Files
clang-p2996/mlir/lib/Dialect/VectorOps/VectorTransforms.cpp
Mehdi Amini 308571074c Mass update the MLIR license header to mention "Part of the LLVM project"
This is an artifact from merging MLIR into LLVM, the file headers are
now aligned with the rest of the project.
2020-01-26 03:58:30 +00:00

801 lines
35 KiB
C++

//===- VectorToLoops.cpp - Conversion within the Vector dialect -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements target-independent rewrites as 1->N patterns.
//
//===----------------------------------------------------------------------===//
#include <type_traits>
#include "mlir/Dialect/AffineOps/AffineOps.h"
#include "mlir/Dialect/StandardOps/Ops.h"
#include "mlir/Dialect/VectorOps/VectorOps.h"
#include "mlir/Dialect/VectorOps/VectorTransforms.h"
#include "mlir/Dialect/VectorOps/VectorUtils.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/Location.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/OperationSupport.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/Types.h"
#include "mlir/Support/Functional.h"
#include "mlir/Support/MathExtras.h"
#include "mlir/Support/STLExtras.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "vector-to-vector"
using namespace mlir;
using llvm::dbgs;
using mlir::functional::zipMap;
/// Given a shape with sizes greater than 0 along all dimensions,
/// returns the distance, in number of elements, between a slice in a dimension
/// and the next slice in the same dimension.
/// e.g. shape[3, 4, 5] -> linearization_basis[20, 5, 1]
static SmallVector<int64_t, 8> computeStrides(ArrayRef<int64_t> shape) {
if (shape.empty())
return {};
SmallVector<int64_t, 8> tmp;
tmp.reserve(shape.size());
int64_t running = 1;
for (auto size : llvm::reverse(shape)) {
assert(size > 0 && "size must be nonnegative");
tmp.push_back(running);
running *= size;
}
return SmallVector<int64_t, 8>(tmp.rbegin(), tmp.rend());
}
static int64_t computeMaxLinearIndex(ArrayRef<int64_t> basis) {
if (basis.empty())
return 0;
int64_t res = 1;
for (auto b : basis)
res *= b;
return res;
}
/// Computes and returns the linearized index of 'offsets' w.r.t. 'basis'.
static int64_t linearize(ArrayRef<int64_t> offsets, ArrayRef<int64_t> basis) {
assert(offsets.size() == basis.size());
int64_t linearIndex = 0;
for (unsigned idx = 0, e = basis.size(); idx < e; ++idx)
linearIndex += offsets[idx] * basis[idx];
return linearIndex;
}
/// Given a shape with sizes greater than 0 along all dimensions, returns the
/// delinearized components of linearIndex along shape.
static SmallVector<int64_t, 8> delinearize(int64_t linearIndex,
ArrayRef<int64_t> basis) {
SmallVector<int64_t, 8> res;
res.reserve(basis.size());
for (unsigned idx = 0, e = basis.size(); idx < e; ++idx) {
assert(basis[idx] > 0);
res.push_back(linearIndex / basis[idx]);
linearIndex %= basis[idx];
}
// Sanity check.
assert(linearIndex == 0 && "linear index remainder must be 0");
return res;
}
// Clones `op` into a new operations that takes `operands` and returns
// `resultTypes`.
static Operation *cloneOpWithOperandsAndTypes(PatternRewriter &builder,
Location loc, Operation *op,
ArrayRef<Value> operands,
ArrayRef<Type> resultTypes) {
OperationState res(loc, op->getName().getStringRef(), operands, resultTypes,
op->getAttrs());
return builder.createOperation(res);
}
// Populates 'resultElements[indexMap[i]]' with elements from 'inputElements[i]'
// for each index 'i' in inputElements with a valid mapping in 'indexMap'.
static void getMappedElements(const DenseMap<int64_t, int64_t> &indexMap,
ArrayRef<int64_t> inputElements,
SmallVectorImpl<int64_t> &resultElements) {
assert(indexMap.size() == resultElements.size());
assert(inputElements.size() >= resultElements.size());
for (unsigned i = 0, e = inputElements.size(); i < e; ++i) {
auto it = indexMap.find(i);
if (it != indexMap.end())
resultElements[it->second] = inputElements[i];
}
}
// Returns a tuple type with vector element types for each resulting slice
// of 'vectorType' unrolled by 'sizes' and 'strides'.
// TODO(andydavis) Move this to a utility function and share it with
// Extract/InsertSlicesOp verification.
static TupleType generateExtractSlicesOpResultType(VectorType vectorType,
ArrayRef<int64_t> sizes,
ArrayRef<int64_t> strides,
PatternRewriter &builder) {
assert(llvm::all_of(strides, [](int64_t s) { return s == 1; }));
unsigned rank = vectorType.getRank();
assert(sizes.size() == rank);
assert(strides.size() == rank);
// Compute shape ratio of 'shape' and 'sizes'.
auto shape = vectorType.getShape();
auto maybeDimSliceCounts = shapeRatio(shape, sizes);
assert(maybeDimSliceCounts.hasValue());
auto sliceDimCounts = *maybeDimSliceCounts;
// Compute strides w.r.t number of slices in each dimension.
auto basis = computeStrides(sliceDimCounts);
int64_t sliceCount = computeMaxLinearIndex(sliceDimCounts);
SmallVector<Type, 4> vectorTypes(sliceCount);
for (unsigned i = 0; i < sliceCount; ++i) {
// De-linearize w.r.t. 'basis'.
auto vectorOffsets = delinearize(i, basis);
// Convert from unrolled vector-space offsets to element-space offsets.
auto offsets = zipMap([](int64_t v1, int64_t v2) { return v1 * v2; },
vectorOffsets, sizes);
// Initialize 'sliceSizes' to target 'sizes'
SmallVector<int64_t, 4> sliceSizes(sizes.begin(), sizes.end());
for (unsigned j = 0; j < rank; ++j) {
// Based on 'offsets' and 'shape' clip some dim sizes for partial tiles.
sliceSizes[j] = std::min(sliceSizes[j], shape[j] - offsets[j]);
}
// Create Vector type and add to 'vectorTypes[i]'.
vectorTypes[i] = VectorType::get(sliceSizes, vectorType.getElementType());
}
return TupleType::get(vectorTypes, builder.getContext());
}
// UnrolledVectorState aggregates per-operand/result vector state required for
// unrolling.
struct UnrolledVectorState {
SmallVector<int64_t, 4> unrolledShape;
SmallVector<int64_t, 4> unrollFactors;
SmallVector<int64_t, 8> basis;
int64_t numInstances;
Value slicesTuple;
};
// Populates 'state' with unrolled shape, unroll factors, basis and
// num unrolled instances for 'vectorType'.
static void initUnrolledVectorState(VectorType vectorType, Value initValue,
const DenseMap<int64_t, int64_t> &indexMap,
ArrayRef<int64_t> targetShape,
UnrolledVectorState &state,
PatternRewriter &builder) {
// Compute unrolled shape of 'vectorType'.
state.unrolledShape.resize(vectorType.getRank());
getMappedElements(indexMap, targetShape, state.unrolledShape);
// Compute unroll factors for unrolled shape.
auto maybeUnrollFactors =
shapeRatio(vectorType.getShape(), state.unrolledShape);
assert(maybeUnrollFactors.hasValue());
state.unrollFactors = *maybeUnrollFactors;
// Compute 'basis' and 'numInstances' based on 'state.unrollFactors'.
state.basis = computeStrides(state.unrollFactors);
state.numInstances = computeMaxLinearIndex(state.unrollFactors);
state.slicesTuple = nullptr;
if (initValue != nullptr) {
// Create ExtractSlicesOp.
SmallVector<int64_t, 4> sizes(state.unrolledShape);
SmallVector<int64_t, 4> strides(state.unrollFactors.size(), 1);
auto tupleType =
generateExtractSlicesOpResultType(vectorType, sizes, strides, builder);
state.slicesTuple = builder.create<vector::ExtractSlicesOp>(
initValue.getLoc(), tupleType, initValue, sizes, strides);
}
}
// Computes and returns the linear index of the unrolled vector at
// 'vectorOffsets' within the vector represented by 'state'.
static int64_t
getUnrolledVectorLinearIndex(UnrolledVectorState &state,
ArrayRef<int64_t> vectorOffsets,
DenseMap<int64_t, int64_t> &indexMap) {
// Compute vector offsets.
SmallVector<int64_t, 4> sliceOffsets(state.unrolledShape.size());
getMappedElements(indexMap, vectorOffsets, sliceOffsets);
// Compute and return linear index of 'sliceOffsets' w.r.t 'state.basis'.
return linearize(sliceOffsets, state.basis);
}
// Returns an unrolled vector at 'vectorOffsets' within the vector
// represented by 'state'. The vector is created from a slice of 'initValue'
// if not present in 'cache'.
static Value getOrCreateUnrolledVectorSlice(
Location loc, UnrolledVectorState &state, ArrayRef<int64_t> vectorOffsets,
ArrayRef<int64_t> offsets, DenseMap<int64_t, int64_t> &indexMap,
Value initValue, SmallVectorImpl<Value> &cache, PatternRewriter &builder) {
// Compute slice offsets.
SmallVector<int64_t, 4> sliceOffsets(state.unrolledShape.size());
getMappedElements(indexMap, offsets, sliceOffsets);
// TODO(b/144845578) Support non-1 strides.
SmallVector<int64_t, 4> sliceStrides(state.unrolledShape.size(), 1);
// Compute linear index of 'sliceOffsets' w.r.t 'state.basis'.
int64_t sliceLinearIndex =
getUnrolledVectorLinearIndex(state, vectorOffsets, indexMap);
assert(sliceLinearIndex < static_cast<int64_t>(cache.size()));
auto valueSlice = cache[sliceLinearIndex];
if (valueSlice == nullptr) {
// Return tuple element at 'sliceLinearIndex'.
auto tupleIndex = builder.getI64IntegerAttr(sliceLinearIndex);
auto initValueType = initValue.getType().cast<VectorType>();
auto vectorType =
VectorType::get(state.unrolledShape, initValueType.getElementType());
// Initialize 'cache' with slice from 'initValue'.
valueSlice = builder.create<vector::TupleGetOp>(
loc, vectorType, state.slicesTuple, tupleIndex);
// Store value back to 'cache'.
cache[sliceLinearIndex] = valueSlice;
}
return valueSlice;
}
// VectorState aggregates per-operand/result vector state required for
// creating slices of vector operands, and clones of the operation being
// unrolled.
struct VectorState {
// The type of this vector.
VectorType type;
// Map from iteration space index to vector dimension index.
DenseMap<int64_t, int64_t> indexMap;
// Index of this value in operation's operand list (-1 if not an operand).
int64_t operandIndex = -1;
// Accumulator iterator flag.
bool isAcc = false;
};
//
// unrollSingleResultStructuredOp
//
// Returns a value representing the result of structured operation 'op'
// with iteration bounds 'iterationBounds' unrolled to 'targetShape'.
// A list of VectorState objects must be specified in 'vectors', where
// each VectorState in the list represents a vector operand or vector result
// (if the operation does not have an accumulator operand).
// The VectorState at index 'resultIndex' in the list must be the state
// associated with the operations single result (i.e. either its accumulator
// operand or vector result value).
//
// Example:
//
// // Before unrolling
//
// operand0 operand1 operand2
// \ | /
// -------------------- opA --------------------
//
// // After unrolling by 2
//
// operand0 operand1 operand2
// / \ / \ / \
// slice00 slice01 slice10 slice11 slice20 slice21
// \ | | | / |
// -------------------- opA0 -------------------- |
// | | | |
// \ | | /
// -------------------- opA1 -------------------
// | |
// \ /
// insertslice
// |
// TODO(andydavis) Add the following canonicalization/simplifcation patterns:
// *) Add pattern which matches InsertStridedSlice -> StridedSlice and forwards
// InsertStridedSlice operand to StridedSlice.
// *) Add pattern which matches SourceOp -> StridedSlice -> UserOp which checks
// if there are duplicate identical StridedSlice ops from SourceOp, and
// rewrites itself to use the first duplicate. This transformation should
// cause users of identifical StridedSlice ops to reuse the same StridedSlice
// operation, and leave the duplicate StridedSlice ops with no users
// (removable with DCE).
// TODO(andydavis) Generalize this to support structured ops beyond
// vector ContractionOp, and merge it with 'unrollSingleResultOpMatchingType'
static Value unrollSingleResultStructuredOp(Operation *op,
ArrayRef<int64_t> iterationBounds,
std::vector<VectorState> &vectors,
unsigned resultIndex,
ArrayRef<int64_t> targetShape,
PatternRewriter &builder) {
auto shapedType = op->getResult(0).getType().dyn_cast_or_null<ShapedType>();
if (!shapedType || !shapedType.hasStaticShape())
assert(false && "Expected a statically shaped result type");
// Compute unroll factors for 'iterationBounds' based on 'targetShape'
auto maybeUnrollFactors = shapeRatio(iterationBounds, targetShape);
if (!maybeUnrollFactors.hasValue())
assert(false && "Failed to compute unroll factors for target shape");
auto unrollFactors = *maybeUnrollFactors;
// Compute unrolled vector state for each vector in 'vectors'.
unsigned numVectors = vectors.size();
SmallVector<UnrolledVectorState, 3> unrolledVectorState(numVectors);
for (unsigned i = 0; i < numVectors; ++i) {
int64_t operandIndex = vectors[i].operandIndex;
auto operand = operandIndex >= 0 ? op->getOperand(operandIndex) : nullptr;
initUnrolledVectorState(vectors[i].type, operand, vectors[i].indexMap,
targetShape, unrolledVectorState[i], builder);
}
// Compute number of total unrolled instances.
auto numUnrolledInstances = computeMaxLinearIndex(unrollFactors);
auto basis = computeStrides(unrollFactors);
auto &resultValueState = unrolledVectorState[resultIndex];
auto unrolledResultType = VectorType::get(resultValueState.unrolledShape,
shapedType.getElementType());
// Initialize caches for intermediate vector results.
std::vector<SmallVector<Value, 4>> caches(numVectors);
for (unsigned i = 0; i < numVectors; ++i)
caches[i].resize(unrolledVectorState[i].numInstances);
// Unroll 'numUnrolledInstances' of 'op', storing results in 'caches'.
for (unsigned i = 0; i < numUnrolledInstances; ++i) {
// De-linearize w.r.t. 'basis'.
auto vectorOffsets = delinearize(i, basis);
// Convert from unrolled vector-space offsets to element-space offsets.
auto offsets = zipMap([](int64_t v1, int64_t v2) { return v1 * v2; },
vectorOffsets, targetShape);
// Get cached slice (or create slice) for each operand at 'offsets'.
SmallVector<Value, 3> operands;
operands.resize(op->getNumOperands());
for (unsigned i = 0; i < numVectors; ++i) {
int64_t operandIndex = vectors[i].operandIndex;
if (operandIndex < 0)
continue; // Output
auto operand = op->getOperand(operandIndex);
operands[operandIndex] = getOrCreateUnrolledVectorSlice(
op->getLoc(), unrolledVectorState[i], vectorOffsets, offsets,
vectors[i].indexMap, operand, caches[i], builder);
}
// Create op on sliced vector arguments.
auto resultVector =
cloneOpWithOperandsAndTypes(builder, op->getLoc(), op, operands,
unrolledResultType)
->getResult(0);
// Compute linear result index.
int64_t linearIndex = getUnrolledVectorLinearIndex(
resultValueState, vectorOffsets, vectors[resultIndex].indexMap);
// Update result cache at 'linearIndex'.
caches[resultIndex][linearIndex] = resultVector;
}
// Create TupleOp of unrolled result vectors.
SmallVector<Type, 4> vectorTupleTypes(resultValueState.numInstances);
SmallVector<Value, 4> vectorTupleValues(resultValueState.numInstances);
for (unsigned i = 0; i < resultValueState.numInstances; ++i) {
vectorTupleTypes[i] = caches[resultIndex][i].getType().cast<VectorType>();
vectorTupleValues[i] = caches[resultIndex][i];
}
TupleType tupleType = builder.getTupleType(vectorTupleTypes);
Value tupleOp = builder.create<vector::TupleOp>(op->getLoc(), tupleType,
vectorTupleValues);
// Create InsertSlicesOp(Tuple(result_vectors)).
auto resultVectorType = op->getResult(0).getType().cast<VectorType>();
SmallVector<int64_t, 4> sizes(resultValueState.unrolledShape);
SmallVector<int64_t, 4> strides(resultValueState.unrollFactors.size(), 1);
Value insertSlicesOp = builder.create<vector::InsertSlicesOp>(
op->getLoc(), resultVectorType, tupleOp, builder.getI64ArrayAttr(sizes),
builder.getI64ArrayAttr(strides));
return insertSlicesOp;
}
static void getVectorContractionOpUnrollState(
vector::ContractionOp contractionOp, ArrayRef<int64_t> targetShape,
SmallVectorImpl<int64_t> &iterationBounds,
std::vector<VectorState> &vectors, unsigned &resultIndex) {
// Get contraction op iteration bounds.
contractionOp.getIterationBounds(iterationBounds);
assert(iterationBounds.size() == targetShape.size());
// Get map from iteration space index to lhs/rhs/result shape index.
std::vector<DenseMap<int64_t, int64_t>> iterationIndexMapList;
contractionOp.getIterationIndexMap(iterationIndexMapList);
unsigned numIterators = iterationIndexMapList.size();
vectors.resize(numIterators);
unsigned accOperandIndex = vector::ContractionOp::getAccOperandIndex();
for (unsigned i = 0; i < numIterators; ++i) {
vectors[i].type = contractionOp.getOperand(i).getType().cast<VectorType>();
vectors[i].indexMap = iterationIndexMapList[i];
vectors[i].operandIndex = i;
vectors[i].isAcc = i == accOperandIndex ? true : false;
}
if (llvm::size(contractionOp.masks()) == 2) {
// Add vectors for lhs/rhs vector mask arguments. Masks have the
// same vector shape lhs/rhs args, so copy their index maps.
vectors.push_back({contractionOp.getLHSVectorMaskType(),
vectors[0].indexMap, accOperandIndex + 1, false});
vectors.push_back({contractionOp.getRHSVectorMaskType(),
vectors[1].indexMap, accOperandIndex + 2, false});
}
// Unroll 'op' 'iterationBounds' to 'targetShape'.
// TODO(andydavis) Use linalg style 'args_in'/'args_out' to partition
// 'vectors' instead of 'resultIndex'.
resultIndex = accOperandIndex;
}
static void
getVectorElementwiseOpUnrollState(Operation *op, ArrayRef<int64_t> targetShape,
SmallVectorImpl<int64_t> &iterationBounds,
std::vector<VectorState> &vectors,
unsigned &resultIndex) {
// Verify that operation and operands all have the same vector shape.
auto resultType = op->getResult(0).getType().dyn_cast_or_null<VectorType>();
assert(resultType && "Expected op with vector result type");
auto resultShape = resultType.getShape();
// Verify that all operands have the same vector type as result.
assert(llvm::all_of(op->getOperandTypes(),
[=](Type type) { return type == resultType; }));
// Populate 'iterationBounds' with 'resultShape' for elementwise operations.
iterationBounds.assign(resultShape.begin(), resultShape.end());
// Create trivial elementwise identity index map based on 'resultShape'.
DenseMap<int64_t, int64_t> indexMap;
indexMap.reserve(resultShape.size());
for (unsigned i = 0; i < resultShape.size(); ++i)
indexMap[i] = i;
// Create VectorState each operand and single result.
unsigned numVectors = op->getNumOperands() + op->getNumResults();
vectors.resize(numVectors);
for (unsigned i = 0; i < op->getNumOperands(); ++i)
vectors[i] = {resultType, indexMap, i, false};
vectors[numVectors - 1] = {resultType, indexMap, -1, false};
resultIndex = numVectors - 1;
}
// Entry point for unrolling declarative pattern rewrites.
SmallVector<Value, 1> mlir::vector::unrollSingleResultOpMatchingType(
PatternRewriter &builder, Operation *op, ArrayRef<int64_t> targetShape) {
assert(op->getNumResults() == 1 && "Expected single result operation");
// Populate 'iterationBounds', 'vectors' and 'resultIndex' to unroll 'op'.
SmallVector<int64_t, 6> iterationBounds;
std::vector<VectorState> vectors;
unsigned resultIndex;
if (auto contractionOp = dyn_cast<vector::ContractionOp>(op)) {
// Populate state for vector ContractionOp.
getVectorContractionOpUnrollState(contractionOp, targetShape,
iterationBounds, vectors, resultIndex);
} else {
// Populate state for vector elementwise op.
getVectorElementwiseOpUnrollState(op, targetShape, iterationBounds, vectors,
resultIndex);
}
// Unroll 'op' with 'iterationBounds' to 'targetShape'.
return SmallVector<Value, 1>{unrollSingleResultStructuredOp(
op, iterationBounds, vectors, resultIndex, targetShape, builder)};
}
// Generates slices of 'vectorType' according to 'sizes' and 'strides, and
// calls 'fn' with linear index and indices for each slice.
static void
generateTransferOpSlices(VectorType vectorType, TupleType tupleType,
ArrayRef<int64_t> sizes, ArrayRef<int64_t> strides,
ArrayRef<Value> indices, PatternRewriter &rewriter,
function_ref<void(unsigned, ArrayRef<Value>)> fn) {
// Compute strides w.r.t. to slice counts in each dimension.
auto maybeDimSliceCounts = shapeRatio(vectorType.getShape(), sizes);
assert(maybeDimSliceCounts.hasValue());
auto sliceDimCounts = *maybeDimSliceCounts;
auto basis = computeStrides(sliceDimCounts);
int64_t numSlices = tupleType.size();
unsigned numSliceIndices = indices.size();
auto *ctx = rewriter.getContext();
for (unsigned i = 0; i < numSlices; ++i) {
// De-linearize w.r.t. 'basis'.
auto vectorOffsets = delinearize(i, basis);
// Convert from unrolled vector-space offsets to element-space offsets.
auto offsets = zipMap([](int64_t v1, int64_t v2) { return v1 * v2; },
vectorOffsets, sizes);
// Compute 'sliceIndices' by adding 'sliceOffsets[i]' to 'indices[i]'.
SmallVector<Value, 4> sliceIndices(numSliceIndices);
for (auto it : llvm::enumerate(indices)) {
auto expr = getAffineDimExpr(0, ctx) +
getAffineConstantExpr(offsets[it.index()], ctx);
auto map = AffineMap::get(/*dimCount=*/1, /*symbolCount=*/0, expr);
sliceIndices[it.index()] = rewriter.create<AffineApplyOp>(
it.value().getLoc(), map, ArrayRef<Value>(it.value()));
}
// Call 'fn' to generate slice 'i' at 'sliceIndices'.
fn(i, sliceIndices);
}
}
namespace {
// Splits vector TransferReadOp into smaller TransferReadOps based on slicing
// scheme of its unique ExtractSlicesOp user.
struct SplitTransferReadOp : public OpRewritePattern<vector::TransferReadOp> {
using OpRewritePattern<vector::TransferReadOp>::OpRewritePattern;
PatternMatchResult matchAndRewrite(vector::TransferReadOp xferReadOp,
PatternRewriter &rewriter) const override {
// TODO(andydavis, ntv) Support splitting TransferReadOp with non-identity
// permutation maps. Repurpose code from MaterializeVectors transformation.
if (!xferReadOp.permutation_map().isIdentity())
return matchFailure();
// Return unless the unique 'xferReadOp' user is an ExtractSlicesOp.
Value xferReadResult = xferReadOp.getResult();
auto extractSlicesOp =
dyn_cast<vector::ExtractSlicesOp>(*xferReadResult.getUsers().begin());
if (!xferReadResult.hasOneUse() || !extractSlicesOp)
return matchFailure();
// Get 'sizes' and 'strides' parameters from ExtractSlicesOp user.
auto sourceVectorType = extractSlicesOp.getSourceVectorType();
auto resultTupleType = extractSlicesOp.getResultTupleType();
SmallVector<int64_t, 4> sizes;
extractSlicesOp.getSizes(sizes);
SmallVector<int64_t, 4> strides;
extractSlicesOp.getStrides(strides);
assert(llvm::all_of(strides, [](int64_t s) { return s == 1; }));
Location loc = xferReadOp.getLoc();
int64_t numSlices = resultTupleType.size();
SmallVector<Value, 4> vectorTupleValues(numSlices);
SmallVector<Value, 4> indices(xferReadOp.indices().begin(),
xferReadOp.indices().end());
auto createSlice = [&](unsigned index, ArrayRef<Value> sliceIndices) {
// Get VectorType for slice 'i'.
auto sliceVectorType = resultTupleType.getType(index);
// Create split TransferReadOp for 'sliceUser'.
vectorTupleValues[index] = rewriter.create<vector::TransferReadOp>(
loc, sliceVectorType, xferReadOp.memref(), sliceIndices,
xferReadOp.permutation_map(), xferReadOp.padding());
};
generateTransferOpSlices(sourceVectorType, resultTupleType, sizes, strides,
indices, rewriter, createSlice);
// Create tuple of splice xfer read operations.
Value tupleOp = rewriter.create<vector::TupleOp>(loc, resultTupleType,
vectorTupleValues);
// Replace 'xferReadOp' with result 'insertSlicesResult'.
rewriter.replaceOpWithNewOp<vector::InsertSlicesOp>(
xferReadOp, sourceVectorType, tupleOp, extractSlicesOp.sizes(),
extractSlicesOp.strides());
return matchSuccess();
}
};
// Splits vector TransferWriteOp into smaller TransferWriteOps for each source.
struct SplitTransferWriteOp : public OpRewritePattern<vector::TransferWriteOp> {
using OpRewritePattern<vector::TransferWriteOp>::OpRewritePattern;
PatternMatchResult matchAndRewrite(vector::TransferWriteOp xferWriteOp,
PatternRewriter &rewriter) const override {
// TODO(andydavis, ntv) Support splitting TransferWriteOp with non-identity
// permutation maps. Repurpose code from MaterializeVectors transformation.
if (!xferWriteOp.permutation_map().isIdentity())
return matchFailure();
// Return unless the 'xferWriteOp' 'vector' operand is an 'InsertSlicesOp'.
auto *vectorDefOp = xferWriteOp.vector().getDefiningOp();
auto insertSlicesOp = dyn_cast_or_null<vector::InsertSlicesOp>(vectorDefOp);
if (!insertSlicesOp)
return matchFailure();
// Get TupleOp operand of 'insertSlicesOp'.
auto tupleOp = dyn_cast_or_null<vector::TupleOp>(
insertSlicesOp.vectors().getDefiningOp());
if (!tupleOp)
return matchFailure();
// Get 'sizes' and 'strides' parameters from InsertSlicesOp user.
auto sourceTupleType = insertSlicesOp.getSourceTupleType();
auto resultVectorType = insertSlicesOp.getResultVectorType();
SmallVector<int64_t, 4> sizes;
insertSlicesOp.getSizes(sizes);
SmallVector<int64_t, 4> strides;
insertSlicesOp.getStrides(strides);
Location loc = xferWriteOp.getLoc();
SmallVector<Value, 4> indices(xferWriteOp.indices().begin(),
xferWriteOp.indices().end());
auto createSlice = [&](unsigned index, ArrayRef<Value> sliceIndices) {
// Create split TransferWriteOp for source vector 'tupleOp.operand[i]'.
rewriter.create<vector::TransferWriteOp>(
loc, tupleOp.getOperand(index), xferWriteOp.memref(), sliceIndices,
xferWriteOp.permutation_map());
};
generateTransferOpSlices(resultVectorType, sourceTupleType, sizes, strides,
indices, rewriter, createSlice);
// Erase old 'xferWriteOp'.
rewriter.eraseOp(xferWriteOp);
return matchSuccess();
}
};
// Patter rewrite which forward tuple elements to their users.
// User(TupleGetOp(ExtractSlicesOp(InsertSlicesOp(TupleOp(Producer)))))
// -> User(Producer)
struct TupleGetFolderOp : public OpRewritePattern<vector::TupleGetOp> {
using OpRewritePattern<vector::TupleGetOp>::OpRewritePattern;
PatternMatchResult matchAndRewrite(vector::TupleGetOp tupleGetOp,
PatternRewriter &rewriter) const override {
// Return if 'tupleGetOp.vectors' arg was not defined by ExtractSlicesOp.
auto extractSlicesOp = dyn_cast_or_null<vector::ExtractSlicesOp>(
tupleGetOp.vectors().getDefiningOp());
if (!extractSlicesOp)
return matchFailure();
// Return if 'extractSlicesOp.vector' arg was not defined by InsertSlicesOp.
auto insertSlicesOp = dyn_cast_or_null<vector::InsertSlicesOp>(
extractSlicesOp.vector().getDefiningOp());
if (!insertSlicesOp)
return matchFailure();
// Return if 'insertSlicesOp.vectors' arg was not defined by TupleOp.
auto tupleOp = dyn_cast_or_null<vector::TupleOp>(
insertSlicesOp.vectors().getDefiningOp());
if (!tupleOp)
return matchFailure();
// Forward Value from 'tupleOp' at 'tupleGetOp.index'.
Value tupleValue = tupleOp.getOperand(tupleGetOp.getIndex());
rewriter.replaceOp(tupleGetOp, tupleValue);
return matchSuccess();
}
};
/// Progressive lowering of ExtractSlicesOp to tuple of StridedSliceOp.
/// One:
/// %x = vector.extract_slices %0
/// is replaced by:
/// %a = vector.strided_slice %0
/// %b = vector.strided_slice %0
/// ..
/// %x = vector.tuple %a, %b, ..
class ExtractSlicesOpLowering
: public OpRewritePattern<vector::ExtractSlicesOp> {
public:
using OpRewritePattern<vector::ExtractSlicesOp>::OpRewritePattern;
// TODO(ajcbik): refactor slice utilities out into VectorUtils.h
PatternMatchResult matchAndRewrite(vector::ExtractSlicesOp op,
PatternRewriter &rewriter) const override {
auto loc = op.getLoc();
VectorType vectorType = op.getSourceVectorType();
int64_t rank = vectorType.getRank();
auto shape = vectorType.getShape();
SmallVector<int64_t, 4> sizes;
op.getSizes(sizes);
SmallVector<int64_t, 4> strides;
op.getStrides(strides); // all-ones at the moment
// Compute the number of slices in each dimension.
SmallVector<int64_t, 4> sliceDimCounts(rank);
for (int64_t r = 0; r < rank; ++r)
sliceDimCounts[r] = ceilDiv(shape[r], sizes[r]);
// For each element in the tuple, generate the proper strided slice.
auto basis = computeStrides(sliceDimCounts);
TupleType tupleType = op.getResultTupleType();
int64_t tupleSize = tupleType.size();
SmallVector<Value, 4> tupleValues(tupleSize);
for (int64_t i = 0; i < tupleSize; ++i) {
// De-linearize w.r.t. 'basis'.
auto vectorOffsets = delinearize(i, basis);
// Convert from unrolled vector-space offsets to element-space offsets.
auto elementOffsets = mlir::functional::zipMap(
[](int64_t v1, int64_t v2) { return v1 * v2; }, vectorOffsets, sizes);
// Compute the size of each slice.
SmallVector<int64_t, 4> sliceSizes(rank);
for (int64_t r = 0; r < rank; ++r)
sliceSizes[r] = std::min(sizes[r], shape[r] - elementOffsets[r]);
// Insert in tuple.
tupleValues[i] = rewriter.create<vector::StridedSliceOp>(
loc, op.vector(), elementOffsets, sliceSizes, strides);
}
rewriter.replaceOpWithNewOp<vector::TupleOp>(op, tupleType, tupleValues);
return matchSuccess();
}
};
/// Progressive lowering of InsertSlicesOp to series of InsertStridedSliceOp.
/// One:
/// %x = vector.insert_slices %0
/// is replaced by:
/// %r0 = vector.splat 0
// %t1 = vector.tuple_get %0, 0
/// %r1 = vector.insert_strided_slice %r0, %t1
// %t2 = vector.tuple_get %0, 1
/// %r2 = vector.insert_strided_slice %r1, %t2
/// ..
/// %x = ..
class InsertSlicesOpLowering : public OpRewritePattern<vector::InsertSlicesOp> {
public:
using OpRewritePattern<vector::InsertSlicesOp>::OpRewritePattern;
// TODO(ajcbik): refactor slice utilities out into VectorUtils.h
PatternMatchResult matchAndRewrite(vector::InsertSlicesOp op,
PatternRewriter &rewriter) const override {
auto loc = op.getLoc();
VectorType vectorType = op.getResultVectorType();
int64_t rank = vectorType.getRank();
auto shape = vectorType.getShape();
SmallVector<int64_t, 4> sizes;
op.getSizes(sizes);
SmallVector<int64_t, 4> strides;
op.getStrides(strides); // all-ones at the moment
// Compute the number of slices in each dimension.
SmallVector<int64_t, 4> sliceDimCounts(rank);
for (int64_t r = 0; r < rank; ++r)
sliceDimCounts[r] = ceilDiv(shape[r], sizes[r]);
// Prepare result.
auto elemType = vectorType.getElementType();
Value zero = rewriter.create<ConstantOp>(loc, elemType,
rewriter.getZeroAttr(elemType));
Value result = rewriter.create<SplatOp>(loc, vectorType, zero);
// For each element in the tuple, extract the proper strided slice.
auto basis = computeStrides(sliceDimCounts);
TupleType tupleType = op.getSourceTupleType();
int64_t tupleSize = tupleType.size();
SmallVector<Value, 4> tupleValues(tupleSize);
for (int64_t i = 0; i < tupleSize; ++i) {
// De-linearize w.r.t. 'basis'.
auto vectorOffsets = delinearize(i, basis);
// Convert from unrolled vector-space offsets to element-space offsets.
auto elementOffsets = mlir::functional::zipMap(
[](int64_t v1, int64_t v2) { return v1 * v2; }, vectorOffsets, sizes);
// Compute the size of each slice.
SmallVector<int64_t, 4> sliceSizes(rank);
for (int64_t r = 0; r < rank; ++r)
sliceSizes[r] = std::min(sizes[r], shape[r] - elementOffsets[r]);
// Extract from tuple into the result.
auto index = rewriter.getI64IntegerAttr(i);
auto tupleGet = rewriter.create<vector::TupleGetOp>(
loc, tupleType.getType(i), op.getOperand(), index);
result = rewriter.create<vector::InsertStridedSliceOp>(
loc, tupleGet, result, elementOffsets, strides);
}
rewriter.replaceOp(op, result);
return matchSuccess();
}
};
} // namespace
// TODO(andydavis) Add pattern to rewrite ExtractSlices(ConstantMaskOp).
// TODO(andydavis) Add this as DRR pattern.
void mlir::vector::populateVectorToVectorTransformationPatterns(
OwningRewritePatternList &patterns, MLIRContext *context) {
patterns.insert<SplitTransferReadOp, SplitTransferWriteOp, TupleGetFolderOp>(
context);
}
void mlir::vector::populateVectorSlicesLoweringPatterns(
OwningRewritePatternList &patterns, MLIRContext *context) {
patterns.insert<ExtractSlicesOpLowering, InsertSlicesOpLowering>(context);
}