With this PR, if we have customized implementation for scalar or vector length = 2, we don't need to write new macros, e.g. https://github.com/intel/llvm/blob/fb18321705f6/libclc/clc/include/clc/clcmacro.h#L15 Undef __HALF_ONLY, __FLOAT_ONLY and __DOUBLE_ONLY at the end of clc/include/clc/math/gentype.inc llvm-diff shows no change to nvptx64--nvidiacl.bc and amdgcn--amdhsa.bc
167 lines
5.2 KiB
Common Lisp
167 lines
5.2 KiB
Common Lisp
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include <clc/clc_as_type.h>
|
|
#include <clc/clcmacro.h>
|
|
#include <clc/float/definitions.h>
|
|
#include <clc/integer/clc_abs.h>
|
|
#include <clc/integer/clc_clz.h>
|
|
#include <clc/integer/definitions.h>
|
|
#include <clc/internal/clc.h>
|
|
#include <clc/math/clc_mad.h>
|
|
#include <clc/math/math.h>
|
|
#include <clc/relational/clc_isinf.h>
|
|
#include <clc/relational/clc_isnan.h>
|
|
#include <clc/shared/clc_max.h>
|
|
|
|
struct fp {
|
|
ulong mantissa;
|
|
int exponent;
|
|
uint sign;
|
|
};
|
|
|
|
_CLC_DEF _CLC_OVERLOAD float __clc_sw_fma(float a, float b, float c) {
|
|
/* special cases */
|
|
if (__clc_isnan(a) || __clc_isnan(b) || __clc_isnan(c) || __clc_isinf(a) ||
|
|
__clc_isinf(b)) {
|
|
return __clc_mad(a, b, c);
|
|
}
|
|
|
|
/* If only c is inf, and both a,b are regular numbers, the result is c*/
|
|
if (__clc_isinf(c)) {
|
|
return c;
|
|
}
|
|
|
|
a = __clc_flush_denormal_if_not_supported(a);
|
|
b = __clc_flush_denormal_if_not_supported(b);
|
|
c = __clc_flush_denormal_if_not_supported(c);
|
|
|
|
if (c == 0) {
|
|
return a * b;
|
|
}
|
|
|
|
struct fp st_a, st_b, st_c;
|
|
|
|
st_a.exponent = a == .0f ? 0 : ((__clc_as_uint(a) & 0x7f800000) >> 23) - 127;
|
|
st_b.exponent = b == .0f ? 0 : ((__clc_as_uint(b) & 0x7f800000) >> 23) - 127;
|
|
st_c.exponent = c == .0f ? 0 : ((__clc_as_uint(c) & 0x7f800000) >> 23) - 127;
|
|
|
|
st_a.mantissa = a == .0f ? 0 : (__clc_as_uint(a) & 0x7fffff) | 0x800000;
|
|
st_b.mantissa = b == .0f ? 0 : (__clc_as_uint(b) & 0x7fffff) | 0x800000;
|
|
st_c.mantissa = c == .0f ? 0 : (__clc_as_uint(c) & 0x7fffff) | 0x800000;
|
|
|
|
st_a.sign = __clc_as_uint(a) & 0x80000000;
|
|
st_b.sign = __clc_as_uint(b) & 0x80000000;
|
|
st_c.sign = __clc_as_uint(c) & 0x80000000;
|
|
|
|
// Multiplication.
|
|
// Move the product to the highest bits to maximize precision
|
|
// mantissa is 24 bits => product is 48 bits, 2bits non-fraction.
|
|
// Add one bit for future addition overflow,
|
|
// add another bit to detect subtraction underflow
|
|
struct fp st_mul;
|
|
st_mul.sign = st_a.sign ^ st_b.sign;
|
|
st_mul.mantissa = (st_a.mantissa * st_b.mantissa) << 14ul;
|
|
st_mul.exponent = st_mul.mantissa ? st_a.exponent + st_b.exponent : 0;
|
|
|
|
// FIXME: Detecting a == 0 || b == 0 above crashed GCN isel
|
|
if (st_mul.exponent == 0 && st_mul.mantissa == 0)
|
|
return c;
|
|
|
|
// Mantissa is 23 fractional bits, shift it the same way as product mantissa
|
|
#define C_ADJUST 37ul
|
|
|
|
// both exponents are bias adjusted
|
|
int exp_diff = st_mul.exponent - st_c.exponent;
|
|
|
|
st_c.mantissa <<= C_ADJUST;
|
|
ulong cutoff_bits = 0;
|
|
ulong cutoff_mask = (1ul << __clc_abs(exp_diff)) - 1ul;
|
|
if (exp_diff > 0) {
|
|
cutoff_bits =
|
|
exp_diff >= 64 ? st_c.mantissa : (st_c.mantissa & cutoff_mask);
|
|
st_c.mantissa = exp_diff >= 64 ? 0 : (st_c.mantissa >> exp_diff);
|
|
} else {
|
|
cutoff_bits =
|
|
-exp_diff >= 64 ? st_mul.mantissa : (st_mul.mantissa & cutoff_mask);
|
|
st_mul.mantissa = -exp_diff >= 64 ? 0 : (st_mul.mantissa >> -exp_diff);
|
|
}
|
|
|
|
struct fp st_fma;
|
|
st_fma.sign = st_mul.sign;
|
|
st_fma.exponent = __clc_max(st_mul.exponent, st_c.exponent);
|
|
if (st_c.sign == st_mul.sign) {
|
|
st_fma.mantissa = st_mul.mantissa + st_c.mantissa;
|
|
} else {
|
|
// cutoff bits borrow one
|
|
st_fma.mantissa =
|
|
st_mul.mantissa - st_c.mantissa -
|
|
(cutoff_bits && (st_mul.exponent > st_c.exponent) ? 1 : 0);
|
|
}
|
|
|
|
// underflow: st_c.sign != st_mul.sign, and magnitude switches the sign
|
|
if (st_fma.mantissa > LONG_MAX) {
|
|
st_fma.mantissa = 0 - st_fma.mantissa;
|
|
st_fma.sign = st_mul.sign ^ 0x80000000;
|
|
}
|
|
|
|
// detect overflow/underflow
|
|
int overflow_bits = 3 - __clc_clz(st_fma.mantissa);
|
|
|
|
// adjust exponent
|
|
st_fma.exponent += overflow_bits;
|
|
|
|
// handle underflow
|
|
if (overflow_bits < 0) {
|
|
st_fma.mantissa <<= -overflow_bits;
|
|
overflow_bits = 0;
|
|
}
|
|
|
|
// rounding
|
|
ulong trunc_mask = (1ul << (C_ADJUST + overflow_bits)) - 1;
|
|
ulong trunc_bits = (st_fma.mantissa & trunc_mask) | (cutoff_bits != 0);
|
|
ulong last_bit = st_fma.mantissa & (1ul << (C_ADJUST + overflow_bits));
|
|
ulong grs_bits = (0x4ul << (C_ADJUST - 3 + overflow_bits));
|
|
|
|
// round to nearest even
|
|
if ((trunc_bits > grs_bits) || (trunc_bits == grs_bits && last_bit != 0)) {
|
|
st_fma.mantissa += (1ul << (C_ADJUST + overflow_bits));
|
|
}
|
|
|
|
// Shift mantissa back to bit 23
|
|
st_fma.mantissa = (st_fma.mantissa >> (C_ADJUST + overflow_bits));
|
|
|
|
// Detect rounding overflow
|
|
if (st_fma.mantissa > 0xffffff) {
|
|
++st_fma.exponent;
|
|
st_fma.mantissa >>= 1;
|
|
}
|
|
|
|
if (st_fma.mantissa == 0) {
|
|
return .0f;
|
|
}
|
|
|
|
// Flating point range limit
|
|
if (st_fma.exponent > 127) {
|
|
return __clc_as_float(__clc_as_uint(INFINITY) | st_fma.sign);
|
|
}
|
|
|
|
// Flush denormals
|
|
if (st_fma.exponent <= -127) {
|
|
return __clc_as_float(st_fma.sign);
|
|
}
|
|
|
|
return __clc_as_float(st_fma.sign | ((st_fma.exponent + 127) << 23) |
|
|
((uint)st_fma.mantissa & 0x7fffff));
|
|
}
|
|
|
|
#define __FLOAT_ONLY
|
|
#define FUNCTION __clc_sw_fma
|
|
#define __CLC_BODY <clc/shared/ternary_def_scalarize.inc>
|
|
#include <clc/math/gentype.inc>
|