.insert(&operand);
// Assuming that `operand` bufferizes in-place: For each write (to each
// alias), check if there is a non-writable tensor in the reverse SSA use-def
// chain.
for (OpOperand *uWrite : usesWrite)
if (hasPrecedingAliasingNonWritableTensor(uWrite->get(), &operand,
aliasInfo, state))
return true;
return false;
}
//===----------------------------------------------------------------------===//
// Bufferization analyses.
//===----------------------------------------------------------------------===//
/// Determine if `operand` can be bufferized in-place.
static LogicalResult bufferizableInPlaceAnalysisImpl(
OpOperand &operand, BufferizationAliasInfo &aliasInfo,
OneShotAnalysisState &state, const DominanceInfo &domInfo) {
bool foundInterference =
wouldCreateWriteToNonWritableBuffer(operand, aliasInfo, state) ||
wouldCreateReadAfterWriteInterference(operand, domInfo, state, aliasInfo);
if (foundInterference)
aliasInfo.bufferizeOutOfPlace(operand);
else
aliasInfo.bufferizeInPlace(operand, state);
return success();
}
/// Analyze the `ops` to determine which OpOperands are inplaceable. Walk ops in
/// reverse and bufferize ops greedily. This is a good starter heuristic.
///
/// Even if an op does not read or write, it may still create an alias when
/// bufferized in-place. An example of such ops is tensor.extract_slice.
///
/// Rationale for bufferizing `%1 = tensor.extract_slice %0[...]` inplace:
///
/// When bufferized out of place, an ExtractSliceOp lowers to alloc + copy. This
/// cannot change the flow of information for either the source or the
/// result buffers.
///
/// When bufferized inplace, an ExtractSliceOp does not by itself create any
/// read or write from memory. Instead, it has the effect of merging the alias
/// sets of the source and the result buffers.
///
/// An analysis is required to ensure inplace bufferization would not result in
/// RaW dependence violations.
static LogicalResult inPlaceAnalysis(SmallVector<Operation *> &ops,
BufferizationAliasInfo &aliasInfo,
OneShotAnalysisState &state,
const DominanceInfo &domInfo,
unsigned analysisFuzzerSeed = 0) {
if (analysisFuzzerSeed) {
// This is a fuzzer. For testing purposes only. Randomize the order in which
// operations are analyzed. The bufferization quality is likely worse, but
// we want to make sure that no assertions are triggered anywhere.
std::mt19937 g(analysisFuzzerSeed);
llvm::shuffle(ops.begin(), ops.end(), g);
}
// Walk ops in reverse for better interference analysis.
for (Operation *op : reverse(ops))
for (OpOperand &opOperand : op->getOpOperands())
if (opOperand.get().getType().isa<TensorType>())
if (auto bufferizableOp = state.getOptions().dynCastBufferizableOp(op))
if (failed(bufferizableInPlaceAnalysisImpl(opOperand, aliasInfo,
state, domInfo)))
return failure();
return success();
}
/// Return true if the given op has a tensor result or a tensor operand.
static bool hasTensorSemantics(Operation *op) {
bool hasTensorResult = any_of(op->getResultTypes(), isaTensor);
bool hasTensorOperand = any_of(op->getOperandTypes(), isaTensor);
return hasTensorResult || hasTensorOperand;
}
/// Analyze all ops that are contained in `op`.
static LogicalResult inPlaceAnalysis(Operation *op,
BufferizationAliasInfo &aliasInfo,
OneShotAnalysisState &state,
const DominanceInfo &domInfo,
unsigned analysisFuzzerSeed = 0) {
// Collect ops so we can build our own reverse traversal.
SmallVector<Operation *> ops;
op->walk([&](Operation *op) {
// No tensors => no buffers.
if (!hasTensorSemantics(op))
return;
ops.push_back(op);
});
return inPlaceAnalysis(ops, aliasInfo, state, domInfo, analysisFuzzerSeed);
}
/// Analyze equivalence of tied OpResult/OpOperand pairs of the given ops.
static void equivalenceAnalysis(SmallVector<Operation *> &ops,
BufferizationAliasInfo &aliasInfo,
AnalysisState &state) {
for (Operation *op : ops)
if (auto bufferizableOp = state.getOptions().dynCastBufferizableOp(op))
for (OpResult opResult : op->getOpResults())
if (opResult.getType().isa<TensorType>())
for (OpOperand *opOperand :
bufferizableOp.getAliasingOpOperand(opResult, state))
if (state.isInPlace(*opOperand))
if (bufferizableOp.bufferRelation(opResult, state) ==
BufferRelation::Equivalent)
aliasInfo.unionEquivalenceClasses(opResult, opOperand->get());
}
/// Analyze equivalence of tied OpResult/OpOperand pairs of all ops contained
/// in `op`.
static void equivalenceAnalysis(Operation *op,
BufferizationAliasInfo &aliasInfo,
AnalysisState &state) {
// Traverse ops in PostOrder: Nested ops first, then enclosing ops.
SmallVector<Operation *> ops;
op->walk<WalkOrder::PostOrder>([&](Operation *op) {
// No tensors => no buffers.
if (none_of(op->getResultTypes(), isaTensor))
return;
ops.push_back(op);
});
equivalenceAnalysis(ops, aliasInfo, state);
}
/// Assert that the current bufferization decisions are consistent.
static LogicalResult
checkAliasInfoConsistency(Operation *op, const DominanceInfo &domInfo,
AnalysisState &state,
const BufferizationAliasInfo &aliasInfo) {
const BufferizationOptions &options = state.getOptions();
WalkResult walkResult = op->walk([&](BufferizableOpInterface op) {
// Skip ops that are not in the filter.
if (!options.isOpAllowed(op.getOperation()))
return WalkResult::advance();
// Input IR may not contain any ToMemrefOps. These are not supported because
// the analysis cannot follow the data flow through memrefs.
if (isa<ToMemrefOp>(op.getOperation())) {
op->emitError("to_memref ops not supported during One-Shot Analysis");
return WalkResult::interrupt();
}
for (OpOperand &opOperand : op->getOpOperands()) {
if (opOperand.get().getType().isa<TensorType>()) {
if (wouldCreateReadAfterWriteInterference(
opOperand, domInfo, state, aliasInfo,
/*checkConsistencyOnly=*/true)) {
// This error can happen if certain "mustBufferizeInPlace" interface
// methods are implemented incorrectly, such that the IR already has
// a RaW conflict before making any bufferization decisions.
op->emitError("input IR has RaW conflict");
return WalkResult::interrupt();
}
}
}
return WalkResult::advance();
});
return success(!walkResult.wasInterrupted());
}
/// Annotate the IR with the result of the analysis. For testing/debugging only.
static void
annotateOpsWithBufferizationMarkers(Operation *op,
const BufferizationAliasInfo &aliasInfo,
AnalysisState &state) {
op->walk([&](Operation *op) {
if (auto bufferizableOp = state.getOptions().dynCastBufferizableOp(op))
for (OpOperand &opOperand : op->getOpOperands())
if (opOperand.get().getType().isa<TensorType>())
setInPlaceOpOperand(opOperand, aliasInfo.isInPlace(opOperand));
});
}
/// Assert that IR is in destination-passing style. I.e., every value that is
/// returned or yielded from a block is:
/// * aliasing a bbArg of that block or a parent block, or
/// * aliasing an OpResult of a op in a parent block.
///
/// Example:
/// ```
/// %0 = "some_op" : tensor<?xf32>
/// %1 = scf.if %c -> (tensor<?xf32>) {
/// scf.yield %0 : tensor<?xf32>
/// } else {
/// %t = linalg.alloc_tensor : tensor<?xf32>
/// scf.yield %t : tensor<?xf32>
/// }
/// ```
/// In the above example, the first scf.yield op satifies destination-passing
/// style because the yielded value %0 is defined in the parent block. The
/// second scf.yield op does not satisfy destination-passing style because the
/// yielded value %t is defined in the same block as the scf.yield op.
// TODO: The current implementation checks for equivalent values instead of
// aliasing values, which is stricter than needed. We can currently not check
// for aliasing values because the analysis is a maybe-alias analysis and we
// need a must-alias analysis here.
static LogicalResult
assertDestinationPassingStyle(Operation *op, AnalysisState &state,
BufferizationAliasInfo &aliasInfo,
SmallVector<Operation *> &newOps) {
LogicalResult status = success();
DominanceInfo domInfo(op);
op->walk([&](Operation *returnOp) {
if (!isRegionReturnLike(returnOp) ||
!state.getOptions().isOpAllowed(returnOp))
return WalkResult::advance();
for (OpOperand &returnValOperand : returnOp->getOpOperands()) {
Value returnVal = returnValOperand.get();
// Skip non-tensor values.
if (!returnVal.getType().isa<TensorType>())
continue;
bool foundEquivValue = false;
aliasInfo.applyOnEquivalenceClass(returnVal, [&](Value equivVal) {
if (auto bbArg = equivVal.dyn_cast<BlockArgument>()) {
Operation *definingOp = bbArg.getOwner()->getParentOp();
if (definingOp->isProperAncestor(returnOp))
foundEquivValue = true;
return;
}
Operation *definingOp = equivVal.getDefiningOp();
if (definingOp->getBlock()->findAncestorOpInBlock(
*returnOp->getParentOp()))
// Skip ops that happen after `returnOp` and parent ops.
if (happensBefore(definingOp, returnOp, domInfo))
foundEquivValue = true;
});
if (!foundEquivValue)
status =
returnOp->emitError()
<< "operand #" << returnValOperand.getOperandNumber()
<< " of ReturnLike op does not satisfy destination passing style";
}
return WalkResult::advance();
});
return status;
}
LogicalResult bufferization::analyzeOp(Operation *op,
OneShotAnalysisState &state) {
DominanceInfo domInfo(op);
BufferizationAliasInfo &aliasInfo = state.getAliasInfo();
const auto &options =
static_cast<const OneShotBufferizationOptions &>(state.getOptions());
// Catch incorrect API usage.
assert((state.hasDialectState(func::FuncDialect::getDialectNamespace()) ||
!options.bufferizeFunctionBoundaries) &&
"must use ModuleBufferize to bufferize function boundaries");
if (failed(checkAliasInfoConsistency(op, domInfo, state, aliasInfo)))
return failure();
// If the analysis fails, just return.
if (failed(inPlaceAnalysis(op, aliasInfo, state, domInfo,
options.analysisFuzzerSeed)))
return failure();
equivalenceAnalysis(op, aliasInfo, state);
bool failedAnalysis = false;
if (!options.allowReturnAllocs) {
SmallVector<Operation *> newOps;
failedAnalysis |=
failed(assertDestinationPassingStyle(op, state, aliasInfo, newOps));
}
// Gather some extra analysis data.
state.gatherYieldedTensors(op);
state.gatherUndefinedTensorUses(op);
// Analysis verification: After setting up alias/equivalence sets, each op
// can check for expected invariants/limitations and fail the analysis if
// necessary.
op->walk([&](Operation *op) {
if (BufferizableOpInterface bufferizableOp =
options.dynCastBufferizableOp(op))
failedAnalysis |= failed(bufferizableOp.verifyAnalysis(state));
});
// Annotate operations if we only want to report the analysis.
if (options.testAnalysisOnly)
annotateOpsWithBufferizationMarkers(op, aliasInfo, state);
return success(!failedAnalysis);
}
LogicalResult
bufferization::runOneShotBufferize(Operation *op,
const OneShotBufferizationOptions &options) {
assert(!(options.copyBeforeWrite && options.testAnalysisOnly) &&
"invalid combination of bufferization flags");
if (!options.copyBeforeWrite) {
// If a buffer is copied before every write, no analysis is needed.
OneShotAnalysisState state(op, options);
if (failed(insertTensorCopies(op, options)))
return failure();
}
if (options.testAnalysisOnly)
return success();
return bufferizeOp(op, options, /*copyBeforeWrite=*/options.copyBeforeWrite);
}