Last piece that implements the TODO for sret and byval setting on indirect calls. This includes a fix to the codegen last patch. I thought types in in type attributes were automatically converted in dialect conversion passes, but that is not the case. The sret and byval type needs to be converted to llvm types in codegen (mlir FuncOp conversion is doing a similar conversion).
1362 lines
59 KiB
C++
1362 lines
59 KiB
C++
//===-- TargetRewrite.cpp -------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Target rewrite: rewriting of ops to make target-specific lowerings manifest.
|
|
// LLVM expects different lowering idioms to be used for distinct target
|
|
// triples. These distinctions are handled by this pass.
|
|
//
|
|
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "flang/Optimizer/CodeGen/CodeGen.h"
|
|
|
|
#include "flang/Optimizer/Builder/Character.h"
|
|
#include "flang/Optimizer/Builder/FIRBuilder.h"
|
|
#include "flang/Optimizer/Builder/Todo.h"
|
|
#include "flang/Optimizer/CodeGen/Target.h"
|
|
#include "flang/Optimizer/Dialect/FIRDialect.h"
|
|
#include "flang/Optimizer/Dialect/FIROps.h"
|
|
#include "flang/Optimizer/Dialect/FIROpsSupport.h"
|
|
#include "flang/Optimizer/Dialect/FIRType.h"
|
|
#include "flang/Optimizer/Dialect/Support/FIRContext.h"
|
|
#include "flang/Optimizer/Support/DataLayout.h"
|
|
#include "mlir/Dialect/DLTI/DLTI.h"
|
|
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
|
|
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/TypeSwitch.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include <optional>
|
|
|
|
namespace fir {
|
|
#define GEN_PASS_DEF_TARGETREWRITEPASS
|
|
#include "flang/Optimizer/CodeGen/CGPasses.h.inc"
|
|
} // namespace fir
|
|
|
|
#define DEBUG_TYPE "flang-target-rewrite"
|
|
|
|
namespace {
|
|
|
|
/// Fixups for updating a FuncOp's arguments and return values.
|
|
struct FixupTy {
|
|
enum class Codes {
|
|
ArgumentAsLoad,
|
|
ArgumentType,
|
|
CharPair,
|
|
ReturnAsStore,
|
|
ReturnType,
|
|
Split,
|
|
Trailing,
|
|
TrailingCharProc
|
|
};
|
|
|
|
FixupTy(Codes code, std::size_t index, std::size_t second = 0)
|
|
: code{code}, index{index}, second{second} {}
|
|
FixupTy(Codes code, std::size_t index,
|
|
std::function<void(mlir::func::FuncOp)> &&finalizer)
|
|
: code{code}, index{index}, finalizer{finalizer} {}
|
|
FixupTy(Codes code, std::size_t index,
|
|
std::function<void(mlir::gpu::GPUFuncOp)> &&finalizer)
|
|
: code{code}, index{index}, gpuFinalizer{finalizer} {}
|
|
FixupTy(Codes code, std::size_t index, std::size_t second,
|
|
std::function<void(mlir::func::FuncOp)> &&finalizer)
|
|
: code{code}, index{index}, second{second}, finalizer{finalizer} {}
|
|
FixupTy(Codes code, std::size_t index, std::size_t second,
|
|
std::function<void(mlir::gpu::GPUFuncOp)> &&finalizer)
|
|
: code{code}, index{index}, second{second}, gpuFinalizer{finalizer} {}
|
|
|
|
Codes code;
|
|
std::size_t index;
|
|
std::size_t second{};
|
|
std::optional<std::function<void(mlir::func::FuncOp)>> finalizer{};
|
|
std::optional<std::function<void(mlir::gpu::GPUFuncOp)>> gpuFinalizer{};
|
|
}; // namespace
|
|
|
|
/// Target-specific rewriting of the FIR. This is a prerequisite pass to code
|
|
/// generation that traverses the FIR and modifies types and operations to a
|
|
/// form that is appropriate for the specific target. LLVM IR has specific
|
|
/// idioms that are used for distinct target processor and ABI combinations.
|
|
class TargetRewrite : public fir::impl::TargetRewritePassBase<TargetRewrite> {
|
|
public:
|
|
using TargetRewritePassBase<TargetRewrite>::TargetRewritePassBase;
|
|
|
|
void runOnOperation() override final {
|
|
auto &context = getContext();
|
|
mlir::OpBuilder rewriter(&context);
|
|
|
|
auto mod = getModule();
|
|
if (!forcedTargetTriple.empty())
|
|
fir::setTargetTriple(mod, forcedTargetTriple);
|
|
|
|
if (!forcedTargetCPU.empty())
|
|
fir::setTargetCPU(mod, forcedTargetCPU);
|
|
|
|
if (!forcedTuneCPU.empty())
|
|
fir::setTuneCPU(mod, forcedTuneCPU);
|
|
|
|
if (!forcedTargetFeatures.empty())
|
|
fir::setTargetFeatures(mod, forcedTargetFeatures);
|
|
|
|
// TargetRewrite will require querying the type storage sizes, if it was
|
|
// not set already, create a DataLayoutSpec for the ModuleOp now.
|
|
std::optional<mlir::DataLayout> dl =
|
|
fir::support::getOrSetMLIRDataLayout(mod, /*allowDefaultLayout=*/true);
|
|
if (!dl) {
|
|
mlir::emitError(mod.getLoc(),
|
|
"module operation must carry a data layout attribute "
|
|
"to perform target ABI rewrites on FIR");
|
|
signalPassFailure();
|
|
return;
|
|
}
|
|
|
|
auto specifics = fir::CodeGenSpecifics::get(
|
|
mod.getContext(), fir::getTargetTriple(mod), fir::getKindMapping(mod),
|
|
fir::getTargetCPU(mod), fir::getTargetFeatures(mod), *dl,
|
|
fir::getTuneCPU(mod));
|
|
|
|
setMembers(specifics.get(), &rewriter, &*dl);
|
|
|
|
// Perform type conversion on signatures and call sites.
|
|
if (mlir::failed(convertTypes(mod))) {
|
|
mlir::emitError(mlir::UnknownLoc::get(&context),
|
|
"error in converting types to target abi");
|
|
signalPassFailure();
|
|
}
|
|
|
|
// Convert ops in target-specific patterns.
|
|
mod.walk([&](mlir::Operation *op) {
|
|
if (auto call = mlir::dyn_cast<fir::CallOp>(op)) {
|
|
if (!hasPortableSignature(call.getFunctionType(), op))
|
|
convertCallOp(call, call.getFunctionType());
|
|
} else if (auto dispatch = mlir::dyn_cast<fir::DispatchOp>(op)) {
|
|
if (!hasPortableSignature(dispatch.getFunctionType(), op))
|
|
convertCallOp(dispatch, dispatch.getFunctionType());
|
|
} else if (auto gpuLaunchFunc =
|
|
mlir::dyn_cast<mlir::gpu::LaunchFuncOp>(op)) {
|
|
llvm::SmallVector<mlir::Type> operandsTypes;
|
|
for (auto arg : gpuLaunchFunc.getKernelOperands())
|
|
operandsTypes.push_back(arg.getType());
|
|
auto fctTy = mlir::FunctionType::get(&context, operandsTypes, {});
|
|
if (!hasPortableSignature(fctTy, op))
|
|
convertCallOp(gpuLaunchFunc, fctTy);
|
|
} else if (auto addr = mlir::dyn_cast<fir::AddrOfOp>(op)) {
|
|
if (mlir::isa<mlir::FunctionType>(addr.getType()) &&
|
|
!hasPortableSignature(addr.getType(), op))
|
|
convertAddrOp(addr);
|
|
}
|
|
});
|
|
|
|
clearMembers();
|
|
}
|
|
|
|
mlir::ModuleOp getModule() { return getOperation(); }
|
|
|
|
template <typename Ty, typename Callback>
|
|
std::optional<std::function<mlir::Value(mlir::Operation *)>>
|
|
rewriteCallResultType(mlir::Location loc, mlir::Type originalResTy,
|
|
Ty &newResTys,
|
|
fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs,
|
|
Callback &newOpers, mlir::Value &savedStackPtr,
|
|
fir::CodeGenSpecifics::Marshalling &m) {
|
|
// Currently, targets mandate COMPLEX or STRUCT is a single aggregate or
|
|
// packed scalar, including the sret case.
|
|
assert(m.size() == 1 && "return type not supported on this target");
|
|
auto resTy = std::get<mlir::Type>(m[0]);
|
|
auto attr = std::get<fir::CodeGenSpecifics::Attributes>(m[0]);
|
|
if (attr.isSRet()) {
|
|
assert(fir::isa_ref_type(resTy) && "must be a memory reference type");
|
|
// Save the stack pointer, if it has not been saved for this call yet.
|
|
// We will need to restore it after the call, because the alloca
|
|
// needs to be deallocated.
|
|
if (!savedStackPtr)
|
|
savedStackPtr = genStackSave(loc);
|
|
mlir::Value stack =
|
|
rewriter->create<fir::AllocaOp>(loc, fir::dyn_cast_ptrEleTy(resTy));
|
|
newInTyAndAttrs.push_back(m[0]);
|
|
newOpers.push_back(stack);
|
|
return [=](mlir::Operation *) -> mlir::Value {
|
|
auto memTy = fir::ReferenceType::get(originalResTy);
|
|
auto cast = rewriter->create<fir::ConvertOp>(loc, memTy, stack);
|
|
return rewriter->create<fir::LoadOp>(loc, cast);
|
|
};
|
|
}
|
|
newResTys.push_back(resTy);
|
|
return [=, &savedStackPtr](mlir::Operation *call) -> mlir::Value {
|
|
// We are going to generate an alloca, so save the stack pointer.
|
|
if (!savedStackPtr)
|
|
savedStackPtr = genStackSave(loc);
|
|
return this->convertValueInMemory(loc, call->getResult(0), originalResTy,
|
|
/*inputMayBeBigger=*/true);
|
|
};
|
|
}
|
|
|
|
template <typename Ty, typename Callback>
|
|
std::optional<std::function<mlir::Value(mlir::Operation *)>>
|
|
rewriteCallComplexResultType(
|
|
mlir::Location loc, mlir::ComplexType ty, Ty &newResTys,
|
|
fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs, Callback &newOpers,
|
|
mlir::Value &savedStackPtr) {
|
|
if (noComplexConversion) {
|
|
newResTys.push_back(ty);
|
|
return std::nullopt;
|
|
}
|
|
auto m = specifics->complexReturnType(loc, ty.getElementType());
|
|
return rewriteCallResultType(loc, ty, newResTys, newInTyAndAttrs, newOpers,
|
|
savedStackPtr, m);
|
|
}
|
|
|
|
template <typename Ty, typename Callback>
|
|
std::optional<std::function<mlir::Value(mlir::Operation *)>>
|
|
rewriteCallStructResultType(
|
|
mlir::Location loc, fir::RecordType recTy, Ty &newResTys,
|
|
fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs, Callback &newOpers,
|
|
mlir::Value &savedStackPtr) {
|
|
if (noStructConversion) {
|
|
newResTys.push_back(recTy);
|
|
return std::nullopt;
|
|
}
|
|
auto m = specifics->structReturnType(loc, recTy);
|
|
return rewriteCallResultType(loc, recTy, newResTys, newInTyAndAttrs,
|
|
newOpers, savedStackPtr, m);
|
|
}
|
|
|
|
void passArgumentOnStackOrWithNewType(
|
|
mlir::Location loc, fir::CodeGenSpecifics::TypeAndAttr newTypeAndAttr,
|
|
mlir::Type oldType, mlir::Value oper,
|
|
llvm::SmallVectorImpl<mlir::Value> &newOpers,
|
|
mlir::Value &savedStackPtr) {
|
|
auto resTy = std::get<mlir::Type>(newTypeAndAttr);
|
|
auto attr = std::get<fir::CodeGenSpecifics::Attributes>(newTypeAndAttr);
|
|
// We are going to generate an alloca, so save the stack pointer.
|
|
if (!savedStackPtr)
|
|
savedStackPtr = genStackSave(loc);
|
|
if (attr.isByVal()) {
|
|
mlir::Value mem = rewriter->create<fir::AllocaOp>(loc, oldType);
|
|
rewriter->create<fir::StoreOp>(loc, oper, mem);
|
|
if (mem.getType() != resTy)
|
|
mem = rewriter->create<fir::ConvertOp>(loc, resTy, mem);
|
|
newOpers.push_back(mem);
|
|
} else {
|
|
mlir::Value bitcast =
|
|
convertValueInMemory(loc, oper, resTy, /*inputMayBeBigger=*/false);
|
|
newOpers.push_back(bitcast);
|
|
}
|
|
}
|
|
|
|
// Do a bitcast (convert a value via its memory representation).
|
|
// The input and output types may have different storage sizes,
|
|
// "inputMayBeBigger" should be set to indicate which of the input or
|
|
// output type may be bigger in order for the load/store to be safe.
|
|
// The mismatch comes from the fact that the LLVM register used for passing
|
|
// may be bigger than the value being passed (e.g., passing
|
|
// a `!fir.type<t{fir.array<3xi8>}>` into an i32 LLVM register).
|
|
mlir::Value convertValueInMemory(mlir::Location loc, mlir::Value value,
|
|
mlir::Type newType, bool inputMayBeBigger) {
|
|
if (inputMayBeBigger) {
|
|
auto newRefTy = fir::ReferenceType::get(newType);
|
|
auto mem = rewriter->create<fir::AllocaOp>(loc, value.getType());
|
|
rewriter->create<fir::StoreOp>(loc, value, mem);
|
|
auto cast = rewriter->create<fir::ConvertOp>(loc, newRefTy, mem);
|
|
return rewriter->create<fir::LoadOp>(loc, cast);
|
|
} else {
|
|
auto oldRefTy = fir::ReferenceType::get(value.getType());
|
|
auto mem = rewriter->create<fir::AllocaOp>(loc, newType);
|
|
auto cast = rewriter->create<fir::ConvertOp>(loc, oldRefTy, mem);
|
|
rewriter->create<fir::StoreOp>(loc, value, cast);
|
|
return rewriter->create<fir::LoadOp>(loc, mem);
|
|
}
|
|
}
|
|
|
|
void passSplitArgument(mlir::Location loc,
|
|
fir::CodeGenSpecifics::Marshalling splitArgs,
|
|
mlir::Type oldType, mlir::Value oper,
|
|
llvm::SmallVectorImpl<mlir::Value> &newOpers,
|
|
mlir::Value &savedStackPtr) {
|
|
// COMPLEX or struct argument split into separate arguments
|
|
if (!fir::isa_complex(oldType)) {
|
|
// Cast original operand to a tuple of the new arguments
|
|
// via memory.
|
|
llvm::SmallVector<mlir::Type> partTypes;
|
|
for (auto argPart : splitArgs)
|
|
partTypes.push_back(std::get<mlir::Type>(argPart));
|
|
mlir::Type tupleType =
|
|
mlir::TupleType::get(oldType.getContext(), partTypes);
|
|
if (!savedStackPtr)
|
|
savedStackPtr = genStackSave(loc);
|
|
oper = convertValueInMemory(loc, oper, tupleType,
|
|
/*inputMayBeBigger=*/false);
|
|
}
|
|
auto iTy = rewriter->getIntegerType(32);
|
|
for (auto e : llvm::enumerate(splitArgs)) {
|
|
auto &tup = e.value();
|
|
auto ty = std::get<mlir::Type>(tup);
|
|
auto index = e.index();
|
|
auto idx = rewriter->getIntegerAttr(iTy, index);
|
|
auto val = rewriter->create<fir::ExtractValueOp>(
|
|
loc, ty, oper, rewriter->getArrayAttr(idx));
|
|
newOpers.push_back(val);
|
|
}
|
|
}
|
|
|
|
void rewriteCallOperands(
|
|
mlir::Location loc, fir::CodeGenSpecifics::Marshalling passArgAs,
|
|
mlir::Type originalArgTy, mlir::Value oper,
|
|
llvm::SmallVectorImpl<mlir::Value> &newOpers, mlir::Value &savedStackPtr,
|
|
fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs) {
|
|
if (passArgAs.size() == 1) {
|
|
// COMPLEX or derived type is passed as a single argument.
|
|
passArgumentOnStackOrWithNewType(loc, passArgAs[0], originalArgTy, oper,
|
|
newOpers, savedStackPtr);
|
|
} else {
|
|
// COMPLEX or derived type is split into separate arguments
|
|
passSplitArgument(loc, passArgAs, originalArgTy, oper, newOpers,
|
|
savedStackPtr);
|
|
}
|
|
newInTyAndAttrs.insert(newInTyAndAttrs.end(), passArgAs.begin(),
|
|
passArgAs.end());
|
|
}
|
|
|
|
template <typename CPLX>
|
|
void rewriteCallComplexInputType(
|
|
mlir::Location loc, CPLX ty, mlir::Value oper,
|
|
fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs,
|
|
llvm::SmallVectorImpl<mlir::Value> &newOpers,
|
|
mlir::Value &savedStackPtr) {
|
|
if (noComplexConversion) {
|
|
newInTyAndAttrs.push_back(fir::CodeGenSpecifics::getTypeAndAttr(ty));
|
|
newOpers.push_back(oper);
|
|
return;
|
|
}
|
|
auto m = specifics->complexArgumentType(loc, ty.getElementType());
|
|
rewriteCallOperands(loc, m, ty, oper, newOpers, savedStackPtr,
|
|
newInTyAndAttrs);
|
|
}
|
|
|
|
void rewriteCallStructInputType(
|
|
mlir::Location loc, fir::RecordType recTy, mlir::Value oper,
|
|
fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs,
|
|
llvm::SmallVectorImpl<mlir::Value> &newOpers,
|
|
mlir::Value &savedStackPtr) {
|
|
if (noStructConversion) {
|
|
newInTyAndAttrs.push_back(fir::CodeGenSpecifics::getTypeAndAttr(recTy));
|
|
newOpers.push_back(oper);
|
|
return;
|
|
}
|
|
auto structArgs =
|
|
specifics->structArgumentType(loc, recTy, newInTyAndAttrs);
|
|
rewriteCallOperands(loc, structArgs, recTy, oper, newOpers, savedStackPtr,
|
|
newInTyAndAttrs);
|
|
}
|
|
|
|
static bool hasByValOrSRetArgs(
|
|
const fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs) {
|
|
return llvm::any_of(newInTyAndAttrs, [](auto arg) {
|
|
const auto &attr = std::get<fir::CodeGenSpecifics::Attributes>(arg);
|
|
return attr.isByVal() || attr.isSRet();
|
|
});
|
|
}
|
|
|
|
// Convert fir.call and fir.dispatch Ops.
|
|
template <typename A>
|
|
void convertCallOp(A callOp, mlir::FunctionType fnTy) {
|
|
auto loc = callOp.getLoc();
|
|
rewriter->setInsertionPoint(callOp);
|
|
llvm::SmallVector<mlir::Type> newResTys;
|
|
fir::CodeGenSpecifics::Marshalling newInTyAndAttrs;
|
|
llvm::SmallVector<mlir::Value> newOpers;
|
|
mlir::Value savedStackPtr = nullptr;
|
|
|
|
// If the call is indirect, the first argument must still be the function
|
|
// to call.
|
|
int dropFront = 0;
|
|
if constexpr (std::is_same_v<std::decay_t<A>, fir::CallOp>) {
|
|
if (!callOp.getCallee()) {
|
|
newInTyAndAttrs.push_back(
|
|
fir::CodeGenSpecifics::getTypeAndAttr(fnTy.getInput(0)));
|
|
newOpers.push_back(callOp.getOperand(0));
|
|
dropFront = 1;
|
|
}
|
|
} else if constexpr (std::is_same_v<std::decay_t<A>, fir::DispatchOp>) {
|
|
dropFront = 1; // First operand is the polymorphic object.
|
|
}
|
|
|
|
// Determine the rewrite function, `wrap`, for the result value.
|
|
std::optional<std::function<mlir::Value(mlir::Operation *)>> wrap;
|
|
if (fnTy.getResults().size() == 1) {
|
|
mlir::Type ty = fnTy.getResult(0);
|
|
llvm::TypeSwitch<mlir::Type>(ty)
|
|
.template Case<mlir::ComplexType>([&](mlir::ComplexType cmplx) {
|
|
wrap = rewriteCallComplexResultType(loc, cmplx, newResTys,
|
|
newInTyAndAttrs, newOpers,
|
|
savedStackPtr);
|
|
})
|
|
.template Case<fir::RecordType>([&](fir::RecordType recTy) {
|
|
wrap = rewriteCallStructResultType(loc, recTy, newResTys,
|
|
newInTyAndAttrs, newOpers,
|
|
savedStackPtr);
|
|
})
|
|
.Default([&](mlir::Type ty) { newResTys.push_back(ty); });
|
|
} else if (fnTy.getResults().size() > 1) {
|
|
TODO(loc, "multiple results not supported yet");
|
|
}
|
|
|
|
llvm::SmallVector<mlir::Type> trailingInTys;
|
|
llvm::SmallVector<mlir::Value> trailingOpers;
|
|
llvm::SmallVector<mlir::Value> operands;
|
|
unsigned passArgShift = 0;
|
|
if constexpr (std::is_same_v<std::decay_t<A>, mlir::gpu::LaunchFuncOp>)
|
|
operands = callOp.getKernelOperands();
|
|
else
|
|
operands = callOp.getOperands().drop_front(dropFront);
|
|
for (auto e : llvm::enumerate(
|
|
llvm::zip(fnTy.getInputs().drop_front(dropFront), operands))) {
|
|
mlir::Type ty = std::get<0>(e.value());
|
|
mlir::Value oper = std::get<1>(e.value());
|
|
unsigned index = e.index();
|
|
llvm::TypeSwitch<mlir::Type>(ty)
|
|
.template Case<fir::BoxCharType>([&](fir::BoxCharType boxTy) {
|
|
if constexpr (std::is_same_v<std::decay_t<A>, fir::CallOp>) {
|
|
if (noCharacterConversion) {
|
|
newInTyAndAttrs.push_back(
|
|
fir::CodeGenSpecifics::getTypeAndAttr(boxTy));
|
|
newOpers.push_back(oper);
|
|
return;
|
|
}
|
|
} else {
|
|
// TODO: dispatch case; it used to be a to-do because of sret,
|
|
// but is not tested and maybe should be removed. This pass is
|
|
// anyway ran after lowering fir.dispatch in flang, so maybe that
|
|
// should just be a requirement of the pass.
|
|
TODO(loc, "ABI of fir.dispatch with character arguments");
|
|
}
|
|
auto m = specifics->boxcharArgumentType(boxTy.getEleTy());
|
|
auto unbox = rewriter->create<fir::UnboxCharOp>(
|
|
loc, std::get<mlir::Type>(m[0]), std::get<mlir::Type>(m[1]),
|
|
oper);
|
|
// unboxed CHARACTER arguments
|
|
for (auto e : llvm::enumerate(m)) {
|
|
unsigned idx = e.index();
|
|
auto attr =
|
|
std::get<fir::CodeGenSpecifics::Attributes>(e.value());
|
|
auto argTy = std::get<mlir::Type>(e.value());
|
|
if (attr.isAppend()) {
|
|
trailingInTys.push_back(argTy);
|
|
trailingOpers.push_back(unbox.getResult(idx));
|
|
} else {
|
|
newInTyAndAttrs.push_back(e.value());
|
|
newOpers.push_back(unbox.getResult(idx));
|
|
}
|
|
}
|
|
})
|
|
.template Case<mlir::ComplexType>([&](mlir::ComplexType cmplx) {
|
|
rewriteCallComplexInputType(loc, cmplx, oper, newInTyAndAttrs,
|
|
newOpers, savedStackPtr);
|
|
})
|
|
.template Case<fir::RecordType>([&](fir::RecordType recTy) {
|
|
rewriteCallStructInputType(loc, recTy, oper, newInTyAndAttrs,
|
|
newOpers, savedStackPtr);
|
|
})
|
|
.template Case<mlir::TupleType>([&](mlir::TupleType tuple) {
|
|
if (fir::isCharacterProcedureTuple(tuple)) {
|
|
mlir::ModuleOp module = getModule();
|
|
if constexpr (std::is_same_v<std::decay_t<A>, fir::CallOp>) {
|
|
if (callOp.getCallee()) {
|
|
llvm::StringRef charProcAttr =
|
|
fir::getCharacterProcedureDummyAttrName();
|
|
// The charProcAttr attribute is only used as a safety to
|
|
// confirm that this is a dummy procedure and should be split.
|
|
// It cannot be used to match because attributes are not
|
|
// available in case of indirect calls.
|
|
auto funcOp = module.lookupSymbol<mlir::func::FuncOp>(
|
|
*callOp.getCallee());
|
|
if (funcOp &&
|
|
!funcOp.template getArgAttrOfType<mlir::UnitAttr>(
|
|
index, charProcAttr))
|
|
mlir::emitError(loc, "tuple argument will be split even "
|
|
"though it does not have the `" +
|
|
charProcAttr + "` attribute");
|
|
}
|
|
}
|
|
mlir::Type funcPointerType = tuple.getType(0);
|
|
mlir::Type lenType = tuple.getType(1);
|
|
fir::FirOpBuilder builder(*rewriter, module);
|
|
auto [funcPointer, len] =
|
|
fir::factory::extractCharacterProcedureTuple(builder, loc,
|
|
oper);
|
|
newInTyAndAttrs.push_back(
|
|
fir::CodeGenSpecifics::getTypeAndAttr(funcPointerType));
|
|
newOpers.push_back(funcPointer);
|
|
trailingInTys.push_back(lenType);
|
|
trailingOpers.push_back(len);
|
|
} else {
|
|
newInTyAndAttrs.push_back(
|
|
fir::CodeGenSpecifics::getTypeAndAttr(tuple));
|
|
newOpers.push_back(oper);
|
|
}
|
|
})
|
|
.Default([&](mlir::Type ty) {
|
|
if constexpr (std::is_same_v<std::decay_t<A>, fir::DispatchOp>) {
|
|
if (callOp.getPassArgPos() && *callOp.getPassArgPos() == index)
|
|
passArgShift = newOpers.size() - *callOp.getPassArgPos();
|
|
}
|
|
newInTyAndAttrs.push_back(
|
|
fir::CodeGenSpecifics::getTypeAndAttr(ty));
|
|
newOpers.push_back(oper);
|
|
});
|
|
}
|
|
|
|
llvm::SmallVector<mlir::Type> newInTypes = toTypeList(newInTyAndAttrs);
|
|
newInTypes.insert(newInTypes.end(), trailingInTys.begin(),
|
|
trailingInTys.end());
|
|
newOpers.insert(newOpers.end(), trailingOpers.begin(), trailingOpers.end());
|
|
|
|
llvm::SmallVector<mlir::Value, 1> newCallResults;
|
|
// TODO propagate/update call argument and result attributes.
|
|
if constexpr (std::is_same_v<std::decay_t<A>, mlir::gpu::LaunchFuncOp>) {
|
|
auto newCall = rewriter->create<A>(
|
|
loc, callOp.getKernel(), callOp.getGridSizeOperandValues(),
|
|
callOp.getBlockSizeOperandValues(),
|
|
callOp.getDynamicSharedMemorySize(), newOpers);
|
|
if (callOp.getClusterSizeX())
|
|
newCall.getClusterSizeXMutable().assign(callOp.getClusterSizeX());
|
|
if (callOp.getClusterSizeY())
|
|
newCall.getClusterSizeYMutable().assign(callOp.getClusterSizeY());
|
|
if (callOp.getClusterSizeZ())
|
|
newCall.getClusterSizeZMutable().assign(callOp.getClusterSizeZ());
|
|
newCallResults.append(newCall.result_begin(), newCall.result_end());
|
|
} else if constexpr (std::is_same_v<std::decay_t<A>, fir::CallOp>) {
|
|
fir::CallOp newCall;
|
|
if (callOp.getCallee()) {
|
|
newCall = rewriter->create<fir::CallOp>(loc, *callOp.getCallee(),
|
|
newResTys, newOpers);
|
|
} else {
|
|
newOpers[0].setType(mlir::FunctionType::get(
|
|
callOp.getContext(),
|
|
mlir::TypeRange{newInTypes}.drop_front(dropFront), newResTys));
|
|
newCall = rewriter->create<fir::CallOp>(loc, newResTys, newOpers);
|
|
// Set ABI argument attributes on call operation since they are not
|
|
// accessible via a FuncOp in indirect calls.
|
|
if (hasByValOrSRetArgs(newInTyAndAttrs)) {
|
|
llvm::SmallVector<mlir::Attribute> argAttrsArray;
|
|
for (const auto &arg :
|
|
llvm::ArrayRef<fir::CodeGenSpecifics::TypeAndAttr>(
|
|
newInTyAndAttrs)
|
|
.drop_front(dropFront)) {
|
|
mlir::NamedAttrList argAttrs;
|
|
const auto &attr = std::get<fir::CodeGenSpecifics::Attributes>(arg);
|
|
if (attr.isByVal()) {
|
|
mlir::Type elemType =
|
|
fir::dyn_cast_ptrOrBoxEleTy(std::get<mlir::Type>(arg));
|
|
argAttrs.set(mlir::LLVM::LLVMDialect::getByValAttrName(),
|
|
mlir::TypeAttr::get(elemType));
|
|
} else if (attr.isSRet()) {
|
|
mlir::Type elemType =
|
|
fir::dyn_cast_ptrOrBoxEleTy(std::get<mlir::Type>(arg));
|
|
argAttrs.set(mlir::LLVM::LLVMDialect::getStructRetAttrName(),
|
|
mlir::TypeAttr::get(elemType));
|
|
if (auto align = attr.getAlignment()) {
|
|
argAttrs.set(mlir::LLVM::LLVMDialect::getAlignAttrName(),
|
|
rewriter->getIntegerAttr(
|
|
rewriter->getIntegerType(32), align));
|
|
}
|
|
}
|
|
argAttrsArray.emplace_back(
|
|
argAttrs.getDictionary(rewriter->getContext()));
|
|
}
|
|
newCall.setArgAttrsAttr(rewriter->getArrayAttr(argAttrsArray));
|
|
}
|
|
}
|
|
LLVM_DEBUG(llvm::dbgs() << "replacing call with " << newCall << '\n');
|
|
if (wrap)
|
|
newCallResults.push_back((*wrap)(newCall.getOperation()));
|
|
else
|
|
newCallResults.append(newCall.result_begin(), newCall.result_end());
|
|
} else {
|
|
fir::DispatchOp dispatchOp = rewriter->create<A>(
|
|
loc, newResTys, rewriter->getStringAttr(callOp.getMethod()),
|
|
callOp.getOperands()[0], newOpers,
|
|
rewriter->getI32IntegerAttr(*callOp.getPassArgPos() + passArgShift),
|
|
/*arg_attrs=*/nullptr, /*res_attrs=*/nullptr,
|
|
callOp.getProcedureAttrsAttr());
|
|
if (wrap)
|
|
newCallResults.push_back((*wrap)(dispatchOp.getOperation()));
|
|
else
|
|
newCallResults.append(dispatchOp.result_begin(),
|
|
dispatchOp.result_end());
|
|
}
|
|
|
|
if (newCallResults.size() <= 1) {
|
|
if (savedStackPtr) {
|
|
if (newCallResults.size() == 1) {
|
|
// We assume that all the allocas are inserted before
|
|
// the operation that defines the new call result.
|
|
rewriter->setInsertionPointAfterValue(newCallResults[0]);
|
|
} else {
|
|
// If the call does not have results, then insert
|
|
// stack restore after the original call operation.
|
|
rewriter->setInsertionPointAfter(callOp);
|
|
}
|
|
genStackRestore(loc, savedStackPtr);
|
|
}
|
|
replaceOp(callOp, newCallResults);
|
|
} else {
|
|
// The TODO is duplicated here to make sure this part
|
|
// handles the stackrestore insertion properly, if
|
|
// we add support for multiple call results.
|
|
TODO(loc, "multiple results not supported yet");
|
|
}
|
|
}
|
|
|
|
// Result type fixup for ComplexType.
|
|
template <typename Ty>
|
|
void lowerComplexSignatureRes(
|
|
mlir::Location loc, mlir::ComplexType cmplx, Ty &newResTys,
|
|
fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs) {
|
|
if (noComplexConversion) {
|
|
newResTys.push_back(cmplx);
|
|
return;
|
|
}
|
|
for (auto &tup :
|
|
specifics->complexReturnType(loc, cmplx.getElementType())) {
|
|
auto argTy = std::get<mlir::Type>(tup);
|
|
if (std::get<fir::CodeGenSpecifics::Attributes>(tup).isSRet())
|
|
newInTyAndAttrs.push_back(tup);
|
|
else
|
|
newResTys.push_back(argTy);
|
|
}
|
|
}
|
|
|
|
// Argument type fixup for ComplexType.
|
|
void lowerComplexSignatureArg(
|
|
mlir::Location loc, mlir::ComplexType cmplx,
|
|
fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs) {
|
|
if (noComplexConversion) {
|
|
newInTyAndAttrs.push_back(fir::CodeGenSpecifics::getTypeAndAttr(cmplx));
|
|
} else {
|
|
auto cplxArgs =
|
|
specifics->complexArgumentType(loc, cmplx.getElementType());
|
|
newInTyAndAttrs.insert(newInTyAndAttrs.end(), cplxArgs.begin(),
|
|
cplxArgs.end());
|
|
}
|
|
}
|
|
|
|
template <typename Ty>
|
|
void
|
|
lowerStructSignatureRes(mlir::Location loc, fir::RecordType recTy,
|
|
Ty &newResTys,
|
|
fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs) {
|
|
if (noComplexConversion) {
|
|
newResTys.push_back(recTy);
|
|
return;
|
|
} else {
|
|
for (auto &tup : specifics->structReturnType(loc, recTy)) {
|
|
if (std::get<fir::CodeGenSpecifics::Attributes>(tup).isSRet())
|
|
newInTyAndAttrs.push_back(tup);
|
|
else
|
|
newResTys.push_back(std::get<mlir::Type>(tup));
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
lowerStructSignatureArg(mlir::Location loc, fir::RecordType recTy,
|
|
fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs) {
|
|
if (noStructConversion) {
|
|
newInTyAndAttrs.push_back(fir::CodeGenSpecifics::getTypeAndAttr(recTy));
|
|
return;
|
|
}
|
|
auto structArgs =
|
|
specifics->structArgumentType(loc, recTy, newInTyAndAttrs);
|
|
newInTyAndAttrs.insert(newInTyAndAttrs.end(), structArgs.begin(),
|
|
structArgs.end());
|
|
}
|
|
|
|
llvm::SmallVector<mlir::Type>
|
|
toTypeList(const fir::CodeGenSpecifics::Marshalling &marshalled) {
|
|
llvm::SmallVector<mlir::Type> typeList;
|
|
for (auto &typeAndAttr : marshalled)
|
|
typeList.emplace_back(std::get<mlir::Type>(typeAndAttr));
|
|
return typeList;
|
|
}
|
|
|
|
/// Taking the address of a function. Modify the signature as needed.
|
|
void convertAddrOp(fir::AddrOfOp addrOp) {
|
|
rewriter->setInsertionPoint(addrOp);
|
|
auto addrTy = mlir::cast<mlir::FunctionType>(addrOp.getType());
|
|
fir::CodeGenSpecifics::Marshalling newInTyAndAttrs;
|
|
llvm::SmallVector<mlir::Type> newResTys;
|
|
auto loc = addrOp.getLoc();
|
|
for (mlir::Type ty : addrTy.getResults()) {
|
|
llvm::TypeSwitch<mlir::Type>(ty)
|
|
.Case<mlir::ComplexType>([&](mlir::ComplexType ty) {
|
|
lowerComplexSignatureRes(loc, ty, newResTys, newInTyAndAttrs);
|
|
})
|
|
.Case<fir::RecordType>([&](fir::RecordType ty) {
|
|
lowerStructSignatureRes(loc, ty, newResTys, newInTyAndAttrs);
|
|
})
|
|
.Default([&](mlir::Type ty) { newResTys.push_back(ty); });
|
|
}
|
|
llvm::SmallVector<mlir::Type> trailingInTys;
|
|
for (mlir::Type ty : addrTy.getInputs()) {
|
|
llvm::TypeSwitch<mlir::Type>(ty)
|
|
.Case<fir::BoxCharType>([&](auto box) {
|
|
if (noCharacterConversion) {
|
|
newInTyAndAttrs.push_back(
|
|
fir::CodeGenSpecifics::getTypeAndAttr(box));
|
|
} else {
|
|
for (auto &tup : specifics->boxcharArgumentType(box.getEleTy())) {
|
|
auto attr = std::get<fir::CodeGenSpecifics::Attributes>(tup);
|
|
auto argTy = std::get<mlir::Type>(tup);
|
|
if (attr.isAppend())
|
|
trailingInTys.push_back(argTy);
|
|
else
|
|
newInTyAndAttrs.push_back(tup);
|
|
}
|
|
}
|
|
})
|
|
.Case<mlir::ComplexType>([&](mlir::ComplexType ty) {
|
|
lowerComplexSignatureArg(loc, ty, newInTyAndAttrs);
|
|
})
|
|
.Case<mlir::TupleType>([&](mlir::TupleType tuple) {
|
|
if (fir::isCharacterProcedureTuple(tuple)) {
|
|
newInTyAndAttrs.push_back(
|
|
fir::CodeGenSpecifics::getTypeAndAttr(tuple.getType(0)));
|
|
trailingInTys.push_back(tuple.getType(1));
|
|
} else {
|
|
newInTyAndAttrs.push_back(
|
|
fir::CodeGenSpecifics::getTypeAndAttr(ty));
|
|
}
|
|
})
|
|
.template Case<fir::RecordType>([&](fir::RecordType recTy) {
|
|
lowerStructSignatureArg(loc, recTy, newInTyAndAttrs);
|
|
})
|
|
.Default([&](mlir::Type ty) {
|
|
newInTyAndAttrs.push_back(
|
|
fir::CodeGenSpecifics::getTypeAndAttr(ty));
|
|
});
|
|
}
|
|
llvm::SmallVector<mlir::Type> newInTypes = toTypeList(newInTyAndAttrs);
|
|
// append trailing input types
|
|
newInTypes.insert(newInTypes.end(), trailingInTys.begin(),
|
|
trailingInTys.end());
|
|
// replace this op with a new one with the updated signature
|
|
auto newTy = rewriter->getFunctionType(newInTypes, newResTys);
|
|
auto newOp = rewriter->create<fir::AddrOfOp>(addrOp.getLoc(), newTy,
|
|
addrOp.getSymbol());
|
|
replaceOp(addrOp, newOp.getResult());
|
|
}
|
|
|
|
/// Convert the type signatures on all the functions present in the module.
|
|
/// As the type signature is being changed, this must also update the
|
|
/// function itself to use any new arguments, etc.
|
|
llvm::LogicalResult convertTypes(mlir::ModuleOp mod) {
|
|
mlir::MLIRContext *ctx = mod->getContext();
|
|
auto targetCPU = specifics->getTargetCPU();
|
|
mlir::StringAttr targetCPUAttr =
|
|
targetCPU.empty() ? nullptr : mlir::StringAttr::get(ctx, targetCPU);
|
|
auto tuneCPU = specifics->getTuneCPU();
|
|
mlir::StringAttr tuneCPUAttr =
|
|
tuneCPU.empty() ? nullptr : mlir::StringAttr::get(ctx, tuneCPU);
|
|
auto targetFeaturesAttr = specifics->getTargetFeatures();
|
|
|
|
for (auto fn : mod.getOps<mlir::func::FuncOp>()) {
|
|
if (targetCPUAttr)
|
|
fn->setAttr("target_cpu", targetCPUAttr);
|
|
|
|
if (tuneCPUAttr)
|
|
fn->setAttr("tune_cpu", tuneCPUAttr);
|
|
|
|
if (targetFeaturesAttr)
|
|
fn->setAttr("target_features", targetFeaturesAttr);
|
|
|
|
convertSignature<mlir::func::ReturnOp, mlir::func::FuncOp>(fn);
|
|
}
|
|
|
|
for (auto gpuMod : mod.getOps<mlir::gpu::GPUModuleOp>()) {
|
|
for (auto fn : gpuMod.getOps<mlir::func::FuncOp>())
|
|
convertSignature<mlir::func::ReturnOp, mlir::func::FuncOp>(fn);
|
|
for (auto fn : gpuMod.getOps<mlir::gpu::GPUFuncOp>())
|
|
convertSignature<mlir::gpu::ReturnOp, mlir::gpu::GPUFuncOp>(fn);
|
|
}
|
|
|
|
return mlir::success();
|
|
}
|
|
|
|
// Returns true if the function should be interoperable with C.
|
|
static bool isFuncWithCCallingConvention(mlir::Operation *op) {
|
|
auto funcOp = mlir::dyn_cast<mlir::func::FuncOp>(op);
|
|
if (!funcOp)
|
|
return false;
|
|
return op->hasAttrOfType<mlir::UnitAttr>(
|
|
fir::FIROpsDialect::getFirRuntimeAttrName()) ||
|
|
op->hasAttrOfType<mlir::StringAttr>(fir::getSymbolAttrName());
|
|
}
|
|
|
|
/// If the signature does not need any special target-specific conversions,
|
|
/// then it is considered portable for any target, and this function will
|
|
/// return `true`. Otherwise, the signature is not portable and `false` is
|
|
/// returned.
|
|
bool hasPortableSignature(mlir::Type signature, mlir::Operation *op) {
|
|
assert(mlir::isa<mlir::FunctionType>(signature));
|
|
auto func = mlir::dyn_cast<mlir::FunctionType>(signature);
|
|
bool hasCCallingConv = isFuncWithCCallingConvention(op);
|
|
for (auto ty : func.getResults())
|
|
if ((mlir::isa<fir::BoxCharType>(ty) && !noCharacterConversion) ||
|
|
(fir::isa_complex(ty) && !noComplexConversion) ||
|
|
(mlir::isa<mlir::IntegerType>(ty) && hasCCallingConv) ||
|
|
(mlir::isa<fir::RecordType>(ty) && !noStructConversion)) {
|
|
LLVM_DEBUG(llvm::dbgs() << "rewrite " << signature << " for target\n");
|
|
return false;
|
|
}
|
|
for (auto ty : func.getInputs())
|
|
if (((mlir::isa<fir::BoxCharType>(ty) ||
|
|
fir::isCharacterProcedureTuple(ty)) &&
|
|
!noCharacterConversion) ||
|
|
(fir::isa_complex(ty) && !noComplexConversion) ||
|
|
(mlir::isa<mlir::IntegerType>(ty) && hasCCallingConv) ||
|
|
(mlir::isa<fir::RecordType>(ty) && !noStructConversion)) {
|
|
LLVM_DEBUG(llvm::dbgs() << "rewrite " << signature << " for target\n");
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Determine if the signature has host associations. The host association
|
|
/// argument may need special target specific rewriting.
|
|
template <typename OpTy>
|
|
static bool hasHostAssociations(OpTy func) {
|
|
std::size_t end = func.getFunctionType().getInputs().size();
|
|
for (std::size_t i = 0; i < end; ++i)
|
|
if (func.template getArgAttrOfType<mlir::UnitAttr>(
|
|
i, fir::getHostAssocAttrName()))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// Rewrite the signatures and body of the `FuncOp`s in the module for
|
|
/// the immediately subsequent target code gen.
|
|
template <typename ReturnOpTy, typename FuncOpTy>
|
|
void convertSignature(FuncOpTy func) {
|
|
auto funcTy = mlir::cast<mlir::FunctionType>(func.getFunctionType());
|
|
if (hasPortableSignature(funcTy, func) && !hasHostAssociations(func))
|
|
return;
|
|
llvm::SmallVector<mlir::Type> newResTys;
|
|
fir::CodeGenSpecifics::Marshalling newInTyAndAttrs;
|
|
llvm::SmallVector<std::pair<unsigned, mlir::NamedAttribute>> savedAttrs;
|
|
llvm::SmallVector<std::pair<unsigned, mlir::NamedAttribute>> extraAttrs;
|
|
llvm::SmallVector<FixupTy> fixups;
|
|
llvm::SmallVector<std::pair<unsigned, mlir::NamedAttrList>, 1> resultAttrs;
|
|
|
|
// Save argument attributes in case there is a shift so we can replace them
|
|
// correctly.
|
|
for (auto e : llvm::enumerate(funcTy.getInputs())) {
|
|
unsigned index = e.index();
|
|
llvm::ArrayRef<mlir::NamedAttribute> attrs =
|
|
mlir::function_interface_impl::getArgAttrs(func, index);
|
|
for (mlir::NamedAttribute attr : attrs) {
|
|
savedAttrs.push_back({index, attr});
|
|
}
|
|
}
|
|
|
|
// Convert return value(s)
|
|
for (auto ty : funcTy.getResults())
|
|
llvm::TypeSwitch<mlir::Type>(ty)
|
|
.template Case<mlir::ComplexType>([&](mlir::ComplexType cmplx) {
|
|
if (noComplexConversion)
|
|
newResTys.push_back(cmplx);
|
|
else
|
|
doComplexReturn(func, cmplx, newResTys, newInTyAndAttrs, fixups);
|
|
})
|
|
.template Case<mlir::IntegerType>([&](mlir::IntegerType intTy) {
|
|
auto m = specifics->integerArgumentType(func.getLoc(), intTy);
|
|
assert(m.size() == 1);
|
|
auto attr = std::get<fir::CodeGenSpecifics::Attributes>(m[0]);
|
|
auto retTy = std::get<mlir::Type>(m[0]);
|
|
std::size_t resId = newResTys.size();
|
|
llvm::StringRef extensionAttrName = attr.getIntExtensionAttrName();
|
|
if (!extensionAttrName.empty() &&
|
|
isFuncWithCCallingConvention(func))
|
|
resultAttrs.emplace_back(
|
|
resId, rewriter->getNamedAttr(extensionAttrName,
|
|
rewriter->getUnitAttr()));
|
|
newResTys.push_back(retTy);
|
|
})
|
|
.template Case<fir::RecordType>([&](fir::RecordType recTy) {
|
|
doStructReturn(func, recTy, newResTys, newInTyAndAttrs, fixups);
|
|
})
|
|
.Default([&](mlir::Type ty) { newResTys.push_back(ty); });
|
|
|
|
// Saved potential shift in argument. Handling of result can add arguments
|
|
// at the beginning of the function signature.
|
|
unsigned argumentShift = newInTyAndAttrs.size();
|
|
|
|
// Convert arguments
|
|
llvm::SmallVector<mlir::Type> trailingTys;
|
|
for (auto e : llvm::enumerate(funcTy.getInputs())) {
|
|
auto ty = e.value();
|
|
unsigned index = e.index();
|
|
llvm::TypeSwitch<mlir::Type>(ty)
|
|
.template Case<fir::BoxCharType>([&](fir::BoxCharType boxTy) {
|
|
if (noCharacterConversion) {
|
|
newInTyAndAttrs.push_back(
|
|
fir::CodeGenSpecifics::getTypeAndAttr(boxTy));
|
|
} else {
|
|
// Convert a CHARACTER argument type. This can involve separating
|
|
// the pointer and the LEN into two arguments and moving the LEN
|
|
// argument to the end of the arg list.
|
|
for (auto &tup :
|
|
specifics->boxcharArgumentType(boxTy.getEleTy())) {
|
|
auto attr = std::get<fir::CodeGenSpecifics::Attributes>(tup);
|
|
auto argTy = std::get<mlir::Type>(tup);
|
|
if (attr.isAppend()) {
|
|
trailingTys.push_back(argTy);
|
|
} else {
|
|
fixups.emplace_back(FixupTy::Codes::Trailing,
|
|
newInTyAndAttrs.size(),
|
|
trailingTys.size());
|
|
newInTyAndAttrs.push_back(tup);
|
|
}
|
|
}
|
|
}
|
|
})
|
|
.template Case<mlir::ComplexType>([&](mlir::ComplexType cmplx) {
|
|
doComplexArg(func, cmplx, newInTyAndAttrs, fixups);
|
|
})
|
|
.template Case<mlir::TupleType>([&](mlir::TupleType tuple) {
|
|
if (fir::isCharacterProcedureTuple(tuple)) {
|
|
fixups.emplace_back(FixupTy::Codes::TrailingCharProc,
|
|
newInTyAndAttrs.size(), trailingTys.size());
|
|
newInTyAndAttrs.push_back(
|
|
fir::CodeGenSpecifics::getTypeAndAttr(tuple.getType(0)));
|
|
trailingTys.push_back(tuple.getType(1));
|
|
} else {
|
|
newInTyAndAttrs.push_back(
|
|
fir::CodeGenSpecifics::getTypeAndAttr(ty));
|
|
}
|
|
})
|
|
.template Case<mlir::IntegerType>([&](mlir::IntegerType intTy) {
|
|
auto m = specifics->integerArgumentType(func.getLoc(), intTy);
|
|
assert(m.size() == 1);
|
|
auto attr = std::get<fir::CodeGenSpecifics::Attributes>(m[0]);
|
|
auto argNo = newInTyAndAttrs.size();
|
|
llvm::StringRef extensionAttrName = attr.getIntExtensionAttrName();
|
|
if (!extensionAttrName.empty() &&
|
|
isFuncWithCCallingConvention(func))
|
|
fixups.emplace_back(FixupTy::Codes::ArgumentType, argNo,
|
|
[=](FuncOpTy func) {
|
|
func.setArgAttr(
|
|
argNo, extensionAttrName,
|
|
mlir::UnitAttr::get(func.getContext()));
|
|
});
|
|
|
|
newInTyAndAttrs.push_back(m[0]);
|
|
})
|
|
.template Case<fir::RecordType>([&](fir::RecordType recTy) {
|
|
doStructArg(func, recTy, newInTyAndAttrs, fixups);
|
|
})
|
|
.Default([&](mlir::Type ty) {
|
|
newInTyAndAttrs.push_back(
|
|
fir::CodeGenSpecifics::getTypeAndAttr(ty));
|
|
});
|
|
|
|
if (func.template getArgAttrOfType<mlir::UnitAttr>(
|
|
index, fir::getHostAssocAttrName())) {
|
|
extraAttrs.push_back(
|
|
{newInTyAndAttrs.size() - 1,
|
|
rewriter->getNamedAttr("llvm.nest", rewriter->getUnitAttr())});
|
|
}
|
|
}
|
|
|
|
if (!func.empty()) {
|
|
// If the function has a body, then apply the fixups to the arguments and
|
|
// return ops as required. These fixups are done in place.
|
|
auto loc = func.getLoc();
|
|
const auto fixupSize = fixups.size();
|
|
const auto oldArgTys = func.getFunctionType().getInputs();
|
|
int offset = 0;
|
|
for (std::remove_const_t<decltype(fixupSize)> i = 0; i < fixupSize; ++i) {
|
|
const auto &fixup = fixups[i];
|
|
mlir::Type fixupType =
|
|
fixup.index < newInTyAndAttrs.size()
|
|
? std::get<mlir::Type>(newInTyAndAttrs[fixup.index])
|
|
: mlir::Type{};
|
|
switch (fixup.code) {
|
|
case FixupTy::Codes::ArgumentAsLoad: {
|
|
// Argument was pass-by-value, but is now pass-by-reference and
|
|
// possibly with a different element type.
|
|
auto newArg =
|
|
func.front().insertArgument(fixup.index, fixupType, loc);
|
|
rewriter->setInsertionPointToStart(&func.front());
|
|
auto oldArgTy =
|
|
fir::ReferenceType::get(oldArgTys[fixup.index - offset]);
|
|
auto cast = rewriter->create<fir::ConvertOp>(loc, oldArgTy, newArg);
|
|
auto load = rewriter->create<fir::LoadOp>(loc, cast);
|
|
func.getArgument(fixup.index + 1).replaceAllUsesWith(load);
|
|
func.front().eraseArgument(fixup.index + 1);
|
|
} break;
|
|
case FixupTy::Codes::ArgumentType: {
|
|
// Argument is pass-by-value, but its type has likely been modified to
|
|
// suit the target ABI convention.
|
|
auto oldArgTy = oldArgTys[fixup.index - offset];
|
|
// If type did not change, keep the original argument.
|
|
if (fixupType == oldArgTy)
|
|
break;
|
|
|
|
auto newArg =
|
|
func.front().insertArgument(fixup.index, fixupType, loc);
|
|
rewriter->setInsertionPointToStart(&func.front());
|
|
mlir::Value bitcast = convertValueInMemory(loc, newArg, oldArgTy,
|
|
/*inputMayBeBigger=*/true);
|
|
func.getArgument(fixup.index + 1).replaceAllUsesWith(bitcast);
|
|
func.front().eraseArgument(fixup.index + 1);
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "old argument: " << oldArgTy << ", repl: " << bitcast
|
|
<< ", new argument: "
|
|
<< func.getArgument(fixup.index).getType() << '\n');
|
|
} break;
|
|
case FixupTy::Codes::CharPair: {
|
|
// The FIR boxchar argument has been split into a pair of distinct
|
|
// arguments that are in juxtaposition to each other.
|
|
auto newArg =
|
|
func.front().insertArgument(fixup.index, fixupType, loc);
|
|
if (fixup.second == 1) {
|
|
rewriter->setInsertionPointToStart(&func.front());
|
|
auto boxTy = oldArgTys[fixup.index - offset - fixup.second];
|
|
auto box = rewriter->create<fir::EmboxCharOp>(
|
|
loc, boxTy, func.front().getArgument(fixup.index - 1), newArg);
|
|
func.getArgument(fixup.index + 1).replaceAllUsesWith(box);
|
|
func.front().eraseArgument(fixup.index + 1);
|
|
offset++;
|
|
}
|
|
} break;
|
|
case FixupTy::Codes::ReturnAsStore: {
|
|
// The value being returned is now being returned in memory (callee
|
|
// stack space) through a hidden reference argument.
|
|
auto newArg =
|
|
func.front().insertArgument(fixup.index, fixupType, loc);
|
|
offset++;
|
|
func.walk([&](ReturnOpTy ret) {
|
|
rewriter->setInsertionPoint(ret);
|
|
auto oldOper = ret.getOperand(0);
|
|
auto oldOperTy = fir::ReferenceType::get(oldOper.getType());
|
|
auto cast =
|
|
rewriter->create<fir::ConvertOp>(loc, oldOperTy, newArg);
|
|
rewriter->create<fir::StoreOp>(loc, oldOper, cast);
|
|
rewriter->create<ReturnOpTy>(loc);
|
|
ret.erase();
|
|
});
|
|
} break;
|
|
case FixupTy::Codes::ReturnType: {
|
|
// The function is still returning a value, but its type has likely
|
|
// changed to suit the target ABI convention.
|
|
func.walk([&](ReturnOpTy ret) {
|
|
rewriter->setInsertionPoint(ret);
|
|
auto oldOper = ret.getOperand(0);
|
|
mlir::Value bitcast =
|
|
convertValueInMemory(loc, oldOper, newResTys[fixup.index],
|
|
/*inputMayBeBigger=*/false);
|
|
rewriter->create<ReturnOpTy>(loc, bitcast);
|
|
ret.erase();
|
|
});
|
|
} break;
|
|
case FixupTy::Codes::Split: {
|
|
// The FIR argument has been split into a pair of distinct arguments
|
|
// that are in juxtaposition to each other. (For COMPLEX value or
|
|
// derived type passed with VALUE in BIND(C) context).
|
|
auto newArg =
|
|
func.front().insertArgument(fixup.index, fixupType, loc);
|
|
if (fixup.second == 1) {
|
|
rewriter->setInsertionPointToStart(&func.front());
|
|
mlir::Value firstArg = func.front().getArgument(fixup.index - 1);
|
|
mlir::Type originalTy =
|
|
oldArgTys[fixup.index - offset - fixup.second];
|
|
mlir::Type pairTy = originalTy;
|
|
if (!fir::isa_complex(originalTy)) {
|
|
pairTy = mlir::TupleType::get(
|
|
originalTy.getContext(),
|
|
mlir::TypeRange{firstArg.getType(), newArg.getType()});
|
|
}
|
|
auto undef = rewriter->create<fir::UndefOp>(loc, pairTy);
|
|
auto iTy = rewriter->getIntegerType(32);
|
|
auto zero = rewriter->getIntegerAttr(iTy, 0);
|
|
auto one = rewriter->getIntegerAttr(iTy, 1);
|
|
mlir::Value pair1 = rewriter->create<fir::InsertValueOp>(
|
|
loc, pairTy, undef, firstArg, rewriter->getArrayAttr(zero));
|
|
mlir::Value pair = rewriter->create<fir::InsertValueOp>(
|
|
loc, pairTy, pair1, newArg, rewriter->getArrayAttr(one));
|
|
// Cast local argument tuple to original type via memory if needed.
|
|
if (pairTy != originalTy)
|
|
pair = convertValueInMemory(loc, pair, originalTy,
|
|
/*inputMayBeBigger=*/true);
|
|
func.getArgument(fixup.index + 1).replaceAllUsesWith(pair);
|
|
func.front().eraseArgument(fixup.index + 1);
|
|
offset++;
|
|
}
|
|
} break;
|
|
case FixupTy::Codes::Trailing: {
|
|
// The FIR argument has been split into a pair of distinct arguments.
|
|
// The first part of the pair appears in the original argument
|
|
// position. The second part of the pair is appended after all the
|
|
// original arguments. (Boxchar arguments.)
|
|
auto newBufArg =
|
|
func.front().insertArgument(fixup.index, fixupType, loc);
|
|
auto newLenArg =
|
|
func.front().addArgument(trailingTys[fixup.second], loc);
|
|
auto boxTy = oldArgTys[fixup.index - offset];
|
|
rewriter->setInsertionPointToStart(&func.front());
|
|
auto box = rewriter->create<fir::EmboxCharOp>(loc, boxTy, newBufArg,
|
|
newLenArg);
|
|
func.getArgument(fixup.index + 1).replaceAllUsesWith(box);
|
|
func.front().eraseArgument(fixup.index + 1);
|
|
} break;
|
|
case FixupTy::Codes::TrailingCharProc: {
|
|
// The FIR character procedure argument tuple must be split into a
|
|
// pair of distinct arguments. The first part of the pair appears in
|
|
// the original argument position. The second part of the pair is
|
|
// appended after all the original arguments.
|
|
auto newProcPointerArg =
|
|
func.front().insertArgument(fixup.index, fixupType, loc);
|
|
auto newLenArg =
|
|
func.front().addArgument(trailingTys[fixup.second], loc);
|
|
auto tupleType = oldArgTys[fixup.index - offset];
|
|
rewriter->setInsertionPointToStart(&func.front());
|
|
fir::FirOpBuilder builder(*rewriter, getModule());
|
|
auto tuple = fir::factory::createCharacterProcedureTuple(
|
|
builder, loc, tupleType, newProcPointerArg, newLenArg);
|
|
func.getArgument(fixup.index + 1).replaceAllUsesWith(tuple);
|
|
func.front().eraseArgument(fixup.index + 1);
|
|
} break;
|
|
}
|
|
}
|
|
}
|
|
|
|
llvm::SmallVector<mlir::Type> newInTypes = toTypeList(newInTyAndAttrs);
|
|
// Set the new type and finalize the arguments, etc.
|
|
newInTypes.insert(newInTypes.end(), trailingTys.begin(), trailingTys.end());
|
|
auto newFuncTy =
|
|
mlir::FunctionType::get(func.getContext(), newInTypes, newResTys);
|
|
LLVM_DEBUG(llvm::dbgs() << "new func: " << newFuncTy << '\n');
|
|
func.setType(newFuncTy);
|
|
|
|
for (std::pair<unsigned, mlir::NamedAttribute> extraAttr : extraAttrs)
|
|
func.setArgAttr(extraAttr.first, extraAttr.second.getName(),
|
|
extraAttr.second.getValue());
|
|
|
|
for (auto [resId, resAttrList] : resultAttrs)
|
|
for (mlir::NamedAttribute resAttr : resAttrList)
|
|
func.setResultAttr(resId, resAttr.getName(), resAttr.getValue());
|
|
|
|
// Replace attributes to the correct argument if there was an argument shift
|
|
// to the right.
|
|
if (argumentShift > 0) {
|
|
for (std::pair<unsigned, mlir::NamedAttribute> savedAttr : savedAttrs) {
|
|
func.removeArgAttr(savedAttr.first, savedAttr.second.getName());
|
|
func.setArgAttr(savedAttr.first + argumentShift,
|
|
savedAttr.second.getName(),
|
|
savedAttr.second.getValue());
|
|
}
|
|
}
|
|
|
|
for (auto &fixup : fixups) {
|
|
if constexpr (std::is_same_v<FuncOpTy, mlir::func::FuncOp>)
|
|
if (fixup.finalizer)
|
|
(*fixup.finalizer)(func);
|
|
if constexpr (std::is_same_v<FuncOpTy, mlir::gpu::GPUFuncOp>)
|
|
if (fixup.gpuFinalizer)
|
|
(*fixup.gpuFinalizer)(func);
|
|
}
|
|
}
|
|
|
|
template <typename OpTy, typename Ty, typename FIXUPS>
|
|
void doReturn(OpTy func, Ty &newResTys,
|
|
fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs,
|
|
FIXUPS &fixups, fir::CodeGenSpecifics::Marshalling &m) {
|
|
assert(m.size() == 1 &&
|
|
"expect result to be turned into single argument or result so far");
|
|
auto &tup = m[0];
|
|
auto attr = std::get<fir::CodeGenSpecifics::Attributes>(tup);
|
|
auto argTy = std::get<mlir::Type>(tup);
|
|
if (attr.isSRet()) {
|
|
unsigned argNo = newInTyAndAttrs.size();
|
|
if (auto align = attr.getAlignment())
|
|
fixups.emplace_back(
|
|
FixupTy::Codes::ReturnAsStore, argNo, [=](OpTy func) {
|
|
auto elemType = fir::dyn_cast_ptrOrBoxEleTy(
|
|
func.getFunctionType().getInput(argNo));
|
|
func.setArgAttr(argNo, "llvm.sret",
|
|
mlir::TypeAttr::get(elemType));
|
|
func.setArgAttr(argNo, "llvm.align",
|
|
rewriter->getIntegerAttr(
|
|
rewriter->getIntegerType(32), align));
|
|
});
|
|
else
|
|
fixups.emplace_back(FixupTy::Codes::ReturnAsStore, argNo,
|
|
[=](OpTy func) {
|
|
auto elemType = fir::dyn_cast_ptrOrBoxEleTy(
|
|
func.getFunctionType().getInput(argNo));
|
|
func.setArgAttr(argNo, "llvm.sret",
|
|
mlir::TypeAttr::get(elemType));
|
|
});
|
|
newInTyAndAttrs.push_back(tup);
|
|
return;
|
|
}
|
|
if (auto align = attr.getAlignment())
|
|
fixups.emplace_back(
|
|
FixupTy::Codes::ReturnType, newResTys.size(), [=](OpTy func) {
|
|
func.setArgAttr(
|
|
newResTys.size(), "llvm.align",
|
|
rewriter->getIntegerAttr(rewriter->getIntegerType(32), align));
|
|
});
|
|
else
|
|
fixups.emplace_back(FixupTy::Codes::ReturnType, newResTys.size());
|
|
newResTys.push_back(argTy);
|
|
}
|
|
|
|
/// Convert a complex return value. This can involve converting the return
|
|
/// value to a "hidden" first argument or packing the complex into a wide
|
|
/// GPR.
|
|
template <typename OpTy, typename Ty, typename FIXUPS>
|
|
void doComplexReturn(OpTy func, mlir::ComplexType cmplx, Ty &newResTys,
|
|
fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs,
|
|
FIXUPS &fixups) {
|
|
if (noComplexConversion) {
|
|
newResTys.push_back(cmplx);
|
|
return;
|
|
}
|
|
auto m =
|
|
specifics->complexReturnType(func.getLoc(), cmplx.getElementType());
|
|
doReturn(func, newResTys, newInTyAndAttrs, fixups, m);
|
|
}
|
|
|
|
template <typename OpTy, typename Ty, typename FIXUPS>
|
|
void doStructReturn(OpTy func, fir::RecordType recTy, Ty &newResTys,
|
|
fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs,
|
|
FIXUPS &fixups) {
|
|
if (noStructConversion) {
|
|
newResTys.push_back(recTy);
|
|
return;
|
|
}
|
|
auto m = specifics->structReturnType(func.getLoc(), recTy);
|
|
doReturn(func, newResTys, newInTyAndAttrs, fixups, m);
|
|
}
|
|
|
|
template <typename OpTy, typename FIXUPS>
|
|
void createFuncOpArgFixups(
|
|
OpTy func, fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs,
|
|
fir::CodeGenSpecifics::Marshalling &argsInTys, FIXUPS &fixups) {
|
|
const auto fixupCode = argsInTys.size() > 1 ? FixupTy::Codes::Split
|
|
: FixupTy::Codes::ArgumentType;
|
|
for (auto e : llvm::enumerate(argsInTys)) {
|
|
auto &tup = e.value();
|
|
auto index = e.index();
|
|
auto attr = std::get<fir::CodeGenSpecifics::Attributes>(tup);
|
|
auto argNo = newInTyAndAttrs.size();
|
|
if (attr.isByVal()) {
|
|
if (auto align = attr.getAlignment())
|
|
fixups.emplace_back(FixupTy::Codes::ArgumentAsLoad, argNo,
|
|
[=](OpTy func) {
|
|
auto elemType = fir::dyn_cast_ptrOrBoxEleTy(
|
|
func.getFunctionType().getInput(argNo));
|
|
func.setArgAttr(argNo, "llvm.byval",
|
|
mlir::TypeAttr::get(elemType));
|
|
func.setArgAttr(
|
|
argNo, "llvm.align",
|
|
rewriter->getIntegerAttr(
|
|
rewriter->getIntegerType(32), align));
|
|
});
|
|
else
|
|
fixups.emplace_back(FixupTy::Codes::ArgumentAsLoad,
|
|
newInTyAndAttrs.size(), [=](OpTy func) {
|
|
auto elemType = fir::dyn_cast_ptrOrBoxEleTy(
|
|
func.getFunctionType().getInput(argNo));
|
|
func.setArgAttr(argNo, "llvm.byval",
|
|
mlir::TypeAttr::get(elemType));
|
|
});
|
|
} else {
|
|
if (auto align = attr.getAlignment())
|
|
fixups.emplace_back(
|
|
fixupCode, argNo, index, [=](OpTy func) {
|
|
func.setArgAttr(argNo, "llvm.align",
|
|
rewriter->getIntegerAttr(
|
|
rewriter->getIntegerType(32), align));
|
|
});
|
|
else
|
|
fixups.emplace_back(fixupCode, argNo, index);
|
|
}
|
|
newInTyAndAttrs.push_back(tup);
|
|
}
|
|
}
|
|
|
|
/// Convert a complex argument value. This can involve storing the value to
|
|
/// a temporary memory location or factoring the value into two distinct
|
|
/// arguments.
|
|
template <typename OpTy, typename FIXUPS>
|
|
void doComplexArg(OpTy func, mlir::ComplexType cmplx,
|
|
fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs,
|
|
FIXUPS &fixups) {
|
|
if (noComplexConversion) {
|
|
newInTyAndAttrs.push_back(fir::CodeGenSpecifics::getTypeAndAttr(cmplx));
|
|
return;
|
|
}
|
|
auto cplxArgs =
|
|
specifics->complexArgumentType(func.getLoc(), cmplx.getElementType());
|
|
createFuncOpArgFixups(func, newInTyAndAttrs, cplxArgs, fixups);
|
|
}
|
|
|
|
template <typename OpTy, typename FIXUPS>
|
|
void doStructArg(OpTy func, fir::RecordType recTy,
|
|
fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs,
|
|
FIXUPS &fixups) {
|
|
if (noStructConversion) {
|
|
newInTyAndAttrs.push_back(fir::CodeGenSpecifics::getTypeAndAttr(recTy));
|
|
return;
|
|
}
|
|
auto structArgs =
|
|
specifics->structArgumentType(func.getLoc(), recTy, newInTyAndAttrs);
|
|
createFuncOpArgFixups(func, newInTyAndAttrs, structArgs, fixups);
|
|
}
|
|
|
|
private:
|
|
// Replace `op` and remove it.
|
|
void replaceOp(mlir::Operation *op, mlir::ValueRange newValues) {
|
|
op->replaceAllUsesWith(newValues);
|
|
op->dropAllReferences();
|
|
op->erase();
|
|
}
|
|
|
|
inline void setMembers(fir::CodeGenSpecifics *s, mlir::OpBuilder *r,
|
|
mlir::DataLayout *dl) {
|
|
specifics = s;
|
|
rewriter = r;
|
|
dataLayout = dl;
|
|
}
|
|
|
|
inline void clearMembers() { setMembers(nullptr, nullptr, nullptr); }
|
|
|
|
// Inserts a call to llvm.stacksave at the current insertion
|
|
// point and the given location. Returns the call's result Value.
|
|
inline mlir::Value genStackSave(mlir::Location loc) {
|
|
fir::FirOpBuilder builder(*rewriter, getModule());
|
|
return builder.genStackSave(loc);
|
|
}
|
|
|
|
// Inserts a call to llvm.stackrestore at the current insertion
|
|
// point and the given location and argument.
|
|
inline void genStackRestore(mlir::Location loc, mlir::Value sp) {
|
|
fir::FirOpBuilder builder(*rewriter, getModule());
|
|
return builder.genStackRestore(loc, sp);
|
|
}
|
|
|
|
fir::CodeGenSpecifics *specifics = nullptr;
|
|
mlir::OpBuilder *rewriter = nullptr;
|
|
mlir::DataLayout *dataLayout = nullptr;
|
|
};
|
|
} // namespace
|