Instead of reporting the location of the attribute, let's report the location of the function reference that's passed to the cleanup attribute as the first argument. This is required as the attribute might be coming from a macro which means clang-include-cleaner skips the use as it gets attributed to the header file declaringt the macro and not to the main file. To make this work, we have to add a fake argument to the CleanupAttr constructor so we can pass in the original Expr alongside the function declaration. Fixes #140212
412 lines
16 KiB
C++
412 lines
16 KiB
C++
//===--- WalkAST.cpp - Find declaration references in the AST -------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AnalysisInternal.h"
|
|
#include "clang-include-cleaner/Types.h"
|
|
#include "clang/AST/ASTFwd.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/DeclFriend.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/NestedNameSpecifier.h"
|
|
#include "clang/AST/RecursiveASTVisitor.h"
|
|
#include "clang/AST/TemplateBase.h"
|
|
#include "clang/AST/TemplateName.h"
|
|
#include "clang/AST/Type.h"
|
|
#include "clang/AST/TypeLoc.h"
|
|
#include "clang/Basic/IdentifierTable.h"
|
|
#include "clang/Basic/OperatorKinds.h"
|
|
#include "clang/Basic/SourceLocation.h"
|
|
#include "clang/Basic/Specifiers.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/STLFunctionalExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
|
|
namespace clang::include_cleaner {
|
|
namespace {
|
|
bool isOperatorNewDelete(OverloadedOperatorKind OpKind) {
|
|
return OpKind == OO_New || OpKind == OO_Delete || OpKind == OO_Array_New ||
|
|
OpKind == OO_Array_Delete;
|
|
}
|
|
|
|
using DeclCallback =
|
|
llvm::function_ref<void(SourceLocation, NamedDecl &, RefType)>;
|
|
|
|
class ASTWalker : public RecursiveASTVisitor<ASTWalker> {
|
|
DeclCallback Callback;
|
|
|
|
void report(SourceLocation Loc, NamedDecl *ND,
|
|
RefType RT = RefType::Explicit) {
|
|
if (!ND || Loc.isInvalid())
|
|
return;
|
|
Callback(Loc, *cast<NamedDecl>(ND->getCanonicalDecl()), RT);
|
|
}
|
|
|
|
NamedDecl *resolveTemplateName(TemplateName TN) {
|
|
// For using-templates, only mark the alias.
|
|
if (auto *USD = TN.getAsUsingShadowDecl())
|
|
return USD;
|
|
return TN.getAsTemplateDecl();
|
|
}
|
|
NamedDecl *getMemberProvider(QualType Base) {
|
|
if (Base->isPointerType())
|
|
return getMemberProvider(Base->getPointeeType());
|
|
// Unwrap the sugar ElaboratedType.
|
|
if (const auto *ElTy = dyn_cast<ElaboratedType>(Base))
|
|
return getMemberProvider(ElTy->getNamedType());
|
|
|
|
if (const auto *TT = dyn_cast<TypedefType>(Base))
|
|
return TT->getDecl();
|
|
if (const auto *UT = dyn_cast<UsingType>(Base))
|
|
return UT->getFoundDecl();
|
|
// A heuristic: to resolve a template type to **only** its template name.
|
|
// We're only using this method for the base type of MemberExpr, in general
|
|
// the template provides the member, and the critical case `unique_ptr<Foo>`
|
|
// is supported (the base type is a Foo*).
|
|
//
|
|
// There are some exceptions that this heuristic could fail (dependent base,
|
|
// dependent typealias), but we believe these are rare.
|
|
if (const auto *TST = dyn_cast<TemplateSpecializationType>(Base))
|
|
return resolveTemplateName(TST->getTemplateName());
|
|
return Base->getAsRecordDecl();
|
|
}
|
|
// Templated as TemplateSpecializationType and
|
|
// DeducedTemplateSpecializationType doesn't share a common base.
|
|
template <typename T>
|
|
// Picks the most specific specialization for a
|
|
// (Deduced)TemplateSpecializationType, while prioritizing using-decls.
|
|
NamedDecl *getMostRelevantTemplatePattern(const T *TST) {
|
|
// In case of exported template names always prefer the using-decl. This
|
|
// implies we'll point at the using-decl even when there's an explicit
|
|
// specializaiton using the exported name, but that's rare.
|
|
auto *ND = resolveTemplateName(TST->getTemplateName());
|
|
if (llvm::isa_and_present<UsingShadowDecl, TypeAliasTemplateDecl>(ND))
|
|
return ND;
|
|
// This is the underlying decl used by TemplateSpecializationType, can be
|
|
// null when type is dependent or not resolved to a pattern yet.
|
|
// If so, fallback to primary template.
|
|
CXXRecordDecl *TD = TST->getAsCXXRecordDecl();
|
|
if (!TD || TD->getTemplateSpecializationKind() == TSK_Undeclared)
|
|
return ND;
|
|
// We ignore explicit instantiations. This might imply marking the wrong
|
|
// declaration as used in specific cases, but seems like the right trade-off
|
|
// in general (e.g. we don't want to include a custom library that has an
|
|
// explicit specialization of a common type).
|
|
if (auto *Pat = TD->getTemplateInstantiationPattern())
|
|
return Pat;
|
|
// For explicit specializations, use the specialized decl directly.
|
|
return TD;
|
|
}
|
|
|
|
public:
|
|
ASTWalker(DeclCallback Callback) : Callback(Callback) {}
|
|
|
|
// Operators are almost always ADL extension points and by design references
|
|
// to them doesn't count as uses (generally the type should provide them, so
|
|
// ignore them).
|
|
// Unless we're using an operator defined as a member, in such cases treat
|
|
// these as regular member references.
|
|
bool TraverseCXXOperatorCallExpr(CXXOperatorCallExpr *S) {
|
|
if (!WalkUpFromCXXOperatorCallExpr(S))
|
|
return false;
|
|
if (auto *CD = S->getCalleeDecl()) {
|
|
if (llvm::isa<CXXMethodDecl>(CD)) {
|
|
// Treat this as a regular member reference.
|
|
report(S->getOperatorLoc(), getMemberProvider(S->getArg(0)->getType()),
|
|
RefType::Implicit);
|
|
} else {
|
|
report(S->getOperatorLoc(), llvm::dyn_cast<NamedDecl>(CD),
|
|
RefType::Implicit);
|
|
}
|
|
}
|
|
for (auto *Arg : S->arguments())
|
|
if (!TraverseStmt(Arg))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
bool qualifierIsNamespaceOrNone(DeclRefExpr *DRE) {
|
|
const auto *Qual = DRE->getQualifier();
|
|
if (!Qual)
|
|
return true;
|
|
switch (Qual->getKind()) {
|
|
case NestedNameSpecifier::Namespace:
|
|
case NestedNameSpecifier::NamespaceAlias:
|
|
case NestedNameSpecifier::Global:
|
|
return true;
|
|
case NestedNameSpecifier::TypeSpec:
|
|
case NestedNameSpecifier::Super:
|
|
case NestedNameSpecifier::Identifier:
|
|
return false;
|
|
}
|
|
llvm_unreachable("Unknown value for NestedNameSpecifierKind");
|
|
}
|
|
|
|
bool VisitDeclRefExpr(DeclRefExpr *DRE) {
|
|
auto *FD = DRE->getFoundDecl();
|
|
// Prefer the underlying decl if FoundDecl isn't a shadow decl, e.g:
|
|
// - For templates, found-decl is always primary template, but we want the
|
|
// specializaiton itself.
|
|
if (!llvm::isa<UsingShadowDecl>(FD))
|
|
FD = DRE->getDecl();
|
|
// For refs to non-meber-like decls, use the found decl.
|
|
// For member-like decls, we should have a reference from the qualifier to
|
|
// the container decl instead, which is preferred as it'll handle
|
|
// aliases/exports properly.
|
|
if (!FD->isCXXClassMember() && !llvm::isa<EnumConstantDecl>(FD)) {
|
|
// Global operator new/delete [] is available implicitly in every
|
|
// translation unit, even without including any explicit headers. So treat
|
|
// those as ambigious to not force inclusion in TUs that transitively
|
|
// depend on those.
|
|
RefType RT =
|
|
isOperatorNewDelete(FD->getDeclName().getCXXOverloadedOperator())
|
|
? RefType::Ambiguous
|
|
: RefType::Explicit;
|
|
report(DRE->getLocation(), FD, RT);
|
|
return true;
|
|
}
|
|
// If the ref is without a qualifier, and is a member, ignore it. As it is
|
|
// available in current context due to some other construct (e.g. base
|
|
// specifiers, using decls) that has to spell the name explicitly.
|
|
//
|
|
// If it's an enum constant, it must be due to prior decl. Report references
|
|
// to it when qualifier isn't a type.
|
|
if (llvm::isa<EnumConstantDecl>(FD) && qualifierIsNamespaceOrNone(DRE))
|
|
report(DRE->getLocation(), FD);
|
|
return true;
|
|
}
|
|
|
|
bool VisitMemberExpr(MemberExpr *E) {
|
|
// Reporting a usage of the member decl would cause issues (e.g. force
|
|
// including the base class for inherited members). Instead, we report a
|
|
// usage of the base type of the MemberExpr, so that e.g. code
|
|
// `returnFoo().bar` can keep #include "foo.h" (rather than inserting
|
|
// "bar.h" for the underlying base type `Bar`).
|
|
QualType Type = E->getBase()->IgnoreImpCasts()->getType();
|
|
report(E->getMemberLoc(), getMemberProvider(Type), RefType::Implicit);
|
|
return true;
|
|
}
|
|
bool VisitCXXDependentScopeMemberExpr(CXXDependentScopeMemberExpr *E) {
|
|
report(E->getMemberLoc(), getMemberProvider(E->getBaseType()),
|
|
RefType::Implicit);
|
|
return true;
|
|
}
|
|
|
|
bool VisitCXXConstructExpr(CXXConstructExpr *E) {
|
|
// Always treat consturctor calls as implicit. We'll have an explicit
|
|
// reference for the constructor calls that mention the type-name (through
|
|
// TypeLocs). This reference only matters for cases where there's no
|
|
// explicit syntax at all or there're only braces.
|
|
report(E->getLocation(), getMemberProvider(E->getType()),
|
|
RefType::Implicit);
|
|
return true;
|
|
}
|
|
|
|
bool VisitOverloadExpr(OverloadExpr *E) {
|
|
// Since we can't prove which overloads are used, report all of them.
|
|
for (NamedDecl *D : E->decls())
|
|
report(E->getNameLoc(), D, RefType::Ambiguous);
|
|
return true;
|
|
}
|
|
|
|
// Report all (partial) specializations of a class/var template decl.
|
|
template <typename TemplateDeclType, typename ParitialDeclType>
|
|
void reportSpecializations(SourceLocation Loc, NamedDecl *ND) {
|
|
const auto *TD = llvm::dyn_cast<TemplateDeclType>(ND);
|
|
if (!TD)
|
|
return;
|
|
|
|
for (auto *Spec : TD->specializations())
|
|
report(Loc, Spec, RefType::Ambiguous);
|
|
llvm::SmallVector<ParitialDeclType *> PartialSpecializations;
|
|
TD->getPartialSpecializations(PartialSpecializations);
|
|
for (auto *PartialSpec : PartialSpecializations)
|
|
report(Loc, PartialSpec, RefType::Ambiguous);
|
|
}
|
|
bool VisitUsingDecl(UsingDecl *UD) {
|
|
for (const auto *Shadow : UD->shadows()) {
|
|
auto *TD = Shadow->getTargetDecl();
|
|
// For function-decls, we might have overloads brought in due to
|
|
// transitive dependencies. Hence we only want to report explicit
|
|
// references for those if they're used.
|
|
// But for record decls, spelling of the type always refers to primary
|
|
// decl non-ambiguously. Hence spelling is already a use.
|
|
auto IsUsed = TD->isUsed() || TD->isReferenced() || !TD->getAsFunction();
|
|
report(UD->getLocation(), TD,
|
|
IsUsed ? RefType::Explicit : RefType::Ambiguous);
|
|
|
|
// All (partial) template specializations are visible via a using-decl,
|
|
// However a using-decl only refers to the primary template (per C++ name
|
|
// lookup). Thus, we need to manually report all specializations.
|
|
reportSpecializations<ClassTemplateDecl,
|
|
ClassTemplatePartialSpecializationDecl>(
|
|
UD->getLocation(), TD);
|
|
reportSpecializations<VarTemplateDecl,
|
|
VarTemplatePartialSpecializationDecl>(
|
|
UD->getLocation(), TD);
|
|
if (const auto *FTD = llvm::dyn_cast<FunctionTemplateDecl>(TD))
|
|
for (auto *Spec : FTD->specializations())
|
|
report(UD->getLocation(), Spec, RefType::Ambiguous);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool VisitFunctionDecl(FunctionDecl *FD) {
|
|
// Mark declaration from definition as it needs type-checking.
|
|
if (FD->isThisDeclarationADefinition())
|
|
report(FD->getLocation(), FD);
|
|
// Explicit specializaiton/instantiations of a function template requires
|
|
// primary template.
|
|
if (clang::isTemplateExplicitInstantiationOrSpecialization(
|
|
FD->getTemplateSpecializationKind()))
|
|
report(FD->getLocation(), FD->getPrimaryTemplate());
|
|
return true;
|
|
}
|
|
bool VisitVarDecl(VarDecl *VD) {
|
|
// Ignore the parameter decl itself (its children were handled elsewhere),
|
|
// as they don't contribute to the main-file #include.
|
|
if (llvm::isa<ParmVarDecl>(VD))
|
|
return true;
|
|
// Mark declaration from definition as it needs type-checking.
|
|
if (VD->isThisDeclarationADefinition())
|
|
report(VD->getLocation(), VD);
|
|
return true;
|
|
}
|
|
|
|
bool VisitEnumDecl(EnumDecl *D) {
|
|
// Definition of an enum with an underlying type references declaration for
|
|
// type-checking purposes.
|
|
if (D->isThisDeclarationADefinition() && D->getIntegerTypeSourceInfo())
|
|
report(D->getLocation(), D);
|
|
return true;
|
|
}
|
|
|
|
bool VisitFriendDecl(FriendDecl *D) {
|
|
// We already visit the TypeLoc properly, but need to special case the decl
|
|
// case.
|
|
if (auto *FD = D->getFriendDecl())
|
|
report(D->getLocation(), FD);
|
|
return true;
|
|
}
|
|
|
|
bool VisitConceptReference(const ConceptReference *CR) {
|
|
report(CR->getConceptNameLoc(), CR->getFoundDecl());
|
|
return true;
|
|
}
|
|
|
|
// Report a reference from explicit specializations/instantiations to the
|
|
// specialized template. Implicit ones are filtered out by RAV.
|
|
bool
|
|
VisitClassTemplateSpecializationDecl(ClassTemplateSpecializationDecl *CTSD) {
|
|
if (clang::isTemplateExplicitInstantiationOrSpecialization(
|
|
CTSD->getTemplateSpecializationKind()))
|
|
report(CTSD->getLocation(),
|
|
CTSD->getSpecializedTemplate()->getTemplatedDecl());
|
|
return true;
|
|
}
|
|
bool VisitVarTemplateSpecializationDecl(VarTemplateSpecializationDecl *VTSD) {
|
|
if (clang::isTemplateExplicitInstantiationOrSpecialization(
|
|
VTSD->getTemplateSpecializationKind()))
|
|
report(VTSD->getLocation(),
|
|
VTSD->getSpecializedTemplate()->getTemplatedDecl());
|
|
return true;
|
|
}
|
|
|
|
bool VisitCleanupAttr(CleanupAttr *attr) {
|
|
report(attr->getArgLoc(), attr->getFunctionDecl());
|
|
return true;
|
|
}
|
|
|
|
// TypeLoc visitors.
|
|
void reportType(SourceLocation RefLoc, NamedDecl *ND) {
|
|
// Reporting explicit references to types nested inside classes can cause
|
|
// issues, e.g. a type accessed through a derived class shouldn't require
|
|
// inclusion of the base.
|
|
// Hence we report all such references as implicit. The code must spell the
|
|
// outer type-location somewhere, which will trigger an explicit reference
|
|
// and per IWYS, it's that spelling's responsibility to bring in necessary
|
|
// declarations.
|
|
RefType RT = llvm::isa<RecordDecl>(ND->getDeclContext())
|
|
? RefType::Implicit
|
|
: RefType::Explicit;
|
|
return report(RefLoc, ND, RT);
|
|
}
|
|
|
|
bool VisitUsingTypeLoc(UsingTypeLoc TL) {
|
|
reportType(TL.getNameLoc(), TL.getFoundDecl());
|
|
return true;
|
|
}
|
|
|
|
bool VisitTagTypeLoc(TagTypeLoc TTL) {
|
|
reportType(TTL.getNameLoc(), TTL.getDecl());
|
|
return true;
|
|
}
|
|
|
|
bool VisitTypedefTypeLoc(TypedefTypeLoc TTL) {
|
|
reportType(TTL.getNameLoc(), TTL.getTypedefNameDecl());
|
|
return true;
|
|
}
|
|
|
|
bool VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
|
|
reportType(TL.getTemplateNameLoc(),
|
|
getMostRelevantTemplatePattern(TL.getTypePtr()));
|
|
return true;
|
|
}
|
|
|
|
bool VisitDeducedTemplateSpecializationTypeLoc(
|
|
DeducedTemplateSpecializationTypeLoc TL) {
|
|
reportType(TL.getTemplateNameLoc(),
|
|
getMostRelevantTemplatePattern(TL.getTypePtr()));
|
|
return true;
|
|
}
|
|
|
|
bool TraverseTemplateArgumentLoc(const TemplateArgumentLoc &TL) {
|
|
auto &Arg = TL.getArgument();
|
|
// Template-template parameters require special attention, as there's no
|
|
// TemplateNameLoc.
|
|
if (Arg.getKind() == TemplateArgument::Template ||
|
|
Arg.getKind() == TemplateArgument::TemplateExpansion) {
|
|
report(TL.getLocation(),
|
|
resolveTemplateName(Arg.getAsTemplateOrTemplatePattern()));
|
|
return true;
|
|
}
|
|
return RecursiveASTVisitor::TraverseTemplateArgumentLoc(TL);
|
|
}
|
|
|
|
bool VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
|
|
// Reliance on initializer_lists requires std::initializer_list to be
|
|
// visible per standard. So report a reference to it, otherwise include of
|
|
// `<initializer_list>` might not receive any use.
|
|
report(E->getExprLoc(),
|
|
const_cast<CXXRecordDecl *>(E->getBestDynamicClassType()),
|
|
RefType::Implicit);
|
|
return true;
|
|
}
|
|
|
|
bool VisitCXXNewExpr(CXXNewExpr *E) {
|
|
report(E->getExprLoc(), E->getOperatorNew(), RefType::Ambiguous);
|
|
return true;
|
|
}
|
|
bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
|
|
report(E->getExprLoc(), E->getOperatorDelete(), RefType::Ambiguous);
|
|
return true;
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
void walkAST(Decl &Root, DeclCallback Callback) {
|
|
ASTWalker(Callback).TraverseDecl(&Root);
|
|
}
|
|
|
|
} // namespace clang::include_cleaner
|