With this PR, if we have customized implementation for scalar or vector length = 2, we don't need to write new macros, e.g. https://github.com/intel/llvm/blob/fb18321705f6/libclc/clc/include/clc/clcmacro.h#L15 Undef __HALF_ONLY, __FLOAT_ONLY and __DOUBLE_ONLY at the end of clc/include/clc/math/gentype.inc llvm-diff shows no change to nvptx64--nvidiacl.bc and amdgcn--amdhsa.bc
198 lines
5.1 KiB
Common Lisp
198 lines
5.1 KiB
Common Lisp
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include <clc/clc_convert.h>
|
|
#include <clc/clcmacro.h>
|
|
#include <clc/integer/clc_clz.h>
|
|
#include <clc/internal/clc.h>
|
|
#include <clc/math/clc_floor.h>
|
|
#include <clc/math/clc_fma.h>
|
|
#include <clc/math/clc_ldexp.h>
|
|
#include <clc/math/clc_trunc.h>
|
|
#include <clc/math/math.h>
|
|
#include <clc/shared/clc_max.h>
|
|
|
|
_CLC_DEF _CLC_OVERLOAD float __clc_fmod(float x, float y) {
|
|
int ux = __clc_as_int(x);
|
|
int ax = ux & EXSIGNBIT_SP32;
|
|
float xa = __clc_as_float(ax);
|
|
int sx = ux ^ ax;
|
|
int ex = ax >> EXPSHIFTBITS_SP32;
|
|
|
|
int uy = __clc_as_int(y);
|
|
int ay = uy & EXSIGNBIT_SP32;
|
|
float ya = __clc_as_float(ay);
|
|
int ey = ay >> EXPSHIFTBITS_SP32;
|
|
|
|
float xr = __clc_as_float(0x3f800000 | (ax & 0x007fffff));
|
|
float yr = __clc_as_float(0x3f800000 | (ay & 0x007fffff));
|
|
int c;
|
|
int k = ex - ey;
|
|
|
|
while (k > 0) {
|
|
c = xr >= yr;
|
|
xr -= c ? yr : 0.0f;
|
|
xr += xr;
|
|
--k;
|
|
}
|
|
|
|
c = xr >= yr;
|
|
xr -= c ? yr : 0.0f;
|
|
|
|
int lt = ex < ey;
|
|
|
|
xr = lt ? xa : xr;
|
|
yr = lt ? ya : yr;
|
|
|
|
float s = __clc_as_float(ey << EXPSHIFTBITS_SP32);
|
|
xr *= lt ? 1.0f : s;
|
|
|
|
c = ax == ay;
|
|
xr = c ? 0.0f : xr;
|
|
|
|
xr = __clc_as_float(sx ^ __clc_as_int(xr));
|
|
|
|
c = ax > PINFBITPATT_SP32 | ay > PINFBITPATT_SP32 | ax == PINFBITPATT_SP32 |
|
|
ay == 0;
|
|
xr = c ? __clc_as_float(QNANBITPATT_SP32) : xr;
|
|
|
|
return xr;
|
|
}
|
|
|
|
#define __FLOAT_ONLY
|
|
#define FUNCTION __clc_fmod
|
|
#define __CLC_BODY <clc/shared/binary_def_scalarize.inc>
|
|
#include <clc/math/gentype.inc>
|
|
#undef FUNCTION
|
|
|
|
#ifdef cl_khr_fp64
|
|
|
|
#pragma OPENCL EXTENSION cl_khr_fp64 : enable
|
|
|
|
_CLC_DEF _CLC_OVERLOAD double __clc_fmod(double x, double y) {
|
|
ulong ux = __clc_as_ulong(x);
|
|
ulong ax = ux & ~SIGNBIT_DP64;
|
|
ulong xsgn = ux ^ ax;
|
|
double dx = __clc_as_double(ax);
|
|
int xexp = __clc_convert_int(ax >> EXPSHIFTBITS_DP64);
|
|
int xexp1 = 11 - (int)__clc_clz(ax & MANTBITS_DP64);
|
|
xexp1 = xexp < 1 ? xexp1 : xexp;
|
|
|
|
ulong uy = __clc_as_ulong(y);
|
|
ulong ay = uy & ~SIGNBIT_DP64;
|
|
double dy = __clc_as_double(ay);
|
|
int yexp = __clc_convert_int(ay >> EXPSHIFTBITS_DP64);
|
|
int yexp1 = 11 - (int)__clc_clz(ay & MANTBITS_DP64);
|
|
yexp1 = yexp < 1 ? yexp1 : yexp;
|
|
|
|
// First assume |x| > |y|
|
|
|
|
// Set ntimes to the number of times we need to do a
|
|
// partial remainder. If the exponent of x is an exact multiple
|
|
// of 53 larger than the exponent of y, and the mantissa of x is
|
|
// less than the mantissa of y, ntimes will be one too large
|
|
// but it doesn't matter - it just means that we'll go round
|
|
// the loop below one extra time.
|
|
int ntimes = __clc_max(0, (xexp1 - yexp1) / 53);
|
|
double w = __clc_ldexp(dy, ntimes * 53);
|
|
w = ntimes == 0 ? dy : w;
|
|
double scale = ntimes == 0 ? 1.0 : 0x1.0p-53;
|
|
|
|
// Each time round the loop we compute a partial remainder.
|
|
// This is done by subtracting a large multiple of w
|
|
// from x each time, where w is a scaled up version of y.
|
|
// The subtraction must be performed exactly in quad
|
|
// precision, though the result at each stage can
|
|
// fit exactly in a double precision number.
|
|
int i;
|
|
double t, v, p, pp;
|
|
|
|
for (i = 0; i < ntimes; i++) {
|
|
// Compute integral multiplier
|
|
t = __clc_trunc(dx / w);
|
|
|
|
// Compute w * t in quad precision
|
|
p = w * t;
|
|
pp = __clc_fma(w, t, -p);
|
|
|
|
// Subtract w * t from dx
|
|
v = dx - p;
|
|
dx = v + (((dx - v) - p) - pp);
|
|
|
|
// If t was one too large, dx will be negative. Add back one w.
|
|
dx += dx < 0.0 ? w : 0.0;
|
|
|
|
// Scale w down by 2^(-53) for the next iteration
|
|
w *= scale;
|
|
}
|
|
|
|
// One more time
|
|
// Variable todd says whether the integer t is odd or not
|
|
t = __clc_floor(dx / w);
|
|
long lt = (long)t;
|
|
int todd = lt & 1;
|
|
|
|
p = w * t;
|
|
pp = __clc_fma(w, t, -p);
|
|
v = dx - p;
|
|
dx = v + (((dx - v) - p) - pp);
|
|
i = dx < 0.0;
|
|
todd ^= i;
|
|
dx += i ? w : 0.0;
|
|
|
|
// At this point, dx lies in the range [0,dy)
|
|
double ret = __clc_as_double(xsgn ^ __clc_as_ulong(dx));
|
|
dx = __clc_as_double(ax);
|
|
|
|
// Now handle |x| == |y|
|
|
int c = dx == dy;
|
|
t = __clc_as_double(xsgn);
|
|
ret = c ? t : ret;
|
|
|
|
// Next, handle |x| < |y|
|
|
c = dx < dy;
|
|
ret = c ? x : ret;
|
|
|
|
// We don't need anything special for |x| == 0
|
|
|
|
// |y| is 0
|
|
c = dy == 0.0;
|
|
ret = c ? __clc_as_double(QNANBITPATT_DP64) : ret;
|
|
|
|
// y is +-Inf, NaN
|
|
c = yexp > BIASEDEMAX_DP64;
|
|
t = y == y ? x : y;
|
|
ret = c ? t : ret;
|
|
|
|
// x is +=Inf, NaN
|
|
c = xexp > BIASEDEMAX_DP64;
|
|
ret = c ? __clc_as_double(QNANBITPATT_DP64) : ret;
|
|
|
|
return ret;
|
|
}
|
|
|
|
#define __DOUBLE_ONLY
|
|
#define FUNCTION __clc_fmod
|
|
#define __CLC_BODY <clc/shared/binary_def_scalarize.inc>
|
|
#include <clc/math/gentype.inc>
|
|
#undef FUNCTION
|
|
|
|
#endif
|
|
|
|
#ifdef cl_khr_fp16
|
|
|
|
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
|
|
|
// Forward the half version of this builtin onto the float one
|
|
#define __HALF_ONLY
|
|
#define __CLC_FUNCTION __clc_fmod
|
|
#define __CLC_BODY <clc/math/binary_def_via_fp32.inc>
|
|
#include <clc/math/gentype.inc>
|
|
|
|
#endif
|