Files
clang-p2996/bolt/lib/Profile/DataAggregator.cpp
Kazu Hirata 34bcadc38c Use std::nullopt_t instead of NoneType (NFC)
This patch replaces those occurrences of NoneType that would trigger
an error if the definition of NoneType were missing in None.h.

To keep this patch focused, I am deliberately not replacing None with
std::nullopt in this patch or updating comments.  They will be
addressed in subsequent patches.

This is part of an effort to migrate from llvm::Optional to
std::optional:

https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716

Differential Revision: https://reviews.llvm.org/D138539
2022-11-23 14:16:04 -08:00

2301 lines
74 KiB
C++

//===- bolt/Profile/DataAggregator.cpp - Perf data aggregator -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This family of functions reads profile data written by perf record,
// aggregate it and then write it back to an output file.
//
//===----------------------------------------------------------------------===//
#include "bolt/Profile/DataAggregator.h"
#include "bolt/Core/BinaryContext.h"
#include "bolt/Core/BinaryFunction.h"
#include "bolt/Profile/BoltAddressTranslation.h"
#include "bolt/Profile/Heatmap.h"
#include "bolt/Utils/CommandLineOpts.h"
#include "bolt/Utils/Utils.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Process.h"
#include "llvm/Support/Program.h"
#include "llvm/Support/Regex.h"
#include "llvm/Support/Timer.h"
#include "llvm/Support/raw_ostream.h"
#include <map>
#include <unordered_map>
#include <utility>
#define DEBUG_TYPE "aggregator"
using namespace llvm;
using namespace bolt;
namespace opts {
static cl::opt<bool>
BasicAggregation("nl",
cl::desc("aggregate basic samples (without LBR info)"),
cl::cat(AggregatorCategory));
static cl::opt<bool>
FilterMemProfile("filter-mem-profile",
cl::desc("if processing a memory profile, filter out stack or heap accesses "
"that won't be useful for BOLT to reduce profile file size"),
cl::init(true),
cl::cat(AggregatorCategory));
static cl::opt<unsigned long long>
FilterPID("pid",
cl::desc("only use samples from process with specified PID"),
cl::init(0),
cl::Optional,
cl::cat(AggregatorCategory));
static cl::opt<bool>
IgnoreBuildID("ignore-build-id",
cl::desc("continue even if build-ids in input binary and perf.data mismatch"),
cl::init(false),
cl::cat(AggregatorCategory));
static cl::opt<bool> IgnoreInterruptLBR(
"ignore-interrupt-lbr",
cl::desc("ignore kernel interrupt LBR that happens asynchronously"),
cl::init(true), cl::cat(AggregatorCategory));
static cl::opt<unsigned long long>
MaxSamples("max-samples",
cl::init(-1ULL),
cl::desc("maximum number of samples to read from LBR profile"),
cl::Optional,
cl::Hidden,
cl::cat(AggregatorCategory));
extern cl::opt<opts::ProfileFormatKind> ProfileFormat;
cl::opt<bool> ReadPreAggregated(
"pa", cl::desc("skip perf and read data from a pre-aggregated file format"),
cl::cat(AggregatorCategory));
static cl::opt<bool>
TimeAggregator("time-aggr",
cl::desc("time BOLT aggregator"),
cl::init(false),
cl::ZeroOrMore,
cl::cat(AggregatorCategory));
static cl::opt<bool>
UseEventPC("use-event-pc",
cl::desc("use event PC in combination with LBR sampling"),
cl::cat(AggregatorCategory));
static cl::opt<bool> WriteAutoFDOData(
"autofdo", cl::desc("generate autofdo textual data instead of bolt data"),
cl::cat(AggregatorCategory));
} // namespace opts
namespace {
const char TimerGroupName[] = "aggregator";
const char TimerGroupDesc[] = "Aggregator";
std::vector<SectionNameAndRange> getTextSections(const BinaryContext *BC) {
std::vector<SectionNameAndRange> sections;
for (BinarySection &Section : BC->sections()) {
if (!Section.isText())
continue;
if (Section.getSize() == 0)
continue;
sections.push_back(
{Section.getName(), Section.getAddress(), Section.getEndAddress()});
}
llvm::sort(sections,
[](const SectionNameAndRange &A, const SectionNameAndRange &B) {
return A.BeginAddress < B.BeginAddress;
});
return sections;
}
}
constexpr uint64_t DataAggregator::KernelBaseAddr;
DataAggregator::~DataAggregator() { deleteTempFiles(); }
namespace {
void deleteTempFile(const std::string &FileName) {
if (std::error_code Errc = sys::fs::remove(FileName.c_str()))
errs() << "PERF2BOLT: failed to delete temporary file " << FileName
<< " with error " << Errc.message() << "\n";
}
}
void DataAggregator::deleteTempFiles() {
for (std::string &FileName : TempFiles)
deleteTempFile(FileName);
TempFiles.clear();
}
void DataAggregator::findPerfExecutable() {
Optional<std::string> PerfExecutable =
sys::Process::FindInEnvPath("PATH", "perf");
if (!PerfExecutable) {
outs() << "PERF2BOLT: No perf executable found!\n";
exit(1);
}
PerfPath = *PerfExecutable;
}
void DataAggregator::start() {
outs() << "PERF2BOLT: Starting data aggregation job for " << Filename << "\n";
// Don't launch perf for pre-aggregated files
if (opts::ReadPreAggregated)
return;
findPerfExecutable();
if (opts::BasicAggregation)
launchPerfProcess("events without LBR",
MainEventsPPI,
"script -F pid,event,ip",
/*Wait = */false);
else
launchPerfProcess("branch events",
MainEventsPPI,
"script -F pid,ip,brstack",
/*Wait = */false);
// Note: we launch script for mem events regardless of the option, as the
// command fails fairly fast if mem events were not collected.
launchPerfProcess("mem events",
MemEventsPPI,
"script -F pid,event,addr,ip",
/*Wait = */false);
launchPerfProcess("process events",
MMapEventsPPI,
"script --show-mmap-events",
/*Wait = */false);
launchPerfProcess("task events",
TaskEventsPPI,
"script --show-task-events",
/*Wait = */false);
}
void DataAggregator::abort() {
if (opts::ReadPreAggregated)
return;
std::string Error;
// Kill subprocesses in case they are not finished
sys::Wait(TaskEventsPPI.PI, 1, false, &Error);
sys::Wait(MMapEventsPPI.PI, 1, false, &Error);
sys::Wait(MainEventsPPI.PI, 1, false, &Error);
sys::Wait(MemEventsPPI.PI, 1, false, &Error);
deleteTempFiles();
exit(1);
}
void DataAggregator::launchPerfProcess(StringRef Name, PerfProcessInfo &PPI,
const char *ArgsString, bool Wait) {
SmallVector<StringRef, 4> Argv;
outs() << "PERF2BOLT: spawning perf job to read " << Name << '\n';
Argv.push_back(PerfPath.data());
char *WritableArgsString = strdup(ArgsString);
char *Str = WritableArgsString;
do {
Argv.push_back(Str);
while (*Str && *Str != ' ')
++Str;
if (!*Str)
break;
*Str++ = 0;
} while (true);
Argv.push_back("-f");
Argv.push_back("-i");
Argv.push_back(Filename.c_str());
if (std::error_code Errc =
sys::fs::createTemporaryFile("perf.script", "out", PPI.StdoutPath)) {
errs() << "PERF2BOLT: failed to create temporary file " << PPI.StdoutPath
<< " with error " << Errc.message() << "\n";
exit(1);
}
TempFiles.push_back(PPI.StdoutPath.data());
if (std::error_code Errc =
sys::fs::createTemporaryFile("perf.script", "err", PPI.StderrPath)) {
errs() << "PERF2BOLT: failed to create temporary file " << PPI.StderrPath
<< " with error " << Errc.message() << "\n";
exit(1);
}
TempFiles.push_back(PPI.StderrPath.data());
Optional<StringRef> Redirects[] = {
llvm::None, // Stdin
StringRef(PPI.StdoutPath.data()), // Stdout
StringRef(PPI.StderrPath.data())}; // Stderr
LLVM_DEBUG({
dbgs() << "Launching perf: ";
for (StringRef Arg : Argv)
dbgs() << Arg << " ";
dbgs() << " 1> " << PPI.StdoutPath.data() << " 2> " << PPI.StderrPath.data()
<< "\n";
});
if (Wait)
PPI.PI.ReturnCode = sys::ExecuteAndWait(PerfPath.data(), Argv,
/*envp*/ llvm::None, Redirects);
else
PPI.PI = sys::ExecuteNoWait(PerfPath.data(), Argv, /*envp*/ llvm::None,
Redirects);
free(WritableArgsString);
}
void DataAggregator::processFileBuildID(StringRef FileBuildID) {
PerfProcessInfo BuildIDProcessInfo;
launchPerfProcess("buildid list",
BuildIDProcessInfo,
"buildid-list",
/*Wait = */true);
if (BuildIDProcessInfo.PI.ReturnCode != 0) {
ErrorOr<std::unique_ptr<MemoryBuffer>> MB =
MemoryBuffer::getFileOrSTDIN(BuildIDProcessInfo.StderrPath.data());
StringRef ErrBuf = (*MB)->getBuffer();
errs() << "PERF-ERROR: return code " << BuildIDProcessInfo.PI.ReturnCode
<< '\n';
errs() << ErrBuf;
return;
}
ErrorOr<std::unique_ptr<MemoryBuffer>> MB =
MemoryBuffer::getFileOrSTDIN(BuildIDProcessInfo.StdoutPath.data());
if (std::error_code EC = MB.getError()) {
errs() << "Cannot open " << BuildIDProcessInfo.StdoutPath.data() << ": "
<< EC.message() << "\n";
return;
}
FileBuf = std::move(*MB);
ParsingBuf = FileBuf->getBuffer();
Optional<StringRef> FileName = getFileNameForBuildID(FileBuildID);
if (!FileName) {
if (hasAllBuildIDs()) {
errs() << "PERF2BOLT-ERROR: failed to match build-id from perf output. "
"This indicates the input binary supplied for data aggregation "
"is not the same recorded by perf when collecting profiling "
"data, or there were no samples recorded for the binary. "
"Use -ignore-build-id option to override.\n";
if (!opts::IgnoreBuildID)
abort();
} else {
errs() << "PERF2BOLT-WARNING: build-id will not be checked because perf "
"data was recorded without it\n";
return;
}
} else if (*FileName != llvm::sys::path::filename(BC->getFilename())) {
errs() << "PERF2BOLT-WARNING: build-id matched a different file name\n";
BuildIDBinaryName = std::string(*FileName);
} else {
outs() << "PERF2BOLT: matched build-id and file name\n";
}
}
bool DataAggregator::checkPerfDataMagic(StringRef FileName) {
if (opts::ReadPreAggregated)
return true;
Expected<sys::fs::file_t> FD = sys::fs::openNativeFileForRead(FileName);
if (!FD)
return false;
char Buf[7] = {0, 0, 0, 0, 0, 0, 0};
auto Close = make_scope_exit([&] { sys::fs::closeFile(*FD); });
Expected<size_t> BytesRead = sys::fs::readNativeFileSlice(
*FD, makeMutableArrayRef(Buf, sizeof(Buf)), 0);
if (!BytesRead || *BytesRead != 7)
return false;
if (strncmp(Buf, "PERFILE", 7) == 0)
return true;
return false;
}
void DataAggregator::parsePreAggregated() {
std::string Error;
ErrorOr<std::unique_ptr<MemoryBuffer>> MB =
MemoryBuffer::getFileOrSTDIN(Filename);
if (std::error_code EC = MB.getError()) {
errs() << "PERF2BOLT-ERROR: cannot open " << Filename << ": "
<< EC.message() << "\n";
exit(1);
}
FileBuf = std::move(*MB);
ParsingBuf = FileBuf->getBuffer();
Col = 0;
Line = 1;
if (parsePreAggregatedLBRSamples()) {
errs() << "PERF2BOLT: failed to parse samples\n";
exit(1);
}
}
std::error_code DataAggregator::writeAutoFDOData(StringRef OutputFilename) {
outs() << "PERF2BOLT: writing data for autofdo tools...\n";
NamedRegionTimer T("writeAutoFDO", "Processing branch events", TimerGroupName,
TimerGroupDesc, opts::TimeAggregator);
std::error_code EC;
raw_fd_ostream OutFile(OutputFilename, EC, sys::fs::OpenFlags::OF_None);
if (EC)
return EC;
// Format:
// number of unique traces
// from_1-to_1:count_1
// from_2-to_2:count_2
// ......
// from_n-to_n:count_n
// number of unique sample addresses
// addr_1:count_1
// addr_2:count_2
// ......
// addr_n:count_n
// number of unique LBR entries
// src_1->dst_1:count_1
// src_2->dst_2:count_2
// ......
// src_n->dst_n:count_n
const uint64_t FirstAllocAddress = this->BC->FirstAllocAddress;
// AutoFDO addresses are relative to the first allocated loadable program
// segment
auto filterAddress = [&FirstAllocAddress](uint64_t Address) -> uint64_t {
if (Address < FirstAllocAddress)
return 0;
return Address - FirstAllocAddress;
};
OutFile << FallthroughLBRs.size() << "\n";
for (const auto &AggrLBR : FallthroughLBRs) {
const Trace &Trace = AggrLBR.first;
const FTInfo &Info = AggrLBR.second;
OutFile << Twine::utohexstr(filterAddress(Trace.From)) << "-"
<< Twine::utohexstr(filterAddress(Trace.To)) << ":"
<< (Info.InternCount + Info.ExternCount) << "\n";
}
OutFile << BasicSamples.size() << "\n";
for (const auto &Sample : BasicSamples) {
uint64_t PC = Sample.first;
uint64_t HitCount = Sample.second;
OutFile << Twine::utohexstr(filterAddress(PC)) << ":" << HitCount << "\n";
}
OutFile << BranchLBRs.size() << "\n";
for (const auto &AggrLBR : BranchLBRs) {
const Trace &Trace = AggrLBR.first;
const BranchInfo &Info = AggrLBR.second;
OutFile << Twine::utohexstr(filterAddress(Trace.From)) << "->"
<< Twine::utohexstr(filterAddress(Trace.To)) << ":"
<< Info.TakenCount << "\n";
}
outs() << "PERF2BOLT: wrote " << FallthroughLBRs.size() << " unique traces, "
<< BasicSamples.size() << " sample addresses and " << BranchLBRs.size()
<< " unique branches to " << OutputFilename << "\n";
return std::error_code();
}
void DataAggregator::filterBinaryMMapInfo() {
if (opts::FilterPID) {
auto MMapInfoIter = BinaryMMapInfo.find(opts::FilterPID);
if (MMapInfoIter != BinaryMMapInfo.end()) {
MMapInfo MMap = MMapInfoIter->second;
BinaryMMapInfo.clear();
BinaryMMapInfo.insert(std::make_pair(MMap.PID, MMap));
} else {
if (errs().has_colors())
errs().changeColor(raw_ostream::RED);
errs() << "PERF2BOLT-ERROR: could not find a profile matching PID \""
<< opts::FilterPID << "\""
<< " for binary \"" << BC->getFilename() << "\".";
assert(!BinaryMMapInfo.empty() && "No memory map for matching binary");
errs() << " Profile for the following process is available:\n";
for (std::pair<const uint64_t, MMapInfo> &MMI : BinaryMMapInfo)
outs() << " " << MMI.second.PID
<< (MMI.second.Forked ? " (forked)\n" : "\n");
if (errs().has_colors())
errs().resetColor();
exit(1);
}
}
}
Error DataAggregator::preprocessProfile(BinaryContext &BC) {
this->BC = &BC;
if (opts::ReadPreAggregated) {
parsePreAggregated();
return Error::success();
}
if (Optional<StringRef> FileBuildID = BC.getFileBuildID()) {
outs() << "BOLT-INFO: binary build-id is: " << *FileBuildID << "\n";
processFileBuildID(*FileBuildID);
} else {
errs() << "BOLT-WARNING: build-id will not be checked because we could "
"not read one from input binary\n";
}
auto prepareToParse = [&](StringRef Name, PerfProcessInfo &Process) {
std::string Error;
outs() << "PERF2BOLT: waiting for perf " << Name
<< " collection to finish...\n";
sys::ProcessInfo PI = sys::Wait(Process.PI, 0, true, &Error);
if (!Error.empty()) {
errs() << "PERF-ERROR: " << PerfPath << ": " << Error << "\n";
deleteTempFiles();
exit(1);
}
if (PI.ReturnCode != 0) {
ErrorOr<std::unique_ptr<MemoryBuffer>> ErrorMB =
MemoryBuffer::getFileOrSTDIN(Process.StderrPath.data());
StringRef ErrBuf = (*ErrorMB)->getBuffer();
errs() << "PERF-ERROR: return code " << PI.ReturnCode << "\n";
errs() << ErrBuf;
deleteTempFiles();
exit(1);
}
ErrorOr<std::unique_ptr<MemoryBuffer>> MB =
MemoryBuffer::getFileOrSTDIN(Process.StdoutPath.data());
if (std::error_code EC = MB.getError()) {
errs() << "Cannot open " << Process.StdoutPath.data() << ": "
<< EC.message() << "\n";
deleteTempFiles();
exit(1);
}
FileBuf = std::move(*MB);
ParsingBuf = FileBuf->getBuffer();
Col = 0;
Line = 1;
};
if (opts::LinuxKernelMode) {
// Current MMap parsing logic does not work with linux kernel.
// MMap entries for linux kernel uses PERF_RECORD_MMAP
// format instead of typical PERF_RECORD_MMAP2 format.
// Since linux kernel address mapping is absolute (same as
// in the ELF file), we avoid parsing MMap in linux kernel mode.
// While generating optimized linux kernel binary, we may need
// to parse MMap entries.
// In linux kernel mode, we analyze and optimize
// all linux kernel binary instructions, irrespective
// of whether they are due to system calls or due to
// interrupts. Therefore, we cannot ignore interrupt
// in Linux kernel mode.
opts::IgnoreInterruptLBR = false;
} else {
prepareToParse("mmap events", MMapEventsPPI);
if (parseMMapEvents())
errs() << "PERF2BOLT: failed to parse mmap events\n";
}
prepareToParse("task events", TaskEventsPPI);
if (parseTaskEvents())
errs() << "PERF2BOLT: failed to parse task events\n";
filterBinaryMMapInfo();
prepareToParse("events", MainEventsPPI);
if (opts::HeatmapMode) {
if (std::error_code EC = printLBRHeatMap()) {
errs() << "ERROR: failed to print heat map: " << EC.message() << '\n';
exit(1);
}
exit(0);
}
if ((!opts::BasicAggregation && parseBranchEvents()) ||
(opts::BasicAggregation && parseBasicEvents()))
errs() << "PERF2BOLT: failed to parse samples\n";
// We can finish early if the goal is just to generate data for autofdo
if (opts::WriteAutoFDOData) {
if (std::error_code EC = writeAutoFDOData(opts::OutputFilename))
errs() << "Error writing autofdo data to file: " << EC.message() << "\n";
deleteTempFiles();
exit(0);
}
// Special handling for memory events
std::string Error;
sys::ProcessInfo PI = sys::Wait(MemEventsPPI.PI, 0, true, &Error);
if (PI.ReturnCode != 0) {
ErrorOr<std::unique_ptr<MemoryBuffer>> MB =
MemoryBuffer::getFileOrSTDIN(MemEventsPPI.StderrPath.data());
StringRef ErrBuf = (*MB)->getBuffer();
deleteTempFiles();
Regex NoData("Samples for '.*' event do not have ADDR attribute set. "
"Cannot print 'addr' field.");
if (!NoData.match(ErrBuf)) {
errs() << "PERF-ERROR: return code " << PI.ReturnCode << "\n";
errs() << ErrBuf;
exit(1);
}
return Error::success();
}
ErrorOr<std::unique_ptr<MemoryBuffer>> MB =
MemoryBuffer::getFileOrSTDIN(MemEventsPPI.StdoutPath.data());
if (std::error_code EC = MB.getError()) {
errs() << "Cannot open " << MemEventsPPI.StdoutPath.data() << ": "
<< EC.message() << "\n";
deleteTempFiles();
exit(1);
}
FileBuf = std::move(*MB);
ParsingBuf = FileBuf->getBuffer();
Col = 0;
Line = 1;
if (const std::error_code EC = parseMemEvents())
errs() << "PERF2BOLT: failed to parse memory events: " << EC.message()
<< '\n';
deleteTempFiles();
return Error::success();
}
Error DataAggregator::readProfile(BinaryContext &BC) {
processProfile(BC);
for (auto &BFI : BC.getBinaryFunctions()) {
BinaryFunction &Function = BFI.second;
convertBranchData(Function);
}
if (opts::AggregateOnly &&
opts::ProfileFormat == opts::ProfileFormatKind::PF_Fdata) {
if (std::error_code EC = writeAggregatedFile(opts::OutputFilename))
report_error("cannot create output data file", EC);
}
return Error::success();
}
bool DataAggregator::mayHaveProfileData(const BinaryFunction &Function) {
return Function.hasProfileAvailable();
}
void DataAggregator::processProfile(BinaryContext &BC) {
if (opts::ReadPreAggregated)
processPreAggregated();
else if (opts::BasicAggregation)
processBasicEvents();
else
processBranchEvents();
processMemEvents();
// Mark all functions with registered events as having a valid profile.
for (auto &BFI : BC.getBinaryFunctions()) {
BinaryFunction &BF = BFI.second;
if (getBranchData(BF)) {
const auto Flags = opts::BasicAggregation ? BinaryFunction::PF_SAMPLE
: BinaryFunction::PF_LBR;
BF.markProfiled(Flags);
}
}
// Release intermediate storage.
clear(BranchLBRs);
clear(FallthroughLBRs);
clear(AggregatedLBRs);
clear(BasicSamples);
clear(MemSamples);
}
BinaryFunction *
DataAggregator::getBinaryFunctionContainingAddress(uint64_t Address) const {
if (!BC->containsAddress(Address))
return nullptr;
return BC->getBinaryFunctionContainingAddress(Address, /*CheckPastEnd=*/false,
/*UseMaxSize=*/true);
}
StringRef DataAggregator::getLocationName(BinaryFunction &Func,
uint64_t Count) {
if (!BAT)
return Func.getOneName();
const BinaryFunction *OrigFunc = &Func;
if (const uint64_t HotAddr = BAT->fetchParentAddress(Func.getAddress())) {
NumColdSamples += Count;
BinaryFunction *HotFunc = getBinaryFunctionContainingAddress(HotAddr);
if (HotFunc)
OrigFunc = HotFunc;
}
// If it is a local function, prefer the name containing the file name where
// the local function was declared
for (StringRef AlternativeName : OrigFunc->getNames()) {
size_t FileNameIdx = AlternativeName.find('/');
// Confirm the alternative name has the pattern Symbol/FileName/1 before
// using it
if (FileNameIdx == StringRef::npos ||
AlternativeName.find('/', FileNameIdx + 1) == StringRef::npos)
continue;
return AlternativeName;
}
return OrigFunc->getOneName();
}
bool DataAggregator::doSample(BinaryFunction &Func, uint64_t Address,
uint64_t Count) {
auto I = NamesToSamples.find(Func.getOneName());
if (I == NamesToSamples.end()) {
bool Success;
StringRef LocName = getLocationName(Func, Count);
std::tie(I, Success) = NamesToSamples.insert(
std::make_pair(Func.getOneName(),
FuncSampleData(LocName, FuncSampleData::ContainerTy())));
}
Address -= Func.getAddress();
if (BAT)
Address = BAT->translate(Func.getAddress(), Address, /*IsBranchSrc=*/false);
I->second.bumpCount(Address, Count);
return true;
}
bool DataAggregator::doIntraBranch(BinaryFunction &Func, uint64_t From,
uint64_t To, uint64_t Count,
uint64_t Mispreds) {
FuncBranchData *AggrData = getBranchData(Func);
if (!AggrData) {
AggrData = &NamesToBranches[Func.getOneName()];
AggrData->Name = getLocationName(Func, Count);
setBranchData(Func, AggrData);
}
From -= Func.getAddress();
To -= Func.getAddress();
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: bumpBranchCount: " << Func.getPrintName()
<< " @ " << Twine::utohexstr(From) << " -> "
<< Func.getPrintName() << " @ " << Twine::utohexstr(To)
<< '\n');
if (BAT) {
From = BAT->translate(Func.getAddress(), From, /*IsBranchSrc=*/true);
To = BAT->translate(Func.getAddress(), To, /*IsBranchSrc=*/false);
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: BAT translation on bumpBranchCount: "
<< Func.getPrintName() << " @ " << Twine::utohexstr(From)
<< " -> " << Func.getPrintName() << " @ "
<< Twine::utohexstr(To) << '\n');
}
AggrData->bumpBranchCount(From, To, Count, Mispreds);
return true;
}
bool DataAggregator::doInterBranch(BinaryFunction *FromFunc,
BinaryFunction *ToFunc, uint64_t From,
uint64_t To, uint64_t Count,
uint64_t Mispreds) {
FuncBranchData *FromAggrData = nullptr;
FuncBranchData *ToAggrData = nullptr;
StringRef SrcFunc;
StringRef DstFunc;
if (FromFunc) {
SrcFunc = getLocationName(*FromFunc, Count);
FromAggrData = getBranchData(*FromFunc);
if (!FromAggrData) {
FromAggrData = &NamesToBranches[FromFunc->getOneName()];
FromAggrData->Name = SrcFunc;
setBranchData(*FromFunc, FromAggrData);
}
From -= FromFunc->getAddress();
if (BAT)
From = BAT->translate(FromFunc->getAddress(), From, /*IsBranchSrc=*/true);
recordExit(*FromFunc, From, Mispreds, Count);
}
if (ToFunc) {
DstFunc = getLocationName(*ToFunc, 0);
ToAggrData = getBranchData(*ToFunc);
if (!ToAggrData) {
ToAggrData = &NamesToBranches[ToFunc->getOneName()];
ToAggrData->Name = DstFunc;
setBranchData(*ToFunc, ToAggrData);
}
To -= ToFunc->getAddress();
if (BAT)
To = BAT->translate(ToFunc->getAddress(), To, /*IsBranchSrc=*/false);
recordEntry(*ToFunc, To, Mispreds, Count);
}
if (FromAggrData)
FromAggrData->bumpCallCount(From, Location(!DstFunc.empty(), DstFunc, To),
Count, Mispreds);
if (ToAggrData)
ToAggrData->bumpEntryCount(Location(!SrcFunc.empty(), SrcFunc, From), To,
Count, Mispreds);
return true;
}
bool DataAggregator::doBranch(uint64_t From, uint64_t To, uint64_t Count,
uint64_t Mispreds) {
BinaryFunction *FromFunc = getBinaryFunctionContainingAddress(From);
BinaryFunction *ToFunc = getBinaryFunctionContainingAddress(To);
if (!FromFunc && !ToFunc)
return false;
if (FromFunc == ToFunc) {
recordBranch(*FromFunc, From - FromFunc->getAddress(),
To - FromFunc->getAddress(), Count, Mispreds);
return doIntraBranch(*FromFunc, From, To, Count, Mispreds);
}
return doInterBranch(FromFunc, ToFunc, From, To, Count, Mispreds);
}
bool DataAggregator::doTrace(const LBREntry &First, const LBREntry &Second,
uint64_t Count) {
BinaryFunction *FromFunc = getBinaryFunctionContainingAddress(First.To);
BinaryFunction *ToFunc = getBinaryFunctionContainingAddress(Second.From);
if (!FromFunc || !ToFunc) {
LLVM_DEBUG(
dbgs() << "Out of range trace starting in " << FromFunc->getPrintName()
<< " @ " << Twine::utohexstr(First.To - FromFunc->getAddress())
<< " and ending in " << ToFunc->getPrintName() << " @ "
<< ToFunc->getPrintName() << " @ "
<< Twine::utohexstr(Second.From - ToFunc->getAddress()) << '\n');
NumLongRangeTraces += Count;
return false;
}
if (FromFunc != ToFunc) {
NumInvalidTraces += Count;
LLVM_DEBUG(
dbgs() << "Invalid trace starting in " << FromFunc->getPrintName()
<< " @ " << Twine::utohexstr(First.To - FromFunc->getAddress())
<< " and ending in " << ToFunc->getPrintName() << " @ "
<< ToFunc->getPrintName() << " @ "
<< Twine::utohexstr(Second.From - ToFunc->getAddress()) << '\n');
return false;
}
Optional<BoltAddressTranslation::FallthroughListTy> FTs =
BAT ? BAT->getFallthroughsInTrace(FromFunc->getAddress(), First.To,
Second.From)
: getFallthroughsInTrace(*FromFunc, First, Second, Count);
if (!FTs) {
LLVM_DEBUG(
dbgs() << "Invalid trace starting in " << FromFunc->getPrintName()
<< " @ " << Twine::utohexstr(First.To - FromFunc->getAddress())
<< " and ending in " << ToFunc->getPrintName() << " @ "
<< ToFunc->getPrintName() << " @ "
<< Twine::utohexstr(Second.From - ToFunc->getAddress()) << '\n');
NumInvalidTraces += Count;
return false;
}
LLVM_DEBUG(dbgs() << "Processing " << FTs->size() << " fallthroughs for "
<< FromFunc->getPrintName() << ":"
<< Twine::utohexstr(First.To) << " to "
<< Twine::utohexstr(Second.From) << ".\n");
for (const std::pair<uint64_t, uint64_t> &Pair : *FTs)
doIntraBranch(*FromFunc, Pair.first + FromFunc->getAddress(),
Pair.second + FromFunc->getAddress(), Count, false);
return true;
}
bool DataAggregator::recordTrace(
BinaryFunction &BF,
const LBREntry &FirstLBR,
const LBREntry &SecondLBR,
uint64_t Count,
SmallVector<std::pair<uint64_t, uint64_t>, 16> *Branches) const {
BinaryContext &BC = BF.getBinaryContext();
if (!BF.isSimple())
return false;
assert(BF.hasCFG() && "can only record traces in CFG state");
// Offsets of the trace within this function.
const uint64_t From = FirstLBR.To - BF.getAddress();
const uint64_t To = SecondLBR.From - BF.getAddress();
if (From > To)
return false;
const BinaryBasicBlock *FromBB = BF.getBasicBlockContainingOffset(From);
const BinaryBasicBlock *ToBB = BF.getBasicBlockContainingOffset(To);
if (!FromBB || !ToBB)
return false;
// Adjust FromBB if the first LBR is a return from the last instruction in
// the previous block (that instruction should be a call).
if (From == FromBB->getOffset() && !BF.containsAddress(FirstLBR.From) &&
!FromBB->isEntryPoint() && !FromBB->isLandingPad()) {
const BinaryBasicBlock *PrevBB =
BF.getLayout().getBlock(FromBB->getIndex() - 1);
if (PrevBB->getSuccessor(FromBB->getLabel())) {
const MCInst *Instr = PrevBB->getLastNonPseudoInstr();
if (Instr && BC.MIB->isCall(*Instr))
FromBB = PrevBB;
else
LLVM_DEBUG(dbgs() << "invalid incoming LBR (no call): " << FirstLBR
<< '\n');
} else {
LLVM_DEBUG(dbgs() << "invalid incoming LBR: " << FirstLBR << '\n');
}
}
// Fill out information for fall-through edges. The From and To could be
// within the same basic block, e.g. when two call instructions are in the
// same block. In this case we skip the processing.
if (FromBB == ToBB)
return true;
// Process blocks in the original layout order.
BinaryBasicBlock *BB = BF.getLayout().getBlock(FromBB->getIndex());
assert(BB == FromBB && "index mismatch");
while (BB != ToBB) {
BinaryBasicBlock *NextBB = BF.getLayout().getBlock(BB->getIndex() + 1);
assert((NextBB && NextBB->getOffset() > BB->getOffset()) && "bad layout");
// Check for bad LBRs.
if (!BB->getSuccessor(NextBB->getLabel())) {
LLVM_DEBUG(dbgs() << "no fall-through for the trace:\n"
<< " " << FirstLBR << '\n'
<< " " << SecondLBR << '\n');
return false;
}
// Record fall-through jumps
BinaryBasicBlock::BinaryBranchInfo &BI = BB->getBranchInfo(*NextBB);
BI.Count += Count;
if (Branches) {
const MCInst *Instr = BB->getLastNonPseudoInstr();
uint64_t Offset = 0;
if (Instr)
Offset = BC.MIB->getOffsetWithDefault(*Instr, 0);
else
Offset = BB->getOffset();
Branches->emplace_back(Offset, NextBB->getOffset());
}
BB = NextBB;
}
return true;
}
Optional<SmallVector<std::pair<uint64_t, uint64_t>, 16>>
DataAggregator::getFallthroughsInTrace(BinaryFunction &BF,
const LBREntry &FirstLBR,
const LBREntry &SecondLBR,
uint64_t Count) const {
SmallVector<std::pair<uint64_t, uint64_t>, 16> Res;
if (!recordTrace(BF, FirstLBR, SecondLBR, Count, &Res))
return None;
return Res;
}
bool DataAggregator::recordEntry(BinaryFunction &BF, uint64_t To, bool Mispred,
uint64_t Count) const {
if (To > BF.getSize())
return false;
if (!BF.hasProfile())
BF.ExecutionCount = 0;
BinaryBasicBlock *EntryBB = nullptr;
if (To == 0) {
BF.ExecutionCount += Count;
if (!BF.empty())
EntryBB = &BF.front();
} else if (BinaryBasicBlock *BB = BF.getBasicBlockAtOffset(To)) {
if (BB->isEntryPoint())
EntryBB = BB;
}
if (EntryBB)
EntryBB->setExecutionCount(EntryBB->getKnownExecutionCount() + Count);
return true;
}
bool DataAggregator::recordExit(BinaryFunction &BF, uint64_t From, bool Mispred,
uint64_t Count) const {
if (!BF.isSimple() || From > BF.getSize())
return false;
if (!BF.hasProfile())
BF.ExecutionCount = 0;
return true;
}
ErrorOr<LBREntry> DataAggregator::parseLBREntry() {
LBREntry Res;
ErrorOr<StringRef> FromStrRes = parseString('/');
if (std::error_code EC = FromStrRes.getError())
return EC;
StringRef OffsetStr = FromStrRes.get();
if (OffsetStr.getAsInteger(0, Res.From)) {
reportError("expected hexadecimal number with From address");
Diag << "Found: " << OffsetStr << "\n";
return make_error_code(llvm::errc::io_error);
}
ErrorOr<StringRef> ToStrRes = parseString('/');
if (std::error_code EC = ToStrRes.getError())
return EC;
OffsetStr = ToStrRes.get();
if (OffsetStr.getAsInteger(0, Res.To)) {
reportError("expected hexadecimal number with To address");
Diag << "Found: " << OffsetStr << "\n";
return make_error_code(llvm::errc::io_error);
}
ErrorOr<StringRef> MispredStrRes = parseString('/');
if (std::error_code EC = MispredStrRes.getError())
return EC;
StringRef MispredStr = MispredStrRes.get();
if (MispredStr.size() != 1 ||
(MispredStr[0] != 'P' && MispredStr[0] != 'M' && MispredStr[0] != '-')) {
reportError("expected single char for mispred bit");
Diag << "Found: " << MispredStr << "\n";
return make_error_code(llvm::errc::io_error);
}
Res.Mispred = MispredStr[0] == 'M';
static bool MispredWarning = true;
if (MispredStr[0] == '-' && MispredWarning) {
errs() << "PERF2BOLT-WARNING: misprediction bit is missing in profile\n";
MispredWarning = false;
}
ErrorOr<StringRef> Rest = parseString(FieldSeparator, true);
if (std::error_code EC = Rest.getError())
return EC;
if (Rest.get().size() < 5) {
reportError("expected rest of LBR entry");
Diag << "Found: " << Rest.get() << "\n";
return make_error_code(llvm::errc::io_error);
}
return Res;
}
bool DataAggregator::checkAndConsumeFS() {
if (ParsingBuf[0] != FieldSeparator)
return false;
ParsingBuf = ParsingBuf.drop_front(1);
Col += 1;
return true;
}
void DataAggregator::consumeRestOfLine() {
size_t LineEnd = ParsingBuf.find_first_of('\n');
if (LineEnd == StringRef::npos) {
ParsingBuf = StringRef();
Col = 0;
Line += 1;
return;
}
ParsingBuf = ParsingBuf.drop_front(LineEnd + 1);
Col = 0;
Line += 1;
}
bool DataAggregator::checkNewLine() {
return ParsingBuf[0] == '\n';
}
ErrorOr<DataAggregator::PerfBranchSample> DataAggregator::parseBranchSample() {
PerfBranchSample Res;
while (checkAndConsumeFS()) {
}
ErrorOr<int64_t> PIDRes = parseNumberField(FieldSeparator, true);
if (std::error_code EC = PIDRes.getError())
return EC;
auto MMapInfoIter = BinaryMMapInfo.find(*PIDRes);
if (!opts::LinuxKernelMode && MMapInfoIter == BinaryMMapInfo.end()) {
consumeRestOfLine();
return make_error_code(errc::no_such_process);
}
while (checkAndConsumeFS()) {
}
ErrorOr<uint64_t> PCRes = parseHexField(FieldSeparator, true);
if (std::error_code EC = PCRes.getError())
return EC;
Res.PC = PCRes.get();
if (checkAndConsumeNewLine())
return Res;
while (!checkAndConsumeNewLine()) {
checkAndConsumeFS();
ErrorOr<LBREntry> LBRRes = parseLBREntry();
if (std::error_code EC = LBRRes.getError())
return EC;
LBREntry LBR = LBRRes.get();
if (ignoreKernelInterrupt(LBR))
continue;
if (!BC->HasFixedLoadAddress)
adjustLBR(LBR, MMapInfoIter->second);
Res.LBR.push_back(LBR);
}
return Res;
}
ErrorOr<DataAggregator::PerfBasicSample> DataAggregator::parseBasicSample() {
while (checkAndConsumeFS()) {
}
ErrorOr<int64_t> PIDRes = parseNumberField(FieldSeparator, true);
if (std::error_code EC = PIDRes.getError())
return EC;
auto MMapInfoIter = BinaryMMapInfo.find(*PIDRes);
if (MMapInfoIter == BinaryMMapInfo.end()) {
consumeRestOfLine();
return PerfBasicSample{StringRef(), 0};
}
while (checkAndConsumeFS()) {
}
ErrorOr<StringRef> Event = parseString(FieldSeparator);
if (std::error_code EC = Event.getError())
return EC;
while (checkAndConsumeFS()) {
}
ErrorOr<uint64_t> AddrRes = parseHexField(FieldSeparator, true);
if (std::error_code EC = AddrRes.getError())
return EC;
if (!checkAndConsumeNewLine()) {
reportError("expected end of line");
return make_error_code(llvm::errc::io_error);
}
uint64_t Address = *AddrRes;
if (!BC->HasFixedLoadAddress)
adjustAddress(Address, MMapInfoIter->second);
return PerfBasicSample{Event.get(), Address};
}
ErrorOr<DataAggregator::PerfMemSample> DataAggregator::parseMemSample() {
PerfMemSample Res{0, 0};
while (checkAndConsumeFS()) {
}
ErrorOr<int64_t> PIDRes = parseNumberField(FieldSeparator, true);
if (std::error_code EC = PIDRes.getError())
return EC;
auto MMapInfoIter = BinaryMMapInfo.find(*PIDRes);
if (MMapInfoIter == BinaryMMapInfo.end()) {
consumeRestOfLine();
return Res;
}
while (checkAndConsumeFS()) {
}
ErrorOr<StringRef> Event = parseString(FieldSeparator);
if (std::error_code EC = Event.getError())
return EC;
if (!Event.get().contains("mem-loads")) {
consumeRestOfLine();
return Res;
}
while (checkAndConsumeFS()) {
}
ErrorOr<uint64_t> AddrRes = parseHexField(FieldSeparator);
if (std::error_code EC = AddrRes.getError())
return EC;
while (checkAndConsumeFS()) {
}
ErrorOr<uint64_t> PCRes = parseHexField(FieldSeparator, true);
if (std::error_code EC = PCRes.getError()) {
consumeRestOfLine();
return EC;
}
if (!checkAndConsumeNewLine()) {
reportError("expected end of line");
return make_error_code(llvm::errc::io_error);
}
uint64_t Address = *AddrRes;
if (!BC->HasFixedLoadAddress)
adjustAddress(Address, MMapInfoIter->second);
return PerfMemSample{PCRes.get(), Address};
}
ErrorOr<Location> DataAggregator::parseLocationOrOffset() {
auto parseOffset = [this]() -> ErrorOr<Location> {
ErrorOr<uint64_t> Res = parseHexField(FieldSeparator);
if (std::error_code EC = Res.getError())
return EC;
return Location(Res.get());
};
size_t Sep = ParsingBuf.find_first_of(" \n");
if (Sep == StringRef::npos)
return parseOffset();
StringRef LookAhead = ParsingBuf.substr(0, Sep);
if (LookAhead.find_first_of(":") == StringRef::npos)
return parseOffset();
ErrorOr<StringRef> BuildID = parseString(':');
if (std::error_code EC = BuildID.getError())
return EC;
ErrorOr<uint64_t> Offset = parseHexField(FieldSeparator);
if (std::error_code EC = Offset.getError())
return EC;
return Location(true, BuildID.get(), Offset.get());
}
ErrorOr<DataAggregator::AggregatedLBREntry>
DataAggregator::parseAggregatedLBREntry() {
while (checkAndConsumeFS()) {
}
ErrorOr<StringRef> TypeOrErr = parseString(FieldSeparator);
if (std::error_code EC = TypeOrErr.getError())
return EC;
auto Type = AggregatedLBREntry::BRANCH;
if (TypeOrErr.get() == "B") {
Type = AggregatedLBREntry::BRANCH;
} else if (TypeOrErr.get() == "F") {
Type = AggregatedLBREntry::FT;
} else if (TypeOrErr.get() == "f") {
Type = AggregatedLBREntry::FT_EXTERNAL_ORIGIN;
} else {
reportError("expected B, F or f");
return make_error_code(llvm::errc::io_error);
}
while (checkAndConsumeFS()) {
}
ErrorOr<Location> From = parseLocationOrOffset();
if (std::error_code EC = From.getError())
return EC;
while (checkAndConsumeFS()) {
}
ErrorOr<Location> To = parseLocationOrOffset();
if (std::error_code EC = To.getError())
return EC;
while (checkAndConsumeFS()) {
}
ErrorOr<int64_t> Frequency =
parseNumberField(FieldSeparator, Type != AggregatedLBREntry::BRANCH);
if (std::error_code EC = Frequency.getError())
return EC;
uint64_t Mispreds = 0;
if (Type == AggregatedLBREntry::BRANCH) {
while (checkAndConsumeFS()) {
}
ErrorOr<int64_t> MispredsOrErr = parseNumberField(FieldSeparator, true);
if (std::error_code EC = MispredsOrErr.getError())
return EC;
Mispreds = static_cast<uint64_t>(MispredsOrErr.get());
}
if (!checkAndConsumeNewLine()) {
reportError("expected end of line");
return make_error_code(llvm::errc::io_error);
}
return AggregatedLBREntry{From.get(), To.get(),
static_cast<uint64_t>(Frequency.get()), Mispreds,
Type};
}
bool DataAggregator::ignoreKernelInterrupt(LBREntry &LBR) const {
return opts::IgnoreInterruptLBR &&
(LBR.From >= KernelBaseAddr || LBR.To >= KernelBaseAddr);
}
std::error_code DataAggregator::printLBRHeatMap() {
outs() << "PERF2BOLT: parse branch events...\n";
NamedRegionTimer T("parseBranch", "Parsing branch events", TimerGroupName,
TimerGroupDesc, opts::TimeAggregator);
if (opts::LinuxKernelMode) {
opts::HeatmapMaxAddress = 0xffffffffffffffff;
opts::HeatmapMinAddress = KernelBaseAddr;
}
Heatmap HM(opts::HeatmapBlock, opts::HeatmapMinAddress,
opts::HeatmapMaxAddress, getTextSections(BC));
uint64_t NumTotalSamples = 0;
if (opts::BasicAggregation) {
while (hasData()) {
ErrorOr<PerfBasicSample> SampleRes = parseBasicSample();
if (std::error_code EC = SampleRes.getError()) {
if (EC == errc::no_such_process)
continue;
return EC;
}
PerfBasicSample &Sample = SampleRes.get();
HM.registerAddress(Sample.PC);
NumTotalSamples++;
}
outs() << "HEATMAP: read " << NumTotalSamples << " basic samples\n";
} else {
while (hasData()) {
ErrorOr<PerfBranchSample> SampleRes = parseBranchSample();
if (std::error_code EC = SampleRes.getError()) {
if (EC == errc::no_such_process)
continue;
return EC;
}
PerfBranchSample &Sample = SampleRes.get();
// LBRs are stored in reverse execution order. NextLBR refers to the next
// executed branch record.
const LBREntry *NextLBR = nullptr;
for (const LBREntry &LBR : Sample.LBR) {
if (NextLBR) {
// Record fall-through trace.
const uint64_t TraceFrom = LBR.To;
const uint64_t TraceTo = NextLBR->From;
++FallthroughLBRs[Trace(TraceFrom, TraceTo)].InternCount;
}
NextLBR = &LBR;
}
if (!Sample.LBR.empty()) {
HM.registerAddress(Sample.LBR.front().To);
HM.registerAddress(Sample.LBR.back().From);
}
NumTotalSamples += Sample.LBR.size();
}
outs() << "HEATMAP: read " << NumTotalSamples << " LBR samples\n";
outs() << "HEATMAP: " << FallthroughLBRs.size() << " unique traces\n";
}
if (!NumTotalSamples) {
if (opts::BasicAggregation) {
errs() << "HEATMAP-ERROR: no basic event samples detected in profile. "
"Cannot build heatmap.";
} else {
errs() << "HEATMAP-ERROR: no LBR traces detected in profile. "
"Cannot build heatmap. Use -nl for building heatmap from "
"basic events.\n";
}
exit(1);
}
outs() << "HEATMAP: building heat map...\n";
for (const auto &LBR : FallthroughLBRs) {
const Trace &Trace = LBR.first;
const FTInfo &Info = LBR.second;
HM.registerAddressRange(Trace.From, Trace.To, Info.InternCount);
}
if (HM.getNumInvalidRanges())
outs() << "HEATMAP: invalid traces: " << HM.getNumInvalidRanges() << '\n';
if (!HM.size()) {
errs() << "HEATMAP-ERROR: no valid traces registered\n";
exit(1);
}
HM.print(opts::OutputFilename);
if (opts::OutputFilename == "-")
HM.printCDF(opts::OutputFilename);
else
HM.printCDF(opts::OutputFilename + ".csv");
if (opts::OutputFilename == "-")
HM.printSectionHotness(opts::OutputFilename);
else
HM.printSectionHotness(opts::OutputFilename + "-section-hotness.csv");
return std::error_code();
}
std::error_code DataAggregator::parseBranchEvents() {
outs() << "PERF2BOLT: parse branch events...\n";
NamedRegionTimer T("parseBranch", "Parsing branch events", TimerGroupName,
TimerGroupDesc, opts::TimeAggregator);
uint64_t NumTotalSamples = 0;
uint64_t NumEntries = 0;
uint64_t NumSamples = 0;
uint64_t NumSamplesNoLBR = 0;
uint64_t NumTraces = 0;
bool NeedsSkylakeFix = false;
while (hasData() && NumTotalSamples < opts::MaxSamples) {
++NumTotalSamples;
ErrorOr<PerfBranchSample> SampleRes = parseBranchSample();
if (std::error_code EC = SampleRes.getError()) {
if (EC == errc::no_such_process)
continue;
return EC;
}
++NumSamples;
PerfBranchSample &Sample = SampleRes.get();
if (opts::WriteAutoFDOData)
++BasicSamples[Sample.PC];
if (Sample.LBR.empty()) {
++NumSamplesNoLBR;
continue;
}
NumEntries += Sample.LBR.size();
if (BAT && Sample.LBR.size() == 32 && !NeedsSkylakeFix) {
errs() << "PERF2BOLT-WARNING: using Intel Skylake bug workaround\n";
NeedsSkylakeFix = true;
}
// LBRs are stored in reverse execution order. NextPC refers to the next
// recorded executed PC.
uint64_t NextPC = opts::UseEventPC ? Sample.PC : 0;
uint32_t NumEntry = 0;
for (const LBREntry &LBR : Sample.LBR) {
++NumEntry;
// Hardware bug workaround: Intel Skylake (which has 32 LBR entries)
// sometimes record entry 32 as an exact copy of entry 31. This will cause
// us to likely record an invalid trace and generate a stale function for
// BAT mode (non BAT disassembles the function and is able to ignore this
// trace at aggregation time). Drop first 2 entries (last two, in
// chronological order)
if (NeedsSkylakeFix && NumEntry <= 2)
continue;
if (NextPC) {
// Record fall-through trace.
const uint64_t TraceFrom = LBR.To;
const uint64_t TraceTo = NextPC;
const BinaryFunction *TraceBF =
getBinaryFunctionContainingAddress(TraceFrom);
if (TraceBF && TraceBF->containsAddress(TraceTo)) {
FTInfo &Info = FallthroughLBRs[Trace(TraceFrom, TraceTo)];
if (TraceBF->containsAddress(LBR.From))
++Info.InternCount;
else
++Info.ExternCount;
} else {
if (TraceBF && getBinaryFunctionContainingAddress(TraceTo)) {
LLVM_DEBUG(dbgs()
<< "Invalid trace starting in "
<< TraceBF->getPrintName() << " @ "
<< Twine::utohexstr(TraceFrom - TraceBF->getAddress())
<< " and ending @ " << Twine::utohexstr(TraceTo)
<< '\n');
++NumInvalidTraces;
} else {
LLVM_DEBUG(dbgs()
<< "Out of range trace starting in "
<< (TraceBF ? TraceBF->getPrintName() : "None") << " @ "
<< Twine::utohexstr(
TraceFrom - (TraceBF ? TraceBF->getAddress() : 0))
<< " and ending in "
<< (getBinaryFunctionContainingAddress(TraceTo)
? getBinaryFunctionContainingAddress(TraceTo)
->getPrintName()
: "None")
<< " @ "
<< Twine::utohexstr(
TraceTo -
(getBinaryFunctionContainingAddress(TraceTo)
? getBinaryFunctionContainingAddress(TraceTo)
->getAddress()
: 0))
<< '\n');
++NumLongRangeTraces;
}
}
++NumTraces;
}
NextPC = LBR.From;
uint64_t From = LBR.From;
if (!getBinaryFunctionContainingAddress(From))
From = 0;
uint64_t To = LBR.To;
if (!getBinaryFunctionContainingAddress(To))
To = 0;
if (!From && !To)
continue;
BranchInfo &Info = BranchLBRs[Trace(From, To)];
++Info.TakenCount;
Info.MispredCount += LBR.Mispred;
}
}
for (const auto &LBR : BranchLBRs) {
const Trace &Trace = LBR.first;
if (BinaryFunction *BF = getBinaryFunctionContainingAddress(Trace.From))
BF->setHasProfileAvailable();
if (BinaryFunction *BF = getBinaryFunctionContainingAddress(Trace.To))
BF->setHasProfileAvailable();
}
auto printColored = [](raw_ostream &OS, float Percent, float T1, float T2) {
OS << " (";
if (OS.has_colors()) {
if (Percent > T2)
OS.changeColor(raw_ostream::RED);
else if (Percent > T1)
OS.changeColor(raw_ostream::YELLOW);
else
OS.changeColor(raw_ostream::GREEN);
}
OS << format("%.1f%%", Percent);
if (OS.has_colors())
OS.resetColor();
OS << ")";
};
outs() << "PERF2BOLT: read " << NumSamples << " samples and " << NumEntries
<< " LBR entries\n";
if (NumTotalSamples) {
if (NumSamples && NumSamplesNoLBR == NumSamples) {
// Note: we don't know if perf2bolt is being used to parse memory samples
// at this point. In this case, it is OK to parse zero LBRs.
errs() << "PERF2BOLT-WARNING: all recorded samples for this binary lack "
"LBR. Record profile with perf record -j any or run perf2bolt "
"in no-LBR mode with -nl (the performance improvement in -nl "
"mode may be limited)\n";
} else {
const uint64_t IgnoredSamples = NumTotalSamples - NumSamples;
const float PercentIgnored = 100.0f * IgnoredSamples / NumTotalSamples;
outs() << "PERF2BOLT: " << IgnoredSamples << " samples";
printColored(outs(), PercentIgnored, 20, 50);
outs() << " were ignored\n";
if (PercentIgnored > 50.0f)
errs() << "PERF2BOLT-WARNING: less than 50% of all recorded samples "
"were attributed to the input binary\n";
}
}
outs() << "PERF2BOLT: traces mismatching disassembled function contents: "
<< NumInvalidTraces;
float Perc = 0.0f;
if (NumTraces > 0) {
Perc = NumInvalidTraces * 100.0f / NumTraces;
printColored(outs(), Perc, 5, 10);
}
outs() << "\n";
if (Perc > 10.0f)
outs() << "\n !! WARNING !! This high mismatch ratio indicates the input "
"binary is probably not the same binary used during profiling "
"collection. The generated data may be ineffective for improving "
"performance.\n\n";
outs() << "PERF2BOLT: out of range traces involving unknown regions: "
<< NumLongRangeTraces;
if (NumTraces > 0)
outs() << format(" (%.1f%%)", NumLongRangeTraces * 100.0f / NumTraces);
outs() << "\n";
if (NumColdSamples > 0) {
const float ColdSamples = NumColdSamples * 100.0f / NumTotalSamples;
outs() << "PERF2BOLT: " << NumColdSamples
<< format(" (%.1f%%)", ColdSamples)
<< " samples recorded in cold regions of split functions.\n";
if (ColdSamples > 5.0f)
outs()
<< "WARNING: The BOLT-processed binary where samples were collected "
"likely used bad data or your service observed a large shift in "
"profile. You may want to audit this.\n";
}
return std::error_code();
}
void DataAggregator::processBranchEvents() {
outs() << "PERF2BOLT: processing branch events...\n";
NamedRegionTimer T("processBranch", "Processing branch events",
TimerGroupName, TimerGroupDesc, opts::TimeAggregator);
for (const auto &AggrLBR : FallthroughLBRs) {
const Trace &Loc = AggrLBR.first;
const FTInfo &Info = AggrLBR.second;
LBREntry First{Loc.From, Loc.From, false};
LBREntry Second{Loc.To, Loc.To, false};
if (Info.InternCount)
doTrace(First, Second, Info.InternCount);
if (Info.ExternCount) {
First.From = 0;
doTrace(First, Second, Info.ExternCount);
}
}
for (const auto &AggrLBR : BranchLBRs) {
const Trace &Loc = AggrLBR.first;
const BranchInfo &Info = AggrLBR.second;
doBranch(Loc.From, Loc.To, Info.TakenCount, Info.MispredCount);
}
}
std::error_code DataAggregator::parseBasicEvents() {
outs() << "PERF2BOLT: parsing basic events (without LBR)...\n";
NamedRegionTimer T("parseBasic", "Parsing basic events", TimerGroupName,
TimerGroupDesc, opts::TimeAggregator);
while (hasData()) {
ErrorOr<PerfBasicSample> Sample = parseBasicSample();
if (std::error_code EC = Sample.getError())
return EC;
if (!Sample->PC)
continue;
if (BinaryFunction *BF = getBinaryFunctionContainingAddress(Sample->PC))
BF->setHasProfileAvailable();
++BasicSamples[Sample->PC];
EventNames.insert(Sample->EventName);
}
return std::error_code();
}
void DataAggregator::processBasicEvents() {
outs() << "PERF2BOLT: processing basic events (without LBR)...\n";
NamedRegionTimer T("processBasic", "Processing basic events", TimerGroupName,
TimerGroupDesc, opts::TimeAggregator);
uint64_t OutOfRangeSamples = 0;
uint64_t NumSamples = 0;
for (auto &Sample : BasicSamples) {
const uint64_t PC = Sample.first;
const uint64_t HitCount = Sample.second;
NumSamples += HitCount;
BinaryFunction *Func = getBinaryFunctionContainingAddress(PC);
if (!Func) {
OutOfRangeSamples += HitCount;
continue;
}
doSample(*Func, PC, HitCount);
}
outs() << "PERF2BOLT: read " << NumSamples << " samples\n";
outs() << "PERF2BOLT: out of range samples recorded in unknown regions: "
<< OutOfRangeSamples;
float Perc = 0.0f;
if (NumSamples > 0) {
outs() << " (";
Perc = OutOfRangeSamples * 100.0f / NumSamples;
if (outs().has_colors()) {
if (Perc > 60.0f)
outs().changeColor(raw_ostream::RED);
else if (Perc > 40.0f)
outs().changeColor(raw_ostream::YELLOW);
else
outs().changeColor(raw_ostream::GREEN);
}
outs() << format("%.1f%%", Perc);
if (outs().has_colors())
outs().resetColor();
outs() << ")";
}
outs() << "\n";
if (Perc > 80.0f)
outs() << "\n !! WARNING !! This high mismatch ratio indicates the input "
"binary is probably not the same binary used during profiling "
"collection. The generated data may be ineffective for improving "
"performance.\n\n";
}
std::error_code DataAggregator::parseMemEvents() {
outs() << "PERF2BOLT: parsing memory events...\n";
NamedRegionTimer T("parseMemEvents", "Parsing mem events", TimerGroupName,
TimerGroupDesc, opts::TimeAggregator);
while (hasData()) {
ErrorOr<PerfMemSample> Sample = parseMemSample();
if (std::error_code EC = Sample.getError())
return EC;
if (BinaryFunction *BF = getBinaryFunctionContainingAddress(Sample->PC))
BF->setHasProfileAvailable();
MemSamples.emplace_back(std::move(Sample.get()));
}
return std::error_code();
}
void DataAggregator::processMemEvents() {
NamedRegionTimer T("ProcessMemEvents", "Processing mem events",
TimerGroupName, TimerGroupDesc, opts::TimeAggregator);
for (const PerfMemSample &Sample : MemSamples) {
uint64_t PC = Sample.PC;
uint64_t Addr = Sample.Addr;
StringRef FuncName;
StringRef MemName;
// Try to resolve symbol for PC
BinaryFunction *Func = getBinaryFunctionContainingAddress(PC);
if (!Func) {
LLVM_DEBUG(if (PC != 0) {
dbgs() << "Skipped mem event: 0x" << Twine::utohexstr(PC) << " => 0x"
<< Twine::utohexstr(Addr) << "\n";
});
continue;
}
FuncName = Func->getOneName();
PC -= Func->getAddress();
// Try to resolve symbol for memory load
if (BinaryData *BD = BC->getBinaryDataContainingAddress(Addr)) {
MemName = BD->getName();
Addr -= BD->getAddress();
} else if (opts::FilterMemProfile) {
// Filter out heap/stack accesses
continue;
}
const Location FuncLoc(!FuncName.empty(), FuncName, PC);
const Location AddrLoc(!MemName.empty(), MemName, Addr);
FuncMemData *MemData = &NamesToMemEvents[FuncName];
setMemData(*Func, MemData);
MemData->update(FuncLoc, AddrLoc);
LLVM_DEBUG(dbgs() << "Mem event: " << FuncLoc << " = " << AddrLoc << "\n");
}
}
std::error_code DataAggregator::parsePreAggregatedLBRSamples() {
outs() << "PERF2BOLT: parsing pre-aggregated profile...\n";
NamedRegionTimer T("parseAggregated", "Parsing aggregated branch events",
TimerGroupName, TimerGroupDesc, opts::TimeAggregator);
while (hasData()) {
ErrorOr<AggregatedLBREntry> AggrEntry = parseAggregatedLBREntry();
if (std::error_code EC = AggrEntry.getError())
return EC;
if (BinaryFunction *BF =
getBinaryFunctionContainingAddress(AggrEntry->From.Offset))
BF->setHasProfileAvailable();
if (BinaryFunction *BF =
getBinaryFunctionContainingAddress(AggrEntry->To.Offset))
BF->setHasProfileAvailable();
AggregatedLBRs.emplace_back(std::move(AggrEntry.get()));
}
return std::error_code();
}
void DataAggregator::processPreAggregated() {
outs() << "PERF2BOLT: processing pre-aggregated profile...\n";
NamedRegionTimer T("processAggregated", "Processing aggregated branch events",
TimerGroupName, TimerGroupDesc, opts::TimeAggregator);
uint64_t NumTraces = 0;
for (const AggregatedLBREntry &AggrEntry : AggregatedLBRs) {
switch (AggrEntry.EntryType) {
case AggregatedLBREntry::BRANCH:
doBranch(AggrEntry.From.Offset, AggrEntry.To.Offset, AggrEntry.Count,
AggrEntry.Mispreds);
break;
case AggregatedLBREntry::FT:
case AggregatedLBREntry::FT_EXTERNAL_ORIGIN: {
LBREntry First{AggrEntry.EntryType == AggregatedLBREntry::FT
? AggrEntry.From.Offset
: 0,
AggrEntry.From.Offset, false};
LBREntry Second{AggrEntry.To.Offset, AggrEntry.To.Offset, false};
doTrace(First, Second, AggrEntry.Count);
NumTraces += AggrEntry.Count;
break;
}
}
}
outs() << "PERF2BOLT: read " << AggregatedLBRs.size()
<< " aggregated LBR entries\n";
outs() << "PERF2BOLT: traces mismatching disassembled function contents: "
<< NumInvalidTraces;
float Perc = 0.0f;
if (NumTraces > 0) {
outs() << " (";
Perc = NumInvalidTraces * 100.0f / NumTraces;
if (outs().has_colors()) {
if (Perc > 10.0f)
outs().changeColor(raw_ostream::RED);
else if (Perc > 5.0f)
outs().changeColor(raw_ostream::YELLOW);
else
outs().changeColor(raw_ostream::GREEN);
}
outs() << format("%.1f%%", Perc);
if (outs().has_colors())
outs().resetColor();
outs() << ")";
}
outs() << "\n";
if (Perc > 10.0f)
outs() << "\n !! WARNING !! This high mismatch ratio indicates the input "
"binary is probably not the same binary used during profiling "
"collection. The generated data may be ineffective for improving "
"performance.\n\n";
outs() << "PERF2BOLT: Out of range traces involving unknown regions: "
<< NumLongRangeTraces;
if (NumTraces > 0)
outs() << format(" (%.1f%%)", NumLongRangeTraces * 100.0f / NumTraces);
outs() << "\n";
}
Optional<int32_t> DataAggregator::parseCommExecEvent() {
size_t LineEnd = ParsingBuf.find_first_of("\n");
if (LineEnd == StringRef::npos) {
reportError("expected rest of line");
Diag << "Found: " << ParsingBuf << "\n";
return None;
}
StringRef Line = ParsingBuf.substr(0, LineEnd);
size_t Pos = Line.find("PERF_RECORD_COMM exec");
if (Pos == StringRef::npos)
return None;
Line = Line.drop_front(Pos);
// Line:
// PERF_RECORD_COMM exec: <name>:<pid>/<tid>"
StringRef PIDStr = Line.rsplit(':').second.split('/').first;
int32_t PID;
if (PIDStr.getAsInteger(10, PID)) {
reportError("expected PID");
Diag << "Found: " << PIDStr << "in '" << Line << "'\n";
return None;
}
return PID;
}
namespace {
Optional<uint64_t> parsePerfTime(const StringRef TimeStr) {
const StringRef SecTimeStr = TimeStr.split('.').first;
const StringRef USecTimeStr = TimeStr.split('.').second;
uint64_t SecTime;
uint64_t USecTime;
if (SecTimeStr.getAsInteger(10, SecTime) ||
USecTimeStr.getAsInteger(10, USecTime))
return None;
return SecTime * 1000000ULL + USecTime;
}
}
Optional<DataAggregator::ForkInfo> DataAggregator::parseForkEvent() {
while (checkAndConsumeFS()) {
}
size_t LineEnd = ParsingBuf.find_first_of("\n");
if (LineEnd == StringRef::npos) {
reportError("expected rest of line");
Diag << "Found: " << ParsingBuf << "\n";
return None;
}
StringRef Line = ParsingBuf.substr(0, LineEnd);
size_t Pos = Line.find("PERF_RECORD_FORK");
if (Pos == StringRef::npos) {
consumeRestOfLine();
return None;
}
ForkInfo FI;
const StringRef TimeStr =
Line.substr(0, Pos).rsplit(':').first.rsplit(FieldSeparator).second;
if (Optional<uint64_t> TimeRes = parsePerfTime(TimeStr)) {
FI.Time = *TimeRes;
}
Line = Line.drop_front(Pos);
// Line:
// PERF_RECORD_FORK(<child_pid>:<child_tid>):(<parent_pid>:<parent_tid>)
const StringRef ChildPIDStr = Line.split('(').second.split(':').first;
if (ChildPIDStr.getAsInteger(10, FI.ChildPID)) {
reportError("expected PID");
Diag << "Found: " << ChildPIDStr << "in '" << Line << "'\n";
return None;
}
const StringRef ParentPIDStr = Line.rsplit('(').second.split(':').first;
if (ParentPIDStr.getAsInteger(10, FI.ParentPID)) {
reportError("expected PID");
Diag << "Found: " << ParentPIDStr << "in '" << Line << "'\n";
return None;
}
consumeRestOfLine();
return FI;
}
ErrorOr<std::pair<StringRef, DataAggregator::MMapInfo>>
DataAggregator::parseMMapEvent() {
while (checkAndConsumeFS()) {
}
MMapInfo ParsedInfo;
size_t LineEnd = ParsingBuf.find_first_of("\n");
if (LineEnd == StringRef::npos) {
reportError("expected rest of line");
Diag << "Found: " << ParsingBuf << "\n";
return make_error_code(llvm::errc::io_error);
}
StringRef Line = ParsingBuf.substr(0, LineEnd);
size_t Pos = Line.find("PERF_RECORD_MMAP2");
if (Pos == StringRef::npos) {
consumeRestOfLine();
return std::make_pair(StringRef(), ParsedInfo);
}
// Line:
// {<name> .* <sec>.<usec>: }PERF_RECORD_MMAP2 <pid>/<tid>: .* <file_name>
const StringRef TimeStr =
Line.substr(0, Pos).rsplit(':').first.rsplit(FieldSeparator).second;
if (Optional<uint64_t> TimeRes = parsePerfTime(TimeStr))
ParsedInfo.Time = *TimeRes;
Line = Line.drop_front(Pos);
// Line:
// PERF_RECORD_MMAP2 <pid>/<tid>: [<hexbase>(<hexsize>) .*]: .* <file_name>
StringRef FileName = Line.rsplit(FieldSeparator).second;
if (FileName.startswith("//") || FileName.startswith("[")) {
consumeRestOfLine();
return std::make_pair(StringRef(), ParsedInfo);
}
FileName = sys::path::filename(FileName);
const StringRef PIDStr = Line.split(FieldSeparator).second.split('/').first;
if (PIDStr.getAsInteger(10, ParsedInfo.PID)) {
reportError("expected PID");
Diag << "Found: " << PIDStr << "in '" << Line << "'\n";
return make_error_code(llvm::errc::io_error);
}
const StringRef BaseAddressStr = Line.split('[').second.split('(').first;
if (BaseAddressStr.getAsInteger(0, ParsedInfo.MMapAddress)) {
reportError("expected base address");
Diag << "Found: " << BaseAddressStr << "in '" << Line << "'\n";
return make_error_code(llvm::errc::io_error);
}
const StringRef SizeStr = Line.split('(').second.split(')').first;
if (SizeStr.getAsInteger(0, ParsedInfo.Size)) {
reportError("expected mmaped size");
Diag << "Found: " << SizeStr << "in '" << Line << "'\n";
return make_error_code(llvm::errc::io_error);
}
const StringRef OffsetStr =
Line.split('@').second.ltrim().split(FieldSeparator).first;
if (OffsetStr.getAsInteger(0, ParsedInfo.Offset)) {
reportError("expected mmaped page-aligned offset");
Diag << "Found: " << OffsetStr << "in '" << Line << "'\n";
return make_error_code(llvm::errc::io_error);
}
consumeRestOfLine();
return std::make_pair(FileName, ParsedInfo);
}
std::error_code DataAggregator::parseMMapEvents() {
outs() << "PERF2BOLT: parsing perf-script mmap events output\n";
NamedRegionTimer T("parseMMapEvents", "Parsing mmap events", TimerGroupName,
TimerGroupDesc, opts::TimeAggregator);
std::multimap<StringRef, MMapInfo> GlobalMMapInfo;
while (hasData()) {
ErrorOr<std::pair<StringRef, MMapInfo>> FileMMapInfoRes = parseMMapEvent();
if (std::error_code EC = FileMMapInfoRes.getError())
return EC;
std::pair<StringRef, MMapInfo> FileMMapInfo = FileMMapInfoRes.get();
if (FileMMapInfo.second.PID == -1)
continue;
// Consider only the first mapping of the file for any given PID
bool PIDExists = false;
auto Range = GlobalMMapInfo.equal_range(FileMMapInfo.first);
for (auto MI = Range.first; MI != Range.second; ++MI) {
if (MI->second.PID == FileMMapInfo.second.PID) {
PIDExists = true;
break;
}
}
if (PIDExists)
continue;
GlobalMMapInfo.insert(FileMMapInfo);
}
LLVM_DEBUG({
dbgs() << "FileName -> mmap info:\n";
for (const std::pair<const StringRef, MMapInfo> &Pair : GlobalMMapInfo)
dbgs() << " " << Pair.first << " : " << Pair.second.PID << " [0x"
<< Twine::utohexstr(Pair.second.MMapAddress) << ", "
<< Twine::utohexstr(Pair.second.Size) << " @ "
<< Twine::utohexstr(Pair.second.Offset) << "]\n";
});
StringRef NameToUse = llvm::sys::path::filename(BC->getFilename());
if (GlobalMMapInfo.count(NameToUse) == 0 && !BuildIDBinaryName.empty()) {
errs() << "PERF2BOLT-WARNING: using \"" << BuildIDBinaryName
<< "\" for profile matching\n";
NameToUse = BuildIDBinaryName;
}
auto Range = GlobalMMapInfo.equal_range(NameToUse);
for (auto I = Range.first; I != Range.second; ++I) {
MMapInfo &MMapInfo = I->second;
if (BC->HasFixedLoadAddress && MMapInfo.MMapAddress) {
// Check that the binary mapping matches one of the segments.
bool MatchFound = llvm::any_of(
llvm::make_second_range(BC->SegmentMapInfo),
[&](SegmentInfo &SegInfo) {
// The mapping is page-aligned and hence the MMapAddress could be
// different from the segment start address. We cannot know the page
// size of the mapping, but we know it should not exceed the segment
// alignment value. Hence we are performing an approximate check.
return SegInfo.Address >= MMapInfo.MMapAddress &&
SegInfo.Address - MMapInfo.MMapAddress < SegInfo.Alignment;
});
if (!MatchFound) {
errs() << "PERF2BOLT-WARNING: ignoring mapping of " << NameToUse
<< " at 0x" << Twine::utohexstr(MMapInfo.MMapAddress) << '\n';
continue;
}
}
// Set base address for shared objects.
if (!BC->HasFixedLoadAddress) {
Optional<uint64_t> BaseAddress =
BC->getBaseAddressForMapping(MMapInfo.MMapAddress, MMapInfo.Offset);
if (!BaseAddress) {
errs() << "PERF2BOLT-WARNING: unable to find base address of the "
"binary when memory mapped at 0x"
<< Twine::utohexstr(MMapInfo.MMapAddress)
<< " using file offset 0x" << Twine::utohexstr(MMapInfo.Offset)
<< ". Ignoring profile data for this mapping\n";
continue;
} else {
MMapInfo.BaseAddress = *BaseAddress;
}
}
BinaryMMapInfo.insert(std::make_pair(MMapInfo.PID, MMapInfo));
}
if (BinaryMMapInfo.empty()) {
if (errs().has_colors())
errs().changeColor(raw_ostream::RED);
errs() << "PERF2BOLT-ERROR: could not find a profile matching binary \""
<< BC->getFilename() << "\".";
if (!GlobalMMapInfo.empty()) {
errs() << " Profile for the following binary name(s) is available:\n";
for (auto I = GlobalMMapInfo.begin(), IE = GlobalMMapInfo.end(); I != IE;
I = GlobalMMapInfo.upper_bound(I->first))
errs() << " " << I->first << '\n';
errs() << "Please rename the input binary.\n";
} else {
errs() << " Failed to extract any binary name from a profile.\n";
}
if (errs().has_colors())
errs().resetColor();
exit(1);
}
return std::error_code();
}
std::error_code DataAggregator::parseTaskEvents() {
outs() << "PERF2BOLT: parsing perf-script task events output\n";
NamedRegionTimer T("parseTaskEvents", "Parsing task events", TimerGroupName,
TimerGroupDesc, opts::TimeAggregator);
while (hasData()) {
if (Optional<int32_t> CommInfo = parseCommExecEvent()) {
// Remove forked child that ran execve
auto MMapInfoIter = BinaryMMapInfo.find(*CommInfo);
if (MMapInfoIter != BinaryMMapInfo.end() && MMapInfoIter->second.Forked)
BinaryMMapInfo.erase(MMapInfoIter);
consumeRestOfLine();
continue;
}
Optional<ForkInfo> ForkInfo = parseForkEvent();
if (!ForkInfo)
continue;
if (ForkInfo->ParentPID == ForkInfo->ChildPID)
continue;
if (ForkInfo->Time == 0) {
// Process was forked and mmaped before perf ran. In this case the child
// should have its own mmap entry unless it was execve'd.
continue;
}
auto MMapInfoIter = BinaryMMapInfo.find(ForkInfo->ParentPID);
if (MMapInfoIter == BinaryMMapInfo.end())
continue;
MMapInfo MMapInfo = MMapInfoIter->second;
MMapInfo.PID = ForkInfo->ChildPID;
MMapInfo.Forked = true;
BinaryMMapInfo.insert(std::make_pair(MMapInfo.PID, MMapInfo));
}
outs() << "PERF2BOLT: input binary is associated with "
<< BinaryMMapInfo.size() << " PID(s)\n";
LLVM_DEBUG({
for (std::pair<const uint64_t, MMapInfo> &MMI : BinaryMMapInfo)
outs() << " " << MMI.second.PID << (MMI.second.Forked ? " (forked)" : "")
<< ": (0x" << Twine::utohexstr(MMI.second.MMapAddress) << ": 0x"
<< Twine::utohexstr(MMI.second.Size) << ")\n";
});
return std::error_code();
}
Optional<std::pair<StringRef, StringRef>>
DataAggregator::parseNameBuildIDPair() {
while (checkAndConsumeFS()) {
}
ErrorOr<StringRef> BuildIDStr = parseString(FieldSeparator, true);
if (std::error_code EC = BuildIDStr.getError())
return None;
// If one of the strings is missing, don't issue a parsing error, but still
// do not return a value.
consumeAllRemainingFS();
if (checkNewLine())
return None;
ErrorOr<StringRef> NameStr = parseString(FieldSeparator, true);
if (std::error_code EC = NameStr.getError())
return None;
consumeRestOfLine();
return std::make_pair(NameStr.get(), BuildIDStr.get());
}
bool DataAggregator::hasAllBuildIDs() {
const StringRef SavedParsingBuf = ParsingBuf;
if (!hasData())
return false;
bool HasInvalidEntries = false;
while (hasData()) {
if (!parseNameBuildIDPair()) {
HasInvalidEntries = true;
break;
}
}
ParsingBuf = SavedParsingBuf;
return !HasInvalidEntries;
}
Optional<StringRef>
DataAggregator::getFileNameForBuildID(StringRef FileBuildID) {
const StringRef SavedParsingBuf = ParsingBuf;
StringRef FileName;
while (hasData()) {
Optional<std::pair<StringRef, StringRef>> IDPair = parseNameBuildIDPair();
if (!IDPair) {
consumeRestOfLine();
continue;
}
if (IDPair->second.startswith(FileBuildID)) {
FileName = sys::path::filename(IDPair->first);
break;
}
}
ParsingBuf = SavedParsingBuf;
if (!FileName.empty())
return FileName;
return None;
}
std::error_code
DataAggregator::writeAggregatedFile(StringRef OutputFilename) const {
std::error_code EC;
raw_fd_ostream OutFile(OutputFilename, EC, sys::fs::OpenFlags::OF_None);
if (EC)
return EC;
bool WriteMemLocs = false;
auto writeLocation = [&OutFile, &WriteMemLocs](const Location &Loc) {
if (WriteMemLocs)
OutFile << (Loc.IsSymbol ? "4 " : "3 ");
else
OutFile << (Loc.IsSymbol ? "1 " : "0 ");
OutFile << (Loc.Name.empty() ? "[unknown]" : getEscapedName(Loc.Name))
<< " " << Twine::utohexstr(Loc.Offset) << FieldSeparator;
};
uint64_t BranchValues = 0;
uint64_t MemValues = 0;
if (BAT)
OutFile << "boltedcollection\n";
if (opts::BasicAggregation) {
OutFile << "no_lbr";
for (const StringMapEntry<std::nullopt_t> &Entry : EventNames)
OutFile << " " << Entry.getKey();
OutFile << "\n";
for (const StringMapEntry<FuncSampleData> &Func : NamesToSamples) {
for (const SampleInfo &SI : Func.getValue().Data) {
writeLocation(SI.Loc);
OutFile << SI.Hits << "\n";
++BranchValues;
}
}
} else {
for (const StringMapEntry<FuncBranchData> &Func : NamesToBranches) {
for (const llvm::bolt::BranchInfo &BI : Func.getValue().Data) {
writeLocation(BI.From);
writeLocation(BI.To);
OutFile << BI.Mispreds << " " << BI.Branches << "\n";
++BranchValues;
}
for (const llvm::bolt::BranchInfo &BI : Func.getValue().EntryData) {
// Do not output if source is a known symbol, since this was already
// accounted for in the source function
if (BI.From.IsSymbol)
continue;
writeLocation(BI.From);
writeLocation(BI.To);
OutFile << BI.Mispreds << " " << BI.Branches << "\n";
++BranchValues;
}
}
WriteMemLocs = true;
for (const StringMapEntry<FuncMemData> &Func : NamesToMemEvents) {
for (const MemInfo &MemEvent : Func.getValue().Data) {
writeLocation(MemEvent.Offset);
writeLocation(MemEvent.Addr);
OutFile << MemEvent.Count << "\n";
++MemValues;
}
}
}
outs() << "PERF2BOLT: wrote " << BranchValues << " objects and " << MemValues
<< " memory objects to " << OutputFilename << "\n";
return std::error_code();
}
void DataAggregator::dump() const { DataReader::dump(); }
void DataAggregator::dump(const LBREntry &LBR) const {
Diag << "From: " << Twine::utohexstr(LBR.From)
<< " To: " << Twine::utohexstr(LBR.To) << " Mispred? " << LBR.Mispred
<< "\n";
}
void DataAggregator::dump(const PerfBranchSample &Sample) const {
Diag << "Sample LBR entries: " << Sample.LBR.size() << "\n";
for (const LBREntry &LBR : Sample.LBR)
dump(LBR);
}
void DataAggregator::dump(const PerfMemSample &Sample) const {
Diag << "Sample mem entries: " << Sample.PC << ": " << Sample.Addr << "\n";
}