Always try to fold freeze(op(....)) -> op(freeze(),freeze(),freeze(),...). This patch proposes we drop the opt-in limit for opcodes that are allowed to push a freeze through the op to freeze all its operands, through the tree towards the roots. I'm struggling to find a strong reason for this limit apart from the DAG freeze handling being immature for so long - as we've improved coverage in canCreateUndefOrPoison/isGuaranteedNotToBeUndefOrPoison it looks like the regressions are not as severe. Hopefully this will help some of the regression issues in #143102 etc.
24959 lines
973 KiB
C++
24959 lines
973 KiB
C++
//===-- RISCVISelLowering.cpp - RISC-V DAG Lowering Implementation -------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the interfaces that RISC-V uses to lower LLVM code into a
|
|
// selection DAG.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "RISCVISelLowering.h"
|
|
#include "MCTargetDesc/RISCVMatInt.h"
|
|
#include "RISCV.h"
|
|
#include "RISCVConstantPoolValue.h"
|
|
#include "RISCVMachineFunctionInfo.h"
|
|
#include "RISCVRegisterInfo.h"
|
|
#include "RISCVSelectionDAGInfo.h"
|
|
#include "RISCVSubtarget.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/MemoryLocation.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/Analysis/VectorUtils.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineJumpTableInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/SDPatternMatch.h"
|
|
#include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
|
|
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
|
|
#include "llvm/CodeGen/ValueTypes.h"
|
|
#include "llvm/IR/DiagnosticInfo.h"
|
|
#include "llvm/IR/DiagnosticPrinter.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicsRISCV.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/MC/MCCodeEmitter.h"
|
|
#include "llvm/MC/MCInstBuilder.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/InstructionCost.h"
|
|
#include "llvm/Support/KnownBits.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <optional>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "riscv-lower"
|
|
|
|
STATISTIC(NumTailCalls, "Number of tail calls");
|
|
|
|
static cl::opt<unsigned> ExtensionMaxWebSize(
|
|
DEBUG_TYPE "-ext-max-web-size", cl::Hidden,
|
|
cl::desc("Give the maximum size (in number of nodes) of the web of "
|
|
"instructions that we will consider for VW expansion"),
|
|
cl::init(18));
|
|
|
|
static cl::opt<bool>
|
|
AllowSplatInVW_W(DEBUG_TYPE "-form-vw-w-with-splat", cl::Hidden,
|
|
cl::desc("Allow the formation of VW_W operations (e.g., "
|
|
"VWADD_W) with splat constants"),
|
|
cl::init(false));
|
|
|
|
static cl::opt<unsigned> NumRepeatedDivisors(
|
|
DEBUG_TYPE "-fp-repeated-divisors", cl::Hidden,
|
|
cl::desc("Set the minimum number of repetitions of a divisor to allow "
|
|
"transformation to multiplications by the reciprocal"),
|
|
cl::init(2));
|
|
|
|
static cl::opt<int>
|
|
FPImmCost(DEBUG_TYPE "-fpimm-cost", cl::Hidden,
|
|
cl::desc("Give the maximum number of instructions that we will "
|
|
"use for creating a floating-point immediate value"),
|
|
cl::init(2));
|
|
|
|
static cl::opt<bool>
|
|
ReassocShlAddiAdd("reassoc-shl-addi-add", cl::Hidden,
|
|
cl::desc("Swap add and addi in cases where the add may "
|
|
"be combined with a shift"),
|
|
cl::init(true));
|
|
|
|
RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
|
|
const RISCVSubtarget &STI)
|
|
: TargetLowering(TM), Subtarget(STI) {
|
|
|
|
RISCVABI::ABI ABI = Subtarget.getTargetABI();
|
|
assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
|
|
|
|
if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
|
|
!Subtarget.hasStdExtF()) {
|
|
errs() << "Hard-float 'f' ABI can't be used for a target that "
|
|
"doesn't support the F instruction set extension (ignoring "
|
|
"target-abi)\n";
|
|
ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
|
|
} else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
|
|
!Subtarget.hasStdExtD()) {
|
|
errs() << "Hard-float 'd' ABI can't be used for a target that "
|
|
"doesn't support the D instruction set extension (ignoring "
|
|
"target-abi)\n";
|
|
ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
|
|
}
|
|
|
|
switch (ABI) {
|
|
default:
|
|
report_fatal_error("Don't know how to lower this ABI");
|
|
case RISCVABI::ABI_ILP32:
|
|
case RISCVABI::ABI_ILP32E:
|
|
case RISCVABI::ABI_LP64E:
|
|
case RISCVABI::ABI_ILP32F:
|
|
case RISCVABI::ABI_ILP32D:
|
|
case RISCVABI::ABI_LP64:
|
|
case RISCVABI::ABI_LP64F:
|
|
case RISCVABI::ABI_LP64D:
|
|
break;
|
|
}
|
|
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
// Set up the register classes.
|
|
addRegisterClass(XLenVT, &RISCV::GPRRegClass);
|
|
|
|
if (Subtarget.hasStdExtZfhmin())
|
|
addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
|
|
if (Subtarget.hasStdExtZfbfmin())
|
|
addRegisterClass(MVT::bf16, &RISCV::FPR16RegClass);
|
|
if (Subtarget.hasStdExtF())
|
|
addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
|
|
if (Subtarget.hasStdExtD())
|
|
addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
|
|
if (Subtarget.hasStdExtZhinxmin())
|
|
addRegisterClass(MVT::f16, &RISCV::GPRF16RegClass);
|
|
if (Subtarget.hasStdExtZfinx())
|
|
addRegisterClass(MVT::f32, &RISCV::GPRF32RegClass);
|
|
if (Subtarget.hasStdExtZdinx()) {
|
|
if (Subtarget.is64Bit())
|
|
addRegisterClass(MVT::f64, &RISCV::GPRRegClass);
|
|
else
|
|
addRegisterClass(MVT::f64, &RISCV::GPRPairRegClass);
|
|
}
|
|
|
|
static const MVT::SimpleValueType BoolVecVTs[] = {
|
|
MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1,
|
|
MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
|
|
static const MVT::SimpleValueType IntVecVTs[] = {
|
|
MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8,
|
|
MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16,
|
|
MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
|
|
MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
|
|
MVT::nxv4i64, MVT::nxv8i64};
|
|
static const MVT::SimpleValueType F16VecVTs[] = {
|
|
MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16,
|
|
MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
|
|
static const MVT::SimpleValueType BF16VecVTs[] = {
|
|
MVT::nxv1bf16, MVT::nxv2bf16, MVT::nxv4bf16,
|
|
MVT::nxv8bf16, MVT::nxv16bf16, MVT::nxv32bf16};
|
|
static const MVT::SimpleValueType F32VecVTs[] = {
|
|
MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
|
|
static const MVT::SimpleValueType F64VecVTs[] = {
|
|
MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
|
|
static const MVT::SimpleValueType VecTupleVTs[] = {
|
|
MVT::riscv_nxv1i8x2, MVT::riscv_nxv1i8x3, MVT::riscv_nxv1i8x4,
|
|
MVT::riscv_nxv1i8x5, MVT::riscv_nxv1i8x6, MVT::riscv_nxv1i8x7,
|
|
MVT::riscv_nxv1i8x8, MVT::riscv_nxv2i8x2, MVT::riscv_nxv2i8x3,
|
|
MVT::riscv_nxv2i8x4, MVT::riscv_nxv2i8x5, MVT::riscv_nxv2i8x6,
|
|
MVT::riscv_nxv2i8x7, MVT::riscv_nxv2i8x8, MVT::riscv_nxv4i8x2,
|
|
MVT::riscv_nxv4i8x3, MVT::riscv_nxv4i8x4, MVT::riscv_nxv4i8x5,
|
|
MVT::riscv_nxv4i8x6, MVT::riscv_nxv4i8x7, MVT::riscv_nxv4i8x8,
|
|
MVT::riscv_nxv8i8x2, MVT::riscv_nxv8i8x3, MVT::riscv_nxv8i8x4,
|
|
MVT::riscv_nxv8i8x5, MVT::riscv_nxv8i8x6, MVT::riscv_nxv8i8x7,
|
|
MVT::riscv_nxv8i8x8, MVT::riscv_nxv16i8x2, MVT::riscv_nxv16i8x3,
|
|
MVT::riscv_nxv16i8x4, MVT::riscv_nxv32i8x2};
|
|
|
|
if (Subtarget.hasVInstructions()) {
|
|
auto addRegClassForRVV = [this](MVT VT) {
|
|
// Disable the smallest fractional LMUL types if ELEN is less than
|
|
// RVVBitsPerBlock.
|
|
unsigned MinElts = RISCV::RVVBitsPerBlock / Subtarget.getELen();
|
|
if (VT.getVectorMinNumElements() < MinElts)
|
|
return;
|
|
|
|
unsigned Size = VT.getSizeInBits().getKnownMinValue();
|
|
const TargetRegisterClass *RC;
|
|
if (Size <= RISCV::RVVBitsPerBlock)
|
|
RC = &RISCV::VRRegClass;
|
|
else if (Size == 2 * RISCV::RVVBitsPerBlock)
|
|
RC = &RISCV::VRM2RegClass;
|
|
else if (Size == 4 * RISCV::RVVBitsPerBlock)
|
|
RC = &RISCV::VRM4RegClass;
|
|
else if (Size == 8 * RISCV::RVVBitsPerBlock)
|
|
RC = &RISCV::VRM8RegClass;
|
|
else
|
|
llvm_unreachable("Unexpected size");
|
|
|
|
addRegisterClass(VT, RC);
|
|
};
|
|
|
|
for (MVT VT : BoolVecVTs)
|
|
addRegClassForRVV(VT);
|
|
for (MVT VT : IntVecVTs) {
|
|
if (VT.getVectorElementType() == MVT::i64 &&
|
|
!Subtarget.hasVInstructionsI64())
|
|
continue;
|
|
addRegClassForRVV(VT);
|
|
}
|
|
|
|
if (Subtarget.hasVInstructionsF16Minimal())
|
|
for (MVT VT : F16VecVTs)
|
|
addRegClassForRVV(VT);
|
|
|
|
if (Subtarget.hasVInstructionsBF16Minimal() ||
|
|
Subtarget.hasVendorXAndesVBFHCvt())
|
|
for (MVT VT : BF16VecVTs)
|
|
addRegClassForRVV(VT);
|
|
|
|
if (Subtarget.hasVInstructionsF32())
|
|
for (MVT VT : F32VecVTs)
|
|
addRegClassForRVV(VT);
|
|
|
|
if (Subtarget.hasVInstructionsF64())
|
|
for (MVT VT : F64VecVTs)
|
|
addRegClassForRVV(VT);
|
|
|
|
if (Subtarget.useRVVForFixedLengthVectors()) {
|
|
auto addRegClassForFixedVectors = [this](MVT VT) {
|
|
MVT ContainerVT = getContainerForFixedLengthVector(VT);
|
|
unsigned RCID = getRegClassIDForVecVT(ContainerVT);
|
|
const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
|
|
addRegisterClass(VT, TRI.getRegClass(RCID));
|
|
};
|
|
for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
|
|
if (useRVVForFixedLengthVectorVT(VT))
|
|
addRegClassForFixedVectors(VT);
|
|
|
|
for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
|
|
if (useRVVForFixedLengthVectorVT(VT))
|
|
addRegClassForFixedVectors(VT);
|
|
}
|
|
|
|
addRegisterClass(MVT::riscv_nxv1i8x2, &RISCV::VRN2M1RegClass);
|
|
addRegisterClass(MVT::riscv_nxv1i8x3, &RISCV::VRN3M1RegClass);
|
|
addRegisterClass(MVT::riscv_nxv1i8x4, &RISCV::VRN4M1RegClass);
|
|
addRegisterClass(MVT::riscv_nxv1i8x5, &RISCV::VRN5M1RegClass);
|
|
addRegisterClass(MVT::riscv_nxv1i8x6, &RISCV::VRN6M1RegClass);
|
|
addRegisterClass(MVT::riscv_nxv1i8x7, &RISCV::VRN7M1RegClass);
|
|
addRegisterClass(MVT::riscv_nxv1i8x8, &RISCV::VRN8M1RegClass);
|
|
addRegisterClass(MVT::riscv_nxv2i8x2, &RISCV::VRN2M1RegClass);
|
|
addRegisterClass(MVT::riscv_nxv2i8x3, &RISCV::VRN3M1RegClass);
|
|
addRegisterClass(MVT::riscv_nxv2i8x4, &RISCV::VRN4M1RegClass);
|
|
addRegisterClass(MVT::riscv_nxv2i8x5, &RISCV::VRN5M1RegClass);
|
|
addRegisterClass(MVT::riscv_nxv2i8x6, &RISCV::VRN6M1RegClass);
|
|
addRegisterClass(MVT::riscv_nxv2i8x7, &RISCV::VRN7M1RegClass);
|
|
addRegisterClass(MVT::riscv_nxv2i8x8, &RISCV::VRN8M1RegClass);
|
|
addRegisterClass(MVT::riscv_nxv4i8x2, &RISCV::VRN2M1RegClass);
|
|
addRegisterClass(MVT::riscv_nxv4i8x3, &RISCV::VRN3M1RegClass);
|
|
addRegisterClass(MVT::riscv_nxv4i8x4, &RISCV::VRN4M1RegClass);
|
|
addRegisterClass(MVT::riscv_nxv4i8x5, &RISCV::VRN5M1RegClass);
|
|
addRegisterClass(MVT::riscv_nxv4i8x6, &RISCV::VRN6M1RegClass);
|
|
addRegisterClass(MVT::riscv_nxv4i8x7, &RISCV::VRN7M1RegClass);
|
|
addRegisterClass(MVT::riscv_nxv4i8x8, &RISCV::VRN8M1RegClass);
|
|
addRegisterClass(MVT::riscv_nxv8i8x2, &RISCV::VRN2M1RegClass);
|
|
addRegisterClass(MVT::riscv_nxv8i8x3, &RISCV::VRN3M1RegClass);
|
|
addRegisterClass(MVT::riscv_nxv8i8x4, &RISCV::VRN4M1RegClass);
|
|
addRegisterClass(MVT::riscv_nxv8i8x5, &RISCV::VRN5M1RegClass);
|
|
addRegisterClass(MVT::riscv_nxv8i8x6, &RISCV::VRN6M1RegClass);
|
|
addRegisterClass(MVT::riscv_nxv8i8x7, &RISCV::VRN7M1RegClass);
|
|
addRegisterClass(MVT::riscv_nxv8i8x8, &RISCV::VRN8M1RegClass);
|
|
addRegisterClass(MVT::riscv_nxv16i8x2, &RISCV::VRN2M2RegClass);
|
|
addRegisterClass(MVT::riscv_nxv16i8x3, &RISCV::VRN3M2RegClass);
|
|
addRegisterClass(MVT::riscv_nxv16i8x4, &RISCV::VRN4M2RegClass);
|
|
addRegisterClass(MVT::riscv_nxv32i8x2, &RISCV::VRN2M4RegClass);
|
|
}
|
|
|
|
// Compute derived properties from the register classes.
|
|
computeRegisterProperties(STI.getRegisterInfo());
|
|
|
|
setStackPointerRegisterToSaveRestore(RISCV::X2);
|
|
|
|
setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, XLenVT,
|
|
MVT::i1, Promote);
|
|
// DAGCombiner can call isLoadExtLegal for types that aren't legal.
|
|
setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, MVT::i32,
|
|
MVT::i1, Promote);
|
|
|
|
// TODO: add all necessary setOperationAction calls.
|
|
setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Custom);
|
|
|
|
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
|
|
setOperationAction(ISD::BR_CC, XLenVT, Expand);
|
|
setOperationAction(ISD::BRCOND, MVT::Other, Custom);
|
|
setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
|
|
|
|
setCondCodeAction(ISD::SETGT, XLenVT, Custom);
|
|
setCondCodeAction(ISD::SETGE, XLenVT, Expand);
|
|
setCondCodeAction(ISD::SETUGT, XLenVT, Custom);
|
|
setCondCodeAction(ISD::SETUGE, XLenVT, Expand);
|
|
if (!(Subtarget.hasVendorXCValu() && !Subtarget.is64Bit())) {
|
|
setCondCodeAction(ISD::SETULE, XLenVT, Expand);
|
|
setCondCodeAction(ISD::SETLE, XLenVT, Expand);
|
|
}
|
|
|
|
setOperationAction({ISD::STACKSAVE, ISD::STACKRESTORE}, MVT::Other, Expand);
|
|
|
|
setOperationAction(ISD::VASTART, MVT::Other, Custom);
|
|
setOperationAction({ISD::VAARG, ISD::VACOPY, ISD::VAEND}, MVT::Other, Expand);
|
|
|
|
if (!Subtarget.hasVendorXTHeadBb() && !Subtarget.hasVendorXqcibm() &&
|
|
!Subtarget.hasVendorXAndesPerf())
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
|
|
|
|
setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
|
|
|
|
if (!Subtarget.hasStdExtZbb() && !Subtarget.hasVendorXTHeadBb() &&
|
|
!Subtarget.hasVendorXqcibm() && !Subtarget.hasVendorXAndesPerf() &&
|
|
!(Subtarget.hasVendorXCValu() && !Subtarget.is64Bit()))
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, {MVT::i8, MVT::i16}, Expand);
|
|
|
|
if (Subtarget.hasStdExtZilsd() && !Subtarget.is64Bit()) {
|
|
setOperationAction(ISD::LOAD, MVT::i64, Custom);
|
|
setOperationAction(ISD::STORE, MVT::i64, Custom);
|
|
}
|
|
|
|
if (Subtarget.is64Bit()) {
|
|
setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
|
|
|
|
setOperationAction(ISD::LOAD, MVT::i32, Custom);
|
|
setOperationAction({ISD::ADD, ISD::SUB, ISD::SHL, ISD::SRA, ISD::SRL},
|
|
MVT::i32, Custom);
|
|
setOperationAction({ISD::UADDO, ISD::USUBO}, MVT::i32, Custom);
|
|
if (!Subtarget.hasStdExtZbb())
|
|
setOperationAction(
|
|
{ISD::SADDSAT, ISD::SSUBSAT, ISD::UADDSAT, ISD::USUBSAT}, MVT::i32,
|
|
Custom);
|
|
setOperationAction(ISD::SADDO, MVT::i32, Custom);
|
|
}
|
|
if (!Subtarget.hasStdExtZmmul()) {
|
|
setOperationAction({ISD::MUL, ISD::MULHS, ISD::MULHU}, XLenVT, Expand);
|
|
} else if (Subtarget.is64Bit()) {
|
|
setOperationAction(ISD::MUL, MVT::i128, Custom);
|
|
setOperationAction(ISD::MUL, MVT::i32, Custom);
|
|
} else {
|
|
setOperationAction(ISD::MUL, MVT::i64, Custom);
|
|
}
|
|
|
|
if (!Subtarget.hasStdExtM()) {
|
|
setOperationAction({ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM}, XLenVT,
|
|
Expand);
|
|
} else if (Subtarget.is64Bit()) {
|
|
setOperationAction({ISD::SDIV, ISD::UDIV, ISD::UREM},
|
|
{MVT::i8, MVT::i16, MVT::i32}, Custom);
|
|
}
|
|
|
|
setOperationAction(
|
|
{ISD::SDIVREM, ISD::UDIVREM, ISD::SMUL_LOHI, ISD::UMUL_LOHI}, XLenVT,
|
|
Expand);
|
|
|
|
setOperationAction({ISD::SHL_PARTS, ISD::SRL_PARTS, ISD::SRA_PARTS}, XLenVT,
|
|
Custom);
|
|
|
|
if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb()) {
|
|
if (Subtarget.is64Bit())
|
|
setOperationAction({ISD::ROTL, ISD::ROTR}, MVT::i32, Custom);
|
|
} else if (Subtarget.hasVendorXTHeadBb()) {
|
|
if (Subtarget.is64Bit())
|
|
setOperationAction({ISD::ROTL, ISD::ROTR}, MVT::i32, Custom);
|
|
setOperationAction({ISD::ROTL, ISD::ROTR}, XLenVT, Custom);
|
|
} else if (Subtarget.hasVendorXCVbitmanip() && !Subtarget.is64Bit()) {
|
|
setOperationAction(ISD::ROTL, XLenVT, Expand);
|
|
} else {
|
|
setOperationAction({ISD::ROTL, ISD::ROTR}, XLenVT, Expand);
|
|
}
|
|
|
|
// With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
|
|
// pattern match it directly in isel.
|
|
setOperationAction(ISD::BSWAP, XLenVT,
|
|
(Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb() ||
|
|
Subtarget.hasVendorXTHeadBb())
|
|
? Legal
|
|
: Expand);
|
|
|
|
if ((Subtarget.hasVendorXCVbitmanip() || Subtarget.hasVendorXqcibm()) &&
|
|
!Subtarget.is64Bit()) {
|
|
setOperationAction(ISD::BITREVERSE, XLenVT, Legal);
|
|
} else {
|
|
// Zbkb can use rev8+brev8 to implement bitreverse.
|
|
setOperationAction(ISD::BITREVERSE, XLenVT,
|
|
Subtarget.hasStdExtZbkb() ? Custom : Expand);
|
|
if (Subtarget.hasStdExtZbkb())
|
|
setOperationAction(ISD::BITREVERSE, MVT::i8, Custom);
|
|
}
|
|
|
|
if (Subtarget.hasStdExtZbb() ||
|
|
(Subtarget.hasVendorXCValu() && !Subtarget.is64Bit())) {
|
|
setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, XLenVT,
|
|
Legal);
|
|
}
|
|
|
|
if (Subtarget.hasStdExtZbb() ||
|
|
(Subtarget.hasVendorXCVbitmanip() && !Subtarget.is64Bit())) {
|
|
if (Subtarget.is64Bit())
|
|
setOperationAction({ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF}, MVT::i32, Custom);
|
|
} else {
|
|
setOperationAction(ISD::CTTZ, XLenVT, Expand);
|
|
// TODO: These should be set to LibCall, but this currently breaks
|
|
// the Linux kernel build. See #101786. Lacks i128 tests, too.
|
|
if (Subtarget.is64Bit())
|
|
setOperationAction(ISD::CTPOP, MVT::i128, Expand);
|
|
else
|
|
setOperationAction(ISD::CTPOP, MVT::i32, Expand);
|
|
setOperationAction(ISD::CTPOP, MVT::i64, Expand);
|
|
}
|
|
|
|
if (Subtarget.hasStdExtZbb() || Subtarget.hasVendorXTHeadBb() ||
|
|
(Subtarget.hasVendorXCVbitmanip() && !Subtarget.is64Bit())) {
|
|
// We need the custom lowering to make sure that the resulting sequence
|
|
// for the 32bit case is efficient on 64bit targets.
|
|
if (Subtarget.is64Bit())
|
|
setOperationAction({ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF}, MVT::i32, Custom);
|
|
} else {
|
|
setOperationAction(ISD::CTLZ, XLenVT, Expand);
|
|
}
|
|
|
|
if (Subtarget.hasVendorXCValu() && !Subtarget.is64Bit()) {
|
|
setOperationAction(ISD::ABS, XLenVT, Legal);
|
|
} else if (Subtarget.hasShortForwardBranchOpt()) {
|
|
// We can use PseudoCCSUB to implement ABS.
|
|
setOperationAction(ISD::ABS, XLenVT, Legal);
|
|
} else if (Subtarget.is64Bit()) {
|
|
setOperationAction(ISD::ABS, MVT::i32, Custom);
|
|
}
|
|
|
|
if (!Subtarget.useCCMovInsn() && !Subtarget.hasVendorXTHeadCondMov() &&
|
|
!Subtarget.hasVendorXqcicm())
|
|
setOperationAction(ISD::SELECT, XLenVT, Custom);
|
|
|
|
if (Subtarget.hasVendorXqcia() && !Subtarget.is64Bit()) {
|
|
setOperationAction(ISD::UADDSAT, MVT::i32, Legal);
|
|
setOperationAction(ISD::SADDSAT, MVT::i32, Legal);
|
|
setOperationAction(ISD::USUBSAT, MVT::i32, Legal);
|
|
setOperationAction(ISD::SSUBSAT, MVT::i32, Legal);
|
|
setOperationAction(ISD::SSHLSAT, MVT::i32, Legal);
|
|
setOperationAction(ISD::USHLSAT, MVT::i32, Legal);
|
|
}
|
|
|
|
static const unsigned FPLegalNodeTypes[] = {
|
|
ISD::FMINNUM, ISD::FMAXNUM, ISD::FMINIMUMNUM,
|
|
ISD::FMAXIMUMNUM, ISD::LRINT, ISD::LLRINT,
|
|
ISD::LROUND, ISD::LLROUND, ISD::STRICT_LRINT,
|
|
ISD::STRICT_LLRINT, ISD::STRICT_LROUND, ISD::STRICT_LLROUND,
|
|
ISD::STRICT_FMA, ISD::STRICT_FADD, ISD::STRICT_FSUB,
|
|
ISD::STRICT_FMUL, ISD::STRICT_FDIV, ISD::STRICT_FSQRT,
|
|
ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS, ISD::FCANONICALIZE};
|
|
|
|
static const ISD::CondCode FPCCToExpand[] = {
|
|
ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
|
|
ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
|
|
ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO};
|
|
|
|
static const unsigned FPOpToExpand[] = {
|
|
ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW,
|
|
ISD::FREM};
|
|
|
|
static const unsigned FPRndMode[] = {
|
|
ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FRINT, ISD::FROUND,
|
|
ISD::FROUNDEVEN};
|
|
|
|
static const unsigned ZfhminZfbfminPromoteOps[] = {
|
|
ISD::FMINNUM, ISD::FMAXNUM, ISD::FMAXIMUMNUM,
|
|
ISD::FMINIMUMNUM, ISD::FADD, ISD::FSUB,
|
|
ISD::FMUL, ISD::FMA, ISD::FDIV,
|
|
ISD::FSQRT, ISD::STRICT_FMA, ISD::STRICT_FADD,
|
|
ISD::STRICT_FSUB, ISD::STRICT_FMUL, ISD::STRICT_FDIV,
|
|
ISD::STRICT_FSQRT, ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS,
|
|
ISD::SETCC, ISD::FCEIL, ISD::FFLOOR,
|
|
ISD::FTRUNC, ISD::FRINT, ISD::FROUND,
|
|
ISD::FROUNDEVEN, ISD::FCANONICALIZE};
|
|
|
|
if (Subtarget.hasStdExtZfbfmin()) {
|
|
setOperationAction(ISD::BITCAST, MVT::i16, Custom);
|
|
setOperationAction(ISD::ConstantFP, MVT::bf16, Expand);
|
|
setOperationAction(ISD::SELECT_CC, MVT::bf16, Expand);
|
|
setOperationAction(ISD::SELECT, MVT::bf16, Custom);
|
|
setOperationAction(ISD::BR_CC, MVT::bf16, Expand);
|
|
setOperationAction(ZfhminZfbfminPromoteOps, MVT::bf16, Promote);
|
|
setOperationAction(ISD::FREM, MVT::bf16, Promote);
|
|
setOperationAction(ISD::FABS, MVT::bf16, Custom);
|
|
setOperationAction(ISD::FNEG, MVT::bf16, Custom);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::bf16, Custom);
|
|
setOperationAction({ISD::FP_TO_SINT, ISD::FP_TO_UINT}, XLenVT, Custom);
|
|
setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP}, XLenVT, Custom);
|
|
}
|
|
|
|
if (Subtarget.hasStdExtZfhminOrZhinxmin()) {
|
|
if (Subtarget.hasStdExtZfhOrZhinx()) {
|
|
setOperationAction(FPLegalNodeTypes, MVT::f16, Legal);
|
|
setOperationAction(FPRndMode, MVT::f16,
|
|
Subtarget.hasStdExtZfa() ? Legal : Custom);
|
|
setOperationAction(ISD::IS_FPCLASS, MVT::f16, Custom);
|
|
setOperationAction({ISD::FMAXIMUM, ISD::FMINIMUM}, MVT::f16,
|
|
Subtarget.hasStdExtZfa() ? Legal : Custom);
|
|
if (Subtarget.hasStdExtZfa())
|
|
setOperationAction(ISD::ConstantFP, MVT::f16, Custom);
|
|
} else {
|
|
setOperationAction(ZfhminZfbfminPromoteOps, MVT::f16, Promote);
|
|
setOperationAction({ISD::FMAXIMUM, ISD::FMINIMUM}, MVT::f16, Promote);
|
|
for (auto Op : {ISD::LROUND, ISD::LLROUND, ISD::LRINT, ISD::LLRINT,
|
|
ISD::STRICT_LROUND, ISD::STRICT_LLROUND,
|
|
ISD::STRICT_LRINT, ISD::STRICT_LLRINT})
|
|
setOperationAction(Op, MVT::f16, Custom);
|
|
setOperationAction(ISD::FABS, MVT::f16, Custom);
|
|
setOperationAction(ISD::FNEG, MVT::f16, Custom);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f16, Custom);
|
|
setOperationAction({ISD::FP_TO_SINT, ISD::FP_TO_UINT}, XLenVT, Custom);
|
|
setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP}, XLenVT, Custom);
|
|
}
|
|
|
|
setOperationAction(ISD::BITCAST, MVT::i16, Custom);
|
|
|
|
setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal);
|
|
setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
|
|
setCondCodeAction(FPCCToExpand, MVT::f16, Expand);
|
|
setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
|
|
setOperationAction(ISD::SELECT, MVT::f16, Custom);
|
|
setOperationAction(ISD::BR_CC, MVT::f16, Expand);
|
|
|
|
setOperationAction(
|
|
ISD::FNEARBYINT, MVT::f16,
|
|
Subtarget.hasStdExtZfh() && Subtarget.hasStdExtZfa() ? Legal : Promote);
|
|
setOperationAction({ISD::FREM, ISD::FPOW, ISD::FPOWI,
|
|
ISD::FCOS, ISD::FSIN, ISD::FSINCOS, ISD::FEXP,
|
|
ISD::FEXP2, ISD::FEXP10, ISD::FLOG, ISD::FLOG2,
|
|
ISD::FLOG10, ISD::FLDEXP, ISD::FFREXP},
|
|
MVT::f16, Promote);
|
|
|
|
// FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have
|
|
// complete support for all operations in LegalizeDAG.
|
|
setOperationAction({ISD::STRICT_FCEIL, ISD::STRICT_FFLOOR,
|
|
ISD::STRICT_FNEARBYINT, ISD::STRICT_FRINT,
|
|
ISD::STRICT_FROUND, ISD::STRICT_FROUNDEVEN,
|
|
ISD::STRICT_FTRUNC, ISD::STRICT_FLDEXP},
|
|
MVT::f16, Promote);
|
|
|
|
// We need to custom promote this.
|
|
if (Subtarget.is64Bit())
|
|
setOperationAction(ISD::FPOWI, MVT::i32, Custom);
|
|
}
|
|
|
|
if (Subtarget.hasStdExtFOrZfinx()) {
|
|
setOperationAction(FPLegalNodeTypes, MVT::f32, Legal);
|
|
setOperationAction(FPRndMode, MVT::f32,
|
|
Subtarget.hasStdExtZfa() ? Legal : Custom);
|
|
setCondCodeAction(FPCCToExpand, MVT::f32, Expand);
|
|
setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
|
|
setOperationAction(ISD::SELECT, MVT::f32, Custom);
|
|
setOperationAction(ISD::BR_CC, MVT::f32, Expand);
|
|
setOperationAction(FPOpToExpand, MVT::f32, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
|
|
setTruncStoreAction(MVT::f32, MVT::f16, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::bf16, Expand);
|
|
setTruncStoreAction(MVT::f32, MVT::bf16, Expand);
|
|
setOperationAction(ISD::IS_FPCLASS, MVT::f32, Custom);
|
|
setOperationAction(ISD::BF16_TO_FP, MVT::f32, Custom);
|
|
setOperationAction(ISD::FP_TO_BF16, MVT::f32,
|
|
Subtarget.isSoftFPABI() ? LibCall : Custom);
|
|
setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom);
|
|
setOperationAction(ISD::FP16_TO_FP, MVT::f32, Custom);
|
|
setOperationAction(ISD::STRICT_FP_TO_FP16, MVT::f32, Custom);
|
|
setOperationAction(ISD::STRICT_FP16_TO_FP, MVT::f32, Custom);
|
|
|
|
if (Subtarget.hasStdExtZfa()) {
|
|
setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
|
|
setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
|
|
setOperationAction({ISD::FMAXIMUM, ISD::FMINIMUM}, MVT::f32, Legal);
|
|
} else {
|
|
setOperationAction({ISD::FMAXIMUM, ISD::FMINIMUM}, MVT::f32, Custom);
|
|
}
|
|
}
|
|
|
|
if (Subtarget.hasStdExtFOrZfinx() && Subtarget.is64Bit())
|
|
setOperationAction(ISD::BITCAST, MVT::i32, Custom);
|
|
|
|
if (Subtarget.hasStdExtDOrZdinx()) {
|
|
setOperationAction(FPLegalNodeTypes, MVT::f64, Legal);
|
|
|
|
if (!Subtarget.is64Bit())
|
|
setOperationAction(ISD::BITCAST, MVT::i64, Custom);
|
|
|
|
if (Subtarget.hasStdExtZdinx() && !Subtarget.hasStdExtZilsd() &&
|
|
!Subtarget.is64Bit()) {
|
|
setOperationAction(ISD::LOAD, MVT::f64, Custom);
|
|
setOperationAction(ISD::STORE, MVT::f64, Custom);
|
|
}
|
|
|
|
if (Subtarget.hasStdExtZfa()) {
|
|
setOperationAction(ISD::ConstantFP, MVT::f64, Custom);
|
|
setOperationAction(FPRndMode, MVT::f64, Legal);
|
|
setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
|
|
setOperationAction({ISD::FMAXIMUM, ISD::FMINIMUM}, MVT::f64, Legal);
|
|
} else {
|
|
if (Subtarget.is64Bit())
|
|
setOperationAction(FPRndMode, MVT::f64, Custom);
|
|
|
|
setOperationAction({ISD::FMAXIMUM, ISD::FMINIMUM}, MVT::f64, Custom);
|
|
}
|
|
|
|
setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
|
|
setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
|
|
setCondCodeAction(FPCCToExpand, MVT::f64, Expand);
|
|
setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
|
|
setOperationAction(ISD::SELECT, MVT::f64, Custom);
|
|
setOperationAction(ISD::BR_CC, MVT::f64, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
|
|
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
|
|
setOperationAction(FPOpToExpand, MVT::f64, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
|
|
setTruncStoreAction(MVT::f64, MVT::f16, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::bf16, Expand);
|
|
setTruncStoreAction(MVT::f64, MVT::bf16, Expand);
|
|
setOperationAction(ISD::IS_FPCLASS, MVT::f64, Custom);
|
|
setOperationAction(ISD::BF16_TO_FP, MVT::f64, Custom);
|
|
setOperationAction(ISD::FP_TO_BF16, MVT::f64,
|
|
Subtarget.isSoftFPABI() ? LibCall : Custom);
|
|
setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom);
|
|
setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
|
|
setOperationAction(ISD::STRICT_FP_TO_FP16, MVT::f64, Custom);
|
|
setOperationAction(ISD::STRICT_FP16_TO_FP, MVT::f64, Expand);
|
|
}
|
|
|
|
if (Subtarget.is64Bit()) {
|
|
setOperationAction({ISD::FP_TO_UINT, ISD::FP_TO_SINT,
|
|
ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT},
|
|
MVT::i32, Custom);
|
|
setOperationAction(ISD::LROUND, MVT::i32, Custom);
|
|
}
|
|
|
|
if (Subtarget.hasStdExtFOrZfinx()) {
|
|
setOperationAction({ISD::FP_TO_UINT_SAT, ISD::FP_TO_SINT_SAT}, XLenVT,
|
|
Custom);
|
|
|
|
// f16/bf16 require custom handling.
|
|
setOperationAction({ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT}, XLenVT,
|
|
Custom);
|
|
setOperationAction({ISD::STRICT_UINT_TO_FP, ISD::STRICT_SINT_TO_FP}, XLenVT,
|
|
Custom);
|
|
|
|
setOperationAction(ISD::GET_ROUNDING, XLenVT, Custom);
|
|
setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
|
|
setOperationAction(ISD::GET_FPENV, XLenVT, Custom);
|
|
setOperationAction(ISD::SET_FPENV, XLenVT, Custom);
|
|
setOperationAction(ISD::RESET_FPENV, MVT::Other, Custom);
|
|
}
|
|
|
|
setOperationAction({ISD::GlobalAddress, ISD::BlockAddress, ISD::ConstantPool,
|
|
ISD::JumpTable},
|
|
XLenVT, Custom);
|
|
|
|
setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
|
|
|
|
if (Subtarget.is64Bit())
|
|
setOperationAction(ISD::Constant, MVT::i64, Custom);
|
|
|
|
// TODO: On M-mode only targets, the cycle[h]/time[h] CSR may not be present.
|
|
// Unfortunately this can't be determined just from the ISA naming string.
|
|
setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
|
|
Subtarget.is64Bit() ? Legal : Custom);
|
|
setOperationAction(ISD::READSTEADYCOUNTER, MVT::i64,
|
|
Subtarget.is64Bit() ? Legal : Custom);
|
|
|
|
if (Subtarget.is64Bit()) {
|
|
setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
|
|
setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
|
|
}
|
|
|
|
setOperationAction({ISD::TRAP, ISD::DEBUGTRAP}, MVT::Other, Legal);
|
|
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
|
|
if (Subtarget.is64Bit())
|
|
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
|
|
|
|
if (Subtarget.hasStdExtZicbop()) {
|
|
setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
|
|
}
|
|
|
|
if (Subtarget.hasStdExtA()) {
|
|
setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
|
|
if (Subtarget.hasStdExtZabha() && Subtarget.hasStdExtZacas())
|
|
setMinCmpXchgSizeInBits(8);
|
|
else
|
|
setMinCmpXchgSizeInBits(32);
|
|
} else if (Subtarget.hasForcedAtomics()) {
|
|
setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
|
|
} else {
|
|
setMaxAtomicSizeInBitsSupported(0);
|
|
}
|
|
|
|
setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
|
|
|
|
setBooleanContents(ZeroOrOneBooleanContent);
|
|
|
|
if (getTargetMachine().getTargetTriple().isOSLinux()) {
|
|
// Custom lowering of llvm.clear_cache.
|
|
setOperationAction(ISD::CLEAR_CACHE, MVT::Other, Custom);
|
|
}
|
|
|
|
if (Subtarget.hasVInstructions()) {
|
|
setBooleanVectorContents(ZeroOrOneBooleanContent);
|
|
|
|
setOperationAction(ISD::VSCALE, XLenVT, Custom);
|
|
|
|
// RVV intrinsics may have illegal operands.
|
|
// We also need to custom legalize vmv.x.s.
|
|
setOperationAction({ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN,
|
|
ISD::INTRINSIC_VOID},
|
|
{MVT::i8, MVT::i16}, Custom);
|
|
if (Subtarget.is64Bit())
|
|
setOperationAction({ISD::INTRINSIC_W_CHAIN, ISD::INTRINSIC_VOID},
|
|
MVT::i32, Custom);
|
|
else
|
|
setOperationAction({ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN},
|
|
MVT::i64, Custom);
|
|
|
|
setOperationAction({ISD::INTRINSIC_W_CHAIN, ISD::INTRINSIC_VOID},
|
|
MVT::Other, Custom);
|
|
|
|
static const unsigned IntegerVPOps[] = {
|
|
ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL,
|
|
ISD::VP_SDIV, ISD::VP_UDIV, ISD::VP_SREM,
|
|
ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR,
|
|
ISD::VP_XOR, ISD::VP_SRA, ISD::VP_SRL,
|
|
ISD::VP_SHL, ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND,
|
|
ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX,
|
|
ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN,
|
|
ISD::VP_MERGE, ISD::VP_SELECT, ISD::VP_FP_TO_SINT,
|
|
ISD::VP_FP_TO_UINT, ISD::VP_SETCC, ISD::VP_SIGN_EXTEND,
|
|
ISD::VP_ZERO_EXTEND, ISD::VP_TRUNCATE, ISD::VP_SMIN,
|
|
ISD::VP_SMAX, ISD::VP_UMIN, ISD::VP_UMAX,
|
|
ISD::VP_ABS, ISD::EXPERIMENTAL_VP_REVERSE, ISD::EXPERIMENTAL_VP_SPLICE,
|
|
ISD::VP_SADDSAT, ISD::VP_UADDSAT, ISD::VP_SSUBSAT,
|
|
ISD::VP_USUBSAT, ISD::VP_CTTZ_ELTS, ISD::VP_CTTZ_ELTS_ZERO_UNDEF,
|
|
ISD::EXPERIMENTAL_VP_SPLAT};
|
|
|
|
static const unsigned FloatingPointVPOps[] = {
|
|
ISD::VP_FADD, ISD::VP_FSUB, ISD::VP_FMUL,
|
|
ISD::VP_FDIV, ISD::VP_FNEG, ISD::VP_FABS,
|
|
ISD::VP_FMA, ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD,
|
|
ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX, ISD::VP_MERGE,
|
|
ISD::VP_SELECT, ISD::VP_SINT_TO_FP, ISD::VP_UINT_TO_FP,
|
|
ISD::VP_SETCC, ISD::VP_FP_ROUND, ISD::VP_FP_EXTEND,
|
|
ISD::VP_SQRT, ISD::VP_FMINNUM, ISD::VP_FMAXNUM,
|
|
ISD::VP_FCEIL, ISD::VP_FFLOOR, ISD::VP_FROUND,
|
|
ISD::VP_FROUNDEVEN, ISD::VP_FCOPYSIGN, ISD::VP_FROUNDTOZERO,
|
|
ISD::VP_FRINT, ISD::VP_FNEARBYINT, ISD::VP_IS_FPCLASS,
|
|
ISD::VP_FMINIMUM, ISD::VP_FMAXIMUM, ISD::VP_LRINT,
|
|
ISD::VP_LLRINT, ISD::VP_REDUCE_FMINIMUM,
|
|
ISD::VP_REDUCE_FMAXIMUM, ISD::EXPERIMENTAL_VP_SPLAT};
|
|
|
|
static const unsigned IntegerVecReduceOps[] = {
|
|
ISD::VECREDUCE_ADD, ISD::VECREDUCE_AND, ISD::VECREDUCE_OR,
|
|
ISD::VECREDUCE_XOR, ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN,
|
|
ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN};
|
|
|
|
static const unsigned FloatingPointVecReduceOps[] = {
|
|
ISD::VECREDUCE_FADD, ISD::VECREDUCE_SEQ_FADD, ISD::VECREDUCE_FMIN,
|
|
ISD::VECREDUCE_FMAX, ISD::VECREDUCE_FMINIMUM, ISD::VECREDUCE_FMAXIMUM};
|
|
|
|
static const unsigned FloatingPointLibCallOps[] = {
|
|
ISD::FREM, ISD::FPOW, ISD::FCOS, ISD::FSIN, ISD::FSINCOS, ISD::FEXP,
|
|
ISD::FEXP2, ISD::FEXP10, ISD::FLOG, ISD::FLOG2, ISD::FLOG10};
|
|
|
|
if (!Subtarget.is64Bit()) {
|
|
// We must custom-lower certain vXi64 operations on RV32 due to the vector
|
|
// element type being illegal.
|
|
setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT},
|
|
MVT::i64, Custom);
|
|
|
|
setOperationAction(IntegerVecReduceOps, MVT::i64, Custom);
|
|
|
|
setOperationAction({ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND,
|
|
ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR,
|
|
ISD::VP_REDUCE_SMAX, ISD::VP_REDUCE_SMIN,
|
|
ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN},
|
|
MVT::i64, Custom);
|
|
}
|
|
|
|
for (MVT VT : BoolVecVTs) {
|
|
if (!isTypeLegal(VT))
|
|
continue;
|
|
|
|
setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
|
|
|
|
// Mask VTs are custom-expanded into a series of standard nodes
|
|
setOperationAction({ISD::TRUNCATE, ISD::CONCAT_VECTORS,
|
|
ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR,
|
|
ISD::SCALAR_TO_VECTOR},
|
|
VT, Custom);
|
|
|
|
setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT,
|
|
Custom);
|
|
|
|
setOperationAction(ISD::SELECT, VT, Custom);
|
|
setOperationAction({ISD::SELECT_CC, ISD::VSELECT, ISD::VP_SELECT}, VT,
|
|
Expand);
|
|
setOperationAction(ISD::VP_MERGE, VT, Custom);
|
|
|
|
setOperationAction({ISD::VP_CTTZ_ELTS, ISD::VP_CTTZ_ELTS_ZERO_UNDEF}, VT,
|
|
Custom);
|
|
|
|
setOperationAction({ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR}, VT, Custom);
|
|
|
|
setOperationAction(
|
|
{ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR}, VT,
|
|
Custom);
|
|
|
|
setOperationAction(
|
|
{ISD::VP_REDUCE_AND, ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR}, VT,
|
|
Custom);
|
|
|
|
// RVV has native int->float & float->int conversions where the
|
|
// element type sizes are within one power-of-two of each other. Any
|
|
// wider distances between type sizes have to be lowered as sequences
|
|
// which progressively narrow the gap in stages.
|
|
setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT,
|
|
ISD::FP_TO_UINT, ISD::STRICT_SINT_TO_FP,
|
|
ISD::STRICT_UINT_TO_FP, ISD::STRICT_FP_TO_SINT,
|
|
ISD::STRICT_FP_TO_UINT},
|
|
VT, Custom);
|
|
setOperationAction({ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}, VT,
|
|
Custom);
|
|
|
|
// Expand all extending loads to types larger than this, and truncating
|
|
// stores from types larger than this.
|
|
for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
|
|
setTruncStoreAction(VT, OtherVT, Expand);
|
|
setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, VT,
|
|
OtherVT, Expand);
|
|
}
|
|
|
|
setOperationAction({ISD::VP_FP_TO_SINT, ISD::VP_FP_TO_UINT,
|
|
ISD::VP_TRUNCATE, ISD::VP_SETCC},
|
|
VT, Custom);
|
|
|
|
setOperationAction(ISD::VECTOR_DEINTERLEAVE, VT, Custom);
|
|
setOperationAction(ISD::VECTOR_INTERLEAVE, VT, Custom);
|
|
|
|
setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
|
|
|
|
setOperationAction(ISD::EXPERIMENTAL_VP_SPLICE, VT, Custom);
|
|
setOperationAction(ISD::EXPERIMENTAL_VP_REVERSE, VT, Custom);
|
|
setOperationAction(ISD::EXPERIMENTAL_VP_SPLAT, VT, Custom);
|
|
|
|
setOperationPromotedToType(
|
|
ISD::VECTOR_SPLICE, VT,
|
|
MVT::getVectorVT(MVT::i8, VT.getVectorElementCount()));
|
|
}
|
|
|
|
for (MVT VT : IntVecVTs) {
|
|
if (!isTypeLegal(VT))
|
|
continue;
|
|
|
|
setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
|
|
setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
|
|
|
|
// Vectors implement MULHS/MULHU.
|
|
setOperationAction({ISD::SMUL_LOHI, ISD::UMUL_LOHI}, VT, Expand);
|
|
|
|
// nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*.
|
|
if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV())
|
|
setOperationAction({ISD::MULHU, ISD::MULHS}, VT, Expand);
|
|
|
|
setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, VT,
|
|
Legal);
|
|
|
|
setOperationAction({ISD::ABDS, ISD::ABDU}, VT, Custom);
|
|
|
|
// Custom-lower extensions and truncations from/to mask types.
|
|
setOperationAction({ISD::ANY_EXTEND, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND},
|
|
VT, Custom);
|
|
|
|
// RVV has native int->float & float->int conversions where the
|
|
// element type sizes are within one power-of-two of each other. Any
|
|
// wider distances between type sizes have to be lowered as sequences
|
|
// which progressively narrow the gap in stages.
|
|
setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT,
|
|
ISD::FP_TO_UINT, ISD::STRICT_SINT_TO_FP,
|
|
ISD::STRICT_UINT_TO_FP, ISD::STRICT_FP_TO_SINT,
|
|
ISD::STRICT_FP_TO_UINT},
|
|
VT, Custom);
|
|
setOperationAction({ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}, VT,
|
|
Custom);
|
|
setOperationAction({ISD::AVGFLOORS, ISD::AVGFLOORU, ISD::AVGCEILS,
|
|
ISD::AVGCEILU, ISD::SADDSAT, ISD::UADDSAT,
|
|
ISD::SSUBSAT, ISD::USUBSAT},
|
|
VT, Legal);
|
|
|
|
// Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
|
|
// nodes which truncate by one power of two at a time.
|
|
setOperationAction(
|
|
{ISD::TRUNCATE, ISD::TRUNCATE_SSAT_S, ISD::TRUNCATE_USAT_U}, VT,
|
|
Custom);
|
|
|
|
// Custom-lower insert/extract operations to simplify patterns.
|
|
setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT,
|
|
Custom);
|
|
|
|
// Custom-lower reduction operations to set up the corresponding custom
|
|
// nodes' operands.
|
|
setOperationAction(IntegerVecReduceOps, VT, Custom);
|
|
|
|
setOperationAction(IntegerVPOps, VT, Custom);
|
|
|
|
setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
|
|
|
|
setOperationAction({ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER},
|
|
VT, Custom);
|
|
|
|
setOperationAction(
|
|
{ISD::VP_LOAD, ISD::VP_STORE, ISD::EXPERIMENTAL_VP_STRIDED_LOAD,
|
|
ISD::EXPERIMENTAL_VP_STRIDED_STORE, ISD::VP_GATHER, ISD::VP_SCATTER},
|
|
VT, Custom);
|
|
|
|
setOperationAction({ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR,
|
|
ISD::EXTRACT_SUBVECTOR, ISD::SCALAR_TO_VECTOR},
|
|
VT, Custom);
|
|
|
|
setOperationAction(ISD::SELECT, VT, Custom);
|
|
setOperationAction(ISD::SELECT_CC, VT, Expand);
|
|
|
|
setOperationAction({ISD::STEP_VECTOR, ISD::VECTOR_REVERSE}, VT, Custom);
|
|
|
|
for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
|
|
setTruncStoreAction(VT, OtherVT, Expand);
|
|
setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, VT,
|
|
OtherVT, Expand);
|
|
}
|
|
|
|
setOperationAction(ISD::VECTOR_DEINTERLEAVE, VT, Custom);
|
|
setOperationAction(ISD::VECTOR_INTERLEAVE, VT, Custom);
|
|
|
|
// Splice
|
|
setOperationAction(ISD::VECTOR_SPLICE, VT, Custom);
|
|
|
|
if (Subtarget.hasStdExtZvkb()) {
|
|
setOperationAction(ISD::BSWAP, VT, Legal);
|
|
setOperationAction(ISD::VP_BSWAP, VT, Custom);
|
|
} else {
|
|
setOperationAction({ISD::BSWAP, ISD::VP_BSWAP}, VT, Expand);
|
|
setOperationAction({ISD::ROTL, ISD::ROTR}, VT, Expand);
|
|
}
|
|
|
|
if (Subtarget.hasStdExtZvbb()) {
|
|
setOperationAction(ISD::BITREVERSE, VT, Legal);
|
|
setOperationAction(ISD::VP_BITREVERSE, VT, Custom);
|
|
setOperationAction({ISD::VP_CTLZ, ISD::VP_CTLZ_ZERO_UNDEF, ISD::VP_CTTZ,
|
|
ISD::VP_CTTZ_ZERO_UNDEF, ISD::VP_CTPOP},
|
|
VT, Custom);
|
|
} else {
|
|
setOperationAction({ISD::BITREVERSE, ISD::VP_BITREVERSE}, VT, Expand);
|
|
setOperationAction({ISD::CTLZ, ISD::CTTZ, ISD::CTPOP}, VT, Expand);
|
|
setOperationAction({ISD::VP_CTLZ, ISD::VP_CTLZ_ZERO_UNDEF, ISD::VP_CTTZ,
|
|
ISD::VP_CTTZ_ZERO_UNDEF, ISD::VP_CTPOP},
|
|
VT, Expand);
|
|
|
|
// Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if element of VT in the
|
|
// range of f32.
|
|
EVT FloatVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
|
|
if (isTypeLegal(FloatVT)) {
|
|
setOperationAction({ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF,
|
|
ISD::CTTZ_ZERO_UNDEF, ISD::VP_CTLZ,
|
|
ISD::VP_CTLZ_ZERO_UNDEF, ISD::VP_CTTZ_ZERO_UNDEF},
|
|
VT, Custom);
|
|
}
|
|
}
|
|
|
|
setOperationAction(ISD::VECTOR_COMPRESS, VT, Custom);
|
|
}
|
|
|
|
for (MVT VT : VecTupleVTs) {
|
|
if (!isTypeLegal(VT))
|
|
continue;
|
|
|
|
setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
|
|
}
|
|
|
|
// Expand various CCs to best match the RVV ISA, which natively supports UNE
|
|
// but no other unordered comparisons, and supports all ordered comparisons
|
|
// except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
|
|
// purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
|
|
// and we pattern-match those back to the "original", swapping operands once
|
|
// more. This way we catch both operations and both "vf" and "fv" forms with
|
|
// fewer patterns.
|
|
static const ISD::CondCode VFPCCToExpand[] = {
|
|
ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
|
|
ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
|
|
ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE,
|
|
};
|
|
|
|
// TODO: support more ops.
|
|
static const unsigned ZvfhminZvfbfminPromoteOps[] = {
|
|
ISD::FMINNUM,
|
|
ISD::FMAXNUM,
|
|
ISD::FMINIMUMNUM,
|
|
ISD::FMAXIMUMNUM,
|
|
ISD::FADD,
|
|
ISD::FSUB,
|
|
ISD::FMUL,
|
|
ISD::FMA,
|
|
ISD::FDIV,
|
|
ISD::FSQRT,
|
|
ISD::FCEIL,
|
|
ISD::FTRUNC,
|
|
ISD::FFLOOR,
|
|
ISD::FROUND,
|
|
ISD::FROUNDEVEN,
|
|
ISD::FRINT,
|
|
ISD::FNEARBYINT,
|
|
ISD::IS_FPCLASS,
|
|
ISD::SETCC,
|
|
ISD::FMAXIMUM,
|
|
ISD::FMINIMUM,
|
|
ISD::STRICT_FADD,
|
|
ISD::STRICT_FSUB,
|
|
ISD::STRICT_FMUL,
|
|
ISD::STRICT_FDIV,
|
|
ISD::STRICT_FSQRT,
|
|
ISD::STRICT_FMA,
|
|
ISD::VECREDUCE_FMIN,
|
|
ISD::VECREDUCE_FMAX,
|
|
ISD::VECREDUCE_FMINIMUM,
|
|
ISD::VECREDUCE_FMAXIMUM};
|
|
|
|
// TODO: support more vp ops.
|
|
static const unsigned ZvfhminZvfbfminPromoteVPOps[] = {
|
|
ISD::VP_FADD,
|
|
ISD::VP_FSUB,
|
|
ISD::VP_FMUL,
|
|
ISD::VP_FDIV,
|
|
ISD::VP_FMA,
|
|
ISD::VP_REDUCE_FMIN,
|
|
ISD::VP_REDUCE_FMAX,
|
|
ISD::VP_SQRT,
|
|
ISD::VP_FMINNUM,
|
|
ISD::VP_FMAXNUM,
|
|
ISD::VP_FCEIL,
|
|
ISD::VP_FFLOOR,
|
|
ISD::VP_FROUND,
|
|
ISD::VP_FROUNDEVEN,
|
|
ISD::VP_FROUNDTOZERO,
|
|
ISD::VP_FRINT,
|
|
ISD::VP_FNEARBYINT,
|
|
ISD::VP_SETCC,
|
|
ISD::VP_FMINIMUM,
|
|
ISD::VP_FMAXIMUM,
|
|
ISD::VP_REDUCE_FMINIMUM,
|
|
ISD::VP_REDUCE_FMAXIMUM};
|
|
|
|
// Sets common operation actions on RVV floating-point vector types.
|
|
const auto SetCommonVFPActions = [&](MVT VT) {
|
|
setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
|
|
// RVV has native FP_ROUND & FP_EXTEND conversions where the element type
|
|
// sizes are within one power-of-two of each other. Therefore conversions
|
|
// between vXf16 and vXf64 must be lowered as sequences which convert via
|
|
// vXf32.
|
|
setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom);
|
|
setOperationAction({ISD::LRINT, ISD::LLRINT}, VT, Custom);
|
|
// Custom-lower insert/extract operations to simplify patterns.
|
|
setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT,
|
|
Custom);
|
|
// Expand various condition codes (explained above).
|
|
setCondCodeAction(VFPCCToExpand, VT, Expand);
|
|
|
|
setOperationAction(
|
|
{ISD::FMINNUM, ISD::FMAXNUM, ISD::FMAXIMUMNUM, ISD::FMINIMUMNUM}, VT,
|
|
Legal);
|
|
setOperationAction({ISD::FMAXIMUM, ISD::FMINIMUM}, VT, Custom);
|
|
|
|
setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FFLOOR, ISD::FROUND,
|
|
ISD::FROUNDEVEN, ISD::FRINT, ISD::FNEARBYINT,
|
|
ISD::IS_FPCLASS},
|
|
VT, Custom);
|
|
|
|
setOperationAction(FloatingPointVecReduceOps, VT, Custom);
|
|
|
|
// Expand FP operations that need libcalls.
|
|
setOperationAction(FloatingPointLibCallOps, VT, Expand);
|
|
|
|
setOperationAction(ISD::FCOPYSIGN, VT, Legal);
|
|
|
|
setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
|
|
|
|
setOperationAction({ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER},
|
|
VT, Custom);
|
|
|
|
setOperationAction(
|
|
{ISD::VP_LOAD, ISD::VP_STORE, ISD::EXPERIMENTAL_VP_STRIDED_LOAD,
|
|
ISD::EXPERIMENTAL_VP_STRIDED_STORE, ISD::VP_GATHER, ISD::VP_SCATTER},
|
|
VT, Custom);
|
|
|
|
setOperationAction(ISD::SELECT, VT, Custom);
|
|
setOperationAction(ISD::SELECT_CC, VT, Expand);
|
|
|
|
setOperationAction({ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR,
|
|
ISD::EXTRACT_SUBVECTOR, ISD::SCALAR_TO_VECTOR},
|
|
VT, Custom);
|
|
|
|
setOperationAction(ISD::VECTOR_DEINTERLEAVE, VT, Custom);
|
|
setOperationAction(ISD::VECTOR_INTERLEAVE, VT, Custom);
|
|
|
|
setOperationAction({ISD::VECTOR_REVERSE, ISD::VECTOR_SPLICE}, VT, Custom);
|
|
setOperationAction(ISD::EXPERIMENTAL_VP_SPLICE, VT, Custom);
|
|
setOperationAction(ISD::EXPERIMENTAL_VP_REVERSE, VT, Custom);
|
|
|
|
setOperationAction(FloatingPointVPOps, VT, Custom);
|
|
|
|
setOperationAction({ISD::STRICT_FP_EXTEND, ISD::STRICT_FP_ROUND}, VT,
|
|
Custom);
|
|
setOperationAction({ISD::STRICT_FADD, ISD::STRICT_FSUB, ISD::STRICT_FMUL,
|
|
ISD::STRICT_FDIV, ISD::STRICT_FSQRT, ISD::STRICT_FMA},
|
|
VT, Legal);
|
|
setOperationAction({ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS,
|
|
ISD::STRICT_FTRUNC, ISD::STRICT_FCEIL,
|
|
ISD::STRICT_FFLOOR, ISD::STRICT_FROUND,
|
|
ISD::STRICT_FROUNDEVEN, ISD::STRICT_FNEARBYINT},
|
|
VT, Custom);
|
|
|
|
setOperationAction(ISD::VECTOR_COMPRESS, VT, Custom);
|
|
};
|
|
|
|
// Sets common extload/truncstore actions on RVV floating-point vector
|
|
// types.
|
|
const auto SetCommonVFPExtLoadTruncStoreActions =
|
|
[&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
|
|
for (auto SmallVT : SmallerVTs) {
|
|
setTruncStoreAction(VT, SmallVT, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
|
|
}
|
|
};
|
|
|
|
// Sets common actions for f16 and bf16 for when there's only
|
|
// zvfhmin/zvfbfmin and we need to promote to f32 for most operations.
|
|
const auto SetCommonPromoteToF32Actions = [&](MVT VT) {
|
|
setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom);
|
|
setOperationAction({ISD::STRICT_FP_ROUND, ISD::STRICT_FP_EXTEND}, VT,
|
|
Custom);
|
|
setOperationAction({ISD::VP_FP_ROUND, ISD::VP_FP_EXTEND}, VT, Custom);
|
|
setOperationAction({ISD::VP_MERGE, ISD::VP_SELECT, ISD::SELECT}, VT,
|
|
Custom);
|
|
setOperationAction(ISD::SELECT_CC, VT, Expand);
|
|
setOperationAction({ISD::VP_SINT_TO_FP, ISD::VP_UINT_TO_FP}, VT, Custom);
|
|
setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::CONCAT_VECTORS,
|
|
ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR,
|
|
ISD::VECTOR_DEINTERLEAVE, ISD::VECTOR_INTERLEAVE,
|
|
ISD::VECTOR_REVERSE, ISD::VECTOR_SPLICE,
|
|
ISD::VECTOR_COMPRESS},
|
|
VT, Custom);
|
|
setOperationAction(ISD::EXPERIMENTAL_VP_SPLICE, VT, Custom);
|
|
setOperationAction(ISD::EXPERIMENTAL_VP_REVERSE, VT, Custom);
|
|
MVT EltVT = VT.getVectorElementType();
|
|
if (isTypeLegal(EltVT))
|
|
setOperationAction({ISD::SPLAT_VECTOR, ISD::EXPERIMENTAL_VP_SPLAT,
|
|
ISD::EXTRACT_VECTOR_ELT},
|
|
VT, Custom);
|
|
else
|
|
setOperationAction({ISD::SPLAT_VECTOR, ISD::EXPERIMENTAL_VP_SPLAT},
|
|
EltVT, Custom);
|
|
setOperationAction({ISD::LOAD, ISD::STORE, ISD::MLOAD, ISD::MSTORE,
|
|
ISD::MGATHER, ISD::MSCATTER, ISD::VP_LOAD,
|
|
ISD::VP_STORE, ISD::EXPERIMENTAL_VP_STRIDED_LOAD,
|
|
ISD::EXPERIMENTAL_VP_STRIDED_STORE, ISD::VP_GATHER,
|
|
ISD::VP_SCATTER},
|
|
VT, Custom);
|
|
|
|
setOperationAction(ISD::FNEG, VT, Expand);
|
|
setOperationAction(ISD::FABS, VT, Expand);
|
|
setOperationAction(ISD::FCOPYSIGN, VT, Expand);
|
|
|
|
// Expand FP operations that need libcalls.
|
|
setOperationAction(FloatingPointLibCallOps, VT, Expand);
|
|
|
|
// Custom split nxv32[b]f16 since nxv32[b]f32 is not legal.
|
|
if (getLMUL(VT) == RISCVVType::LMUL_8) {
|
|
setOperationAction(ZvfhminZvfbfminPromoteOps, VT, Custom);
|
|
setOperationAction(ZvfhminZvfbfminPromoteVPOps, VT, Custom);
|
|
} else {
|
|
MVT F32VecVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
|
|
setOperationPromotedToType(ZvfhminZvfbfminPromoteOps, VT, F32VecVT);
|
|
setOperationPromotedToType(ZvfhminZvfbfminPromoteVPOps, VT, F32VecVT);
|
|
}
|
|
};
|
|
|
|
if (Subtarget.hasVInstructionsF16()) {
|
|
for (MVT VT : F16VecVTs) {
|
|
if (!isTypeLegal(VT))
|
|
continue;
|
|
SetCommonVFPActions(VT);
|
|
}
|
|
} else if (Subtarget.hasVInstructionsF16Minimal()) {
|
|
for (MVT VT : F16VecVTs) {
|
|
if (!isTypeLegal(VT))
|
|
continue;
|
|
SetCommonPromoteToF32Actions(VT);
|
|
}
|
|
}
|
|
|
|
if (Subtarget.hasVInstructionsBF16Minimal()) {
|
|
for (MVT VT : BF16VecVTs) {
|
|
if (!isTypeLegal(VT))
|
|
continue;
|
|
SetCommonPromoteToF32Actions(VT);
|
|
}
|
|
}
|
|
|
|
if (Subtarget.hasVInstructionsF32()) {
|
|
for (MVT VT : F32VecVTs) {
|
|
if (!isTypeLegal(VT))
|
|
continue;
|
|
SetCommonVFPActions(VT);
|
|
SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
|
|
SetCommonVFPExtLoadTruncStoreActions(VT, BF16VecVTs);
|
|
}
|
|
}
|
|
|
|
if (Subtarget.hasVInstructionsF64()) {
|
|
for (MVT VT : F64VecVTs) {
|
|
if (!isTypeLegal(VT))
|
|
continue;
|
|
SetCommonVFPActions(VT);
|
|
SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
|
|
SetCommonVFPExtLoadTruncStoreActions(VT, BF16VecVTs);
|
|
SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
|
|
}
|
|
}
|
|
|
|
if (Subtarget.useRVVForFixedLengthVectors()) {
|
|
for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
|
|
if (!useRVVForFixedLengthVectorVT(VT))
|
|
continue;
|
|
|
|
// By default everything must be expanded.
|
|
for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
|
|
setOperationAction(Op, VT, Expand);
|
|
for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
|
|
setTruncStoreAction(VT, OtherVT, Expand);
|
|
setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, VT,
|
|
OtherVT, Expand);
|
|
}
|
|
|
|
// Custom lower fixed vector undefs to scalable vector undefs to avoid
|
|
// expansion to a build_vector of 0s.
|
|
setOperationAction(ISD::UNDEF, VT, Custom);
|
|
|
|
// We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
|
|
setOperationAction({ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, VT,
|
|
Custom);
|
|
|
|
setOperationAction(
|
|
{ISD::BUILD_VECTOR, ISD::CONCAT_VECTORS, ISD::VECTOR_REVERSE}, VT,
|
|
Custom);
|
|
|
|
setOperationAction({ISD::VECTOR_INTERLEAVE, ISD::VECTOR_DEINTERLEAVE},
|
|
VT, Custom);
|
|
|
|
setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT},
|
|
VT, Custom);
|
|
|
|
setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
|
|
|
|
setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
|
|
|
|
setOperationAction(ISD::SETCC, VT, Custom);
|
|
|
|
setOperationAction(ISD::SELECT, VT, Custom);
|
|
|
|
setOperationAction(
|
|
{ISD::TRUNCATE, ISD::TRUNCATE_SSAT_S, ISD::TRUNCATE_USAT_U}, VT,
|
|
Custom);
|
|
|
|
setOperationAction(ISD::BITCAST, VT, Custom);
|
|
|
|
setOperationAction(
|
|
{ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR}, VT,
|
|
Custom);
|
|
|
|
setOperationAction(
|
|
{ISD::VP_REDUCE_AND, ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR}, VT,
|
|
Custom);
|
|
|
|
setOperationAction(
|
|
{
|
|
ISD::SINT_TO_FP,
|
|
ISD::UINT_TO_FP,
|
|
ISD::FP_TO_SINT,
|
|
ISD::FP_TO_UINT,
|
|
ISD::STRICT_SINT_TO_FP,
|
|
ISD::STRICT_UINT_TO_FP,
|
|
ISD::STRICT_FP_TO_SINT,
|
|
ISD::STRICT_FP_TO_UINT,
|
|
},
|
|
VT, Custom);
|
|
setOperationAction({ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}, VT,
|
|
Custom);
|
|
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
|
|
|
|
// Operations below are different for between masks and other vectors.
|
|
if (VT.getVectorElementType() == MVT::i1) {
|
|
setOperationAction({ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR, ISD::AND,
|
|
ISD::OR, ISD::XOR},
|
|
VT, Custom);
|
|
|
|
setOperationAction({ISD::VP_FP_TO_SINT, ISD::VP_FP_TO_UINT,
|
|
ISD::VP_SETCC, ISD::VP_TRUNCATE},
|
|
VT, Custom);
|
|
|
|
setOperationAction(ISD::VP_MERGE, VT, Custom);
|
|
|
|
setOperationAction(ISD::EXPERIMENTAL_VP_SPLICE, VT, Custom);
|
|
setOperationAction(ISD::EXPERIMENTAL_VP_REVERSE, VT, Custom);
|
|
continue;
|
|
}
|
|
|
|
// Make SPLAT_VECTOR Legal so DAGCombine will convert splat vectors to
|
|
// it before type legalization for i64 vectors on RV32. It will then be
|
|
// type legalized to SPLAT_VECTOR_PARTS which we need to Custom handle.
|
|
// FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
|
|
// improvements first.
|
|
if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) {
|
|
setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
|
|
setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
|
|
|
|
// Lower BUILD_VECTOR with i64 type to VID on RV32 if possible.
|
|
setOperationAction(ISD::BUILD_VECTOR, MVT::i64, Custom);
|
|
}
|
|
|
|
setOperationAction(
|
|
{ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER}, VT, Custom);
|
|
|
|
setOperationAction({ISD::VP_LOAD, ISD::VP_STORE,
|
|
ISD::EXPERIMENTAL_VP_STRIDED_LOAD,
|
|
ISD::EXPERIMENTAL_VP_STRIDED_STORE, ISD::VP_GATHER,
|
|
ISD::VP_SCATTER},
|
|
VT, Custom);
|
|
|
|
setOperationAction({ISD::ADD, ISD::MUL, ISD::SUB, ISD::AND, ISD::OR,
|
|
ISD::XOR, ISD::SDIV, ISD::SREM, ISD::UDIV,
|
|
ISD::UREM, ISD::SHL, ISD::SRA, ISD::SRL},
|
|
VT, Custom);
|
|
|
|
setOperationAction(
|
|
{ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX, ISD::ABS}, VT, Custom);
|
|
|
|
setOperationAction({ISD::ABDS, ISD::ABDU}, VT, Custom);
|
|
|
|
// vXi64 MULHS/MULHU requires the V extension instead of Zve64*.
|
|
if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV())
|
|
setOperationAction({ISD::MULHS, ISD::MULHU}, VT, Custom);
|
|
|
|
setOperationAction({ISD::AVGFLOORS, ISD::AVGFLOORU, ISD::AVGCEILS,
|
|
ISD::AVGCEILU, ISD::SADDSAT, ISD::UADDSAT,
|
|
ISD::SSUBSAT, ISD::USUBSAT},
|
|
VT, Custom);
|
|
|
|
setOperationAction(ISD::VSELECT, VT, Custom);
|
|
|
|
setOperationAction(
|
|
{ISD::ANY_EXTEND, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND}, VT, Custom);
|
|
|
|
// Custom-lower reduction operations to set up the corresponding custom
|
|
// nodes' operands.
|
|
setOperationAction({ISD::VECREDUCE_ADD, ISD::VECREDUCE_SMAX,
|
|
ISD::VECREDUCE_SMIN, ISD::VECREDUCE_UMAX,
|
|
ISD::VECREDUCE_UMIN},
|
|
VT, Custom);
|
|
|
|
setOperationAction(IntegerVPOps, VT, Custom);
|
|
|
|
if (Subtarget.hasStdExtZvkb())
|
|
setOperationAction({ISD::BSWAP, ISD::ROTL, ISD::ROTR}, VT, Custom);
|
|
|
|
if (Subtarget.hasStdExtZvbb()) {
|
|
setOperationAction({ISD::BITREVERSE, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF,
|
|
ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF, ISD::CTPOP},
|
|
VT, Custom);
|
|
} else {
|
|
// Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if element of VT in the
|
|
// range of f32.
|
|
EVT FloatVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
|
|
if (isTypeLegal(FloatVT))
|
|
setOperationAction(
|
|
{ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT,
|
|
Custom);
|
|
}
|
|
|
|
setOperationAction(ISD::VECTOR_COMPRESS, VT, Custom);
|
|
}
|
|
|
|
for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
|
|
// There are no extending loads or truncating stores.
|
|
for (MVT InnerVT : MVT::fp_fixedlen_vector_valuetypes()) {
|
|
setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
|
|
setTruncStoreAction(VT, InnerVT, Expand);
|
|
}
|
|
|
|
if (!useRVVForFixedLengthVectorVT(VT))
|
|
continue;
|
|
|
|
// By default everything must be expanded.
|
|
for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
|
|
setOperationAction(Op, VT, Expand);
|
|
|
|
// Custom lower fixed vector undefs to scalable vector undefs to avoid
|
|
// expansion to a build_vector of 0s.
|
|
setOperationAction(ISD::UNDEF, VT, Custom);
|
|
|
|
setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT,
|
|
ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR,
|
|
ISD::EXTRACT_SUBVECTOR, ISD::VECTOR_REVERSE,
|
|
ISD::VECTOR_SHUFFLE, ISD::VECTOR_COMPRESS},
|
|
VT, Custom);
|
|
setOperationAction(ISD::EXPERIMENTAL_VP_SPLICE, VT, Custom);
|
|
setOperationAction(ISD::EXPERIMENTAL_VP_REVERSE, VT, Custom);
|
|
|
|
setOperationAction({ISD::VECTOR_INTERLEAVE, ISD::VECTOR_DEINTERLEAVE},
|
|
VT, Custom);
|
|
|
|
setOperationAction({ISD::LOAD, ISD::STORE, ISD::MLOAD, ISD::MSTORE,
|
|
ISD::MGATHER, ISD::MSCATTER},
|
|
VT, Custom);
|
|
setOperationAction({ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER,
|
|
ISD::VP_SCATTER, ISD::EXPERIMENTAL_VP_STRIDED_LOAD,
|
|
ISD::EXPERIMENTAL_VP_STRIDED_STORE},
|
|
VT, Custom);
|
|
|
|
setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom);
|
|
setOperationAction({ISD::STRICT_FP_ROUND, ISD::STRICT_FP_EXTEND}, VT,
|
|
Custom);
|
|
|
|
if (VT.getVectorElementType() == MVT::f16 &&
|
|
!Subtarget.hasVInstructionsF16()) {
|
|
setOperationAction(ISD::BITCAST, VT, Custom);
|
|
setOperationAction({ISD::VP_FP_ROUND, ISD::VP_FP_EXTEND}, VT, Custom);
|
|
setOperationAction(
|
|
{ISD::VP_MERGE, ISD::VP_SELECT, ISD::VSELECT, ISD::SELECT}, VT,
|
|
Custom);
|
|
setOperationAction({ISD::VP_SINT_TO_FP, ISD::VP_UINT_TO_FP}, VT,
|
|
Custom);
|
|
if (Subtarget.hasStdExtZfhmin()) {
|
|
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
|
|
} else {
|
|
// We need to custom legalize f16 build vectors if Zfhmin isn't
|
|
// available.
|
|
setOperationAction(ISD::BUILD_VECTOR, MVT::f16, Custom);
|
|
}
|
|
setOperationAction(ISD::FNEG, VT, Expand);
|
|
setOperationAction(ISD::FABS, VT, Expand);
|
|
setOperationAction(ISD::FCOPYSIGN, VT, Expand);
|
|
MVT F32VecVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
|
|
// Don't promote f16 vector operations to f32 if f32 vector type is
|
|
// not legal.
|
|
// TODO: could split the f16 vector into two vectors and do promotion.
|
|
if (!isTypeLegal(F32VecVT))
|
|
continue;
|
|
setOperationPromotedToType(ZvfhminZvfbfminPromoteOps, VT, F32VecVT);
|
|
setOperationPromotedToType(ZvfhminZvfbfminPromoteVPOps, VT, F32VecVT);
|
|
continue;
|
|
}
|
|
|
|
if (VT.getVectorElementType() == MVT::bf16) {
|
|
setOperationAction(ISD::BITCAST, VT, Custom);
|
|
setOperationAction({ISD::VP_FP_ROUND, ISD::VP_FP_EXTEND}, VT, Custom);
|
|
if (Subtarget.hasStdExtZfbfmin()) {
|
|
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
|
|
} else {
|
|
// We need to custom legalize bf16 build vectors if Zfbfmin isn't
|
|
// available.
|
|
setOperationAction(ISD::BUILD_VECTOR, MVT::bf16, Custom);
|
|
}
|
|
setOperationAction(
|
|
{ISD::VP_MERGE, ISD::VP_SELECT, ISD::VSELECT, ISD::SELECT}, VT,
|
|
Custom);
|
|
MVT F32VecVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
|
|
// Don't promote f16 vector operations to f32 if f32 vector type is
|
|
// not legal.
|
|
// TODO: could split the f16 vector into two vectors and do promotion.
|
|
if (!isTypeLegal(F32VecVT))
|
|
continue;
|
|
setOperationPromotedToType(ZvfhminZvfbfminPromoteOps, VT, F32VecVT);
|
|
// TODO: Promote VP ops to fp32.
|
|
continue;
|
|
}
|
|
|
|
setOperationAction({ISD::BUILD_VECTOR, ISD::SCALAR_TO_VECTOR}, VT,
|
|
Custom);
|
|
|
|
setOperationAction({ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FDIV,
|
|
ISD::FNEG, ISD::FABS, ISD::FCOPYSIGN, ISD::FSQRT,
|
|
ISD::FMA, ISD::FMINNUM, ISD::FMAXNUM,
|
|
ISD::FMINIMUMNUM, ISD::FMAXIMUMNUM, ISD::IS_FPCLASS,
|
|
ISD::FMAXIMUM, ISD::FMINIMUM},
|
|
VT, Custom);
|
|
|
|
setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FFLOOR, ISD::FROUND,
|
|
ISD::FROUNDEVEN, ISD::FRINT, ISD::LRINT,
|
|
ISD::LLRINT, ISD::FNEARBYINT},
|
|
VT, Custom);
|
|
|
|
setCondCodeAction(VFPCCToExpand, VT, Expand);
|
|
|
|
setOperationAction(ISD::SETCC, VT, Custom);
|
|
setOperationAction({ISD::VSELECT, ISD::SELECT}, VT, Custom);
|
|
|
|
setOperationAction(ISD::BITCAST, VT, Custom);
|
|
|
|
setOperationAction(FloatingPointVecReduceOps, VT, Custom);
|
|
|
|
setOperationAction(FloatingPointVPOps, VT, Custom);
|
|
|
|
setOperationAction(
|
|
{ISD::STRICT_FADD, ISD::STRICT_FSUB, ISD::STRICT_FMUL,
|
|
ISD::STRICT_FDIV, ISD::STRICT_FSQRT, ISD::STRICT_FMA,
|
|
ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS, ISD::STRICT_FTRUNC,
|
|
ISD::STRICT_FCEIL, ISD::STRICT_FFLOOR, ISD::STRICT_FROUND,
|
|
ISD::STRICT_FROUNDEVEN, ISD::STRICT_FNEARBYINT},
|
|
VT, Custom);
|
|
}
|
|
|
|
// Custom-legalize bitcasts from fixed-length vectors to scalar types.
|
|
setOperationAction(ISD::BITCAST, {MVT::i8, MVT::i16, MVT::i32}, Custom);
|
|
if (Subtarget.is64Bit())
|
|
setOperationAction(ISD::BITCAST, MVT::i64, Custom);
|
|
if (Subtarget.hasStdExtZfhminOrZhinxmin())
|
|
setOperationAction(ISD::BITCAST, MVT::f16, Custom);
|
|
if (Subtarget.hasStdExtZfbfmin())
|
|
setOperationAction(ISD::BITCAST, MVT::bf16, Custom);
|
|
if (Subtarget.hasStdExtFOrZfinx())
|
|
setOperationAction(ISD::BITCAST, MVT::f32, Custom);
|
|
if (Subtarget.hasStdExtDOrZdinx())
|
|
setOperationAction(ISD::BITCAST, MVT::f64, Custom);
|
|
}
|
|
}
|
|
|
|
if (Subtarget.hasStdExtA())
|
|
setOperationAction(ISD::ATOMIC_LOAD_SUB, XLenVT, Expand);
|
|
|
|
if (Subtarget.hasForcedAtomics()) {
|
|
// Force __sync libcalls to be emitted for atomic rmw/cas operations.
|
|
setOperationAction(
|
|
{ISD::ATOMIC_CMP_SWAP, ISD::ATOMIC_SWAP, ISD::ATOMIC_LOAD_ADD,
|
|
ISD::ATOMIC_LOAD_SUB, ISD::ATOMIC_LOAD_AND, ISD::ATOMIC_LOAD_OR,
|
|
ISD::ATOMIC_LOAD_XOR, ISD::ATOMIC_LOAD_NAND, ISD::ATOMIC_LOAD_MIN,
|
|
ISD::ATOMIC_LOAD_MAX, ISD::ATOMIC_LOAD_UMIN, ISD::ATOMIC_LOAD_UMAX},
|
|
XLenVT, LibCall);
|
|
}
|
|
|
|
if (Subtarget.hasVendorXTHeadMemIdx()) {
|
|
for (unsigned im : {ISD::PRE_INC, ISD::POST_INC}) {
|
|
setIndexedLoadAction(im, MVT::i8, Legal);
|
|
setIndexedStoreAction(im, MVT::i8, Legal);
|
|
setIndexedLoadAction(im, MVT::i16, Legal);
|
|
setIndexedStoreAction(im, MVT::i16, Legal);
|
|
setIndexedLoadAction(im, MVT::i32, Legal);
|
|
setIndexedStoreAction(im, MVT::i32, Legal);
|
|
|
|
if (Subtarget.is64Bit()) {
|
|
setIndexedLoadAction(im, MVT::i64, Legal);
|
|
setIndexedStoreAction(im, MVT::i64, Legal);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Subtarget.hasVendorXCVmem() && !Subtarget.is64Bit()) {
|
|
setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal);
|
|
setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal);
|
|
setIndexedLoadAction(ISD::POST_INC, MVT::i32, Legal);
|
|
|
|
setIndexedStoreAction(ISD::POST_INC, MVT::i8, Legal);
|
|
setIndexedStoreAction(ISD::POST_INC, MVT::i16, Legal);
|
|
setIndexedStoreAction(ISD::POST_INC, MVT::i32, Legal);
|
|
}
|
|
|
|
// zve32x is broken for partial_reduce_umla, but let's not make it worse.
|
|
if (Subtarget.hasStdExtZvqdotq() && Subtarget.getELen() >= 64) {
|
|
static const unsigned MLAOps[] = {ISD::PARTIAL_REDUCE_SMLA,
|
|
ISD::PARTIAL_REDUCE_UMLA,
|
|
ISD::PARTIAL_REDUCE_SUMLA};
|
|
setPartialReduceMLAAction(MLAOps, MVT::nxv1i32, MVT::nxv4i8, Custom);
|
|
setPartialReduceMLAAction(MLAOps, MVT::nxv2i32, MVT::nxv8i8, Custom);
|
|
setPartialReduceMLAAction(MLAOps, MVT::nxv4i32, MVT::nxv16i8, Custom);
|
|
setPartialReduceMLAAction(MLAOps, MVT::nxv8i32, MVT::nxv32i8, Custom);
|
|
setPartialReduceMLAAction(MLAOps, MVT::nxv16i32, MVT::nxv64i8, Custom);
|
|
|
|
if (Subtarget.useRVVForFixedLengthVectors()) {
|
|
for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
|
|
if (VT.getVectorElementType() != MVT::i32 ||
|
|
!useRVVForFixedLengthVectorVT(VT))
|
|
continue;
|
|
ElementCount EC = VT.getVectorElementCount();
|
|
MVT ArgVT = MVT::getVectorVT(MVT::i8, EC.multiplyCoefficientBy(4));
|
|
setPartialReduceMLAAction(MLAOps, VT, ArgVT, Custom);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Function alignments.
|
|
const Align FunctionAlignment(Subtarget.hasStdExtZca() ? 2 : 4);
|
|
setMinFunctionAlignment(FunctionAlignment);
|
|
// Set preferred alignments.
|
|
setPrefFunctionAlignment(Subtarget.getPrefFunctionAlignment());
|
|
setPrefLoopAlignment(Subtarget.getPrefLoopAlignment());
|
|
|
|
setTargetDAGCombine({ISD::INTRINSIC_VOID, ISD::INTRINSIC_W_CHAIN,
|
|
ISD::INTRINSIC_WO_CHAIN, ISD::ADD, ISD::SUB, ISD::MUL,
|
|
ISD::AND, ISD::OR, ISD::XOR, ISD::SETCC, ISD::SELECT});
|
|
setTargetDAGCombine(ISD::SRA);
|
|
setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
|
|
|
|
if (Subtarget.hasStdExtFOrZfinx())
|
|
setTargetDAGCombine({ISD::FADD, ISD::FMAXNUM, ISD::FMINNUM, ISD::FMUL});
|
|
|
|
if (Subtarget.hasStdExtZbb())
|
|
setTargetDAGCombine({ISD::UMAX, ISD::UMIN, ISD::SMAX, ISD::SMIN});
|
|
|
|
if ((Subtarget.hasStdExtZbs() && Subtarget.is64Bit()) ||
|
|
Subtarget.hasVInstructions())
|
|
setTargetDAGCombine(ISD::TRUNCATE);
|
|
|
|
if (Subtarget.hasStdExtZbkb())
|
|
setTargetDAGCombine(ISD::BITREVERSE);
|
|
|
|
if (Subtarget.hasStdExtFOrZfinx())
|
|
setTargetDAGCombine({ISD::ZERO_EXTEND, ISD::FP_TO_SINT, ISD::FP_TO_UINT,
|
|
ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT});
|
|
if (Subtarget.hasVInstructions())
|
|
setTargetDAGCombine(
|
|
{ISD::FCOPYSIGN, ISD::MGATHER, ISD::MSCATTER,
|
|
ISD::VP_GATHER, ISD::VP_SCATTER, ISD::SRA,
|
|
ISD::SRL, ISD::SHL, ISD::STORE,
|
|
ISD::SPLAT_VECTOR, ISD::BUILD_VECTOR, ISD::CONCAT_VECTORS,
|
|
ISD::VP_STORE, ISD::VP_TRUNCATE, ISD::EXPERIMENTAL_VP_REVERSE,
|
|
ISD::MUL, ISD::SDIV, ISD::UDIV,
|
|
ISD::SREM, ISD::UREM, ISD::INSERT_VECTOR_ELT,
|
|
ISD::ABS, ISD::CTPOP, ISD::VECTOR_SHUFFLE,
|
|
ISD::VSELECT, ISD::VECREDUCE_ADD});
|
|
|
|
if (Subtarget.hasVendorXTHeadMemPair())
|
|
setTargetDAGCombine({ISD::LOAD, ISD::STORE});
|
|
if (Subtarget.useRVVForFixedLengthVectors())
|
|
setTargetDAGCombine(ISD::BITCAST);
|
|
|
|
// Disable strict node mutation.
|
|
IsStrictFPEnabled = true;
|
|
EnableExtLdPromotion = true;
|
|
|
|
// Let the subtarget decide if a predictable select is more expensive than the
|
|
// corresponding branch. This information is used in CGP/SelectOpt to decide
|
|
// when to convert selects into branches.
|
|
PredictableSelectIsExpensive = Subtarget.predictableSelectIsExpensive();
|
|
|
|
MaxStoresPerMemsetOptSize = Subtarget.getMaxStoresPerMemset(/*OptSize=*/true);
|
|
MaxStoresPerMemset = Subtarget.getMaxStoresPerMemset(/*OptSize=*/false);
|
|
|
|
MaxGluedStoresPerMemcpy = Subtarget.getMaxGluedStoresPerMemcpy();
|
|
MaxStoresPerMemcpyOptSize = Subtarget.getMaxStoresPerMemcpy(/*OptSize=*/true);
|
|
MaxStoresPerMemcpy = Subtarget.getMaxStoresPerMemcpy(/*OptSize=*/false);
|
|
|
|
MaxStoresPerMemmoveOptSize =
|
|
Subtarget.getMaxStoresPerMemmove(/*OptSize=*/true);
|
|
MaxStoresPerMemmove = Subtarget.getMaxStoresPerMemmove(/*OptSize=*/false);
|
|
|
|
MaxLoadsPerMemcmpOptSize = Subtarget.getMaxLoadsPerMemcmp(/*OptSize=*/true);
|
|
MaxLoadsPerMemcmp = Subtarget.getMaxLoadsPerMemcmp(/*OptSize=*/false);
|
|
}
|
|
|
|
EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
|
|
LLVMContext &Context,
|
|
EVT VT) const {
|
|
if (!VT.isVector())
|
|
return getPointerTy(DL);
|
|
if (Subtarget.hasVInstructions() &&
|
|
(VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
|
|
return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
|
|
return VT.changeVectorElementTypeToInteger();
|
|
}
|
|
|
|
MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const {
|
|
return Subtarget.getXLenVT();
|
|
}
|
|
|
|
// Return false if we can lower get_vector_length to a vsetvli intrinsic.
|
|
bool RISCVTargetLowering::shouldExpandGetVectorLength(EVT TripCountVT,
|
|
unsigned VF,
|
|
bool IsScalable) const {
|
|
if (!Subtarget.hasVInstructions())
|
|
return true;
|
|
|
|
if (!IsScalable)
|
|
return true;
|
|
|
|
if (TripCountVT != MVT::i32 && TripCountVT != Subtarget.getXLenVT())
|
|
return true;
|
|
|
|
// Don't allow VF=1 if those types are't legal.
|
|
if (VF < RISCV::RVVBitsPerBlock / Subtarget.getELen())
|
|
return true;
|
|
|
|
// VLEN=32 support is incomplete.
|
|
if (Subtarget.getRealMinVLen() < RISCV::RVVBitsPerBlock)
|
|
return true;
|
|
|
|
// The maximum VF is for the smallest element width with LMUL=8.
|
|
// VF must be a power of 2.
|
|
unsigned MaxVF = RISCV::RVVBytesPerBlock * 8;
|
|
return VF > MaxVF || !isPowerOf2_32(VF);
|
|
}
|
|
|
|
bool RISCVTargetLowering::shouldExpandCttzElements(EVT VT) const {
|
|
return !Subtarget.hasVInstructions() ||
|
|
VT.getVectorElementType() != MVT::i1 || !isTypeLegal(VT);
|
|
}
|
|
|
|
bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
|
|
const CallInst &I,
|
|
MachineFunction &MF,
|
|
unsigned Intrinsic) const {
|
|
auto &DL = I.getDataLayout();
|
|
|
|
auto SetRVVLoadStoreInfo = [&](unsigned PtrOp, bool IsStore,
|
|
bool IsUnitStrided, bool UsePtrVal = false) {
|
|
Info.opc = IsStore ? ISD::INTRINSIC_VOID : ISD::INTRINSIC_W_CHAIN;
|
|
// We can't use ptrVal if the intrinsic can access memory before the
|
|
// pointer. This means we can't use it for strided or indexed intrinsics.
|
|
if (UsePtrVal)
|
|
Info.ptrVal = I.getArgOperand(PtrOp);
|
|
else
|
|
Info.fallbackAddressSpace =
|
|
I.getArgOperand(PtrOp)->getType()->getPointerAddressSpace();
|
|
Type *MemTy;
|
|
if (IsStore) {
|
|
// Store value is the first operand.
|
|
MemTy = I.getArgOperand(0)->getType();
|
|
} else {
|
|
// Use return type. If it's segment load, return type is a struct.
|
|
MemTy = I.getType();
|
|
if (MemTy->isStructTy())
|
|
MemTy = MemTy->getStructElementType(0);
|
|
}
|
|
if (!IsUnitStrided)
|
|
MemTy = MemTy->getScalarType();
|
|
|
|
Info.memVT = getValueType(DL, MemTy);
|
|
if (MemTy->isTargetExtTy()) {
|
|
// RISC-V vector tuple type's alignment type should be its element type.
|
|
if (cast<TargetExtType>(MemTy)->getName() == "riscv.vector.tuple")
|
|
MemTy = Type::getIntNTy(
|
|
MemTy->getContext(),
|
|
1 << cast<ConstantInt>(I.getArgOperand(I.arg_size() - 1))
|
|
->getZExtValue());
|
|
Info.align = DL.getABITypeAlign(MemTy);
|
|
} else {
|
|
Info.align = Align(DL.getTypeSizeInBits(MemTy->getScalarType()) / 8);
|
|
}
|
|
Info.size = MemoryLocation::UnknownSize;
|
|
Info.flags |=
|
|
IsStore ? MachineMemOperand::MOStore : MachineMemOperand::MOLoad;
|
|
return true;
|
|
};
|
|
|
|
if (I.hasMetadata(LLVMContext::MD_nontemporal))
|
|
Info.flags |= MachineMemOperand::MONonTemporal;
|
|
|
|
Info.flags |= RISCVTargetLowering::getTargetMMOFlags(I);
|
|
switch (Intrinsic) {
|
|
default:
|
|
return false;
|
|
case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
|
|
case Intrinsic::riscv_masked_atomicrmw_add_i32:
|
|
case Intrinsic::riscv_masked_atomicrmw_sub_i32:
|
|
case Intrinsic::riscv_masked_atomicrmw_nand_i32:
|
|
case Intrinsic::riscv_masked_atomicrmw_max_i32:
|
|
case Intrinsic::riscv_masked_atomicrmw_min_i32:
|
|
case Intrinsic::riscv_masked_atomicrmw_umax_i32:
|
|
case Intrinsic::riscv_masked_atomicrmw_umin_i32:
|
|
case Intrinsic::riscv_masked_cmpxchg_i32:
|
|
Info.opc = ISD::INTRINSIC_W_CHAIN;
|
|
Info.memVT = MVT::i32;
|
|
Info.ptrVal = I.getArgOperand(0);
|
|
Info.offset = 0;
|
|
Info.align = Align(4);
|
|
Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
|
|
MachineMemOperand::MOVolatile;
|
|
return true;
|
|
case Intrinsic::riscv_seg2_load_mask:
|
|
case Intrinsic::riscv_seg3_load_mask:
|
|
case Intrinsic::riscv_seg4_load_mask:
|
|
case Intrinsic::riscv_seg5_load_mask:
|
|
case Intrinsic::riscv_seg6_load_mask:
|
|
case Intrinsic::riscv_seg7_load_mask:
|
|
case Intrinsic::riscv_seg8_load_mask:
|
|
return SetRVVLoadStoreInfo(/*PtrOp*/ 0, /*IsStore*/ false,
|
|
/*IsUnitStrided*/ false, /*UsePtrVal*/ true);
|
|
case Intrinsic::riscv_seg2_store_mask:
|
|
case Intrinsic::riscv_seg3_store_mask:
|
|
case Intrinsic::riscv_seg4_store_mask:
|
|
case Intrinsic::riscv_seg5_store_mask:
|
|
case Intrinsic::riscv_seg6_store_mask:
|
|
case Intrinsic::riscv_seg7_store_mask:
|
|
case Intrinsic::riscv_seg8_store_mask:
|
|
// Operands are (vec, ..., vec, ptr, mask, vl)
|
|
return SetRVVLoadStoreInfo(/*PtrOp*/ I.arg_size() - 3,
|
|
/*IsStore*/ true,
|
|
/*IsUnitStrided*/ false, /*UsePtrVal*/ true);
|
|
case Intrinsic::riscv_vle:
|
|
case Intrinsic::riscv_vle_mask:
|
|
case Intrinsic::riscv_vleff:
|
|
case Intrinsic::riscv_vleff_mask:
|
|
return SetRVVLoadStoreInfo(/*PtrOp*/ 1,
|
|
/*IsStore*/ false,
|
|
/*IsUnitStrided*/ true,
|
|
/*UsePtrVal*/ true);
|
|
case Intrinsic::riscv_vse:
|
|
case Intrinsic::riscv_vse_mask:
|
|
return SetRVVLoadStoreInfo(/*PtrOp*/ 1,
|
|
/*IsStore*/ true,
|
|
/*IsUnitStrided*/ true,
|
|
/*UsePtrVal*/ true);
|
|
case Intrinsic::riscv_vlse:
|
|
case Intrinsic::riscv_vlse_mask:
|
|
case Intrinsic::riscv_vloxei:
|
|
case Intrinsic::riscv_vloxei_mask:
|
|
case Intrinsic::riscv_vluxei:
|
|
case Intrinsic::riscv_vluxei_mask:
|
|
return SetRVVLoadStoreInfo(/*PtrOp*/ 1,
|
|
/*IsStore*/ false,
|
|
/*IsUnitStrided*/ false);
|
|
case Intrinsic::riscv_vsse:
|
|
case Intrinsic::riscv_vsse_mask:
|
|
case Intrinsic::riscv_vsoxei:
|
|
case Intrinsic::riscv_vsoxei_mask:
|
|
case Intrinsic::riscv_vsuxei:
|
|
case Intrinsic::riscv_vsuxei_mask:
|
|
return SetRVVLoadStoreInfo(/*PtrOp*/ 1,
|
|
/*IsStore*/ true,
|
|
/*IsUnitStrided*/ false);
|
|
case Intrinsic::riscv_vlseg2:
|
|
case Intrinsic::riscv_vlseg3:
|
|
case Intrinsic::riscv_vlseg4:
|
|
case Intrinsic::riscv_vlseg5:
|
|
case Intrinsic::riscv_vlseg6:
|
|
case Intrinsic::riscv_vlseg7:
|
|
case Intrinsic::riscv_vlseg8:
|
|
case Intrinsic::riscv_vlseg2ff:
|
|
case Intrinsic::riscv_vlseg3ff:
|
|
case Intrinsic::riscv_vlseg4ff:
|
|
case Intrinsic::riscv_vlseg5ff:
|
|
case Intrinsic::riscv_vlseg6ff:
|
|
case Intrinsic::riscv_vlseg7ff:
|
|
case Intrinsic::riscv_vlseg8ff:
|
|
return SetRVVLoadStoreInfo(/*PtrOp*/ I.arg_size() - 3,
|
|
/*IsStore*/ false,
|
|
/*IsUnitStrided*/ false, /*UsePtrVal*/ true);
|
|
case Intrinsic::riscv_vlseg2_mask:
|
|
case Intrinsic::riscv_vlseg3_mask:
|
|
case Intrinsic::riscv_vlseg4_mask:
|
|
case Intrinsic::riscv_vlseg5_mask:
|
|
case Intrinsic::riscv_vlseg6_mask:
|
|
case Intrinsic::riscv_vlseg7_mask:
|
|
case Intrinsic::riscv_vlseg8_mask:
|
|
case Intrinsic::riscv_vlseg2ff_mask:
|
|
case Intrinsic::riscv_vlseg3ff_mask:
|
|
case Intrinsic::riscv_vlseg4ff_mask:
|
|
case Intrinsic::riscv_vlseg5ff_mask:
|
|
case Intrinsic::riscv_vlseg6ff_mask:
|
|
case Intrinsic::riscv_vlseg7ff_mask:
|
|
case Intrinsic::riscv_vlseg8ff_mask:
|
|
return SetRVVLoadStoreInfo(/*PtrOp*/ I.arg_size() - 5,
|
|
/*IsStore*/ false,
|
|
/*IsUnitStrided*/ false, /*UsePtrVal*/ true);
|
|
case Intrinsic::riscv_vlsseg2:
|
|
case Intrinsic::riscv_vlsseg3:
|
|
case Intrinsic::riscv_vlsseg4:
|
|
case Intrinsic::riscv_vlsseg5:
|
|
case Intrinsic::riscv_vlsseg6:
|
|
case Intrinsic::riscv_vlsseg7:
|
|
case Intrinsic::riscv_vlsseg8:
|
|
case Intrinsic::riscv_vloxseg2:
|
|
case Intrinsic::riscv_vloxseg3:
|
|
case Intrinsic::riscv_vloxseg4:
|
|
case Intrinsic::riscv_vloxseg5:
|
|
case Intrinsic::riscv_vloxseg6:
|
|
case Intrinsic::riscv_vloxseg7:
|
|
case Intrinsic::riscv_vloxseg8:
|
|
case Intrinsic::riscv_vluxseg2:
|
|
case Intrinsic::riscv_vluxseg3:
|
|
case Intrinsic::riscv_vluxseg4:
|
|
case Intrinsic::riscv_vluxseg5:
|
|
case Intrinsic::riscv_vluxseg6:
|
|
case Intrinsic::riscv_vluxseg7:
|
|
case Intrinsic::riscv_vluxseg8:
|
|
return SetRVVLoadStoreInfo(/*PtrOp*/ I.arg_size() - 4,
|
|
/*IsStore*/ false,
|
|
/*IsUnitStrided*/ false);
|
|
case Intrinsic::riscv_vlsseg2_mask:
|
|
case Intrinsic::riscv_vlsseg3_mask:
|
|
case Intrinsic::riscv_vlsseg4_mask:
|
|
case Intrinsic::riscv_vlsseg5_mask:
|
|
case Intrinsic::riscv_vlsseg6_mask:
|
|
case Intrinsic::riscv_vlsseg7_mask:
|
|
case Intrinsic::riscv_vlsseg8_mask:
|
|
case Intrinsic::riscv_vloxseg2_mask:
|
|
case Intrinsic::riscv_vloxseg3_mask:
|
|
case Intrinsic::riscv_vloxseg4_mask:
|
|
case Intrinsic::riscv_vloxseg5_mask:
|
|
case Intrinsic::riscv_vloxseg6_mask:
|
|
case Intrinsic::riscv_vloxseg7_mask:
|
|
case Intrinsic::riscv_vloxseg8_mask:
|
|
case Intrinsic::riscv_vluxseg2_mask:
|
|
case Intrinsic::riscv_vluxseg3_mask:
|
|
case Intrinsic::riscv_vluxseg4_mask:
|
|
case Intrinsic::riscv_vluxseg5_mask:
|
|
case Intrinsic::riscv_vluxseg6_mask:
|
|
case Intrinsic::riscv_vluxseg7_mask:
|
|
case Intrinsic::riscv_vluxseg8_mask:
|
|
return SetRVVLoadStoreInfo(/*PtrOp*/ I.arg_size() - 6,
|
|
/*IsStore*/ false,
|
|
/*IsUnitStrided*/ false);
|
|
case Intrinsic::riscv_vsseg2:
|
|
case Intrinsic::riscv_vsseg3:
|
|
case Intrinsic::riscv_vsseg4:
|
|
case Intrinsic::riscv_vsseg5:
|
|
case Intrinsic::riscv_vsseg6:
|
|
case Intrinsic::riscv_vsseg7:
|
|
case Intrinsic::riscv_vsseg8:
|
|
return SetRVVLoadStoreInfo(/*PtrOp*/ I.arg_size() - 3,
|
|
/*IsStore*/ true,
|
|
/*IsUnitStrided*/ false);
|
|
case Intrinsic::riscv_vsseg2_mask:
|
|
case Intrinsic::riscv_vsseg3_mask:
|
|
case Intrinsic::riscv_vsseg4_mask:
|
|
case Intrinsic::riscv_vsseg5_mask:
|
|
case Intrinsic::riscv_vsseg6_mask:
|
|
case Intrinsic::riscv_vsseg7_mask:
|
|
case Intrinsic::riscv_vsseg8_mask:
|
|
return SetRVVLoadStoreInfo(/*PtrOp*/ I.arg_size() - 4,
|
|
/*IsStore*/ true,
|
|
/*IsUnitStrided*/ false);
|
|
case Intrinsic::riscv_vssseg2:
|
|
case Intrinsic::riscv_vssseg3:
|
|
case Intrinsic::riscv_vssseg4:
|
|
case Intrinsic::riscv_vssseg5:
|
|
case Intrinsic::riscv_vssseg6:
|
|
case Intrinsic::riscv_vssseg7:
|
|
case Intrinsic::riscv_vssseg8:
|
|
case Intrinsic::riscv_vsoxseg2:
|
|
case Intrinsic::riscv_vsoxseg3:
|
|
case Intrinsic::riscv_vsoxseg4:
|
|
case Intrinsic::riscv_vsoxseg5:
|
|
case Intrinsic::riscv_vsoxseg6:
|
|
case Intrinsic::riscv_vsoxseg7:
|
|
case Intrinsic::riscv_vsoxseg8:
|
|
case Intrinsic::riscv_vsuxseg2:
|
|
case Intrinsic::riscv_vsuxseg3:
|
|
case Intrinsic::riscv_vsuxseg4:
|
|
case Intrinsic::riscv_vsuxseg5:
|
|
case Intrinsic::riscv_vsuxseg6:
|
|
case Intrinsic::riscv_vsuxseg7:
|
|
case Intrinsic::riscv_vsuxseg8:
|
|
return SetRVVLoadStoreInfo(/*PtrOp*/ I.arg_size() - 4,
|
|
/*IsStore*/ true,
|
|
/*IsUnitStrided*/ false);
|
|
case Intrinsic::riscv_vssseg2_mask:
|
|
case Intrinsic::riscv_vssseg3_mask:
|
|
case Intrinsic::riscv_vssseg4_mask:
|
|
case Intrinsic::riscv_vssseg5_mask:
|
|
case Intrinsic::riscv_vssseg6_mask:
|
|
case Intrinsic::riscv_vssseg7_mask:
|
|
case Intrinsic::riscv_vssseg8_mask:
|
|
case Intrinsic::riscv_vsoxseg2_mask:
|
|
case Intrinsic::riscv_vsoxseg3_mask:
|
|
case Intrinsic::riscv_vsoxseg4_mask:
|
|
case Intrinsic::riscv_vsoxseg5_mask:
|
|
case Intrinsic::riscv_vsoxseg6_mask:
|
|
case Intrinsic::riscv_vsoxseg7_mask:
|
|
case Intrinsic::riscv_vsoxseg8_mask:
|
|
case Intrinsic::riscv_vsuxseg2_mask:
|
|
case Intrinsic::riscv_vsuxseg3_mask:
|
|
case Intrinsic::riscv_vsuxseg4_mask:
|
|
case Intrinsic::riscv_vsuxseg5_mask:
|
|
case Intrinsic::riscv_vsuxseg6_mask:
|
|
case Intrinsic::riscv_vsuxseg7_mask:
|
|
case Intrinsic::riscv_vsuxseg8_mask:
|
|
return SetRVVLoadStoreInfo(/*PtrOp*/ I.arg_size() - 5,
|
|
/*IsStore*/ true,
|
|
/*IsUnitStrided*/ false);
|
|
}
|
|
}
|
|
|
|
bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
|
|
const AddrMode &AM, Type *Ty,
|
|
unsigned AS,
|
|
Instruction *I) const {
|
|
// No global is ever allowed as a base.
|
|
if (AM.BaseGV)
|
|
return false;
|
|
|
|
// None of our addressing modes allows a scalable offset
|
|
if (AM.ScalableOffset)
|
|
return false;
|
|
|
|
// RVV instructions only support register addressing.
|
|
if (Subtarget.hasVInstructions() && isa<VectorType>(Ty))
|
|
return AM.HasBaseReg && AM.Scale == 0 && !AM.BaseOffs;
|
|
|
|
// Require a 12-bit signed offset.
|
|
if (!isInt<12>(AM.BaseOffs))
|
|
return false;
|
|
|
|
switch (AM.Scale) {
|
|
case 0: // "r+i" or just "i", depending on HasBaseReg.
|
|
break;
|
|
case 1:
|
|
if (!AM.HasBaseReg) // allow "r+i".
|
|
break;
|
|
return false; // disallow "r+r" or "r+r+i".
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
|
|
return isInt<12>(Imm);
|
|
}
|
|
|
|
bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
|
|
return isInt<12>(Imm);
|
|
}
|
|
|
|
// On RV32, 64-bit integers are split into their high and low parts and held
|
|
// in two different registers, so the trunc is free since the low register can
|
|
// just be used.
|
|
// FIXME: Should we consider i64->i32 free on RV64 to match the EVT version of
|
|
// isTruncateFree?
|
|
bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
|
|
if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
|
|
return false;
|
|
unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
|
|
unsigned DestBits = DstTy->getPrimitiveSizeInBits();
|
|
return (SrcBits == 64 && DestBits == 32);
|
|
}
|
|
|
|
bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
|
|
// We consider i64->i32 free on RV64 since we have good selection of W
|
|
// instructions that make promoting operations back to i64 free in many cases.
|
|
if (SrcVT.isVector() || DstVT.isVector() || !SrcVT.isInteger() ||
|
|
!DstVT.isInteger())
|
|
return false;
|
|
unsigned SrcBits = SrcVT.getSizeInBits();
|
|
unsigned DestBits = DstVT.getSizeInBits();
|
|
return (SrcBits == 64 && DestBits == 32);
|
|
}
|
|
|
|
bool RISCVTargetLowering::isTruncateFree(SDValue Val, EVT VT2) const {
|
|
EVT SrcVT = Val.getValueType();
|
|
// free truncate from vnsrl and vnsra
|
|
if (Subtarget.hasVInstructions() &&
|
|
(Val.getOpcode() == ISD::SRL || Val.getOpcode() == ISD::SRA) &&
|
|
SrcVT.isVector() && VT2.isVector()) {
|
|
unsigned SrcBits = SrcVT.getVectorElementType().getSizeInBits();
|
|
unsigned DestBits = VT2.getVectorElementType().getSizeInBits();
|
|
if (SrcBits == DestBits * 2) {
|
|
return true;
|
|
}
|
|
}
|
|
return TargetLowering::isTruncateFree(Val, VT2);
|
|
}
|
|
|
|
bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
|
|
// Zexts are free if they can be combined with a load.
|
|
// Don't advertise i32->i64 zextload as being free for RV64. It interacts
|
|
// poorly with type legalization of compares preferring sext.
|
|
if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
|
|
EVT MemVT = LD->getMemoryVT();
|
|
if ((MemVT == MVT::i8 || MemVT == MVT::i16) &&
|
|
(LD->getExtensionType() == ISD::NON_EXTLOAD ||
|
|
LD->getExtensionType() == ISD::ZEXTLOAD))
|
|
return true;
|
|
}
|
|
|
|
return TargetLowering::isZExtFree(Val, VT2);
|
|
}
|
|
|
|
bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
|
|
return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
|
|
}
|
|
|
|
bool RISCVTargetLowering::signExtendConstant(const ConstantInt *CI) const {
|
|
return Subtarget.is64Bit() && CI->getType()->isIntegerTy(32);
|
|
}
|
|
|
|
bool RISCVTargetLowering::isCheapToSpeculateCttz(Type *Ty) const {
|
|
return Subtarget.hasStdExtZbb() ||
|
|
(Subtarget.hasVendorXCVbitmanip() && !Subtarget.is64Bit());
|
|
}
|
|
|
|
bool RISCVTargetLowering::isCheapToSpeculateCtlz(Type *Ty) const {
|
|
return Subtarget.hasStdExtZbb() || Subtarget.hasVendorXTHeadBb() ||
|
|
(Subtarget.hasVendorXCVbitmanip() && !Subtarget.is64Bit());
|
|
}
|
|
|
|
bool RISCVTargetLowering::isMaskAndCmp0FoldingBeneficial(
|
|
const Instruction &AndI) const {
|
|
// We expect to be able to match a bit extraction instruction if the Zbs
|
|
// extension is supported and the mask is a power of two. However, we
|
|
// conservatively return false if the mask would fit in an ANDI instruction,
|
|
// on the basis that it's possible the sinking+duplication of the AND in
|
|
// CodeGenPrepare triggered by this hook wouldn't decrease the instruction
|
|
// count and would increase code size (e.g. ANDI+BNEZ => BEXTI+BNEZ).
|
|
if (!Subtarget.hasStdExtZbs() && !Subtarget.hasVendorXTHeadBs())
|
|
return false;
|
|
ConstantInt *Mask = dyn_cast<ConstantInt>(AndI.getOperand(1));
|
|
if (!Mask)
|
|
return false;
|
|
return !Mask->getValue().isSignedIntN(12) && Mask->getValue().isPowerOf2();
|
|
}
|
|
|
|
bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const {
|
|
EVT VT = Y.getValueType();
|
|
|
|
if (VT.isVector())
|
|
return false;
|
|
|
|
return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb()) &&
|
|
(!isa<ConstantSDNode>(Y) || cast<ConstantSDNode>(Y)->isOpaque());
|
|
}
|
|
|
|
bool RISCVTargetLowering::hasAndNot(SDValue Y) const {
|
|
EVT VT = Y.getValueType();
|
|
|
|
if (!VT.isVector())
|
|
return hasAndNotCompare(Y);
|
|
|
|
return Subtarget.hasStdExtZvkb();
|
|
}
|
|
|
|
bool RISCVTargetLowering::hasBitTest(SDValue X, SDValue Y) const {
|
|
// Zbs provides BEXT[_I], which can be used with SEQZ/SNEZ as a bit test.
|
|
if (Subtarget.hasStdExtZbs())
|
|
return X.getValueType().isScalarInteger();
|
|
auto *C = dyn_cast<ConstantSDNode>(Y);
|
|
// XTheadBs provides th.tst (similar to bexti), if Y is a constant
|
|
if (Subtarget.hasVendorXTHeadBs())
|
|
return C != nullptr;
|
|
// We can use ANDI+SEQZ/SNEZ as a bit test. Y contains the bit position.
|
|
return C && C->getAPIntValue().ule(10);
|
|
}
|
|
|
|
bool RISCVTargetLowering::shouldFoldSelectWithIdentityConstant(
|
|
unsigned BinOpcode, EVT VT, unsigned SelectOpcode, SDValue X,
|
|
SDValue Y) const {
|
|
if (SelectOpcode != ISD::VSELECT)
|
|
return false;
|
|
|
|
// Only enable for rvv.
|
|
if (!VT.isVector() || !Subtarget.hasVInstructions())
|
|
return false;
|
|
|
|
if (VT.isFixedLengthVector() && !isTypeLegal(VT))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool RISCVTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
|
|
Type *Ty) const {
|
|
assert(Ty->isIntegerTy());
|
|
|
|
unsigned BitSize = Ty->getIntegerBitWidth();
|
|
if (BitSize > Subtarget.getXLen())
|
|
return false;
|
|
|
|
// Fast path, assume 32-bit immediates are cheap.
|
|
int64_t Val = Imm.getSExtValue();
|
|
if (isInt<32>(Val))
|
|
return true;
|
|
|
|
// A constant pool entry may be more aligned than the load we're trying to
|
|
// replace. If we don't support unaligned scalar mem, prefer the constant
|
|
// pool.
|
|
// TODO: Can the caller pass down the alignment?
|
|
if (!Subtarget.enableUnalignedScalarMem())
|
|
return true;
|
|
|
|
// Prefer to keep the load if it would require many instructions.
|
|
// This uses the same threshold we use for constant pools but doesn't
|
|
// check useConstantPoolForLargeInts.
|
|
// TODO: Should we keep the load only when we're definitely going to emit a
|
|
// constant pool?
|
|
|
|
RISCVMatInt::InstSeq Seq = RISCVMatInt::generateInstSeq(Val, Subtarget);
|
|
return Seq.size() <= Subtarget.getMaxBuildIntsCost();
|
|
}
|
|
|
|
bool RISCVTargetLowering::
|
|
shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
|
|
SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y,
|
|
unsigned OldShiftOpcode, unsigned NewShiftOpcode,
|
|
SelectionDAG &DAG) const {
|
|
// One interesting pattern that we'd want to form is 'bit extract':
|
|
// ((1 >> Y) & 1) ==/!= 0
|
|
// But we also need to be careful not to try to reverse that fold.
|
|
|
|
// Is this '((1 >> Y) & 1)'?
|
|
if (XC && OldShiftOpcode == ISD::SRL && XC->isOne())
|
|
return false; // Keep the 'bit extract' pattern.
|
|
|
|
// Will this be '((1 >> Y) & 1)' after the transform?
|
|
if (NewShiftOpcode == ISD::SRL && CC->isOne())
|
|
return true; // Do form the 'bit extract' pattern.
|
|
|
|
// If 'X' is a constant, and we transform, then we will immediately
|
|
// try to undo the fold, thus causing endless combine loop.
|
|
// So only do the transform if X is not a constant. This matches the default
|
|
// implementation of this function.
|
|
return !XC;
|
|
}
|
|
|
|
bool RISCVTargetLowering::shouldScalarizeBinop(SDValue VecOp) const {
|
|
unsigned Opc = VecOp.getOpcode();
|
|
|
|
// Assume target opcodes can't be scalarized.
|
|
// TODO - do we have any exceptions?
|
|
if (Opc >= ISD::BUILTIN_OP_END || !isBinOp(Opc))
|
|
return false;
|
|
|
|
// If the vector op is not supported, try to convert to scalar.
|
|
EVT VecVT = VecOp.getValueType();
|
|
if (!isOperationLegalOrCustomOrPromote(Opc, VecVT))
|
|
return true;
|
|
|
|
// If the vector op is supported, but the scalar op is not, the transform may
|
|
// not be worthwhile.
|
|
// Permit a vector binary operation can be converted to scalar binary
|
|
// operation which is custom lowered with illegal type.
|
|
EVT ScalarVT = VecVT.getScalarType();
|
|
return isOperationLegalOrCustomOrPromote(Opc, ScalarVT) ||
|
|
isOperationCustom(Opc, ScalarVT);
|
|
}
|
|
|
|
bool RISCVTargetLowering::isOffsetFoldingLegal(
|
|
const GlobalAddressSDNode *GA) const {
|
|
// In order to maximise the opportunity for common subexpression elimination,
|
|
// keep a separate ADD node for the global address offset instead of folding
|
|
// it in the global address node. Later peephole optimisations may choose to
|
|
// fold it back in when profitable.
|
|
return false;
|
|
}
|
|
|
|
// Returns 0-31 if the fli instruction is available for the type and this is
|
|
// legal FP immediate for the type. Returns -1 otherwise.
|
|
int RISCVTargetLowering::getLegalZfaFPImm(const APFloat &Imm, EVT VT) const {
|
|
if (!Subtarget.hasStdExtZfa())
|
|
return -1;
|
|
|
|
bool IsSupportedVT = false;
|
|
if (VT == MVT::f16) {
|
|
IsSupportedVT = Subtarget.hasStdExtZfh() || Subtarget.hasStdExtZvfh();
|
|
} else if (VT == MVT::f32) {
|
|
IsSupportedVT = true;
|
|
} else if (VT == MVT::f64) {
|
|
assert(Subtarget.hasStdExtD() && "Expect D extension");
|
|
IsSupportedVT = true;
|
|
}
|
|
|
|
if (!IsSupportedVT)
|
|
return -1;
|
|
|
|
return RISCVLoadFPImm::getLoadFPImm(Imm);
|
|
}
|
|
|
|
bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
|
|
bool ForCodeSize) const {
|
|
bool IsLegalVT = false;
|
|
if (VT == MVT::f16)
|
|
IsLegalVT = Subtarget.hasStdExtZfhminOrZhinxmin();
|
|
else if (VT == MVT::f32)
|
|
IsLegalVT = Subtarget.hasStdExtFOrZfinx();
|
|
else if (VT == MVT::f64)
|
|
IsLegalVT = Subtarget.hasStdExtDOrZdinx();
|
|
else if (VT == MVT::bf16)
|
|
IsLegalVT = Subtarget.hasStdExtZfbfmin();
|
|
|
|
if (!IsLegalVT)
|
|
return false;
|
|
|
|
if (getLegalZfaFPImm(Imm, VT) >= 0)
|
|
return true;
|
|
|
|
// Cannot create a 64 bit floating-point immediate value for rv32.
|
|
if (Subtarget.getXLen() < VT.getScalarSizeInBits()) {
|
|
// td can handle +0.0 or -0.0 already.
|
|
// -0.0 can be created by fmv + fneg.
|
|
return Imm.isZero();
|
|
}
|
|
|
|
// Special case: fmv + fneg
|
|
if (Imm.isNegZero())
|
|
return true;
|
|
|
|
// Building an integer and then converting requires a fmv at the end of
|
|
// the integer sequence. The fmv is not required for Zfinx.
|
|
const int FmvCost = Subtarget.hasStdExtZfinx() ? 0 : 1;
|
|
const int Cost =
|
|
FmvCost + RISCVMatInt::getIntMatCost(Imm.bitcastToAPInt(),
|
|
Subtarget.getXLen(), Subtarget);
|
|
return Cost <= FPImmCost;
|
|
}
|
|
|
|
// TODO: This is very conservative.
|
|
bool RISCVTargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
|
|
unsigned Index) const {
|
|
if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
|
|
return false;
|
|
|
|
// Extracts from index 0 are just subreg extracts.
|
|
if (Index == 0)
|
|
return true;
|
|
|
|
// Only support extracting a fixed from a fixed vector for now.
|
|
if (ResVT.isScalableVector() || SrcVT.isScalableVector())
|
|
return false;
|
|
|
|
EVT EltVT = ResVT.getVectorElementType();
|
|
assert(EltVT == SrcVT.getVectorElementType() && "Should hold for node");
|
|
|
|
// The smallest type we can slide is i8.
|
|
// TODO: We can extract index 0 from a mask vector without a slide.
|
|
if (EltVT == MVT::i1)
|
|
return false;
|
|
|
|
unsigned ResElts = ResVT.getVectorNumElements();
|
|
unsigned SrcElts = SrcVT.getVectorNumElements();
|
|
|
|
unsigned MinVLen = Subtarget.getRealMinVLen();
|
|
unsigned MinVLMAX = MinVLen / EltVT.getSizeInBits();
|
|
|
|
// If we're extracting only data from the first VLEN bits of the source
|
|
// then we can always do this with an m1 vslidedown.vx. Restricting the
|
|
// Index ensures we can use a vslidedown.vi.
|
|
// TODO: We can generalize this when the exact VLEN is known.
|
|
if (Index + ResElts <= MinVLMAX && Index < 31)
|
|
return true;
|
|
|
|
// Convervatively only handle extracting half of a vector.
|
|
// TODO: We can do arbitrary slidedowns, but for now only support extracting
|
|
// the upper half of a vector until we have more test coverage.
|
|
// TODO: For sizes which aren't multiples of VLEN sizes, this may not be
|
|
// a cheap extract. However, this case is important in practice for
|
|
// shuffled extracts of longer vectors. How resolve?
|
|
return (ResElts * 2) == SrcElts && (Index == 0 || Index == ResElts);
|
|
}
|
|
|
|
MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
|
|
CallingConv::ID CC,
|
|
EVT VT) const {
|
|
// Use f32 to pass f16 if it is legal and Zfh/Zfhmin is not enabled.
|
|
// We might still end up using a GPR but that will be decided based on ABI.
|
|
if (VT == MVT::f16 && Subtarget.hasStdExtFOrZfinx() &&
|
|
!Subtarget.hasStdExtZfhminOrZhinxmin())
|
|
return MVT::f32;
|
|
|
|
MVT PartVT = TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
|
|
|
|
return PartVT;
|
|
}
|
|
|
|
unsigned
|
|
RISCVTargetLowering::getNumRegisters(LLVMContext &Context, EVT VT,
|
|
std::optional<MVT> RegisterVT) const {
|
|
// Pair inline assembly operand
|
|
if (VT == (Subtarget.is64Bit() ? MVT::i128 : MVT::i64) && RegisterVT &&
|
|
*RegisterVT == MVT::Untyped)
|
|
return 1;
|
|
|
|
return TargetLowering::getNumRegisters(Context, VT, RegisterVT);
|
|
}
|
|
|
|
unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
|
|
CallingConv::ID CC,
|
|
EVT VT) const {
|
|
// Use f32 to pass f16 if it is legal and Zfh/Zfhmin is not enabled.
|
|
// We might still end up using a GPR but that will be decided based on ABI.
|
|
if (VT == MVT::f16 && Subtarget.hasStdExtFOrZfinx() &&
|
|
!Subtarget.hasStdExtZfhminOrZhinxmin())
|
|
return 1;
|
|
|
|
return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
|
|
}
|
|
|
|
unsigned RISCVTargetLowering::getVectorTypeBreakdownForCallingConv(
|
|
LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT,
|
|
unsigned &NumIntermediates, MVT &RegisterVT) const {
|
|
unsigned NumRegs = TargetLowering::getVectorTypeBreakdownForCallingConv(
|
|
Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT);
|
|
|
|
return NumRegs;
|
|
}
|
|
|
|
// Changes the condition code and swaps operands if necessary, so the SetCC
|
|
// operation matches one of the comparisons supported directly by branches
|
|
// in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
|
|
// with 1/-1.
|
|
static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
|
|
ISD::CondCode &CC, SelectionDAG &DAG) {
|
|
// If this is a single bit test that can't be handled by ANDI, shift the
|
|
// bit to be tested to the MSB and perform a signed compare with 0.
|
|
if (isIntEqualitySetCC(CC) && isNullConstant(RHS) &&
|
|
LHS.getOpcode() == ISD::AND && LHS.hasOneUse() &&
|
|
isa<ConstantSDNode>(LHS.getOperand(1))) {
|
|
uint64_t Mask = LHS.getConstantOperandVal(1);
|
|
if ((isPowerOf2_64(Mask) || isMask_64(Mask)) && !isInt<12>(Mask)) {
|
|
unsigned ShAmt = 0;
|
|
if (isPowerOf2_64(Mask)) {
|
|
CC = CC == ISD::SETEQ ? ISD::SETGE : ISD::SETLT;
|
|
ShAmt = LHS.getValueSizeInBits() - 1 - Log2_64(Mask);
|
|
} else {
|
|
ShAmt = LHS.getValueSizeInBits() - llvm::bit_width(Mask);
|
|
}
|
|
|
|
LHS = LHS.getOperand(0);
|
|
if (ShAmt != 0)
|
|
LHS = DAG.getNode(ISD::SHL, DL, LHS.getValueType(), LHS,
|
|
DAG.getConstant(ShAmt, DL, LHS.getValueType()));
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (auto *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
|
|
int64_t C = RHSC->getSExtValue();
|
|
const RISCVSubtarget &Subtarget =
|
|
DAG.getMachineFunction().getSubtarget<RISCVSubtarget>();
|
|
switch (CC) {
|
|
default: break;
|
|
case ISD::SETGT:
|
|
// Convert X > -1 to X >= 0.
|
|
if (C == -1) {
|
|
RHS = DAG.getConstant(0, DL, RHS.getValueType());
|
|
CC = ISD::SETGE;
|
|
return;
|
|
}
|
|
if (Subtarget.hasVendorXqcibi() && C != INT64_MAX && isInt<16>(C + 1)) {
|
|
// We have a branch immediate instruction for SETGE but not SETGT.
|
|
// Convert X > C to X >= C + 1, if (C + 1) is a 16-bit signed immediate.
|
|
RHS = DAG.getSignedConstant(C + 1, DL, RHS.getValueType());
|
|
CC = ISD::SETGE;
|
|
return;
|
|
}
|
|
break;
|
|
case ISD::SETLT:
|
|
// Convert X < 1 to 0 >= X.
|
|
if (C == 1) {
|
|
RHS = LHS;
|
|
LHS = DAG.getConstant(0, DL, RHS.getValueType());
|
|
CC = ISD::SETGE;
|
|
return;
|
|
}
|
|
break;
|
|
case ISD::SETUGT:
|
|
if (Subtarget.hasVendorXqcibi() && C != INT64_MAX && isInt<16>(C + 1) &&
|
|
C != -1) {
|
|
// We have a branch immediate instruction for SETUGE but not SETUGT.
|
|
// Convert X > C to X >= C + 1, if (C + 1) is a 16-bit signed immediate.
|
|
RHS = DAG.getSignedConstant(C + 1, DL, RHS.getValueType());
|
|
CC = ISD::SETUGE;
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
switch (CC) {
|
|
default:
|
|
break;
|
|
case ISD::SETGT:
|
|
case ISD::SETLE:
|
|
case ISD::SETUGT:
|
|
case ISD::SETULE:
|
|
CC = ISD::getSetCCSwappedOperands(CC);
|
|
std::swap(LHS, RHS);
|
|
break;
|
|
}
|
|
}
|
|
|
|
RISCVVType::VLMUL RISCVTargetLowering::getLMUL(MVT VT) {
|
|
if (VT.isRISCVVectorTuple()) {
|
|
if (VT.SimpleTy >= MVT::riscv_nxv1i8x2 &&
|
|
VT.SimpleTy <= MVT::riscv_nxv1i8x8)
|
|
return RISCVVType::LMUL_F8;
|
|
if (VT.SimpleTy >= MVT::riscv_nxv2i8x2 &&
|
|
VT.SimpleTy <= MVT::riscv_nxv2i8x8)
|
|
return RISCVVType::LMUL_F4;
|
|
if (VT.SimpleTy >= MVT::riscv_nxv4i8x2 &&
|
|
VT.SimpleTy <= MVT::riscv_nxv4i8x8)
|
|
return RISCVVType::LMUL_F2;
|
|
if (VT.SimpleTy >= MVT::riscv_nxv8i8x2 &&
|
|
VT.SimpleTy <= MVT::riscv_nxv8i8x8)
|
|
return RISCVVType::LMUL_1;
|
|
if (VT.SimpleTy >= MVT::riscv_nxv16i8x2 &&
|
|
VT.SimpleTy <= MVT::riscv_nxv16i8x4)
|
|
return RISCVVType::LMUL_2;
|
|
if (VT.SimpleTy == MVT::riscv_nxv32i8x2)
|
|
return RISCVVType::LMUL_4;
|
|
llvm_unreachable("Invalid vector tuple type LMUL.");
|
|
}
|
|
|
|
assert(VT.isScalableVector() && "Expecting a scalable vector type");
|
|
unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
|
|
if (VT.getVectorElementType() == MVT::i1)
|
|
KnownSize *= 8;
|
|
|
|
switch (KnownSize) {
|
|
default:
|
|
llvm_unreachable("Invalid LMUL.");
|
|
case 8:
|
|
return RISCVVType::LMUL_F8;
|
|
case 16:
|
|
return RISCVVType::LMUL_F4;
|
|
case 32:
|
|
return RISCVVType::LMUL_F2;
|
|
case 64:
|
|
return RISCVVType::LMUL_1;
|
|
case 128:
|
|
return RISCVVType::LMUL_2;
|
|
case 256:
|
|
return RISCVVType::LMUL_4;
|
|
case 512:
|
|
return RISCVVType::LMUL_8;
|
|
}
|
|
}
|
|
|
|
unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVVType::VLMUL LMul) {
|
|
switch (LMul) {
|
|
default:
|
|
llvm_unreachable("Invalid LMUL.");
|
|
case RISCVVType::LMUL_F8:
|
|
case RISCVVType::LMUL_F4:
|
|
case RISCVVType::LMUL_F2:
|
|
case RISCVVType::LMUL_1:
|
|
return RISCV::VRRegClassID;
|
|
case RISCVVType::LMUL_2:
|
|
return RISCV::VRM2RegClassID;
|
|
case RISCVVType::LMUL_4:
|
|
return RISCV::VRM4RegClassID;
|
|
case RISCVVType::LMUL_8:
|
|
return RISCV::VRM8RegClassID;
|
|
}
|
|
}
|
|
|
|
unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
|
|
RISCVVType::VLMUL LMUL = getLMUL(VT);
|
|
if (LMUL == RISCVVType::LMUL_F8 || LMUL == RISCVVType::LMUL_F4 ||
|
|
LMUL == RISCVVType::LMUL_F2 || LMUL == RISCVVType::LMUL_1) {
|
|
static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
|
|
"Unexpected subreg numbering");
|
|
return RISCV::sub_vrm1_0 + Index;
|
|
}
|
|
if (LMUL == RISCVVType::LMUL_2) {
|
|
static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
|
|
"Unexpected subreg numbering");
|
|
return RISCV::sub_vrm2_0 + Index;
|
|
}
|
|
if (LMUL == RISCVVType::LMUL_4) {
|
|
static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
|
|
"Unexpected subreg numbering");
|
|
return RISCV::sub_vrm4_0 + Index;
|
|
}
|
|
llvm_unreachable("Invalid vector type.");
|
|
}
|
|
|
|
unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
|
|
if (VT.isRISCVVectorTuple()) {
|
|
unsigned NF = VT.getRISCVVectorTupleNumFields();
|
|
unsigned RegsPerField =
|
|
std::max(1U, (unsigned)VT.getSizeInBits().getKnownMinValue() /
|
|
(NF * RISCV::RVVBitsPerBlock));
|
|
switch (RegsPerField) {
|
|
case 1:
|
|
if (NF == 2)
|
|
return RISCV::VRN2M1RegClassID;
|
|
if (NF == 3)
|
|
return RISCV::VRN3M1RegClassID;
|
|
if (NF == 4)
|
|
return RISCV::VRN4M1RegClassID;
|
|
if (NF == 5)
|
|
return RISCV::VRN5M1RegClassID;
|
|
if (NF == 6)
|
|
return RISCV::VRN6M1RegClassID;
|
|
if (NF == 7)
|
|
return RISCV::VRN7M1RegClassID;
|
|
if (NF == 8)
|
|
return RISCV::VRN8M1RegClassID;
|
|
break;
|
|
case 2:
|
|
if (NF == 2)
|
|
return RISCV::VRN2M2RegClassID;
|
|
if (NF == 3)
|
|
return RISCV::VRN3M2RegClassID;
|
|
if (NF == 4)
|
|
return RISCV::VRN4M2RegClassID;
|
|
break;
|
|
case 4:
|
|
assert(NF == 2);
|
|
return RISCV::VRN2M4RegClassID;
|
|
default:
|
|
break;
|
|
}
|
|
llvm_unreachable("Invalid vector tuple type RegClass.");
|
|
}
|
|
|
|
if (VT.getVectorElementType() == MVT::i1)
|
|
return RISCV::VRRegClassID;
|
|
return getRegClassIDForLMUL(getLMUL(VT));
|
|
}
|
|
|
|
// Attempt to decompose a subvector insert/extract between VecVT and
|
|
// SubVecVT via subregister indices. Returns the subregister index that
|
|
// can perform the subvector insert/extract with the given element index, as
|
|
// well as the index corresponding to any leftover subvectors that must be
|
|
// further inserted/extracted within the register class for SubVecVT.
|
|
std::pair<unsigned, unsigned>
|
|
RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
|
|
MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
|
|
const RISCVRegisterInfo *TRI) {
|
|
static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
|
|
RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
|
|
RISCV::VRM2RegClassID > RISCV::VRRegClassID),
|
|
"Register classes not ordered");
|
|
unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
|
|
unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
|
|
|
|
// If VecVT is a vector tuple type, either it's the tuple type with same
|
|
// RegClass with SubVecVT or SubVecVT is a actually a subvector of the VecVT.
|
|
if (VecVT.isRISCVVectorTuple()) {
|
|
if (VecRegClassID == SubRegClassID)
|
|
return {RISCV::NoSubRegister, 0};
|
|
|
|
assert(SubVecVT.isScalableVector() &&
|
|
"Only allow scalable vector subvector.");
|
|
assert(getLMUL(VecVT) == getLMUL(SubVecVT) &&
|
|
"Invalid vector tuple insert/extract for vector and subvector with "
|
|
"different LMUL.");
|
|
return {getSubregIndexByMVT(VecVT, InsertExtractIdx), 0};
|
|
}
|
|
|
|
// Try to compose a subregister index that takes us from the incoming
|
|
// LMUL>1 register class down to the outgoing one. At each step we half
|
|
// the LMUL:
|
|
// nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
|
|
// Note that this is not guaranteed to find a subregister index, such as
|
|
// when we are extracting from one VR type to another.
|
|
unsigned SubRegIdx = RISCV::NoSubRegister;
|
|
for (const unsigned RCID :
|
|
{RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
|
|
if (VecRegClassID > RCID && SubRegClassID <= RCID) {
|
|
VecVT = VecVT.getHalfNumVectorElementsVT();
|
|
bool IsHi =
|
|
InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
|
|
SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
|
|
getSubregIndexByMVT(VecVT, IsHi));
|
|
if (IsHi)
|
|
InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
|
|
}
|
|
return {SubRegIdx, InsertExtractIdx};
|
|
}
|
|
|
|
// Permit combining of mask vectors as BUILD_VECTOR never expands to scalar
|
|
// stores for those types.
|
|
bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const {
|
|
return !Subtarget.useRVVForFixedLengthVectors() ||
|
|
(VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1);
|
|
}
|
|
|
|
bool RISCVTargetLowering::isLegalElementTypeForRVV(EVT ScalarTy) const {
|
|
if (!ScalarTy.isSimple())
|
|
return false;
|
|
switch (ScalarTy.getSimpleVT().SimpleTy) {
|
|
case MVT::iPTR:
|
|
return Subtarget.is64Bit() ? Subtarget.hasVInstructionsI64() : true;
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
case MVT::i32:
|
|
return true;
|
|
case MVT::i64:
|
|
return Subtarget.hasVInstructionsI64();
|
|
case MVT::f16:
|
|
return Subtarget.hasVInstructionsF16Minimal();
|
|
case MVT::bf16:
|
|
return Subtarget.hasVInstructionsBF16Minimal();
|
|
case MVT::f32:
|
|
return Subtarget.hasVInstructionsF32();
|
|
case MVT::f64:
|
|
return Subtarget.hasVInstructionsF64();
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
unsigned RISCVTargetLowering::combineRepeatedFPDivisors() const {
|
|
return NumRepeatedDivisors;
|
|
}
|
|
|
|
static SDValue getVLOperand(SDValue Op) {
|
|
assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
|
|
Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
|
|
"Unexpected opcode");
|
|
bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
|
|
unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
|
|
const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
|
|
RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
|
|
if (!II)
|
|
return SDValue();
|
|
return Op.getOperand(II->VLOperand + 1 + HasChain);
|
|
}
|
|
|
|
static bool useRVVForFixedLengthVectorVT(MVT VT,
|
|
const RISCVSubtarget &Subtarget) {
|
|
assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
|
|
if (!Subtarget.useRVVForFixedLengthVectors())
|
|
return false;
|
|
|
|
// We only support a set of vector types with a consistent maximum fixed size
|
|
// across all supported vector element types to avoid legalization issues.
|
|
// Therefore -- since the largest is v1024i8/v512i16/etc -- the largest
|
|
// fixed-length vector type we support is 1024 bytes.
|
|
if (VT.getVectorNumElements() > 1024 || VT.getFixedSizeInBits() > 1024 * 8)
|
|
return false;
|
|
|
|
unsigned MinVLen = Subtarget.getRealMinVLen();
|
|
|
|
MVT EltVT = VT.getVectorElementType();
|
|
|
|
// Don't use RVV for vectors we cannot scalarize if required.
|
|
switch (EltVT.SimpleTy) {
|
|
// i1 is supported but has different rules.
|
|
default:
|
|
return false;
|
|
case MVT::i1:
|
|
// Masks can only use a single register.
|
|
if (VT.getVectorNumElements() > MinVLen)
|
|
return false;
|
|
MinVLen /= 8;
|
|
break;
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
case MVT::i32:
|
|
break;
|
|
case MVT::i64:
|
|
if (!Subtarget.hasVInstructionsI64())
|
|
return false;
|
|
break;
|
|
case MVT::f16:
|
|
if (!Subtarget.hasVInstructionsF16Minimal())
|
|
return false;
|
|
break;
|
|
case MVT::bf16:
|
|
if (!Subtarget.hasVInstructionsBF16Minimal())
|
|
return false;
|
|
break;
|
|
case MVT::f32:
|
|
if (!Subtarget.hasVInstructionsF32())
|
|
return false;
|
|
break;
|
|
case MVT::f64:
|
|
if (!Subtarget.hasVInstructionsF64())
|
|
return false;
|
|
break;
|
|
}
|
|
|
|
// Reject elements larger than ELEN.
|
|
if (EltVT.getSizeInBits() > Subtarget.getELen())
|
|
return false;
|
|
|
|
unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
|
|
// Don't use RVV for types that don't fit.
|
|
if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
|
|
return false;
|
|
|
|
// TODO: Perhaps an artificial restriction, but worth having whilst getting
|
|
// the base fixed length RVV support in place.
|
|
if (!VT.isPow2VectorType())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
|
|
return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
|
|
}
|
|
|
|
// Return the largest legal scalable vector type that matches VT's element type.
|
|
static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
|
|
const RISCVSubtarget &Subtarget) {
|
|
// This may be called before legal types are setup.
|
|
assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
|
|
useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
|
|
"Expected legal fixed length vector!");
|
|
|
|
unsigned MinVLen = Subtarget.getRealMinVLen();
|
|
unsigned MaxELen = Subtarget.getELen();
|
|
|
|
MVT EltVT = VT.getVectorElementType();
|
|
switch (EltVT.SimpleTy) {
|
|
default:
|
|
llvm_unreachable("unexpected element type for RVV container");
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
case MVT::i32:
|
|
case MVT::i64:
|
|
case MVT::bf16:
|
|
case MVT::f16:
|
|
case MVT::f32:
|
|
case MVT::f64: {
|
|
// We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for
|
|
// narrower types. The smallest fractional LMUL we support is 8/ELEN. Within
|
|
// each fractional LMUL we support SEW between 8 and LMUL*ELEN.
|
|
unsigned NumElts =
|
|
(VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen;
|
|
NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen);
|
|
assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts");
|
|
return MVT::getScalableVectorVT(EltVT, NumElts);
|
|
}
|
|
}
|
|
}
|
|
|
|
static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
|
|
const RISCVSubtarget &Subtarget) {
|
|
return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
|
|
Subtarget);
|
|
}
|
|
|
|
MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
|
|
return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
|
|
}
|
|
|
|
// Grow V to consume an entire RVV register.
|
|
static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
assert(VT.isScalableVector() &&
|
|
"Expected to convert into a scalable vector!");
|
|
assert(V.getValueType().isFixedLengthVector() &&
|
|
"Expected a fixed length vector operand!");
|
|
SDLoc DL(V);
|
|
return DAG.getInsertSubvector(DL, DAG.getUNDEF(VT), V, 0);
|
|
}
|
|
|
|
// Shrink V so it's just big enough to maintain a VT's worth of data.
|
|
static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
assert(VT.isFixedLengthVector() &&
|
|
"Expected to convert into a fixed length vector!");
|
|
assert(V.getValueType().isScalableVector() &&
|
|
"Expected a scalable vector operand!");
|
|
SDLoc DL(V);
|
|
return DAG.getExtractSubvector(DL, VT, V, 0);
|
|
}
|
|
|
|
/// Return the type of the mask type suitable for masking the provided
|
|
/// vector type. This is simply an i1 element type vector of the same
|
|
/// (possibly scalable) length.
|
|
static MVT getMaskTypeFor(MVT VecVT) {
|
|
assert(VecVT.isVector());
|
|
ElementCount EC = VecVT.getVectorElementCount();
|
|
return MVT::getVectorVT(MVT::i1, EC);
|
|
}
|
|
|
|
/// Creates an all ones mask suitable for masking a vector of type VecTy with
|
|
/// vector length VL. .
|
|
static SDValue getAllOnesMask(MVT VecVT, SDValue VL, const SDLoc &DL,
|
|
SelectionDAG &DAG) {
|
|
MVT MaskVT = getMaskTypeFor(VecVT);
|
|
return DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
|
|
}
|
|
|
|
static std::pair<SDValue, SDValue>
|
|
getDefaultScalableVLOps(MVT VecVT, const SDLoc &DL, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
assert(VecVT.isScalableVector() && "Expecting a scalable vector");
|
|
SDValue VL = DAG.getRegister(RISCV::X0, Subtarget.getXLenVT());
|
|
SDValue Mask = getAllOnesMask(VecVT, VL, DL, DAG);
|
|
return {Mask, VL};
|
|
}
|
|
|
|
static std::pair<SDValue, SDValue>
|
|
getDefaultVLOps(uint64_t NumElts, MVT ContainerVT, const SDLoc &DL,
|
|
SelectionDAG &DAG, const RISCVSubtarget &Subtarget) {
|
|
assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
|
|
SDValue VL = DAG.getConstant(NumElts, DL, Subtarget.getXLenVT());
|
|
SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
|
|
return {Mask, VL};
|
|
}
|
|
|
|
// Gets the two common "VL" operands: an all-ones mask and the vector length.
|
|
// VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
|
|
// the vector type that the fixed-length vector is contained in. Otherwise if
|
|
// VecVT is scalable, then ContainerVT should be the same as VecVT.
|
|
static std::pair<SDValue, SDValue>
|
|
getDefaultVLOps(MVT VecVT, MVT ContainerVT, const SDLoc &DL, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
if (VecVT.isFixedLengthVector())
|
|
return getDefaultVLOps(VecVT.getVectorNumElements(), ContainerVT, DL, DAG,
|
|
Subtarget);
|
|
assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
|
|
return getDefaultScalableVLOps(ContainerVT, DL, DAG, Subtarget);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::computeVLMax(MVT VecVT, const SDLoc &DL,
|
|
SelectionDAG &DAG) const {
|
|
assert(VecVT.isScalableVector() && "Expected scalable vector");
|
|
return DAG.getElementCount(DL, Subtarget.getXLenVT(),
|
|
VecVT.getVectorElementCount());
|
|
}
|
|
|
|
std::pair<unsigned, unsigned>
|
|
RISCVTargetLowering::computeVLMAXBounds(MVT VecVT,
|
|
const RISCVSubtarget &Subtarget) {
|
|
assert(VecVT.isScalableVector() && "Expected scalable vector");
|
|
|
|
unsigned EltSize = VecVT.getScalarSizeInBits();
|
|
unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
|
|
|
|
unsigned VectorBitsMax = Subtarget.getRealMaxVLen();
|
|
unsigned MaxVLMAX =
|
|
RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
|
|
|
|
unsigned VectorBitsMin = Subtarget.getRealMinVLen();
|
|
unsigned MinVLMAX =
|
|
RISCVTargetLowering::computeVLMAX(VectorBitsMin, EltSize, MinSize);
|
|
|
|
return std::make_pair(MinVLMAX, MaxVLMAX);
|
|
}
|
|
|
|
// The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
|
|
// of either is (currently) supported. This can get us into an infinite loop
|
|
// where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
|
|
// as a ..., etc.
|
|
// Until either (or both) of these can reliably lower any node, reporting that
|
|
// we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
|
|
// the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
|
|
// which is not desirable.
|
|
bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
|
|
EVT VT, unsigned DefinedValues) const {
|
|
return false;
|
|
}
|
|
|
|
InstructionCost RISCVTargetLowering::getLMULCost(MVT VT) const {
|
|
// TODO: Here assume reciprocal throughput is 1 for LMUL_1, it is
|
|
// implementation-defined.
|
|
if (!VT.isVector())
|
|
return InstructionCost::getInvalid();
|
|
unsigned DLenFactor = Subtarget.getDLenFactor();
|
|
unsigned Cost;
|
|
if (VT.isScalableVector()) {
|
|
unsigned LMul;
|
|
bool Fractional;
|
|
std::tie(LMul, Fractional) =
|
|
RISCVVType::decodeVLMUL(RISCVTargetLowering::getLMUL(VT));
|
|
if (Fractional)
|
|
Cost = LMul <= DLenFactor ? (DLenFactor / LMul) : 1;
|
|
else
|
|
Cost = (LMul * DLenFactor);
|
|
} else {
|
|
Cost = divideCeil(VT.getSizeInBits(), Subtarget.getRealMinVLen() / DLenFactor);
|
|
}
|
|
return Cost;
|
|
}
|
|
|
|
|
|
/// Return the cost of a vrgather.vv instruction for the type VT. vrgather.vv
|
|
/// may be quadratic in the number of vreg implied by LMUL, and is assumed to
|
|
/// be by default. VRGatherCostModel reflects available options. Note that
|
|
/// operand (index and possibly mask) are handled separately.
|
|
InstructionCost RISCVTargetLowering::getVRGatherVVCost(MVT VT) const {
|
|
auto LMULCost = getLMULCost(VT);
|
|
bool Log2CostModel =
|
|
Subtarget.getVRGatherCostModel() == llvm::RISCVSubtarget::NLog2N;
|
|
if (Log2CostModel && LMULCost.isValid()) {
|
|
unsigned Log = Log2_64(LMULCost.getValue());
|
|
if (Log > 0)
|
|
return LMULCost * Log;
|
|
}
|
|
return LMULCost * LMULCost;
|
|
}
|
|
|
|
/// Return the cost of a vrgather.vi (or vx) instruction for the type VT.
|
|
/// vrgather.vi/vx may be linear in the number of vregs implied by LMUL,
|
|
/// or may track the vrgather.vv cost. It is implementation-dependent.
|
|
InstructionCost RISCVTargetLowering::getVRGatherVICost(MVT VT) const {
|
|
return getLMULCost(VT);
|
|
}
|
|
|
|
/// Return the cost of a vslidedown.vx or vslideup.vx instruction
|
|
/// for the type VT. (This does not cover the vslide1up or vslide1down
|
|
/// variants.) Slides may be linear in the number of vregs implied by LMUL,
|
|
/// or may track the vrgather.vv cost. It is implementation-dependent.
|
|
InstructionCost RISCVTargetLowering::getVSlideVXCost(MVT VT) const {
|
|
return getLMULCost(VT);
|
|
}
|
|
|
|
/// Return the cost of a vslidedown.vi or vslideup.vi instruction
|
|
/// for the type VT. (This does not cover the vslide1up or vslide1down
|
|
/// variants.) Slides may be linear in the number of vregs implied by LMUL,
|
|
/// or may track the vrgather.vv cost. It is implementation-dependent.
|
|
InstructionCost RISCVTargetLowering::getVSlideVICost(MVT VT) const {
|
|
return getLMULCost(VT);
|
|
}
|
|
|
|
static SDValue lowerINT_TO_FP(SDValue Op, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
// f16 conversions are promoted to f32 when Zfh/Zhinx are not supported.
|
|
// bf16 conversions are always promoted to f32.
|
|
if ((Op.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfhOrZhinx()) ||
|
|
Op.getValueType() == MVT::bf16) {
|
|
bool IsStrict = Op->isStrictFPOpcode();
|
|
|
|
SDLoc DL(Op);
|
|
if (IsStrict) {
|
|
SDValue Val = DAG.getNode(Op.getOpcode(), DL, {MVT::f32, MVT::Other},
|
|
{Op.getOperand(0), Op.getOperand(1)});
|
|
return DAG.getNode(ISD::STRICT_FP_ROUND, DL,
|
|
{Op.getValueType(), MVT::Other},
|
|
{Val.getValue(1), Val.getValue(0),
|
|
DAG.getIntPtrConstant(0, DL, /*isTarget=*/true)});
|
|
}
|
|
return DAG.getNode(
|
|
ISD::FP_ROUND, DL, Op.getValueType(),
|
|
DAG.getNode(Op.getOpcode(), DL, MVT::f32, Op.getOperand(0)),
|
|
DAG.getIntPtrConstant(0, DL, /*isTarget=*/true));
|
|
}
|
|
|
|
// Other operations are legal.
|
|
return Op;
|
|
}
|
|
|
|
static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
// RISC-V FP-to-int conversions saturate to the destination register size, but
|
|
// don't produce 0 for nan. We can use a conversion instruction and fix the
|
|
// nan case with a compare and a select.
|
|
SDValue Src = Op.getOperand(0);
|
|
|
|
MVT DstVT = Op.getSimpleValueType();
|
|
EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
|
|
|
|
bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
|
|
|
|
if (!DstVT.isVector()) {
|
|
// For bf16 or for f16 in absence of Zfh, promote to f32, then saturate
|
|
// the result.
|
|
if ((Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfhOrZhinx()) ||
|
|
Src.getValueType() == MVT::bf16) {
|
|
Src = DAG.getNode(ISD::FP_EXTEND, SDLoc(Op), MVT::f32, Src);
|
|
}
|
|
|
|
unsigned Opc;
|
|
if (SatVT == DstVT)
|
|
Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
|
|
else if (DstVT == MVT::i64 && SatVT == MVT::i32)
|
|
Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
|
|
else
|
|
return SDValue();
|
|
// FIXME: Support other SatVTs by clamping before or after the conversion.
|
|
|
|
SDLoc DL(Op);
|
|
SDValue FpToInt = DAG.getNode(
|
|
Opc, DL, DstVT, Src,
|
|
DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT()));
|
|
|
|
if (Opc == RISCVISD::FCVT_WU_RV64)
|
|
FpToInt = DAG.getZeroExtendInReg(FpToInt, DL, MVT::i32);
|
|
|
|
SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
|
|
return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt,
|
|
ISD::CondCode::SETUO);
|
|
}
|
|
|
|
// Vectors.
|
|
|
|
MVT DstEltVT = DstVT.getVectorElementType();
|
|
MVT SrcVT = Src.getSimpleValueType();
|
|
MVT SrcEltVT = SrcVT.getVectorElementType();
|
|
unsigned SrcEltSize = SrcEltVT.getSizeInBits();
|
|
unsigned DstEltSize = DstEltVT.getSizeInBits();
|
|
|
|
// Only handle saturating to the destination type.
|
|
if (SatVT != DstEltVT)
|
|
return SDValue();
|
|
|
|
MVT DstContainerVT = DstVT;
|
|
MVT SrcContainerVT = SrcVT;
|
|
if (DstVT.isFixedLengthVector()) {
|
|
DstContainerVT = getContainerForFixedLengthVector(DAG, DstVT, Subtarget);
|
|
SrcContainerVT = getContainerForFixedLengthVector(DAG, SrcVT, Subtarget);
|
|
assert(DstContainerVT.getVectorElementCount() ==
|
|
SrcContainerVT.getVectorElementCount() &&
|
|
"Expected same element count");
|
|
Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
|
|
}
|
|
|
|
SDLoc DL(Op);
|
|
|
|
auto [Mask, VL] = getDefaultVLOps(DstVT, DstContainerVT, DL, DAG, Subtarget);
|
|
|
|
SDValue IsNan = DAG.getNode(RISCVISD::SETCC_VL, DL, Mask.getValueType(),
|
|
{Src, Src, DAG.getCondCode(ISD::SETNE),
|
|
DAG.getUNDEF(Mask.getValueType()), Mask, VL});
|
|
|
|
// Need to widen by more than 1 step, promote the FP type, then do a widening
|
|
// convert.
|
|
if (DstEltSize > (2 * SrcEltSize)) {
|
|
assert(SrcContainerVT.getVectorElementType() == MVT::f16 && "Unexpected VT!");
|
|
MVT InterVT = SrcContainerVT.changeVectorElementType(MVT::f32);
|
|
Src = DAG.getNode(RISCVISD::FP_EXTEND_VL, DL, InterVT, Src, Mask, VL);
|
|
}
|
|
|
|
MVT CvtContainerVT = DstContainerVT;
|
|
MVT CvtEltVT = DstEltVT;
|
|
if (SrcEltSize > (2 * DstEltSize)) {
|
|
CvtEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
|
|
CvtContainerVT = CvtContainerVT.changeVectorElementType(CvtEltVT);
|
|
}
|
|
|
|
unsigned RVVOpc =
|
|
IsSigned ? RISCVISD::VFCVT_RTZ_X_F_VL : RISCVISD::VFCVT_RTZ_XU_F_VL;
|
|
SDValue Res = DAG.getNode(RVVOpc, DL, CvtContainerVT, Src, Mask, VL);
|
|
|
|
while (CvtContainerVT != DstContainerVT) {
|
|
CvtEltVT = MVT::getIntegerVT(CvtEltVT.getSizeInBits() / 2);
|
|
CvtContainerVT = CvtContainerVT.changeVectorElementType(CvtEltVT);
|
|
// Rounding mode here is arbitrary since we aren't shifting out any bits.
|
|
unsigned ClipOpc = IsSigned ? RISCVISD::TRUNCATE_VECTOR_VL_SSAT
|
|
: RISCVISD::TRUNCATE_VECTOR_VL_USAT;
|
|
Res = DAG.getNode(ClipOpc, DL, CvtContainerVT, Res, Mask, VL);
|
|
}
|
|
|
|
SDValue SplatZero = DAG.getNode(
|
|
RISCVISD::VMV_V_X_VL, DL, DstContainerVT, DAG.getUNDEF(DstContainerVT),
|
|
DAG.getConstant(0, DL, Subtarget.getXLenVT()), VL);
|
|
Res = DAG.getNode(RISCVISD::VMERGE_VL, DL, DstContainerVT, IsNan, SplatZero,
|
|
Res, DAG.getUNDEF(DstContainerVT), VL);
|
|
|
|
if (DstVT.isFixedLengthVector())
|
|
Res = convertFromScalableVector(DstVT, Res, DAG, Subtarget);
|
|
|
|
return Res;
|
|
}
|
|
|
|
static SDValue lowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
bool IsStrict = Op->isStrictFPOpcode();
|
|
SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);
|
|
|
|
// f16 conversions are promoted to f32 when Zfh/Zhinx is not enabled.
|
|
// bf16 conversions are always promoted to f32.
|
|
if ((SrcVal.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfhOrZhinx()) ||
|
|
SrcVal.getValueType() == MVT::bf16) {
|
|
SDLoc DL(Op);
|
|
if (IsStrict) {
|
|
SDValue Ext =
|
|
DAG.getNode(ISD::STRICT_FP_EXTEND, DL, {MVT::f32, MVT::Other},
|
|
{Op.getOperand(0), SrcVal});
|
|
return DAG.getNode(Op.getOpcode(), DL, {Op.getValueType(), MVT::Other},
|
|
{Ext.getValue(1), Ext.getValue(0)});
|
|
}
|
|
return DAG.getNode(Op.getOpcode(), DL, Op.getValueType(),
|
|
DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, SrcVal));
|
|
}
|
|
|
|
// Other operations are legal.
|
|
return Op;
|
|
}
|
|
|
|
static RISCVFPRndMode::RoundingMode matchRoundingOp(unsigned Opc) {
|
|
switch (Opc) {
|
|
case ISD::FROUNDEVEN:
|
|
case ISD::STRICT_FROUNDEVEN:
|
|
case ISD::VP_FROUNDEVEN:
|
|
return RISCVFPRndMode::RNE;
|
|
case ISD::FTRUNC:
|
|
case ISD::STRICT_FTRUNC:
|
|
case ISD::VP_FROUNDTOZERO:
|
|
return RISCVFPRndMode::RTZ;
|
|
case ISD::FFLOOR:
|
|
case ISD::STRICT_FFLOOR:
|
|
case ISD::VP_FFLOOR:
|
|
return RISCVFPRndMode::RDN;
|
|
case ISD::FCEIL:
|
|
case ISD::STRICT_FCEIL:
|
|
case ISD::VP_FCEIL:
|
|
return RISCVFPRndMode::RUP;
|
|
case ISD::FROUND:
|
|
case ISD::STRICT_FROUND:
|
|
case ISD::VP_FROUND:
|
|
return RISCVFPRndMode::RMM;
|
|
case ISD::FRINT:
|
|
case ISD::LRINT:
|
|
case ISD::LLRINT:
|
|
case ISD::STRICT_FRINT:
|
|
case ISD::STRICT_LRINT:
|
|
case ISD::STRICT_LLRINT:
|
|
case ISD::VP_FRINT:
|
|
case ISD::VP_LRINT:
|
|
case ISD::VP_LLRINT:
|
|
return RISCVFPRndMode::DYN;
|
|
}
|
|
|
|
return RISCVFPRndMode::Invalid;
|
|
}
|
|
|
|
// Expand vector FTRUNC, FCEIL, FFLOOR, FROUND, VP_FCEIL, VP_FFLOOR, VP_FROUND
|
|
// VP_FROUNDEVEN, VP_FROUNDTOZERO, VP_FRINT and VP_FNEARBYINT by converting to
|
|
// the integer domain and back. Taking care to avoid converting values that are
|
|
// nan or already correct.
|
|
static SDValue
|
|
lowerVectorFTRUNC_FCEIL_FFLOOR_FROUND(SDValue Op, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
MVT VT = Op.getSimpleValueType();
|
|
assert(VT.isVector() && "Unexpected type");
|
|
|
|
SDLoc DL(Op);
|
|
|
|
SDValue Src = Op.getOperand(0);
|
|
|
|
// Freeze the source since we are increasing the number of uses.
|
|
Src = DAG.getFreeze(Src);
|
|
|
|
MVT ContainerVT = VT;
|
|
if (VT.isFixedLengthVector()) {
|
|
ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
|
|
Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
|
|
}
|
|
|
|
SDValue Mask, VL;
|
|
if (Op->isVPOpcode()) {
|
|
Mask = Op.getOperand(1);
|
|
if (VT.isFixedLengthVector())
|
|
Mask = convertToScalableVector(getMaskTypeFor(ContainerVT), Mask, DAG,
|
|
Subtarget);
|
|
VL = Op.getOperand(2);
|
|
} else {
|
|
std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
|
|
}
|
|
|
|
// We do the conversion on the absolute value and fix the sign at the end.
|
|
SDValue Abs = DAG.getNode(RISCVISD::FABS_VL, DL, ContainerVT, Src, Mask, VL);
|
|
|
|
// Determine the largest integer that can be represented exactly. This and
|
|
// values larger than it don't have any fractional bits so don't need to
|
|
// be converted.
|
|
const fltSemantics &FltSem = ContainerVT.getFltSemantics();
|
|
unsigned Precision = APFloat::semanticsPrecision(FltSem);
|
|
APFloat MaxVal = APFloat(FltSem);
|
|
MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
|
|
/*IsSigned*/ false, APFloat::rmNearestTiesToEven);
|
|
SDValue MaxValNode =
|
|
DAG.getConstantFP(MaxVal, DL, ContainerVT.getVectorElementType());
|
|
SDValue MaxValSplat = DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, ContainerVT,
|
|
DAG.getUNDEF(ContainerVT), MaxValNode, VL);
|
|
|
|
// If abs(Src) was larger than MaxVal or nan, keep it.
|
|
MVT SetccVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
|
|
Mask =
|
|
DAG.getNode(RISCVISD::SETCC_VL, DL, SetccVT,
|
|
{Abs, MaxValSplat, DAG.getCondCode(ISD::SETOLT),
|
|
Mask, Mask, VL});
|
|
|
|
// Truncate to integer and convert back to FP.
|
|
MVT IntVT = ContainerVT.changeVectorElementTypeToInteger();
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
SDValue Truncated;
|
|
|
|
switch (Op.getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Unexpected opcode");
|
|
case ISD::FRINT:
|
|
case ISD::VP_FRINT:
|
|
case ISD::FCEIL:
|
|
case ISD::VP_FCEIL:
|
|
case ISD::FFLOOR:
|
|
case ISD::VP_FFLOOR:
|
|
case ISD::FROUND:
|
|
case ISD::FROUNDEVEN:
|
|
case ISD::VP_FROUND:
|
|
case ISD::VP_FROUNDEVEN:
|
|
case ISD::VP_FROUNDTOZERO: {
|
|
RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Op.getOpcode());
|
|
assert(FRM != RISCVFPRndMode::Invalid);
|
|
Truncated = DAG.getNode(RISCVISD::VFCVT_RM_X_F_VL, DL, IntVT, Src, Mask,
|
|
DAG.getTargetConstant(FRM, DL, XLenVT), VL);
|
|
break;
|
|
}
|
|
case ISD::FTRUNC:
|
|
Truncated = DAG.getNode(RISCVISD::VFCVT_RTZ_X_F_VL, DL, IntVT, Src,
|
|
Mask, VL);
|
|
break;
|
|
case ISD::FNEARBYINT:
|
|
case ISD::VP_FNEARBYINT:
|
|
Truncated = DAG.getNode(RISCVISD::VFROUND_NOEXCEPT_VL, DL, ContainerVT, Src,
|
|
Mask, VL);
|
|
break;
|
|
}
|
|
|
|
// VFROUND_NOEXCEPT_VL includes SINT_TO_FP_VL.
|
|
if (Truncated.getOpcode() != RISCVISD::VFROUND_NOEXCEPT_VL)
|
|
Truncated = DAG.getNode(RISCVISD::SINT_TO_FP_VL, DL, ContainerVT, Truncated,
|
|
Mask, VL);
|
|
|
|
// Restore the original sign so that -0.0 is preserved.
|
|
Truncated = DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Truncated,
|
|
Src, Src, Mask, VL);
|
|
|
|
if (!VT.isFixedLengthVector())
|
|
return Truncated;
|
|
|
|
return convertFromScalableVector(VT, Truncated, DAG, Subtarget);
|
|
}
|
|
|
|
// Expand vector STRICT_FTRUNC, STRICT_FCEIL, STRICT_FFLOOR, STRICT_FROUND
|
|
// STRICT_FROUNDEVEN and STRICT_FNEARBYINT by converting sNan of the source to
|
|
// qNan and converting the new source to integer and back to FP.
|
|
static SDValue
|
|
lowerVectorStrictFTRUNC_FCEIL_FFLOOR_FROUND(SDValue Op, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
SDLoc DL(Op);
|
|
MVT VT = Op.getSimpleValueType();
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue Src = Op.getOperand(1);
|
|
|
|
MVT ContainerVT = VT;
|
|
if (VT.isFixedLengthVector()) {
|
|
ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
|
|
Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
|
|
}
|
|
|
|
auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
|
|
|
|
// Freeze the source since we are increasing the number of uses.
|
|
Src = DAG.getFreeze(Src);
|
|
|
|
// Convert sNan to qNan by executing x + x for all unordered element x in Src.
|
|
MVT MaskVT = Mask.getSimpleValueType();
|
|
SDValue Unorder = DAG.getNode(RISCVISD::STRICT_FSETCC_VL, DL,
|
|
DAG.getVTList(MaskVT, MVT::Other),
|
|
{Chain, Src, Src, DAG.getCondCode(ISD::SETUNE),
|
|
DAG.getUNDEF(MaskVT), Mask, VL});
|
|
Chain = Unorder.getValue(1);
|
|
Src = DAG.getNode(RISCVISD::STRICT_FADD_VL, DL,
|
|
DAG.getVTList(ContainerVT, MVT::Other),
|
|
{Chain, Src, Src, Src, Unorder, VL});
|
|
Chain = Src.getValue(1);
|
|
|
|
// We do the conversion on the absolute value and fix the sign at the end.
|
|
SDValue Abs = DAG.getNode(RISCVISD::FABS_VL, DL, ContainerVT, Src, Mask, VL);
|
|
|
|
// Determine the largest integer that can be represented exactly. This and
|
|
// values larger than it don't have any fractional bits so don't need to
|
|
// be converted.
|
|
const fltSemantics &FltSem = ContainerVT.getFltSemantics();
|
|
unsigned Precision = APFloat::semanticsPrecision(FltSem);
|
|
APFloat MaxVal = APFloat(FltSem);
|
|
MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
|
|
/*IsSigned*/ false, APFloat::rmNearestTiesToEven);
|
|
SDValue MaxValNode =
|
|
DAG.getConstantFP(MaxVal, DL, ContainerVT.getVectorElementType());
|
|
SDValue MaxValSplat = DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, ContainerVT,
|
|
DAG.getUNDEF(ContainerVT), MaxValNode, VL);
|
|
|
|
// If abs(Src) was larger than MaxVal or nan, keep it.
|
|
Mask = DAG.getNode(
|
|
RISCVISD::SETCC_VL, DL, MaskVT,
|
|
{Abs, MaxValSplat, DAG.getCondCode(ISD::SETOLT), Mask, Mask, VL});
|
|
|
|
// Truncate to integer and convert back to FP.
|
|
MVT IntVT = ContainerVT.changeVectorElementTypeToInteger();
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
SDValue Truncated;
|
|
|
|
switch (Op.getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Unexpected opcode");
|
|
case ISD::STRICT_FCEIL:
|
|
case ISD::STRICT_FFLOOR:
|
|
case ISD::STRICT_FROUND:
|
|
case ISD::STRICT_FROUNDEVEN: {
|
|
RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Op.getOpcode());
|
|
assert(FRM != RISCVFPRndMode::Invalid);
|
|
Truncated = DAG.getNode(
|
|
RISCVISD::STRICT_VFCVT_RM_X_F_VL, DL, DAG.getVTList(IntVT, MVT::Other),
|
|
{Chain, Src, Mask, DAG.getTargetConstant(FRM, DL, XLenVT), VL});
|
|
break;
|
|
}
|
|
case ISD::STRICT_FTRUNC:
|
|
Truncated =
|
|
DAG.getNode(RISCVISD::STRICT_VFCVT_RTZ_X_F_VL, DL,
|
|
DAG.getVTList(IntVT, MVT::Other), Chain, Src, Mask, VL);
|
|
break;
|
|
case ISD::STRICT_FNEARBYINT:
|
|
Truncated = DAG.getNode(RISCVISD::STRICT_VFROUND_NOEXCEPT_VL, DL,
|
|
DAG.getVTList(ContainerVT, MVT::Other), Chain, Src,
|
|
Mask, VL);
|
|
break;
|
|
}
|
|
Chain = Truncated.getValue(1);
|
|
|
|
// VFROUND_NOEXCEPT_VL includes SINT_TO_FP_VL.
|
|
if (Op.getOpcode() != ISD::STRICT_FNEARBYINT) {
|
|
Truncated = DAG.getNode(RISCVISD::STRICT_SINT_TO_FP_VL, DL,
|
|
DAG.getVTList(ContainerVT, MVT::Other), Chain,
|
|
Truncated, Mask, VL);
|
|
Chain = Truncated.getValue(1);
|
|
}
|
|
|
|
// Restore the original sign so that -0.0 is preserved.
|
|
Truncated = DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Truncated,
|
|
Src, Src, Mask, VL);
|
|
|
|
if (VT.isFixedLengthVector())
|
|
Truncated = convertFromScalableVector(VT, Truncated, DAG, Subtarget);
|
|
return DAG.getMergeValues({Truncated, Chain}, DL);
|
|
}
|
|
|
|
static SDValue
|
|
lowerFTRUNC_FCEIL_FFLOOR_FROUND(SDValue Op, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
MVT VT = Op.getSimpleValueType();
|
|
if (VT.isVector())
|
|
return lowerVectorFTRUNC_FCEIL_FFLOOR_FROUND(Op, DAG, Subtarget);
|
|
|
|
if (DAG.shouldOptForSize())
|
|
return SDValue();
|
|
|
|
SDLoc DL(Op);
|
|
SDValue Src = Op.getOperand(0);
|
|
|
|
// Create an integer the size of the mantissa with the MSB set. This and all
|
|
// values larger than it don't have any fractional bits so don't need to be
|
|
// converted.
|
|
const fltSemantics &FltSem = VT.getFltSemantics();
|
|
unsigned Precision = APFloat::semanticsPrecision(FltSem);
|
|
APFloat MaxVal = APFloat(FltSem);
|
|
MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
|
|
/*IsSigned*/ false, APFloat::rmNearestTiesToEven);
|
|
SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
|
|
|
|
RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Op.getOpcode());
|
|
return DAG.getNode(RISCVISD::FROUND, DL, VT, Src, MaxValNode,
|
|
DAG.getTargetConstant(FRM, DL, Subtarget.getXLenVT()));
|
|
}
|
|
|
|
// Expand vector LRINT and LLRINT by converting to the integer domain.
|
|
static SDValue lowerVectorXRINT(SDValue Op, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
SDLoc DL(Op);
|
|
MVT DstVT = Op.getSimpleValueType();
|
|
SDValue Src = Op.getOperand(0);
|
|
MVT SrcVT = Src.getSimpleValueType();
|
|
assert(SrcVT.isVector() && DstVT.isVector() &&
|
|
!(SrcVT.isFixedLengthVector() ^ DstVT.isFixedLengthVector()) &&
|
|
"Unexpected type");
|
|
|
|
MVT DstContainerVT = DstVT;
|
|
MVT SrcContainerVT = SrcVT;
|
|
|
|
if (DstVT.isFixedLengthVector()) {
|
|
DstContainerVT = getContainerForFixedLengthVector(DAG, DstVT, Subtarget);
|
|
SrcContainerVT = getContainerForFixedLengthVector(DAG, SrcVT, Subtarget);
|
|
Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
|
|
}
|
|
|
|
auto [Mask, VL] = getDefaultVLOps(SrcVT, SrcContainerVT, DL, DAG, Subtarget);
|
|
SDValue Res =
|
|
DAG.getNode(RISCVISD::VFCVT_RM_X_F_VL, DL, DstContainerVT, Src, Mask,
|
|
DAG.getTargetConstant(matchRoundingOp(Op.getOpcode()), DL,
|
|
Subtarget.getXLenVT()),
|
|
VL);
|
|
|
|
if (!DstVT.isFixedLengthVector())
|
|
return Res;
|
|
|
|
return convertFromScalableVector(DstVT, Res, DAG, Subtarget);
|
|
}
|
|
|
|
static SDValue
|
|
getVSlidedown(SelectionDAG &DAG, const RISCVSubtarget &Subtarget,
|
|
const SDLoc &DL, EVT VT, SDValue Passthru, SDValue Op,
|
|
SDValue Offset, SDValue Mask, SDValue VL,
|
|
unsigned Policy = RISCVVType::TAIL_UNDISTURBED_MASK_UNDISTURBED) {
|
|
if (Passthru.isUndef())
|
|
Policy = RISCVVType::TAIL_AGNOSTIC | RISCVVType::MASK_AGNOSTIC;
|
|
SDValue PolicyOp = DAG.getTargetConstant(Policy, DL, Subtarget.getXLenVT());
|
|
SDValue Ops[] = {Passthru, Op, Offset, Mask, VL, PolicyOp};
|
|
return DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, VT, Ops);
|
|
}
|
|
|
|
static SDValue
|
|
getVSlideup(SelectionDAG &DAG, const RISCVSubtarget &Subtarget, const SDLoc &DL,
|
|
EVT VT, SDValue Passthru, SDValue Op, SDValue Offset, SDValue Mask,
|
|
SDValue VL,
|
|
unsigned Policy = RISCVVType::TAIL_UNDISTURBED_MASK_UNDISTURBED) {
|
|
if (Passthru.isUndef())
|
|
Policy = RISCVVType::TAIL_AGNOSTIC | RISCVVType::MASK_AGNOSTIC;
|
|
SDValue PolicyOp = DAG.getTargetConstant(Policy, DL, Subtarget.getXLenVT());
|
|
SDValue Ops[] = {Passthru, Op, Offset, Mask, VL, PolicyOp};
|
|
return DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, VT, Ops);
|
|
}
|
|
|
|
struct VIDSequence {
|
|
int64_t StepNumerator;
|
|
unsigned StepDenominator;
|
|
int64_t Addend;
|
|
};
|
|
|
|
static std::optional<APInt> getExactInteger(const APFloat &APF,
|
|
uint32_t BitWidth) {
|
|
// We will use a SINT_TO_FP to materialize this constant so we should use a
|
|
// signed APSInt here.
|
|
APSInt ValInt(BitWidth, /*IsUnsigned*/ false);
|
|
// We use an arbitrary rounding mode here. If a floating-point is an exact
|
|
// integer (e.g., 1.0), the rounding mode does not affect the output value. If
|
|
// the rounding mode changes the output value, then it is not an exact
|
|
// integer.
|
|
RoundingMode ArbitraryRM = RoundingMode::TowardZero;
|
|
bool IsExact;
|
|
// If it is out of signed integer range, it will return an invalid operation.
|
|
// If it is not an exact integer, IsExact is false.
|
|
if ((APF.convertToInteger(ValInt, ArbitraryRM, &IsExact) ==
|
|
APFloatBase::opInvalidOp) ||
|
|
!IsExact)
|
|
return std::nullopt;
|
|
return ValInt.extractBits(BitWidth, 0);
|
|
}
|
|
|
|
// Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S]
|
|
// to the (non-zero) step S and start value X. This can be then lowered as the
|
|
// RVV sequence (VID * S) + X, for example.
|
|
// The step S is represented as an integer numerator divided by a positive
|
|
// denominator. Note that the implementation currently only identifies
|
|
// sequences in which either the numerator is +/- 1 or the denominator is 1. It
|
|
// cannot detect 2/3, for example.
|
|
// Note that this method will also match potentially unappealing index
|
|
// sequences, like <i32 0, i32 50939494>, however it is left to the caller to
|
|
// determine whether this is worth generating code for.
|
|
//
|
|
// EltSizeInBits is the size of the type that the sequence will be calculated
|
|
// in, i.e. SEW for build_vectors or XLEN for address calculations.
|
|
static std::optional<VIDSequence> isSimpleVIDSequence(SDValue Op,
|
|
unsigned EltSizeInBits) {
|
|
assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR");
|
|
if (!cast<BuildVectorSDNode>(Op)->isConstant())
|
|
return std::nullopt;
|
|
bool IsInteger = Op.getValueType().isInteger();
|
|
|
|
std::optional<unsigned> SeqStepDenom;
|
|
std::optional<APInt> SeqStepNum;
|
|
std::optional<APInt> SeqAddend;
|
|
std::optional<std::pair<APInt, unsigned>> PrevElt;
|
|
assert(EltSizeInBits >= Op.getValueType().getScalarSizeInBits());
|
|
|
|
// First extract the ops into a list of constant integer values. This may not
|
|
// be possible for floats if they're not all representable as integers.
|
|
SmallVector<std::optional<APInt>> Elts(Op.getNumOperands());
|
|
const unsigned OpSize = Op.getScalarValueSizeInBits();
|
|
for (auto [Idx, Elt] : enumerate(Op->op_values())) {
|
|
if (Elt.isUndef()) {
|
|
Elts[Idx] = std::nullopt;
|
|
continue;
|
|
}
|
|
if (IsInteger) {
|
|
Elts[Idx] = Elt->getAsAPIntVal().trunc(OpSize).zext(EltSizeInBits);
|
|
} else {
|
|
auto ExactInteger =
|
|
getExactInteger(cast<ConstantFPSDNode>(Elt)->getValueAPF(), OpSize);
|
|
if (!ExactInteger)
|
|
return std::nullopt;
|
|
Elts[Idx] = *ExactInteger;
|
|
}
|
|
}
|
|
|
|
for (auto [Idx, Elt] : enumerate(Elts)) {
|
|
// Assume undef elements match the sequence; we just have to be careful
|
|
// when interpolating across them.
|
|
if (!Elt)
|
|
continue;
|
|
|
|
if (PrevElt) {
|
|
// Calculate the step since the last non-undef element, and ensure
|
|
// it's consistent across the entire sequence.
|
|
unsigned IdxDiff = Idx - PrevElt->second;
|
|
APInt ValDiff = *Elt - PrevElt->first;
|
|
|
|
// A zero-value value difference means that we're somewhere in the middle
|
|
// of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a
|
|
// step change before evaluating the sequence.
|
|
if (ValDiff == 0)
|
|
continue;
|
|
|
|
int64_t Remainder = ValDiff.srem(IdxDiff);
|
|
// Normalize the step if it's greater than 1.
|
|
if (Remainder != ValDiff.getSExtValue()) {
|
|
// The difference must cleanly divide the element span.
|
|
if (Remainder != 0)
|
|
return std::nullopt;
|
|
ValDiff = ValDiff.sdiv(IdxDiff);
|
|
IdxDiff = 1;
|
|
}
|
|
|
|
if (!SeqStepNum)
|
|
SeqStepNum = ValDiff;
|
|
else if (ValDiff != SeqStepNum)
|
|
return std::nullopt;
|
|
|
|
if (!SeqStepDenom)
|
|
SeqStepDenom = IdxDiff;
|
|
else if (IdxDiff != *SeqStepDenom)
|
|
return std::nullopt;
|
|
}
|
|
|
|
// Record this non-undef element for later.
|
|
if (!PrevElt || PrevElt->first != *Elt)
|
|
PrevElt = std::make_pair(*Elt, Idx);
|
|
}
|
|
|
|
// We need to have logged a step for this to count as a legal index sequence.
|
|
if (!SeqStepNum || !SeqStepDenom)
|
|
return std::nullopt;
|
|
|
|
// Loop back through the sequence and validate elements we might have skipped
|
|
// while waiting for a valid step. While doing this, log any sequence addend.
|
|
for (auto [Idx, Elt] : enumerate(Elts)) {
|
|
if (!Elt)
|
|
continue;
|
|
APInt ExpectedVal =
|
|
(APInt(EltSizeInBits, Idx, /*isSigned=*/false, /*implicitTrunc=*/true) *
|
|
*SeqStepNum)
|
|
.sdiv(*SeqStepDenom);
|
|
|
|
APInt Addend = *Elt - ExpectedVal;
|
|
if (!SeqAddend)
|
|
SeqAddend = Addend;
|
|
else if (Addend != SeqAddend)
|
|
return std::nullopt;
|
|
}
|
|
|
|
assert(SeqAddend && "Must have an addend if we have a step");
|
|
|
|
return VIDSequence{SeqStepNum->getSExtValue(), *SeqStepDenom,
|
|
SeqAddend->getSExtValue()};
|
|
}
|
|
|
|
// Match a splatted value (SPLAT_VECTOR/BUILD_VECTOR) of an EXTRACT_VECTOR_ELT
|
|
// and lower it as a VRGATHER_VX_VL from the source vector.
|
|
static SDValue matchSplatAsGather(SDValue SplatVal, MVT VT, const SDLoc &DL,
|
|
SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
if (SplatVal.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
|
|
return SDValue();
|
|
SDValue Src = SplatVal.getOperand(0);
|
|
// Don't perform this optimization for i1 vectors, or if the element types are
|
|
// different
|
|
// FIXME: Support i1 vectors, maybe by promoting to i8?
|
|
MVT EltTy = VT.getVectorElementType();
|
|
MVT SrcVT = Src.getSimpleValueType();
|
|
if (EltTy == MVT::i1 || EltTy != SrcVT.getVectorElementType() ||
|
|
!DAG.getTargetLoweringInfo().isTypeLegal(SrcVT))
|
|
return SDValue();
|
|
SDValue Idx = SplatVal.getOperand(1);
|
|
// The index must be a legal type.
|
|
if (Idx.getValueType() != Subtarget.getXLenVT())
|
|
return SDValue();
|
|
|
|
// Check that we know Idx lies within VT
|
|
if (!TypeSize::isKnownLE(SrcVT.getSizeInBits(), VT.getSizeInBits())) {
|
|
auto *CIdx = dyn_cast<ConstantSDNode>(Idx);
|
|
if (!CIdx || CIdx->getZExtValue() >= VT.getVectorMinNumElements())
|
|
return SDValue();
|
|
}
|
|
|
|
// Convert fixed length vectors to scalable
|
|
MVT ContainerVT = VT;
|
|
if (VT.isFixedLengthVector())
|
|
ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
|
|
|
|
MVT SrcContainerVT = SrcVT;
|
|
if (SrcVT.isFixedLengthVector()) {
|
|
SrcContainerVT = getContainerForFixedLengthVector(DAG, SrcVT, Subtarget);
|
|
Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
|
|
}
|
|
|
|
// Put Vec in a VT sized vector
|
|
if (SrcContainerVT.getVectorMinNumElements() <
|
|
ContainerVT.getVectorMinNumElements())
|
|
Src = DAG.getInsertSubvector(DL, DAG.getUNDEF(ContainerVT), Src, 0);
|
|
else
|
|
Src = DAG.getExtractSubvector(DL, ContainerVT, Src, 0);
|
|
|
|
// We checked that Idx fits inside VT earlier
|
|
auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
|
|
SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, Src,
|
|
Idx, DAG.getUNDEF(ContainerVT), Mask, VL);
|
|
if (VT.isFixedLengthVector())
|
|
Gather = convertFromScalableVector(VT, Gather, DAG, Subtarget);
|
|
return Gather;
|
|
}
|
|
|
|
static SDValue lowerBuildVectorViaVID(SDValue Op, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
MVT VT = Op.getSimpleValueType();
|
|
assert(VT.isFixedLengthVector() && "Unexpected vector!");
|
|
|
|
MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
|
|
|
|
SDLoc DL(Op);
|
|
auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
|
|
|
|
if (auto SimpleVID = isSimpleVIDSequence(Op, Op.getScalarValueSizeInBits())) {
|
|
int64_t StepNumerator = SimpleVID->StepNumerator;
|
|
unsigned StepDenominator = SimpleVID->StepDenominator;
|
|
int64_t Addend = SimpleVID->Addend;
|
|
|
|
assert(StepNumerator != 0 && "Invalid step");
|
|
bool Negate = false;
|
|
int64_t SplatStepVal = StepNumerator;
|
|
unsigned StepOpcode = ISD::MUL;
|
|
// Exclude INT64_MIN to avoid passing it to std::abs. We won't optimize it
|
|
// anyway as the shift of 63 won't fit in uimm5.
|
|
if (StepNumerator != 1 && StepNumerator != INT64_MIN &&
|
|
isPowerOf2_64(std::abs(StepNumerator))) {
|
|
Negate = StepNumerator < 0;
|
|
StepOpcode = ISD::SHL;
|
|
SplatStepVal = Log2_64(std::abs(StepNumerator));
|
|
}
|
|
|
|
// Only emit VIDs with suitably-small steps. We use imm5 as a threshold
|
|
// since it's the immediate value many RVV instructions accept. There is
|
|
// no vmul.vi instruction so ensure multiply constant can fit in a
|
|
// single addi instruction. For the addend, we allow up to 32 bits..
|
|
if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) ||
|
|
(StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) &&
|
|
isPowerOf2_32(StepDenominator) &&
|
|
(SplatStepVal >= 0 || StepDenominator == 1) && isInt<32>(Addend)) {
|
|
MVT VIDVT =
|
|
VT.isFloatingPoint() ? VT.changeVectorElementTypeToInteger() : VT;
|
|
MVT VIDContainerVT =
|
|
getContainerForFixedLengthVector(DAG, VIDVT, Subtarget);
|
|
SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VIDContainerVT, Mask, VL);
|
|
// Convert right out of the scalable type so we can use standard ISD
|
|
// nodes for the rest of the computation. If we used scalable types with
|
|
// these, we'd lose the fixed-length vector info and generate worse
|
|
// vsetvli code.
|
|
VID = convertFromScalableVector(VIDVT, VID, DAG, Subtarget);
|
|
if ((StepOpcode == ISD::MUL && SplatStepVal != 1) ||
|
|
(StepOpcode == ISD::SHL && SplatStepVal != 0)) {
|
|
SDValue SplatStep = DAG.getSignedConstant(SplatStepVal, DL, VIDVT);
|
|
VID = DAG.getNode(StepOpcode, DL, VIDVT, VID, SplatStep);
|
|
}
|
|
if (StepDenominator != 1) {
|
|
SDValue SplatStep =
|
|
DAG.getConstant(Log2_64(StepDenominator), DL, VIDVT);
|
|
VID = DAG.getNode(ISD::SRL, DL, VIDVT, VID, SplatStep);
|
|
}
|
|
if (Addend != 0 || Negate) {
|
|
SDValue SplatAddend = DAG.getSignedConstant(Addend, DL, VIDVT);
|
|
VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VIDVT, SplatAddend,
|
|
VID);
|
|
}
|
|
if (VT.isFloatingPoint()) {
|
|
// TODO: Use vfwcvt to reduce register pressure.
|
|
VID = DAG.getNode(ISD::SINT_TO_FP, DL, VT, VID);
|
|
}
|
|
return VID;
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// Try and optimize BUILD_VECTORs with "dominant values" - these are values
|
|
/// which constitute a large proportion of the elements. In such cases we can
|
|
/// splat a vector with the dominant element and make up the shortfall with
|
|
/// INSERT_VECTOR_ELTs. Returns SDValue if not profitable.
|
|
/// Note that this includes vectors of 2 elements by association. The
|
|
/// upper-most element is the "dominant" one, allowing us to use a splat to
|
|
/// "insert" the upper element, and an insert of the lower element at position
|
|
/// 0, which improves codegen.
|
|
static SDValue lowerBuildVectorViaDominantValues(SDValue Op, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
MVT VT = Op.getSimpleValueType();
|
|
assert(VT.isFixedLengthVector() && "Unexpected vector!");
|
|
|
|
MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
|
|
|
|
SDLoc DL(Op);
|
|
auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
|
|
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
unsigned NumElts = Op.getNumOperands();
|
|
|
|
SDValue DominantValue;
|
|
unsigned MostCommonCount = 0;
|
|
DenseMap<SDValue, unsigned> ValueCounts;
|
|
unsigned NumUndefElts =
|
|
count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
|
|
|
|
// Track the number of scalar loads we know we'd be inserting, estimated as
|
|
// any non-zero floating-point constant. Other kinds of element are either
|
|
// already in registers or are materialized on demand. The threshold at which
|
|
// a vector load is more desirable than several scalar materializion and
|
|
// vector-insertion instructions is not known.
|
|
unsigned NumScalarLoads = 0;
|
|
|
|
for (SDValue V : Op->op_values()) {
|
|
if (V.isUndef())
|
|
continue;
|
|
|
|
unsigned &Count = ValueCounts[V];
|
|
if (0 == Count)
|
|
if (auto *CFP = dyn_cast<ConstantFPSDNode>(V))
|
|
NumScalarLoads += !CFP->isExactlyValue(+0.0);
|
|
|
|
// Is this value dominant? In case of a tie, prefer the highest element as
|
|
// it's cheaper to insert near the beginning of a vector than it is at the
|
|
// end.
|
|
if (++Count >= MostCommonCount) {
|
|
DominantValue = V;
|
|
MostCommonCount = Count;
|
|
}
|
|
}
|
|
|
|
assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
|
|
unsigned NumDefElts = NumElts - NumUndefElts;
|
|
unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
|
|
|
|
// Don't perform this optimization when optimizing for size, since
|
|
// materializing elements and inserting them tends to cause code bloat.
|
|
if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts &&
|
|
(NumElts != 2 || ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) &&
|
|
((MostCommonCount > DominantValueCountThreshold) ||
|
|
(ValueCounts.size() <= Log2_32(NumDefElts)))) {
|
|
// Start by splatting the most common element.
|
|
SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
|
|
|
|
DenseSet<SDValue> Processed{DominantValue};
|
|
|
|
// We can handle an insert into the last element (of a splat) via
|
|
// v(f)slide1down. This is slightly better than the vslideup insert
|
|
// lowering as it avoids the need for a vector group temporary. It
|
|
// is also better than using vmerge.vx as it avoids the need to
|
|
// materialize the mask in a vector register.
|
|
if (SDValue LastOp = Op->getOperand(Op->getNumOperands() - 1);
|
|
!LastOp.isUndef() && ValueCounts[LastOp] == 1 &&
|
|
LastOp != DominantValue) {
|
|
Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
|
|
auto OpCode =
|
|
VT.isFloatingPoint() ? RISCVISD::VFSLIDE1DOWN_VL : RISCVISD::VSLIDE1DOWN_VL;
|
|
if (!VT.isFloatingPoint())
|
|
LastOp = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, LastOp);
|
|
Vec = DAG.getNode(OpCode, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Vec,
|
|
LastOp, Mask, VL);
|
|
Vec = convertFromScalableVector(VT, Vec, DAG, Subtarget);
|
|
Processed.insert(LastOp);
|
|
}
|
|
|
|
MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
|
|
for (const auto &OpIdx : enumerate(Op->ops())) {
|
|
const SDValue &V = OpIdx.value();
|
|
if (V.isUndef() || !Processed.insert(V).second)
|
|
continue;
|
|
if (ValueCounts[V] == 1) {
|
|
Vec = DAG.getInsertVectorElt(DL, Vec, V, OpIdx.index());
|
|
} else {
|
|
// Blend in all instances of this value using a VSELECT, using a
|
|
// mask where each bit signals whether that element is the one
|
|
// we're after.
|
|
SmallVector<SDValue> Ops;
|
|
transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
|
|
return DAG.getConstant(V == V1, DL, XLenVT);
|
|
});
|
|
Vec = DAG.getNode(ISD::VSELECT, DL, VT,
|
|
DAG.getBuildVector(SelMaskTy, DL, Ops),
|
|
DAG.getSplatBuildVector(VT, DL, V), Vec);
|
|
}
|
|
}
|
|
|
|
return Vec;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue lowerBuildVectorOfConstants(SDValue Op, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
MVT VT = Op.getSimpleValueType();
|
|
assert(VT.isFixedLengthVector() && "Unexpected vector!");
|
|
|
|
MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
|
|
|
|
SDLoc DL(Op);
|
|
auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
|
|
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
unsigned NumElts = Op.getNumOperands();
|
|
|
|
if (VT.getVectorElementType() == MVT::i1) {
|
|
if (ISD::isBuildVectorAllZeros(Op.getNode())) {
|
|
SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
|
|
return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
|
|
}
|
|
|
|
if (ISD::isBuildVectorAllOnes(Op.getNode())) {
|
|
SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
|
|
return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
|
|
}
|
|
|
|
// Lower constant mask BUILD_VECTORs via an integer vector type, in
|
|
// scalar integer chunks whose bit-width depends on the number of mask
|
|
// bits and XLEN.
|
|
// First, determine the most appropriate scalar integer type to use. This
|
|
// is at most XLenVT, but may be shrunk to a smaller vector element type
|
|
// according to the size of the final vector - use i8 chunks rather than
|
|
// XLenVT if we're producing a v8i1. This results in more consistent
|
|
// codegen across RV32 and RV64.
|
|
unsigned NumViaIntegerBits = std::clamp(NumElts, 8u, Subtarget.getXLen());
|
|
NumViaIntegerBits = std::min(NumViaIntegerBits, Subtarget.getELen());
|
|
// If we have to use more than one INSERT_VECTOR_ELT then this
|
|
// optimization is likely to increase code size; avoid performing it in
|
|
// such a case. We can use a load from a constant pool in this case.
|
|
if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits)
|
|
return SDValue();
|
|
// Now we can create our integer vector type. Note that it may be larger
|
|
// than the resulting mask type: v4i1 would use v1i8 as its integer type.
|
|
unsigned IntegerViaVecElts = divideCeil(NumElts, NumViaIntegerBits);
|
|
MVT IntegerViaVecVT =
|
|
MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
|
|
IntegerViaVecElts);
|
|
|
|
uint64_t Bits = 0;
|
|
unsigned BitPos = 0, IntegerEltIdx = 0;
|
|
SmallVector<SDValue, 8> Elts(IntegerViaVecElts);
|
|
|
|
for (unsigned I = 0; I < NumElts;) {
|
|
SDValue V = Op.getOperand(I);
|
|
bool BitValue = !V.isUndef() && V->getAsZExtVal();
|
|
Bits |= ((uint64_t)BitValue << BitPos);
|
|
++BitPos;
|
|
++I;
|
|
|
|
// Once we accumulate enough bits to fill our scalar type or process the
|
|
// last element, insert into our vector and clear our accumulated data.
|
|
if (I % NumViaIntegerBits == 0 || I == NumElts) {
|
|
if (NumViaIntegerBits <= 32)
|
|
Bits = SignExtend64<32>(Bits);
|
|
SDValue Elt = DAG.getSignedConstant(Bits, DL, XLenVT);
|
|
Elts[IntegerEltIdx] = Elt;
|
|
Bits = 0;
|
|
BitPos = 0;
|
|
IntegerEltIdx++;
|
|
}
|
|
}
|
|
|
|
SDValue Vec = DAG.getBuildVector(IntegerViaVecVT, DL, Elts);
|
|
|
|
if (NumElts < NumViaIntegerBits) {
|
|
// If we're producing a smaller vector than our minimum legal integer
|
|
// type, bitcast to the equivalent (known-legal) mask type, and extract
|
|
// our final mask.
|
|
assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
|
|
Vec = DAG.getBitcast(MVT::v8i1, Vec);
|
|
Vec = DAG.getExtractSubvector(DL, VT, Vec, 0);
|
|
} else {
|
|
// Else we must have produced an integer type with the same size as the
|
|
// mask type; bitcast for the final result.
|
|
assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
|
|
Vec = DAG.getBitcast(VT, Vec);
|
|
}
|
|
|
|
return Vec;
|
|
}
|
|
|
|
if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
|
|
unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
|
|
: RISCVISD::VMV_V_X_VL;
|
|
if (!VT.isFloatingPoint())
|
|
Splat = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Splat);
|
|
Splat =
|
|
DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Splat, VL);
|
|
return convertFromScalableVector(VT, Splat, DAG, Subtarget);
|
|
}
|
|
|
|
// Try and match index sequences, which we can lower to the vid instruction
|
|
// with optional modifications. An all-undef vector is matched by
|
|
// getSplatValue, above.
|
|
if (SDValue Res = lowerBuildVectorViaVID(Op, DAG, Subtarget))
|
|
return Res;
|
|
|
|
// For very small build_vectors, use a single scalar insert of a constant.
|
|
// TODO: Base this on constant rematerialization cost, not size.
|
|
const unsigned EltBitSize = VT.getScalarSizeInBits();
|
|
if (VT.getSizeInBits() <= 32 &&
|
|
ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
|
|
MVT ViaIntVT = MVT::getIntegerVT(VT.getSizeInBits());
|
|
assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32) &&
|
|
"Unexpected sequence type");
|
|
// If we can use the original VL with the modified element type, this
|
|
// means we only have a VTYPE toggle, not a VL toggle. TODO: Should this
|
|
// be moved into InsertVSETVLI?
|
|
unsigned ViaVecLen =
|
|
(Subtarget.getRealMinVLen() >= VT.getSizeInBits() * NumElts) ? NumElts : 1;
|
|
MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, ViaVecLen);
|
|
|
|
uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
|
|
uint64_t SplatValue = 0;
|
|
// Construct the amalgamated value at this larger vector type.
|
|
for (const auto &OpIdx : enumerate(Op->op_values())) {
|
|
const auto &SeqV = OpIdx.value();
|
|
if (!SeqV.isUndef())
|
|
SplatValue |=
|
|
((SeqV->getAsZExtVal() & EltMask) << (OpIdx.index() * EltBitSize));
|
|
}
|
|
|
|
// On RV64, sign-extend from 32 to 64 bits where possible in order to
|
|
// achieve better constant materializion.
|
|
// On RV32, we need to sign-extend to use getSignedConstant.
|
|
if (ViaIntVT == MVT::i32)
|
|
SplatValue = SignExtend64<32>(SplatValue);
|
|
|
|
SDValue Vec = DAG.getInsertVectorElt(
|
|
DL, DAG.getUNDEF(ViaVecVT),
|
|
DAG.getSignedConstant(SplatValue, DL, XLenVT), 0);
|
|
if (ViaVecLen != 1)
|
|
Vec = DAG.getExtractSubvector(DL, MVT::getVectorVT(ViaIntVT, 1), Vec, 0);
|
|
return DAG.getBitcast(VT, Vec);
|
|
}
|
|
|
|
|
|
// Attempt to detect "hidden" splats, which only reveal themselves as splats
|
|
// when re-interpreted as a vector with a larger element type. For example,
|
|
// v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
|
|
// could be instead splat as
|
|
// v2i32 = build_vector i32 0x00010000, i32 0x00010000
|
|
// TODO: This optimization could also work on non-constant splats, but it
|
|
// would require bit-manipulation instructions to construct the splat value.
|
|
SmallVector<SDValue> Sequence;
|
|
const auto *BV = cast<BuildVectorSDNode>(Op);
|
|
if (VT.isInteger() && EltBitSize < Subtarget.getELen() &&
|
|
ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
|
|
BV->getRepeatedSequence(Sequence) &&
|
|
(Sequence.size() * EltBitSize) <= Subtarget.getELen()) {
|
|
unsigned SeqLen = Sequence.size();
|
|
MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
|
|
assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
|
|
ViaIntVT == MVT::i64) &&
|
|
"Unexpected sequence type");
|
|
|
|
// If we can use the original VL with the modified element type, this
|
|
// means we only have a VTYPE toggle, not a VL toggle. TODO: Should this
|
|
// be moved into InsertVSETVLI?
|
|
const unsigned RequiredVL = NumElts / SeqLen;
|
|
const unsigned ViaVecLen =
|
|
(Subtarget.getRealMinVLen() >= ViaIntVT.getSizeInBits() * NumElts) ?
|
|
NumElts : RequiredVL;
|
|
MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, ViaVecLen);
|
|
|
|
unsigned EltIdx = 0;
|
|
uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
|
|
uint64_t SplatValue = 0;
|
|
// Construct the amalgamated value which can be splatted as this larger
|
|
// vector type.
|
|
for (const auto &SeqV : Sequence) {
|
|
if (!SeqV.isUndef())
|
|
SplatValue |=
|
|
((SeqV->getAsZExtVal() & EltMask) << (EltIdx * EltBitSize));
|
|
EltIdx++;
|
|
}
|
|
|
|
// On RV64, sign-extend from 32 to 64 bits where possible in order to
|
|
// achieve better constant materializion.
|
|
// On RV32, we need to sign-extend to use getSignedConstant.
|
|
if (ViaIntVT == MVT::i32)
|
|
SplatValue = SignExtend64<32>(SplatValue);
|
|
|
|
// Since we can't introduce illegal i64 types at this stage, we can only
|
|
// perform an i64 splat on RV32 if it is its own sign-extended value. That
|
|
// way we can use RVV instructions to splat.
|
|
assert((ViaIntVT.bitsLE(XLenVT) ||
|
|
(!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
|
|
"Unexpected bitcast sequence");
|
|
if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
|
|
SDValue ViaVL =
|
|
DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
|
|
MVT ViaContainerVT =
|
|
getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
|
|
SDValue Splat =
|
|
DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
|
|
DAG.getUNDEF(ViaContainerVT),
|
|
DAG.getSignedConstant(SplatValue, DL, XLenVT), ViaVL);
|
|
Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
|
|
if (ViaVecLen != RequiredVL)
|
|
Splat = DAG.getExtractSubvector(
|
|
DL, MVT::getVectorVT(ViaIntVT, RequiredVL), Splat, 0);
|
|
return DAG.getBitcast(VT, Splat);
|
|
}
|
|
}
|
|
|
|
// If the number of signbits allows, see if we can lower as a <N x i8>.
|
|
// Our main goal here is to reduce LMUL (and thus work) required to
|
|
// build the constant, but we will also narrow if the resulting
|
|
// narrow vector is known to materialize cheaply.
|
|
// TODO: We really should be costing the smaller vector. There are
|
|
// profitable cases this misses.
|
|
if (EltBitSize > 8 && VT.isInteger() &&
|
|
(NumElts <= 4 || VT.getSizeInBits() > Subtarget.getRealMinVLen()) &&
|
|
DAG.ComputeMaxSignificantBits(Op) <= 8) {
|
|
SDValue Source = DAG.getBuildVector(VT.changeVectorElementType(MVT::i8),
|
|
DL, Op->ops());
|
|
Source = convertToScalableVector(ContainerVT.changeVectorElementType(MVT::i8),
|
|
Source, DAG, Subtarget);
|
|
SDValue Res = DAG.getNode(RISCVISD::VSEXT_VL, DL, ContainerVT, Source, Mask, VL);
|
|
return convertFromScalableVector(VT, Res, DAG, Subtarget);
|
|
}
|
|
|
|
if (SDValue Res = lowerBuildVectorViaDominantValues(Op, DAG, Subtarget))
|
|
return Res;
|
|
|
|
// For constant vectors, use generic constant pool lowering. Otherwise,
|
|
// we'd have to materialize constants in GPRs just to move them into the
|
|
// vector.
|
|
return SDValue();
|
|
}
|
|
|
|
static unsigned getPACKOpcode(unsigned DestBW,
|
|
const RISCVSubtarget &Subtarget) {
|
|
switch (DestBW) {
|
|
default:
|
|
llvm_unreachable("Unsupported pack size");
|
|
case 16:
|
|
return RISCV::PACKH;
|
|
case 32:
|
|
return Subtarget.is64Bit() ? RISCV::PACKW : RISCV::PACK;
|
|
case 64:
|
|
assert(Subtarget.is64Bit());
|
|
return RISCV::PACK;
|
|
}
|
|
}
|
|
|
|
/// Double the element size of the build vector to reduce the number
|
|
/// of vslide1down in the build vector chain. In the worst case, this
|
|
/// trades three scalar operations for 1 vector operation. Scalar
|
|
/// operations are generally lower latency, and for out-of-order cores
|
|
/// we also benefit from additional parallelism.
|
|
static SDValue lowerBuildVectorViaPacking(SDValue Op, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
SDLoc DL(Op);
|
|
MVT VT = Op.getSimpleValueType();
|
|
assert(VT.isFixedLengthVector() && "Unexpected vector!");
|
|
MVT ElemVT = VT.getVectorElementType();
|
|
if (!ElemVT.isInteger())
|
|
return SDValue();
|
|
|
|
// TODO: Relax these architectural restrictions, possibly with costing
|
|
// of the actual instructions required.
|
|
if (!Subtarget.hasStdExtZbb() || !Subtarget.hasStdExtZba())
|
|
return SDValue();
|
|
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
unsigned ElemSizeInBits = ElemVT.getSizeInBits();
|
|
if (ElemSizeInBits >= std::min(Subtarget.getELen(), Subtarget.getXLen()) ||
|
|
NumElts % 2 != 0)
|
|
return SDValue();
|
|
|
|
// Produce [B,A] packed into a type twice as wide. Note that all
|
|
// scalars are XLenVT, possibly masked (see below).
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
SDValue Mask = DAG.getConstant(
|
|
APInt::getLowBitsSet(XLenVT.getSizeInBits(), ElemSizeInBits), DL, XLenVT);
|
|
auto pack = [&](SDValue A, SDValue B) {
|
|
// Bias the scheduling of the inserted operations to near the
|
|
// definition of the element - this tends to reduce register
|
|
// pressure overall.
|
|
SDLoc ElemDL(B);
|
|
if (Subtarget.hasStdExtZbkb())
|
|
// Note that we're relying on the high bits of the result being
|
|
// don't care. For PACKW, the result is *sign* extended.
|
|
return SDValue(
|
|
DAG.getMachineNode(getPACKOpcode(ElemSizeInBits * 2, Subtarget),
|
|
ElemDL, XLenVT, A, B),
|
|
0);
|
|
|
|
A = DAG.getNode(ISD::AND, SDLoc(A), XLenVT, A, Mask);
|
|
B = DAG.getNode(ISD::AND, SDLoc(B), XLenVT, B, Mask);
|
|
SDValue ShtAmt = DAG.getConstant(ElemSizeInBits, ElemDL, XLenVT);
|
|
return DAG.getNode(ISD::OR, ElemDL, XLenVT, A,
|
|
DAG.getNode(ISD::SHL, ElemDL, XLenVT, B, ShtAmt),
|
|
SDNodeFlags::Disjoint);
|
|
};
|
|
|
|
SmallVector<SDValue> NewOperands;
|
|
NewOperands.reserve(NumElts / 2);
|
|
for (unsigned i = 0; i < VT.getVectorNumElements(); i += 2)
|
|
NewOperands.push_back(pack(Op.getOperand(i), Op.getOperand(i + 1)));
|
|
assert(NumElts == NewOperands.size() * 2);
|
|
MVT WideVT = MVT::getIntegerVT(ElemSizeInBits * 2);
|
|
MVT WideVecVT = MVT::getVectorVT(WideVT, NumElts / 2);
|
|
return DAG.getNode(ISD::BITCAST, DL, VT,
|
|
DAG.getBuildVector(WideVecVT, DL, NewOperands));
|
|
}
|
|
|
|
static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
MVT VT = Op.getSimpleValueType();
|
|
assert(VT.isFixedLengthVector() && "Unexpected vector!");
|
|
|
|
MVT EltVT = VT.getVectorElementType();
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
SDLoc DL(Op);
|
|
|
|
// Proper support for f16 requires Zvfh. bf16 always requires special
|
|
// handling. We need to cast the scalar to integer and create an integer
|
|
// build_vector.
|
|
if ((EltVT == MVT::f16 && !Subtarget.hasStdExtZvfh()) || EltVT == MVT::bf16) {
|
|
MVT IVT = VT.changeVectorElementType(MVT::i16);
|
|
SmallVector<SDValue, 16> NewOps(Op.getNumOperands());
|
|
for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) {
|
|
SDValue Elem = Op.getOperand(I);
|
|
if ((EltVT == MVT::bf16 && Subtarget.hasStdExtZfbfmin()) ||
|
|
(EltVT == MVT::f16 && Subtarget.hasStdExtZfhmin())) {
|
|
// Called by LegalizeDAG, we need to use XLenVT operations since we
|
|
// can't create illegal types.
|
|
if (auto *C = dyn_cast<ConstantFPSDNode>(Elem)) {
|
|
// Manually constant fold so the integer build_vector can be lowered
|
|
// better. Waiting for DAGCombine will be too late.
|
|
APInt V =
|
|
C->getValueAPF().bitcastToAPInt().sext(XLenVT.getSizeInBits());
|
|
NewOps[I] = DAG.getConstant(V, DL, XLenVT);
|
|
} else {
|
|
NewOps[I] = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Elem);
|
|
}
|
|
} else {
|
|
// Called by scalar type legalizer, we can use i16.
|
|
NewOps[I] = DAG.getBitcast(MVT::i16, Op.getOperand(I));
|
|
}
|
|
}
|
|
SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, DL, IVT, NewOps);
|
|
return DAG.getBitcast(VT, Res);
|
|
}
|
|
|
|
if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) ||
|
|
ISD::isBuildVectorOfConstantFPSDNodes(Op.getNode()))
|
|
return lowerBuildVectorOfConstants(Op, DAG, Subtarget);
|
|
|
|
MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
|
|
|
|
auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
|
|
|
|
if (VT.getVectorElementType() == MVT::i1) {
|
|
// A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask
|
|
// vector type, we have a legal equivalently-sized i8 type, so we can use
|
|
// that.
|
|
MVT WideVecVT = VT.changeVectorElementType(MVT::i8);
|
|
SDValue VecZero = DAG.getConstant(0, DL, WideVecVT);
|
|
|
|
SDValue WideVec;
|
|
if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
|
|
// For a splat, perform a scalar truncate before creating the wider
|
|
// vector.
|
|
Splat = DAG.getNode(ISD::AND, DL, Splat.getValueType(), Splat,
|
|
DAG.getConstant(1, DL, Splat.getValueType()));
|
|
WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat);
|
|
} else {
|
|
SmallVector<SDValue, 8> Ops(Op->op_values());
|
|
WideVec = DAG.getBuildVector(WideVecVT, DL, Ops);
|
|
SDValue VecOne = DAG.getConstant(1, DL, WideVecVT);
|
|
WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne);
|
|
}
|
|
|
|
return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE);
|
|
}
|
|
|
|
if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
|
|
if (auto Gather = matchSplatAsGather(Splat, VT, DL, DAG, Subtarget))
|
|
return Gather;
|
|
|
|
// Prefer vmv.s.x/vfmv.s.f if legal to reduce work and register
|
|
// pressure at high LMUL.
|
|
if (all_of(Op->ops().drop_front(),
|
|
[](const SDUse &U) { return U.get().isUndef(); })) {
|
|
unsigned Opc =
|
|
VT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
|
|
if (!VT.isFloatingPoint())
|
|
Splat = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Splat);
|
|
Splat = DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT),
|
|
Splat, VL);
|
|
return convertFromScalableVector(VT, Splat, DAG, Subtarget);
|
|
}
|
|
|
|
unsigned Opc =
|
|
VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
|
|
if (!VT.isFloatingPoint())
|
|
Splat = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Splat);
|
|
Splat =
|
|
DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Splat, VL);
|
|
return convertFromScalableVector(VT, Splat, DAG, Subtarget);
|
|
}
|
|
|
|
if (SDValue Res = lowerBuildVectorViaDominantValues(Op, DAG, Subtarget))
|
|
return Res;
|
|
|
|
// If we're compiling for an exact VLEN value, we can split our work per
|
|
// register in the register group.
|
|
if (const auto VLen = Subtarget.getRealVLen();
|
|
VLen && VT.getSizeInBits().getKnownMinValue() > *VLen) {
|
|
MVT ElemVT = VT.getVectorElementType();
|
|
unsigned ElemsPerVReg = *VLen / ElemVT.getFixedSizeInBits();
|
|
EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
|
|
MVT OneRegVT = MVT::getVectorVT(ElemVT, ElemsPerVReg);
|
|
MVT M1VT = getContainerForFixedLengthVector(DAG, OneRegVT, Subtarget);
|
|
assert(M1VT == RISCVTargetLowering::getM1VT(M1VT));
|
|
|
|
// The following semantically builds up a fixed length concat_vector
|
|
// of the component build_vectors. We eagerly lower to scalable and
|
|
// insert_subvector here to avoid DAG combining it back to a large
|
|
// build_vector.
|
|
SmallVector<SDValue> BuildVectorOps(Op->ops());
|
|
unsigned NumOpElts = M1VT.getVectorMinNumElements();
|
|
SDValue Vec = DAG.getUNDEF(ContainerVT);
|
|
for (unsigned i = 0; i < VT.getVectorNumElements(); i += ElemsPerVReg) {
|
|
auto OneVRegOfOps = ArrayRef(BuildVectorOps).slice(i, ElemsPerVReg);
|
|
SDValue SubBV =
|
|
DAG.getNode(ISD::BUILD_VECTOR, DL, OneRegVT, OneVRegOfOps);
|
|
SubBV = convertToScalableVector(M1VT, SubBV, DAG, Subtarget);
|
|
unsigned InsertIdx = (i / ElemsPerVReg) * NumOpElts;
|
|
Vec = DAG.getInsertSubvector(DL, Vec, SubBV, InsertIdx);
|
|
}
|
|
return convertFromScalableVector(VT, Vec, DAG, Subtarget);
|
|
}
|
|
|
|
// If we're about to resort to vslide1down (or stack usage), pack our
|
|
// elements into the widest scalar type we can. This will force a VL/VTYPE
|
|
// toggle, but reduces the critical path, the number of vslide1down ops
|
|
// required, and possibly enables scalar folds of the values.
|
|
if (SDValue Res = lowerBuildVectorViaPacking(Op, DAG, Subtarget))
|
|
return Res;
|
|
|
|
// For m1 vectors, if we have non-undef values in both halves of our vector,
|
|
// split the vector into low and high halves, build them separately, then
|
|
// use a vselect to combine them. For long vectors, this cuts the critical
|
|
// path of the vslide1down sequence in half, and gives us an opportunity
|
|
// to special case each half independently. Note that we don't change the
|
|
// length of the sub-vectors here, so if both fallback to the generic
|
|
// vslide1down path, we should be able to fold the vselect into the final
|
|
// vslidedown (for the undef tail) for the first half w/ masking.
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
unsigned NumUndefElts =
|
|
count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
|
|
unsigned NumDefElts = NumElts - NumUndefElts;
|
|
if (NumDefElts >= 8 && NumDefElts > NumElts / 2 &&
|
|
ContainerVT.bitsLE(RISCVTargetLowering::getM1VT(ContainerVT))) {
|
|
SmallVector<SDValue> SubVecAOps, SubVecBOps;
|
|
SmallVector<SDValue> MaskVals;
|
|
SDValue UndefElem = DAG.getUNDEF(Op->getOperand(0)->getValueType(0));
|
|
SubVecAOps.reserve(NumElts);
|
|
SubVecBOps.reserve(NumElts);
|
|
for (unsigned i = 0; i < NumElts; i++) {
|
|
SDValue Elem = Op->getOperand(i);
|
|
if (i < NumElts / 2) {
|
|
SubVecAOps.push_back(Elem);
|
|
SubVecBOps.push_back(UndefElem);
|
|
} else {
|
|
SubVecAOps.push_back(UndefElem);
|
|
SubVecBOps.push_back(Elem);
|
|
}
|
|
bool SelectMaskVal = (i < NumElts / 2);
|
|
MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
|
|
}
|
|
assert(SubVecAOps.size() == NumElts && SubVecBOps.size() == NumElts &&
|
|
MaskVals.size() == NumElts);
|
|
|
|
SDValue SubVecA = DAG.getBuildVector(VT, DL, SubVecAOps);
|
|
SDValue SubVecB = DAG.getBuildVector(VT, DL, SubVecBOps);
|
|
MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
|
|
SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
|
|
return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, SubVecA, SubVecB);
|
|
}
|
|
|
|
// Cap the cost at a value linear to the number of elements in the vector.
|
|
// The default lowering is to use the stack. The vector store + scalar loads
|
|
// is linear in VL. However, at high lmuls vslide1down and vslidedown end up
|
|
// being (at least) linear in LMUL. As a result, using the vslidedown
|
|
// lowering for every element ends up being VL*LMUL..
|
|
// TODO: Should we be directly costing the stack alternative? Doing so might
|
|
// give us a more accurate upper bound.
|
|
InstructionCost LinearBudget = VT.getVectorNumElements() * 2;
|
|
|
|
// TODO: unify with TTI getSlideCost.
|
|
InstructionCost PerSlideCost = 1;
|
|
switch (RISCVTargetLowering::getLMUL(ContainerVT)) {
|
|
default: break;
|
|
case RISCVVType::LMUL_2:
|
|
PerSlideCost = 2;
|
|
break;
|
|
case RISCVVType::LMUL_4:
|
|
PerSlideCost = 4;
|
|
break;
|
|
case RISCVVType::LMUL_8:
|
|
PerSlideCost = 8;
|
|
break;
|
|
}
|
|
|
|
// TODO: Should we be using the build instseq then cost + evaluate scheme
|
|
// we use for integer constants here?
|
|
unsigned UndefCount = 0;
|
|
for (const SDValue &V : Op->ops()) {
|
|
if (V.isUndef()) {
|
|
UndefCount++;
|
|
continue;
|
|
}
|
|
if (UndefCount) {
|
|
LinearBudget -= PerSlideCost;
|
|
UndefCount = 0;
|
|
}
|
|
LinearBudget -= PerSlideCost;
|
|
}
|
|
if (UndefCount) {
|
|
LinearBudget -= PerSlideCost;
|
|
}
|
|
|
|
if (LinearBudget < 0)
|
|
return SDValue();
|
|
|
|
assert((!VT.isFloatingPoint() ||
|
|
VT.getVectorElementType().getSizeInBits() <= Subtarget.getFLen()) &&
|
|
"Illegal type which will result in reserved encoding");
|
|
|
|
const unsigned Policy = RISCVVType::TAIL_AGNOSTIC | RISCVVType::MASK_AGNOSTIC;
|
|
|
|
SDValue Vec;
|
|
UndefCount = 0;
|
|
for (SDValue V : Op->ops()) {
|
|
if (V.isUndef()) {
|
|
UndefCount++;
|
|
continue;
|
|
}
|
|
|
|
// Start our sequence with a TA splat in the hopes that hardware is able to
|
|
// recognize there's no dependency on the prior value of our temporary
|
|
// register.
|
|
if (!Vec) {
|
|
Vec = DAG.getSplatVector(VT, DL, V);
|
|
Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
|
|
UndefCount = 0;
|
|
continue;
|
|
}
|
|
|
|
if (UndefCount) {
|
|
const SDValue Offset = DAG.getConstant(UndefCount, DL, Subtarget.getXLenVT());
|
|
Vec = getVSlidedown(DAG, Subtarget, DL, ContainerVT, DAG.getUNDEF(ContainerVT),
|
|
Vec, Offset, Mask, VL, Policy);
|
|
UndefCount = 0;
|
|
}
|
|
auto OpCode =
|
|
VT.isFloatingPoint() ? RISCVISD::VFSLIDE1DOWN_VL : RISCVISD::VSLIDE1DOWN_VL;
|
|
if (!VT.isFloatingPoint())
|
|
V = DAG.getNode(ISD::ANY_EXTEND, DL, Subtarget.getXLenVT(), V);
|
|
Vec = DAG.getNode(OpCode, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Vec,
|
|
V, Mask, VL);
|
|
}
|
|
if (UndefCount) {
|
|
const SDValue Offset = DAG.getConstant(UndefCount, DL, Subtarget.getXLenVT());
|
|
Vec = getVSlidedown(DAG, Subtarget, DL, ContainerVT, DAG.getUNDEF(ContainerVT),
|
|
Vec, Offset, Mask, VL, Policy);
|
|
}
|
|
return convertFromScalableVector(VT, Vec, DAG, Subtarget);
|
|
}
|
|
|
|
static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
|
|
SDValue Lo, SDValue Hi, SDValue VL,
|
|
SelectionDAG &DAG) {
|
|
if (!Passthru)
|
|
Passthru = DAG.getUNDEF(VT);
|
|
if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
|
|
int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
|
|
int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
|
|
// If Hi constant is all the same sign bit as Lo, lower this as a custom
|
|
// node in order to try and match RVV vector/scalar instructions.
|
|
if ((LoC >> 31) == HiC)
|
|
return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL);
|
|
|
|
// Use vmv.v.x with EEW=32. Use either a vsetivli or vsetvli to change
|
|
// VL. This can temporarily increase VL if VL less than VLMAX.
|
|
if (LoC == HiC) {
|
|
SDValue NewVL;
|
|
if (isa<ConstantSDNode>(VL) && isUInt<4>(VL->getAsZExtVal()))
|
|
NewVL = DAG.getNode(ISD::ADD, DL, VL.getValueType(), VL, VL);
|
|
else
|
|
NewVL = DAG.getRegister(RISCV::X0, MVT::i32);
|
|
MVT InterVT =
|
|
MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
|
|
auto InterVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, InterVT,
|
|
DAG.getUNDEF(InterVT), Lo, NewVL);
|
|
return DAG.getNode(ISD::BITCAST, DL, VT, InterVec);
|
|
}
|
|
}
|
|
|
|
// Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
|
|
if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
|
|
isa<ConstantSDNode>(Hi.getOperand(1)) &&
|
|
Hi.getConstantOperandVal(1) == 31)
|
|
return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL);
|
|
|
|
// If the hi bits of the splat are undefined, then it's fine to just splat Lo
|
|
// even if it might be sign extended.
|
|
if (Hi.isUndef())
|
|
return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL);
|
|
|
|
// Fall back to a stack store and stride x0 vector load.
|
|
return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Passthru, Lo,
|
|
Hi, VL);
|
|
}
|
|
|
|
// Called by type legalization to handle splat of i64 on RV32.
|
|
// FIXME: We can optimize this when the type has sign or zero bits in one
|
|
// of the halves.
|
|
static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
|
|
SDValue Scalar, SDValue VL,
|
|
SelectionDAG &DAG) {
|
|
assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!");
|
|
SDValue Lo, Hi;
|
|
std::tie(Lo, Hi) = DAG.SplitScalar(Scalar, DL, MVT::i32, MVT::i32);
|
|
return splatPartsI64WithVL(DL, VT, Passthru, Lo, Hi, VL, DAG);
|
|
}
|
|
|
|
// This function lowers a splat of a scalar operand Splat with the vector
|
|
// length VL. It ensures the final sequence is type legal, which is useful when
|
|
// lowering a splat after type legalization.
|
|
static SDValue lowerScalarSplat(SDValue Passthru, SDValue Scalar, SDValue VL,
|
|
MVT VT, const SDLoc &DL, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
bool HasPassthru = Passthru && !Passthru.isUndef();
|
|
if (!HasPassthru && !Passthru)
|
|
Passthru = DAG.getUNDEF(VT);
|
|
|
|
MVT EltVT = VT.getVectorElementType();
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
if (VT.isFloatingPoint()) {
|
|
if ((EltVT == MVT::f16 && !Subtarget.hasStdExtZvfh()) ||
|
|
EltVT == MVT::bf16) {
|
|
if ((EltVT == MVT::bf16 && Subtarget.hasStdExtZfbfmin()) ||
|
|
(EltVT == MVT::f16 && Subtarget.hasStdExtZfhmin()))
|
|
Scalar = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Scalar);
|
|
else
|
|
Scalar = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Scalar);
|
|
MVT IVT = VT.changeVectorElementType(MVT::i16);
|
|
Passthru = DAG.getNode(ISD::BITCAST, DL, IVT, Passthru);
|
|
SDValue Splat =
|
|
lowerScalarSplat(Passthru, Scalar, VL, IVT, DL, DAG, Subtarget);
|
|
return DAG.getNode(ISD::BITCAST, DL, VT, Splat);
|
|
}
|
|
return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Passthru, Scalar, VL);
|
|
}
|
|
|
|
// Simplest case is that the operand needs to be promoted to XLenVT.
|
|
if (Scalar.getValueType().bitsLE(XLenVT)) {
|
|
// If the operand is a constant, sign extend to increase our chances
|
|
// of being able to use a .vi instruction. ANY_EXTEND would become a
|
|
// a zero extend and the simm5 check in isel would fail.
|
|
// FIXME: Should we ignore the upper bits in isel instead?
|
|
unsigned ExtOpc =
|
|
isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
|
|
Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
|
|
return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL);
|
|
}
|
|
|
|
assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
|
|
"Unexpected scalar for splat lowering!");
|
|
|
|
if (isOneConstant(VL) && isNullConstant(Scalar))
|
|
return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru,
|
|
DAG.getConstant(0, DL, XLenVT), VL);
|
|
|
|
// Otherwise use the more complicated splatting algorithm.
|
|
return splatSplitI64WithVL(DL, VT, Passthru, Scalar, VL, DAG);
|
|
}
|
|
|
|
// This function lowers an insert of a scalar operand Scalar into lane
|
|
// 0 of the vector regardless of the value of VL. The contents of the
|
|
// remaining lanes of the result vector are unspecified. VL is assumed
|
|
// to be non-zero.
|
|
static SDValue lowerScalarInsert(SDValue Scalar, SDValue VL, MVT VT,
|
|
const SDLoc &DL, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
assert(VT.isScalableVector() && "Expect VT is scalable vector type.");
|
|
|
|
const MVT XLenVT = Subtarget.getXLenVT();
|
|
SDValue Passthru = DAG.getUNDEF(VT);
|
|
|
|
if (Scalar.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
|
|
isNullConstant(Scalar.getOperand(1))) {
|
|
SDValue ExtractedVal = Scalar.getOperand(0);
|
|
// The element types must be the same.
|
|
if (ExtractedVal.getValueType().getVectorElementType() ==
|
|
VT.getVectorElementType()) {
|
|
MVT ExtractedVT = ExtractedVal.getSimpleValueType();
|
|
MVT ExtractedContainerVT = ExtractedVT;
|
|
if (ExtractedContainerVT.isFixedLengthVector()) {
|
|
ExtractedContainerVT = getContainerForFixedLengthVector(
|
|
DAG, ExtractedContainerVT, Subtarget);
|
|
ExtractedVal = convertToScalableVector(ExtractedContainerVT,
|
|
ExtractedVal, DAG, Subtarget);
|
|
}
|
|
if (ExtractedContainerVT.bitsLE(VT))
|
|
return DAG.getInsertSubvector(DL, Passthru, ExtractedVal, 0);
|
|
return DAG.getExtractSubvector(DL, VT, ExtractedVal, 0);
|
|
}
|
|
}
|
|
|
|
if (VT.isFloatingPoint())
|
|
return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, DAG.getUNDEF(VT), Scalar,
|
|
VL);
|
|
|
|
// Avoid the tricky legalization cases by falling back to using the
|
|
// splat code which already handles it gracefully.
|
|
if (!Scalar.getValueType().bitsLE(XLenVT))
|
|
return lowerScalarSplat(DAG.getUNDEF(VT), Scalar,
|
|
DAG.getConstant(1, DL, XLenVT),
|
|
VT, DL, DAG, Subtarget);
|
|
|
|
// If the operand is a constant, sign extend to increase our chances
|
|
// of being able to use a .vi instruction. ANY_EXTEND would become a
|
|
// a zero extend and the simm5 check in isel would fail.
|
|
// FIXME: Should we ignore the upper bits in isel instead?
|
|
unsigned ExtOpc =
|
|
isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
|
|
Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
|
|
return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, DAG.getUNDEF(VT), Scalar,
|
|
VL);
|
|
}
|
|
|
|
/// If concat_vector(V1,V2) could be folded away to some existing
|
|
/// vector source, return it. Note that the source may be larger
|
|
/// than the requested concat_vector (i.e. a extract_subvector
|
|
/// might be required.)
|
|
static SDValue foldConcatVector(SDValue V1, SDValue V2) {
|
|
EVT VT = V1.getValueType();
|
|
assert(VT == V2.getValueType() && "argument types must match");
|
|
// Both input must be extracts.
|
|
if (V1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
|
|
V2.getOpcode() != ISD::EXTRACT_SUBVECTOR)
|
|
return SDValue();
|
|
|
|
// Extracting from the same source.
|
|
SDValue Src = V1.getOperand(0);
|
|
if (Src != V2.getOperand(0) ||
|
|
VT.isScalableVector() != Src.getValueType().isScalableVector())
|
|
return SDValue();
|
|
|
|
// The extracts must extract the two halves of the source.
|
|
if (V1.getConstantOperandVal(1) != 0 ||
|
|
V2.getConstantOperandVal(1) != VT.getVectorMinNumElements())
|
|
return SDValue();
|
|
|
|
return Src;
|
|
}
|
|
|
|
// Can this shuffle be performed on exactly one (possibly larger) input?
|
|
static SDValue getSingleShuffleSrc(MVT VT, SDValue V1, SDValue V2) {
|
|
|
|
if (V2.isUndef())
|
|
return V1;
|
|
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
// Src needs to have twice the number of elements.
|
|
// TODO: Update shuffle lowering to add the extract subvector
|
|
if (SDValue Src = foldConcatVector(V1, V2);
|
|
Src && Src.getValueType().getVectorNumElements() == (NumElts * 2))
|
|
return Src;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// Is this shuffle interleaving contiguous elements from one vector into the
|
|
/// even elements and contiguous elements from another vector into the odd
|
|
/// elements. \p EvenSrc will contain the element that should be in the first
|
|
/// even element. \p OddSrc will contain the element that should be in the first
|
|
/// odd element. These can be the first element in a source or the element half
|
|
/// way through the source.
|
|
static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, int &EvenSrc,
|
|
int &OddSrc, const RISCVSubtarget &Subtarget) {
|
|
// We need to be able to widen elements to the next larger integer type or
|
|
// use the zip2a instruction at e64.
|
|
if (VT.getScalarSizeInBits() >= Subtarget.getELen() &&
|
|
!Subtarget.hasVendorXRivosVizip())
|
|
return false;
|
|
|
|
int Size = Mask.size();
|
|
int NumElts = VT.getVectorNumElements();
|
|
assert(Size == (int)NumElts && "Unexpected mask size");
|
|
|
|
SmallVector<unsigned, 2> StartIndexes;
|
|
if (!ShuffleVectorInst::isInterleaveMask(Mask, 2, Size * 2, StartIndexes))
|
|
return false;
|
|
|
|
EvenSrc = StartIndexes[0];
|
|
OddSrc = StartIndexes[1];
|
|
|
|
// One source should be low half of first vector.
|
|
if (EvenSrc != 0 && OddSrc != 0)
|
|
return false;
|
|
|
|
// Subvectors will be subtracted from either at the start of the two input
|
|
// vectors, or at the start and middle of the first vector if it's an unary
|
|
// interleave.
|
|
// In both cases, HalfNumElts will be extracted.
|
|
// We need to ensure that the extract indices are 0 or HalfNumElts otherwise
|
|
// we'll create an illegal extract_subvector.
|
|
// FIXME: We could support other values using a slidedown first.
|
|
int HalfNumElts = NumElts / 2;
|
|
return ((EvenSrc % HalfNumElts) == 0) && ((OddSrc % HalfNumElts) == 0);
|
|
}
|
|
|
|
/// Is this mask representing a masked combination of two slides?
|
|
static bool isMaskedSlidePair(ArrayRef<int> Mask,
|
|
std::array<std::pair<int, int>, 2> &SrcInfo) {
|
|
if (!llvm::isMaskedSlidePair(Mask, Mask.size(), SrcInfo))
|
|
return false;
|
|
|
|
// Avoid matching vselect idioms
|
|
if (SrcInfo[0].second == 0 && SrcInfo[1].second == 0)
|
|
return false;
|
|
// Prefer vslideup as the second instruction, and identity
|
|
// only as the initial instruction.
|
|
if ((SrcInfo[0].second > 0 && SrcInfo[1].second < 0) ||
|
|
SrcInfo[1].second == 0)
|
|
std::swap(SrcInfo[0], SrcInfo[1]);
|
|
assert(SrcInfo[0].first != -1 && "Must find one slide");
|
|
return true;
|
|
}
|
|
|
|
// Exactly matches the semantics of a previously existing custom matcher
|
|
// to allow migration to new matcher without changing output.
|
|
static bool isElementRotate(const std::array<std::pair<int, int>, 2> &SrcInfo,
|
|
unsigned NumElts) {
|
|
if (SrcInfo[1].first == -1)
|
|
return true;
|
|
return SrcInfo[0].second < 0 && SrcInfo[1].second > 0 &&
|
|
SrcInfo[1].second - SrcInfo[0].second == (int)NumElts;
|
|
}
|
|
|
|
static bool isAlternating(const std::array<std::pair<int, int>, 2> &SrcInfo,
|
|
ArrayRef<int> Mask, unsigned Factor,
|
|
bool RequiredPolarity) {
|
|
int NumElts = Mask.size();
|
|
for (int i = 0; i != NumElts; ++i) {
|
|
int M = Mask[i];
|
|
if (M < 0)
|
|
continue;
|
|
int Src = M >= NumElts;
|
|
int Diff = (int)i - (M % NumElts);
|
|
bool C = Src == SrcInfo[1].first && Diff == SrcInfo[1].second;
|
|
assert(C != (Src == SrcInfo[0].first && Diff == SrcInfo[0].second) &&
|
|
"Must match exactly one of the two slides");
|
|
if (RequiredPolarity != (C == (i / Factor) % 2))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Given a shuffle which can be represented as a pair of two slides,
|
|
/// see if it is a zipeven idiom. Zipeven is:
|
|
/// vs2: a0 a1 a2 a3
|
|
/// vs1: b0 b1 b2 b3
|
|
/// vd: a0 b0 a2 b2
|
|
static bool isZipEven(const std::array<std::pair<int, int>, 2> &SrcInfo,
|
|
ArrayRef<int> Mask, unsigned &Factor) {
|
|
Factor = SrcInfo[1].second;
|
|
return SrcInfo[0].second == 0 && isPowerOf2_32(Factor) &&
|
|
Mask.size() % Factor == 0 &&
|
|
isAlternating(SrcInfo, Mask, Factor, true);
|
|
}
|
|
|
|
/// Given a shuffle which can be represented as a pair of two slides,
|
|
/// see if it is a zipodd idiom. Zipodd is:
|
|
/// vs2: a0 a1 a2 a3
|
|
/// vs1: b0 b1 b2 b3
|
|
/// vd: a1 b1 a3 b3
|
|
/// Note that the operand order is swapped due to the way we canonicalize
|
|
/// the slides, so SrCInfo[0] is vs1, and SrcInfo[1] is vs2.
|
|
static bool isZipOdd(const std::array<std::pair<int, int>, 2> &SrcInfo,
|
|
ArrayRef<int> Mask, unsigned &Factor) {
|
|
Factor = -SrcInfo[1].second;
|
|
return SrcInfo[0].second == 0 && isPowerOf2_32(Factor) &&
|
|
Mask.size() % Factor == 0 &&
|
|
isAlternating(SrcInfo, Mask, Factor, false);
|
|
}
|
|
|
|
// Lower a deinterleave shuffle to SRL and TRUNC. Factor must be
|
|
// 2, 4, 8 and the integer type Factor-times larger than VT's
|
|
// element type must be a legal element type.
|
|
// [a, p, b, q, c, r, d, s] -> [a, b, c, d] (Factor=2, Index=0)
|
|
// -> [p, q, r, s] (Factor=2, Index=1)
|
|
static SDValue getDeinterleaveShiftAndTrunc(const SDLoc &DL, MVT VT,
|
|
SDValue Src, unsigned Factor,
|
|
unsigned Index, SelectionDAG &DAG) {
|
|
unsigned EltBits = VT.getScalarSizeInBits();
|
|
ElementCount SrcEC = Src.getValueType().getVectorElementCount();
|
|
MVT WideSrcVT = MVT::getVectorVT(MVT::getIntegerVT(EltBits * Factor),
|
|
SrcEC.divideCoefficientBy(Factor));
|
|
MVT ResVT = MVT::getVectorVT(MVT::getIntegerVT(EltBits),
|
|
SrcEC.divideCoefficientBy(Factor));
|
|
Src = DAG.getBitcast(WideSrcVT, Src);
|
|
|
|
unsigned Shift = Index * EltBits;
|
|
SDValue Res = DAG.getNode(ISD::SRL, DL, WideSrcVT, Src,
|
|
DAG.getConstant(Shift, DL, WideSrcVT));
|
|
Res = DAG.getNode(ISD::TRUNCATE, DL, ResVT, Res);
|
|
MVT CastVT = ResVT.changeVectorElementType(VT.getVectorElementType());
|
|
Res = DAG.getBitcast(CastVT, Res);
|
|
return DAG.getInsertSubvector(DL, DAG.getUNDEF(VT), Res, 0);
|
|
}
|
|
|
|
/// Match a single source shuffle which is an identity except that some
|
|
/// particular element is repeated. This can be lowered as a masked
|
|
/// vrgather.vi/vx. Note that the two source form of this is handled
|
|
/// by the recursive splitting logic and doesn't need special handling.
|
|
static SDValue lowerVECTOR_SHUFFLEAsVRGatherVX(ShuffleVectorSDNode *SVN,
|
|
const RISCVSubtarget &Subtarget,
|
|
SelectionDAG &DAG) {
|
|
|
|
SDLoc DL(SVN);
|
|
MVT VT = SVN->getSimpleValueType(0);
|
|
SDValue V1 = SVN->getOperand(0);
|
|
assert(SVN->getOperand(1).isUndef());
|
|
ArrayRef<int> Mask = SVN->getMask();
|
|
const unsigned NumElts = VT.getVectorNumElements();
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
std::optional<int> SplatIdx;
|
|
for (auto [I, M] : enumerate(Mask)) {
|
|
if (M == -1 || I == (unsigned)M)
|
|
continue;
|
|
if (SplatIdx && *SplatIdx != M)
|
|
return SDValue();
|
|
SplatIdx = M;
|
|
}
|
|
|
|
if (!SplatIdx)
|
|
return SDValue();
|
|
|
|
SmallVector<SDValue> MaskVals;
|
|
for (int MaskIndex : Mask) {
|
|
bool SelectMaskVal = MaskIndex == *SplatIdx;
|
|
MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
|
|
}
|
|
assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
|
|
MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
|
|
SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
|
|
SDValue Splat = DAG.getVectorShuffle(VT, DL, V1, DAG.getUNDEF(VT),
|
|
SmallVector<int>(NumElts, *SplatIdx));
|
|
return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, Splat, V1);
|
|
}
|
|
|
|
// Lower the following shuffle to vslidedown.
|
|
// a)
|
|
// t49: v8i8 = extract_subvector t13, Constant:i64<0>
|
|
// t109: v8i8 = extract_subvector t13, Constant:i64<8>
|
|
// t108: v8i8 = vector_shuffle<1,2,3,4,5,6,7,8> t49, t106
|
|
// b)
|
|
// t69: v16i16 = extract_subvector t68, Constant:i64<0>
|
|
// t23: v8i16 = extract_subvector t69, Constant:i64<0>
|
|
// t29: v4i16 = extract_subvector t23, Constant:i64<4>
|
|
// t26: v8i16 = extract_subvector t69, Constant:i64<8>
|
|
// t30: v4i16 = extract_subvector t26, Constant:i64<0>
|
|
// t54: v4i16 = vector_shuffle<1,2,3,4> t29, t30
|
|
static SDValue lowerVECTOR_SHUFFLEAsVSlidedown(const SDLoc &DL, MVT VT,
|
|
SDValue V1, SDValue V2,
|
|
ArrayRef<int> Mask,
|
|
const RISCVSubtarget &Subtarget,
|
|
SelectionDAG &DAG) {
|
|
auto findNonEXTRACT_SUBVECTORParent =
|
|
[](SDValue Parent) -> std::pair<SDValue, uint64_t> {
|
|
uint64_t Offset = 0;
|
|
while (Parent.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
|
|
// EXTRACT_SUBVECTOR can be used to extract a fixed-width vector from
|
|
// a scalable vector. But we don't want to match the case.
|
|
Parent.getOperand(0).getSimpleValueType().isFixedLengthVector()) {
|
|
Offset += Parent.getConstantOperandVal(1);
|
|
Parent = Parent.getOperand(0);
|
|
}
|
|
return std::make_pair(Parent, Offset);
|
|
};
|
|
|
|
auto [V1Src, V1IndexOffset] = findNonEXTRACT_SUBVECTORParent(V1);
|
|
auto [V2Src, V2IndexOffset] = findNonEXTRACT_SUBVECTORParent(V2);
|
|
|
|
// Extracting from the same source.
|
|
SDValue Src = V1Src;
|
|
if (Src != V2Src)
|
|
return SDValue();
|
|
|
|
// Rebuild mask because Src may be from multiple EXTRACT_SUBVECTORs.
|
|
SmallVector<int, 16> NewMask(Mask);
|
|
for (size_t i = 0; i != NewMask.size(); ++i) {
|
|
if (NewMask[i] == -1)
|
|
continue;
|
|
|
|
if (static_cast<size_t>(NewMask[i]) < NewMask.size()) {
|
|
NewMask[i] = NewMask[i] + V1IndexOffset;
|
|
} else {
|
|
// Minus NewMask.size() is needed. Otherwise, the b case would be
|
|
// <5,6,7,12> instead of <5,6,7,8>.
|
|
NewMask[i] = NewMask[i] - NewMask.size() + V2IndexOffset;
|
|
}
|
|
}
|
|
|
|
// First index must be known and non-zero. It will be used as the slidedown
|
|
// amount.
|
|
if (NewMask[0] <= 0)
|
|
return SDValue();
|
|
|
|
// NewMask is also continuous.
|
|
for (unsigned i = 1; i != NewMask.size(); ++i)
|
|
if (NewMask[i - 1] + 1 != NewMask[i])
|
|
return SDValue();
|
|
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
MVT SrcVT = Src.getSimpleValueType();
|
|
MVT ContainerVT = getContainerForFixedLengthVector(DAG, SrcVT, Subtarget);
|
|
auto [TrueMask, VL] = getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
|
|
SDValue Slidedown =
|
|
getVSlidedown(DAG, Subtarget, DL, ContainerVT, DAG.getUNDEF(ContainerVT),
|
|
convertToScalableVector(ContainerVT, Src, DAG, Subtarget),
|
|
DAG.getConstant(NewMask[0], DL, XLenVT), TrueMask, VL);
|
|
return DAG.getExtractSubvector(
|
|
DL, VT, convertFromScalableVector(SrcVT, Slidedown, DAG, Subtarget), 0);
|
|
}
|
|
|
|
// Because vslideup leaves the destination elements at the start intact, we can
|
|
// use it to perform shuffles that insert subvectors:
|
|
//
|
|
// vector_shuffle v8:v8i8, v9:v8i8, <0, 1, 2, 3, 8, 9, 10, 11>
|
|
// ->
|
|
// vsetvli zero, 8, e8, mf2, ta, ma
|
|
// vslideup.vi v8, v9, 4
|
|
//
|
|
// vector_shuffle v8:v8i8, v9:v8i8 <0, 1, 8, 9, 10, 5, 6, 7>
|
|
// ->
|
|
// vsetvli zero, 5, e8, mf2, tu, ma
|
|
// vslideup.v1 v8, v9, 2
|
|
static SDValue lowerVECTOR_SHUFFLEAsVSlideup(const SDLoc &DL, MVT VT,
|
|
SDValue V1, SDValue V2,
|
|
ArrayRef<int> Mask,
|
|
const RISCVSubtarget &Subtarget,
|
|
SelectionDAG &DAG) {
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
int NumSubElts, Index;
|
|
if (!ShuffleVectorInst::isInsertSubvectorMask(Mask, NumElts, NumSubElts,
|
|
Index))
|
|
return SDValue();
|
|
|
|
bool OpsSwapped = Mask[Index] < (int)NumElts;
|
|
SDValue InPlace = OpsSwapped ? V2 : V1;
|
|
SDValue ToInsert = OpsSwapped ? V1 : V2;
|
|
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
|
|
auto TrueMask = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).first;
|
|
// We slide up by the index that the subvector is being inserted at, and set
|
|
// VL to the index + the number of elements being inserted.
|
|
unsigned Policy =
|
|
RISCVVType::TAIL_UNDISTURBED_MASK_UNDISTURBED | RISCVVType::MASK_AGNOSTIC;
|
|
// If the we're adding a suffix to the in place vector, i.e. inserting right
|
|
// up to the very end of it, then we don't actually care about the tail.
|
|
if (NumSubElts + Index >= (int)NumElts)
|
|
Policy |= RISCVVType::TAIL_AGNOSTIC;
|
|
|
|
InPlace = convertToScalableVector(ContainerVT, InPlace, DAG, Subtarget);
|
|
ToInsert = convertToScalableVector(ContainerVT, ToInsert, DAG, Subtarget);
|
|
SDValue VL = DAG.getConstant(NumSubElts + Index, DL, XLenVT);
|
|
|
|
SDValue Res;
|
|
// If we're inserting into the lowest elements, use a tail undisturbed
|
|
// vmv.v.v.
|
|
if (Index == 0)
|
|
Res = DAG.getNode(RISCVISD::VMV_V_V_VL, DL, ContainerVT, InPlace, ToInsert,
|
|
VL);
|
|
else
|
|
Res = getVSlideup(DAG, Subtarget, DL, ContainerVT, InPlace, ToInsert,
|
|
DAG.getConstant(Index, DL, XLenVT), TrueMask, VL, Policy);
|
|
return convertFromScalableVector(VT, Res, DAG, Subtarget);
|
|
}
|
|
|
|
/// Match v(f)slide1up/down idioms. These operations involve sliding
|
|
/// N-1 elements to make room for an inserted scalar at one end.
|
|
static SDValue lowerVECTOR_SHUFFLEAsVSlide1(const SDLoc &DL, MVT VT,
|
|
SDValue V1, SDValue V2,
|
|
ArrayRef<int> Mask,
|
|
const RISCVSubtarget &Subtarget,
|
|
SelectionDAG &DAG) {
|
|
bool OpsSwapped = false;
|
|
if (!isa<BuildVectorSDNode>(V1)) {
|
|
if (!isa<BuildVectorSDNode>(V2))
|
|
return SDValue();
|
|
std::swap(V1, V2);
|
|
OpsSwapped = true;
|
|
}
|
|
SDValue Splat = cast<BuildVectorSDNode>(V1)->getSplatValue();
|
|
if (!Splat)
|
|
return SDValue();
|
|
|
|
// Return true if the mask could describe a slide of Mask.size() - 1
|
|
// elements from concat_vector(V1, V2)[Base:] to [Offset:].
|
|
auto isSlideMask = [](ArrayRef<int> Mask, unsigned Base, int Offset) {
|
|
const unsigned S = (Offset > 0) ? 0 : -Offset;
|
|
const unsigned E = Mask.size() - ((Offset > 0) ? Offset : 0);
|
|
for (unsigned i = S; i != E; ++i)
|
|
if (Mask[i] >= 0 && (unsigned)Mask[i] != Base + i + Offset)
|
|
return false;
|
|
return true;
|
|
};
|
|
|
|
const unsigned NumElts = VT.getVectorNumElements();
|
|
bool IsVSlidedown = isSlideMask(Mask, OpsSwapped ? 0 : NumElts, 1);
|
|
if (!IsVSlidedown && !isSlideMask(Mask, OpsSwapped ? 0 : NumElts, -1))
|
|
return SDValue();
|
|
|
|
const int InsertIdx = Mask[IsVSlidedown ? (NumElts - 1) : 0];
|
|
// Inserted lane must come from splat, undef scalar is legal but not profitable.
|
|
if (InsertIdx < 0 || InsertIdx / NumElts != (unsigned)OpsSwapped)
|
|
return SDValue();
|
|
|
|
MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
|
|
auto [TrueMask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
|
|
|
|
// zvfhmin and zvfbfmin don't have vfslide1{down,up}.vf so use fmv.x.h +
|
|
// vslide1{down,up}.vx instead.
|
|
if (VT.getVectorElementType() == MVT::bf16 ||
|
|
(VT.getVectorElementType() == MVT::f16 &&
|
|
!Subtarget.hasVInstructionsF16())) {
|
|
MVT IntVT = ContainerVT.changeVectorElementTypeToInteger();
|
|
Splat =
|
|
DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, Subtarget.getXLenVT(), Splat);
|
|
V2 = DAG.getBitcast(
|
|
IntVT, convertToScalableVector(ContainerVT, V2, DAG, Subtarget));
|
|
SDValue Vec = DAG.getNode(
|
|
IsVSlidedown ? RISCVISD::VSLIDE1DOWN_VL : RISCVISD::VSLIDE1UP_VL, DL,
|
|
IntVT, DAG.getUNDEF(IntVT), V2, Splat, TrueMask, VL);
|
|
Vec = DAG.getBitcast(ContainerVT, Vec);
|
|
return convertFromScalableVector(VT, Vec, DAG, Subtarget);
|
|
}
|
|
|
|
auto OpCode = IsVSlidedown ?
|
|
(VT.isFloatingPoint() ? RISCVISD::VFSLIDE1DOWN_VL : RISCVISD::VSLIDE1DOWN_VL) :
|
|
(VT.isFloatingPoint() ? RISCVISD::VFSLIDE1UP_VL : RISCVISD::VSLIDE1UP_VL);
|
|
if (!VT.isFloatingPoint())
|
|
Splat = DAG.getNode(ISD::ANY_EXTEND, DL, Subtarget.getXLenVT(), Splat);
|
|
auto Vec = DAG.getNode(OpCode, DL, ContainerVT,
|
|
DAG.getUNDEF(ContainerVT),
|
|
convertToScalableVector(ContainerVT, V2, DAG, Subtarget),
|
|
Splat, TrueMask, VL);
|
|
return convertFromScalableVector(VT, Vec, DAG, Subtarget);
|
|
}
|
|
|
|
// Match a mask which "spreads" the leading elements of a vector evenly
|
|
// across the result. Factor is the spread amount, and Index is the
|
|
// offset applied. (on success, Index < Factor) This is the inverse
|
|
// of a deinterleave with the same Factor and Index. This is analogous
|
|
// to an interleave, except that all but one lane is undef.
|
|
static bool isSpreadMask(ArrayRef<int> Mask, unsigned Factor, unsigned &Index) {
|
|
SmallVector<bool> LaneIsUndef(Factor, true);
|
|
for (unsigned i = 0; i < Mask.size(); i++)
|
|
LaneIsUndef[i % Factor] &= (Mask[i] == -1);
|
|
|
|
bool Found = false;
|
|
for (unsigned i = 0; i < Factor; i++) {
|
|
if (LaneIsUndef[i])
|
|
continue;
|
|
if (Found)
|
|
return false;
|
|
Index = i;
|
|
Found = true;
|
|
}
|
|
if (!Found)
|
|
return false;
|
|
|
|
for (unsigned i = 0; i < Mask.size() / Factor; i++) {
|
|
unsigned j = i * Factor + Index;
|
|
if (Mask[j] != -1 && (unsigned)Mask[j] != i)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static SDValue lowerVZIP(unsigned Opc, SDValue Op0, SDValue Op1,
|
|
const SDLoc &DL, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
assert(RISCVISD::RI_VZIPEVEN_VL == Opc || RISCVISD::RI_VZIPODD_VL == Opc ||
|
|
RISCVISD::RI_VZIP2A_VL == Opc || RISCVISD::RI_VZIP2B_VL == Opc ||
|
|
RISCVISD::RI_VUNZIP2A_VL == Opc || RISCVISD::RI_VUNZIP2B_VL == Opc);
|
|
assert(Op0.getSimpleValueType() == Op1.getSimpleValueType());
|
|
|
|
MVT VT = Op0.getSimpleValueType();
|
|
MVT IntVT = VT.changeVectorElementTypeToInteger();
|
|
Op0 = DAG.getBitcast(IntVT, Op0);
|
|
Op1 = DAG.getBitcast(IntVT, Op1);
|
|
|
|
MVT ContainerVT = IntVT;
|
|
if (VT.isFixedLengthVector()) {
|
|
ContainerVT = getContainerForFixedLengthVector(DAG, IntVT, Subtarget);
|
|
Op0 = convertToScalableVector(ContainerVT, Op0, DAG, Subtarget);
|
|
Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
|
|
}
|
|
|
|
MVT InnerVT = ContainerVT;
|
|
auto [Mask, VL] = getDefaultVLOps(IntVT, InnerVT, DL, DAG, Subtarget);
|
|
if (Op1.isUndef() &&
|
|
ContainerVT.bitsGT(RISCVTargetLowering::getM1VT(ContainerVT)) &&
|
|
(RISCVISD::RI_VUNZIP2A_VL == Opc || RISCVISD::RI_VUNZIP2B_VL == Opc)) {
|
|
InnerVT = ContainerVT.getHalfNumVectorElementsVT();
|
|
VL = DAG.getConstant(VT.getVectorNumElements() / 2, DL,
|
|
Subtarget.getXLenVT());
|
|
Mask = getAllOnesMask(InnerVT, VL, DL, DAG);
|
|
unsigned HighIdx = InnerVT.getVectorElementCount().getKnownMinValue();
|
|
Op1 = DAG.getExtractSubvector(DL, InnerVT, Op0, HighIdx);
|
|
Op0 = DAG.getExtractSubvector(DL, InnerVT, Op0, 0);
|
|
}
|
|
|
|
SDValue Passthru = DAG.getUNDEF(InnerVT);
|
|
SDValue Res = DAG.getNode(Opc, DL, InnerVT, Op0, Op1, Passthru, Mask, VL);
|
|
if (InnerVT.bitsLT(ContainerVT))
|
|
Res = DAG.getInsertSubvector(DL, DAG.getUNDEF(ContainerVT), Res, 0);
|
|
if (IntVT.isFixedLengthVector())
|
|
Res = convertFromScalableVector(IntVT, Res, DAG, Subtarget);
|
|
Res = DAG.getBitcast(VT, Res);
|
|
return Res;
|
|
}
|
|
|
|
// Given a vector a, b, c, d return a vector Factor times longer
|
|
// with Factor-1 undef's between elements. Ex:
|
|
// a, undef, b, undef, c, undef, d, undef (Factor=2, Index=0)
|
|
// undef, a, undef, b, undef, c, undef, d (Factor=2, Index=1)
|
|
static SDValue getWideningSpread(SDValue V, unsigned Factor, unsigned Index,
|
|
const SDLoc &DL, SelectionDAG &DAG) {
|
|
|
|
MVT VT = V.getSimpleValueType();
|
|
unsigned EltBits = VT.getScalarSizeInBits();
|
|
ElementCount EC = VT.getVectorElementCount();
|
|
V = DAG.getBitcast(VT.changeTypeToInteger(), V);
|
|
|
|
MVT WideVT = MVT::getVectorVT(MVT::getIntegerVT(EltBits * Factor), EC);
|
|
|
|
SDValue Result = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, V);
|
|
// TODO: On rv32, the constant becomes a splat_vector_parts which does not
|
|
// allow the SHL to fold away if Index is 0.
|
|
if (Index != 0)
|
|
Result = DAG.getNode(ISD::SHL, DL, WideVT, Result,
|
|
DAG.getConstant(EltBits * Index, DL, WideVT));
|
|
// Make sure to use original element type
|
|
MVT ResultVT = MVT::getVectorVT(VT.getVectorElementType(),
|
|
EC.multiplyCoefficientBy(Factor));
|
|
return DAG.getBitcast(ResultVT, Result);
|
|
}
|
|
|
|
// Given two input vectors of <[vscale x ]n x ty>, use vwaddu.vv and vwmaccu.vx
|
|
// to create an interleaved vector of <[vscale x] n*2 x ty>.
|
|
// This requires that the size of ty is less than the subtarget's maximum ELEN.
|
|
static SDValue getWideningInterleave(SDValue EvenV, SDValue OddV,
|
|
const SDLoc &DL, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
|
|
// FIXME: Not only does this optimize the code, it fixes some correctness
|
|
// issues because MIR does not have freeze.
|
|
if (EvenV.isUndef())
|
|
return getWideningSpread(OddV, 2, 1, DL, DAG);
|
|
if (OddV.isUndef())
|
|
return getWideningSpread(EvenV, 2, 0, DL, DAG);
|
|
|
|
MVT VecVT = EvenV.getSimpleValueType();
|
|
MVT VecContainerVT = VecVT; // <vscale x n x ty>
|
|
// Convert fixed vectors to scalable if needed
|
|
if (VecContainerVT.isFixedLengthVector()) {
|
|
VecContainerVT = getContainerForFixedLengthVector(DAG, VecVT, Subtarget);
|
|
EvenV = convertToScalableVector(VecContainerVT, EvenV, DAG, Subtarget);
|
|
OddV = convertToScalableVector(VecContainerVT, OddV, DAG, Subtarget);
|
|
}
|
|
|
|
assert(VecVT.getScalarSizeInBits() < Subtarget.getELen());
|
|
|
|
// We're working with a vector of the same size as the resulting
|
|
// interleaved vector, but with half the number of elements and
|
|
// twice the SEW (Hence the restriction on not using the maximum
|
|
// ELEN)
|
|
MVT WideVT =
|
|
MVT::getVectorVT(MVT::getIntegerVT(VecVT.getScalarSizeInBits() * 2),
|
|
VecVT.getVectorElementCount());
|
|
MVT WideContainerVT = WideVT; // <vscale x n x ty*2>
|
|
if (WideContainerVT.isFixedLengthVector())
|
|
WideContainerVT = getContainerForFixedLengthVector(DAG, WideVT, Subtarget);
|
|
|
|
// Bitcast the input vectors to integers in case they are FP
|
|
VecContainerVT = VecContainerVT.changeTypeToInteger();
|
|
EvenV = DAG.getBitcast(VecContainerVT, EvenV);
|
|
OddV = DAG.getBitcast(VecContainerVT, OddV);
|
|
|
|
auto [Mask, VL] = getDefaultVLOps(VecVT, VecContainerVT, DL, DAG, Subtarget);
|
|
SDValue Passthru = DAG.getUNDEF(WideContainerVT);
|
|
|
|
SDValue Interleaved;
|
|
if (Subtarget.hasStdExtZvbb()) {
|
|
// Interleaved = (OddV << VecVT.getScalarSizeInBits()) + EvenV.
|
|
SDValue OffsetVec =
|
|
DAG.getConstant(VecVT.getScalarSizeInBits(), DL, VecContainerVT);
|
|
Interleaved = DAG.getNode(RISCVISD::VWSLL_VL, DL, WideContainerVT, OddV,
|
|
OffsetVec, Passthru, Mask, VL);
|
|
Interleaved = DAG.getNode(RISCVISD::VWADDU_W_VL, DL, WideContainerVT,
|
|
Interleaved, EvenV, Passthru, Mask, VL);
|
|
} else {
|
|
// FIXME: We should freeze the odd vector here. We already handled the case
|
|
// of provably undef/poison above.
|
|
|
|
// Widen EvenV and OddV with 0s and add one copy of OddV to EvenV with
|
|
// vwaddu.vv
|
|
Interleaved = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideContainerVT, EvenV,
|
|
OddV, Passthru, Mask, VL);
|
|
|
|
// Then get OddV * by 2^(VecVT.getScalarSizeInBits() - 1)
|
|
SDValue AllOnesVec = DAG.getSplatVector(
|
|
VecContainerVT, DL, DAG.getAllOnesConstant(DL, Subtarget.getXLenVT()));
|
|
SDValue OddsMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideContainerVT,
|
|
OddV, AllOnesVec, Passthru, Mask, VL);
|
|
|
|
// Add the two together so we get
|
|
// (OddV * 0xff...ff) + (OddV + EvenV)
|
|
// = (OddV * 0x100...00) + EvenV
|
|
// = (OddV << VecVT.getScalarSizeInBits()) + EvenV
|
|
// Note the ADD_VL and VLMULU_VL should get selected as vwmaccu.vx
|
|
Interleaved = DAG.getNode(RISCVISD::ADD_VL, DL, WideContainerVT,
|
|
Interleaved, OddsMul, Passthru, Mask, VL);
|
|
}
|
|
|
|
// Bitcast from <vscale x n * ty*2> to <vscale x 2*n x ty>
|
|
MVT ResultContainerVT = MVT::getVectorVT(
|
|
VecVT.getVectorElementType(), // Make sure to use original type
|
|
VecContainerVT.getVectorElementCount().multiplyCoefficientBy(2));
|
|
Interleaved = DAG.getBitcast(ResultContainerVT, Interleaved);
|
|
|
|
// Convert back to a fixed vector if needed
|
|
MVT ResultVT =
|
|
MVT::getVectorVT(VecVT.getVectorElementType(),
|
|
VecVT.getVectorElementCount().multiplyCoefficientBy(2));
|
|
if (ResultVT.isFixedLengthVector())
|
|
Interleaved =
|
|
convertFromScalableVector(ResultVT, Interleaved, DAG, Subtarget);
|
|
|
|
return Interleaved;
|
|
}
|
|
|
|
// If we have a vector of bits that we want to reverse, we can use a vbrev on a
|
|
// larger element type, e.g. v32i1 can be reversed with a v1i32 bitreverse.
|
|
static SDValue lowerBitreverseShuffle(ShuffleVectorSDNode *SVN,
|
|
SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
SDLoc DL(SVN);
|
|
MVT VT = SVN->getSimpleValueType(0);
|
|
SDValue V = SVN->getOperand(0);
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
|
|
assert(VT.getVectorElementType() == MVT::i1);
|
|
|
|
if (!ShuffleVectorInst::isReverseMask(SVN->getMask(),
|
|
SVN->getMask().size()) ||
|
|
!SVN->getOperand(1).isUndef())
|
|
return SDValue();
|
|
|
|
unsigned ViaEltSize = std::max((uint64_t)8, PowerOf2Ceil(NumElts));
|
|
EVT ViaVT = EVT::getVectorVT(
|
|
*DAG.getContext(), EVT::getIntegerVT(*DAG.getContext(), ViaEltSize), 1);
|
|
EVT ViaBitVT =
|
|
EVT::getVectorVT(*DAG.getContext(), MVT::i1, ViaVT.getScalarSizeInBits());
|
|
|
|
// If we don't have zvbb or the larger element type > ELEN, the operation will
|
|
// be illegal.
|
|
if (!Subtarget.getTargetLowering()->isOperationLegalOrCustom(ISD::BITREVERSE,
|
|
ViaVT) ||
|
|
!Subtarget.getTargetLowering()->isTypeLegal(ViaBitVT))
|
|
return SDValue();
|
|
|
|
// If the bit vector doesn't fit exactly into the larger element type, we need
|
|
// to insert it into the larger vector and then shift up the reversed bits
|
|
// afterwards to get rid of the gap introduced.
|
|
if (ViaEltSize > NumElts)
|
|
V = DAG.getInsertSubvector(DL, DAG.getUNDEF(ViaBitVT), V, 0);
|
|
|
|
SDValue Res =
|
|
DAG.getNode(ISD::BITREVERSE, DL, ViaVT, DAG.getBitcast(ViaVT, V));
|
|
|
|
// Shift up the reversed bits if the vector didn't exactly fit into the larger
|
|
// element type.
|
|
if (ViaEltSize > NumElts)
|
|
Res = DAG.getNode(ISD::SRL, DL, ViaVT, Res,
|
|
DAG.getConstant(ViaEltSize - NumElts, DL, ViaVT));
|
|
|
|
Res = DAG.getBitcast(ViaBitVT, Res);
|
|
|
|
if (ViaEltSize > NumElts)
|
|
Res = DAG.getExtractSubvector(DL, VT, Res, 0);
|
|
return Res;
|
|
}
|
|
|
|
static bool isLegalBitRotate(ArrayRef<int> Mask, EVT VT,
|
|
const RISCVSubtarget &Subtarget,
|
|
MVT &RotateVT, unsigned &RotateAmt) {
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
unsigned EltSizeInBits = VT.getScalarSizeInBits();
|
|
unsigned NumSubElts;
|
|
if (!ShuffleVectorInst::isBitRotateMask(Mask, EltSizeInBits, 2,
|
|
NumElts, NumSubElts, RotateAmt))
|
|
return false;
|
|
RotateVT = MVT::getVectorVT(MVT::getIntegerVT(EltSizeInBits * NumSubElts),
|
|
NumElts / NumSubElts);
|
|
|
|
// We might have a RotateVT that isn't legal, e.g. v4i64 on zve32x.
|
|
return Subtarget.getTargetLowering()->isTypeLegal(RotateVT);
|
|
}
|
|
|
|
// Given a shuffle mask like <3, 0, 1, 2, 7, 4, 5, 6> for v8i8, we can
|
|
// reinterpret it as a v2i32 and rotate it right by 8 instead. We can lower this
|
|
// as a vror.vi if we have Zvkb, or otherwise as a vsll, vsrl and vor.
|
|
static SDValue lowerVECTOR_SHUFFLEAsRotate(ShuffleVectorSDNode *SVN,
|
|
SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
SDLoc DL(SVN);
|
|
|
|
EVT VT = SVN->getValueType(0);
|
|
unsigned RotateAmt;
|
|
MVT RotateVT;
|
|
if (!isLegalBitRotate(SVN->getMask(), VT, Subtarget, RotateVT, RotateAmt))
|
|
return SDValue();
|
|
|
|
SDValue Op = DAG.getBitcast(RotateVT, SVN->getOperand(0));
|
|
|
|
SDValue Rotate;
|
|
// A rotate of an i16 by 8 bits either direction is equivalent to a byteswap,
|
|
// so canonicalize to vrev8.
|
|
if (RotateVT.getScalarType() == MVT::i16 && RotateAmt == 8)
|
|
Rotate = DAG.getNode(ISD::BSWAP, DL, RotateVT, Op);
|
|
else
|
|
Rotate = DAG.getNode(ISD::ROTL, DL, RotateVT, Op,
|
|
DAG.getConstant(RotateAmt, DL, RotateVT));
|
|
|
|
return DAG.getBitcast(VT, Rotate);
|
|
}
|
|
|
|
// If compiling with an exactly known VLEN, see if we can split a
|
|
// shuffle on m2 or larger into a small number of m1 sized shuffles
|
|
// which write each destination registers exactly once.
|
|
static SDValue lowerShuffleViaVRegSplitting(ShuffleVectorSDNode *SVN,
|
|
SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
SDLoc DL(SVN);
|
|
MVT VT = SVN->getSimpleValueType(0);
|
|
SDValue V1 = SVN->getOperand(0);
|
|
SDValue V2 = SVN->getOperand(1);
|
|
ArrayRef<int> Mask = SVN->getMask();
|
|
|
|
// If we don't know exact data layout, not much we can do. If this
|
|
// is already m1 or smaller, no point in splitting further.
|
|
const auto VLen = Subtarget.getRealVLen();
|
|
if (!VLen || VT.getSizeInBits().getFixedValue() <= *VLen)
|
|
return SDValue();
|
|
|
|
// Avoid picking up bitrotate patterns which we have a linear-in-lmul
|
|
// expansion for.
|
|
unsigned RotateAmt;
|
|
MVT RotateVT;
|
|
if (isLegalBitRotate(Mask, VT, Subtarget, RotateVT, RotateAmt))
|
|
return SDValue();
|
|
|
|
MVT ElemVT = VT.getVectorElementType();
|
|
unsigned ElemsPerVReg = *VLen / ElemVT.getFixedSizeInBits();
|
|
|
|
EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
|
|
MVT OneRegVT = MVT::getVectorVT(ElemVT, ElemsPerVReg);
|
|
MVT M1VT = getContainerForFixedLengthVector(DAG, OneRegVT, Subtarget);
|
|
assert(M1VT == RISCVTargetLowering::getM1VT(M1VT));
|
|
unsigned NumOpElts = M1VT.getVectorMinNumElements();
|
|
unsigned NumElts = ContainerVT.getVectorMinNumElements();
|
|
unsigned NumOfSrcRegs = NumElts / NumOpElts;
|
|
unsigned NumOfDestRegs = NumElts / NumOpElts;
|
|
// The following semantically builds up a fixed length concat_vector
|
|
// of the component shuffle_vectors. We eagerly lower to scalable here
|
|
// to avoid DAG combining it back to a large shuffle_vector again.
|
|
V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
|
|
V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
|
|
SmallVector<SmallVector<std::tuple<unsigned, unsigned, SmallVector<int>>>>
|
|
Operands;
|
|
processShuffleMasks(
|
|
Mask, NumOfSrcRegs, NumOfDestRegs, NumOfDestRegs,
|
|
[&]() { Operands.emplace_back(); },
|
|
[&](ArrayRef<int> SrcSubMask, unsigned SrcVecIdx, unsigned DstVecIdx) {
|
|
Operands.emplace_back().emplace_back(SrcVecIdx, UINT_MAX,
|
|
SmallVector<int>(SrcSubMask));
|
|
},
|
|
[&](ArrayRef<int> SrcSubMask, unsigned Idx1, unsigned Idx2, bool NewReg) {
|
|
if (NewReg)
|
|
Operands.emplace_back();
|
|
Operands.back().emplace_back(Idx1, Idx2, SmallVector<int>(SrcSubMask));
|
|
});
|
|
assert(Operands.size() == NumOfDestRegs && "Whole vector must be processed");
|
|
// Note: check that we do not emit too many shuffles here to prevent code
|
|
// size explosion.
|
|
// TODO: investigate, if it can be improved by extra analysis of the masks to
|
|
// check if the code is more profitable.
|
|
unsigned NumShuffles = std::accumulate(
|
|
Operands.begin(), Operands.end(), 0u,
|
|
[&](unsigned N,
|
|
ArrayRef<std::tuple<unsigned, unsigned, SmallVector<int>>> Data) {
|
|
if (Data.empty())
|
|
return N;
|
|
N += Data.size();
|
|
for (const auto &P : Data) {
|
|
unsigned Idx2 = std::get<1>(P);
|
|
ArrayRef<int> Mask = std::get<2>(P);
|
|
if (Idx2 != UINT_MAX)
|
|
++N;
|
|
else if (ShuffleVectorInst::isIdentityMask(Mask, Mask.size()))
|
|
--N;
|
|
}
|
|
return N;
|
|
});
|
|
if ((NumOfDestRegs > 2 && NumShuffles > NumOfDestRegs) ||
|
|
(NumOfDestRegs <= 2 && NumShuffles >= 4))
|
|
return SDValue();
|
|
auto ExtractValue = [&, &DAG = DAG](SDValue SrcVec, unsigned ExtractIdx) {
|
|
SDValue SubVec = DAG.getExtractSubvector(DL, M1VT, SrcVec, ExtractIdx);
|
|
SubVec = convertFromScalableVector(OneRegVT, SubVec, DAG, Subtarget);
|
|
return SubVec;
|
|
};
|
|
auto PerformShuffle = [&, &DAG = DAG](SDValue SubVec1, SDValue SubVec2,
|
|
ArrayRef<int> Mask) {
|
|
SDValue SubVec = DAG.getVectorShuffle(OneRegVT, DL, SubVec1, SubVec2, Mask);
|
|
return SubVec;
|
|
};
|
|
SDValue Vec = DAG.getUNDEF(ContainerVT);
|
|
for (auto [I, Data] : enumerate(Operands)) {
|
|
if (Data.empty())
|
|
continue;
|
|
SmallDenseMap<unsigned, SDValue, 4> Values;
|
|
for (unsigned I : seq<unsigned>(Data.size())) {
|
|
const auto &[Idx1, Idx2, _] = Data[I];
|
|
// If the shuffle contains permutation of odd number of elements,
|
|
// Idx1 might be used already in the first iteration.
|
|
//
|
|
// Idx1 = shuffle Idx1, Idx2
|
|
// Idx1 = shuffle Idx1, Idx3
|
|
SDValue &V = Values.try_emplace(Idx1).first->getSecond();
|
|
if (!V)
|
|
V = ExtractValue(Idx1 >= NumOfSrcRegs ? V2 : V1,
|
|
(Idx1 % NumOfSrcRegs) * NumOpElts);
|
|
if (Idx2 != UINT_MAX) {
|
|
SDValue &V = Values.try_emplace(Idx2).first->getSecond();
|
|
if (!V)
|
|
V = ExtractValue(Idx2 >= NumOfSrcRegs ? V2 : V1,
|
|
(Idx2 % NumOfSrcRegs) * NumOpElts);
|
|
}
|
|
}
|
|
SDValue V;
|
|
for (const auto &[Idx1, Idx2, Mask] : Data) {
|
|
SDValue V1 = Values.at(Idx1);
|
|
SDValue V2 = Idx2 == UINT_MAX ? V1 : Values.at(Idx2);
|
|
V = PerformShuffle(V1, V2, Mask);
|
|
Values[Idx1] = V;
|
|
}
|
|
|
|
unsigned InsertIdx = I * NumOpElts;
|
|
V = convertToScalableVector(M1VT, V, DAG, Subtarget);
|
|
Vec = DAG.getInsertSubvector(DL, Vec, V, InsertIdx);
|
|
}
|
|
return convertFromScalableVector(VT, Vec, DAG, Subtarget);
|
|
}
|
|
|
|
// Matches a subset of compress masks with a contiguous prefix of output
|
|
// elements. This could be extended to allow gaps by deciding which
|
|
// source elements to spuriously demand.
|
|
static bool isCompressMask(ArrayRef<int> Mask) {
|
|
int Last = -1;
|
|
bool SawUndef = false;
|
|
for (unsigned i = 0; i < Mask.size(); i++) {
|
|
if (Mask[i] == -1) {
|
|
SawUndef = true;
|
|
continue;
|
|
}
|
|
if (SawUndef)
|
|
return false;
|
|
if (i > (unsigned)Mask[i])
|
|
return false;
|
|
if (Mask[i] <= Last)
|
|
return false;
|
|
Last = Mask[i];
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Given a shuffle where the indices are disjoint between the two sources,
|
|
/// e.g.:
|
|
///
|
|
/// t2:v4i8 = vector_shuffle t0:v4i8, t1:v4i8, <2, 7, 1, 4>
|
|
///
|
|
/// Merge the two sources into one and do a single source shuffle:
|
|
///
|
|
/// t2:v4i8 = vselect t1:v4i8, t0:v4i8, <0, 1, 0, 1>
|
|
/// t3:v4i8 = vector_shuffle t2:v4i8, undef, <2, 3, 1, 0>
|
|
///
|
|
/// A vselect will either be merged into a masked instruction or be lowered as a
|
|
/// vmerge.vvm, which is cheaper than a vrgather.vv.
|
|
static SDValue lowerDisjointIndicesShuffle(ShuffleVectorSDNode *SVN,
|
|
SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
MVT VT = SVN->getSimpleValueType(0);
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
SDLoc DL(SVN);
|
|
|
|
const ArrayRef<int> Mask = SVN->getMask();
|
|
|
|
// Work out which source each lane will come from.
|
|
SmallVector<int, 16> Srcs(Mask.size(), -1);
|
|
|
|
for (int Idx : Mask) {
|
|
if (Idx == -1)
|
|
continue;
|
|
unsigned SrcIdx = Idx % Mask.size();
|
|
int Src = (uint32_t)Idx < Mask.size() ? 0 : 1;
|
|
if (Srcs[SrcIdx] == -1)
|
|
// Mark this source as using this lane.
|
|
Srcs[SrcIdx] = Src;
|
|
else if (Srcs[SrcIdx] != Src)
|
|
// The other source is using this lane: not disjoint.
|
|
return SDValue();
|
|
}
|
|
|
|
SmallVector<SDValue> SelectMaskVals;
|
|
for (int Lane : Srcs) {
|
|
if (Lane == -1)
|
|
SelectMaskVals.push_back(DAG.getUNDEF(XLenVT));
|
|
else
|
|
SelectMaskVals.push_back(DAG.getConstant(Lane ? 0 : 1, DL, XLenVT));
|
|
}
|
|
MVT MaskVT = VT.changeVectorElementType(MVT::i1);
|
|
SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, SelectMaskVals);
|
|
SDValue Select = DAG.getNode(ISD::VSELECT, DL, VT, SelectMask,
|
|
SVN->getOperand(0), SVN->getOperand(1));
|
|
|
|
// Move all indices relative to the first source.
|
|
SmallVector<int> NewMask(Mask.size());
|
|
for (unsigned I = 0; I < Mask.size(); I++) {
|
|
if (Mask[I] == -1)
|
|
NewMask[I] = -1;
|
|
else
|
|
NewMask[I] = Mask[I] % Mask.size();
|
|
}
|
|
|
|
return DAG.getVectorShuffle(VT, DL, Select, DAG.getUNDEF(VT), NewMask);
|
|
}
|
|
|
|
/// Is this mask local (i.e. elements only move within their local span), and
|
|
/// repeating (that is, the same rearrangement is being done within each span)?
|
|
static bool isLocalRepeatingShuffle(ArrayRef<int> Mask, int Span) {
|
|
// Require a prefix from the original mask until the consumer code
|
|
// is adjusted to rewrite the mask instead of just taking a prefix.
|
|
for (auto [I, M] : enumerate(Mask)) {
|
|
if (M == -1)
|
|
continue;
|
|
if ((M / Span) != (int)(I / Span))
|
|
return false;
|
|
int SpanIdx = I % Span;
|
|
int Expected = M % Span;
|
|
if (Mask[SpanIdx] != Expected)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Is this mask only using elements from the first span of the input?
|
|
static bool isLowSourceShuffle(ArrayRef<int> Mask, int Span) {
|
|
return all_of(Mask, [&](const auto &Idx) { return Idx == -1 || Idx < Span; });
|
|
}
|
|
|
|
/// Return true for a mask which performs an arbitrary shuffle within the first
|
|
/// span, and then repeats that same result across all remaining spans. Note
|
|
/// that this doesn't check if all the inputs come from a single span!
|
|
static bool isSpanSplatShuffle(ArrayRef<int> Mask, int Span) {
|
|
// Require a prefix from the original mask until the consumer code
|
|
// is adjusted to rewrite the mask instead of just taking a prefix.
|
|
for (auto [I, M] : enumerate(Mask)) {
|
|
if (M == -1)
|
|
continue;
|
|
int SpanIdx = I % Span;
|
|
if (Mask[SpanIdx] != M)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Try to widen element type to get a new mask value for a better permutation
|
|
/// sequence. This doesn't try to inspect the widened mask for profitability;
|
|
/// we speculate the widened form is equal or better. This has the effect of
|
|
/// reducing mask constant sizes - allowing cheaper materialization sequences
|
|
/// - and index sequence sizes - reducing register pressure and materialization
|
|
/// cost, at the cost of (possibly) an extra VTYPE toggle.
|
|
static SDValue tryWidenMaskForShuffle(SDValue Op, SelectionDAG &DAG) {
|
|
SDLoc DL(Op);
|
|
MVT VT = Op.getSimpleValueType();
|
|
MVT ScalarVT = VT.getVectorElementType();
|
|
unsigned ElementSize = ScalarVT.getFixedSizeInBits();
|
|
SDValue V0 = Op.getOperand(0);
|
|
SDValue V1 = Op.getOperand(1);
|
|
ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask();
|
|
|
|
// Avoid wasted work leading to isTypeLegal check failing below
|
|
if (ElementSize > 32)
|
|
return SDValue();
|
|
|
|
SmallVector<int, 8> NewMask;
|
|
if (!widenShuffleMaskElts(Mask, NewMask))
|
|
return SDValue();
|
|
|
|
MVT NewEltVT = VT.isFloatingPoint() ? MVT::getFloatingPointVT(ElementSize * 2)
|
|
: MVT::getIntegerVT(ElementSize * 2);
|
|
MVT NewVT = MVT::getVectorVT(NewEltVT, VT.getVectorNumElements() / 2);
|
|
if (!DAG.getTargetLoweringInfo().isTypeLegal(NewVT))
|
|
return SDValue();
|
|
V0 = DAG.getBitcast(NewVT, V0);
|
|
V1 = DAG.getBitcast(NewVT, V1);
|
|
return DAG.getBitcast(VT, DAG.getVectorShuffle(NewVT, DL, V0, V1, NewMask));
|
|
}
|
|
|
|
static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
SDValue V1 = Op.getOperand(0);
|
|
SDValue V2 = Op.getOperand(1);
|
|
SDLoc DL(Op);
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
MVT VT = Op.getSimpleValueType();
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
|
|
|
|
if (VT.getVectorElementType() == MVT::i1) {
|
|
// Lower to a vror.vi of a larger element type if possible before we promote
|
|
// i1s to i8s.
|
|
if (SDValue V = lowerVECTOR_SHUFFLEAsRotate(SVN, DAG, Subtarget))
|
|
return V;
|
|
if (SDValue V = lowerBitreverseShuffle(SVN, DAG, Subtarget))
|
|
return V;
|
|
|
|
// Promote i1 shuffle to i8 shuffle.
|
|
MVT WidenVT = MVT::getVectorVT(MVT::i8, VT.getVectorElementCount());
|
|
V1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenVT, V1);
|
|
V2 = V2.isUndef() ? DAG.getUNDEF(WidenVT)
|
|
: DAG.getNode(ISD::ZERO_EXTEND, DL, WidenVT, V2);
|
|
SDValue Shuffled = DAG.getVectorShuffle(WidenVT, DL, V1, V2, SVN->getMask());
|
|
return DAG.getSetCC(DL, VT, Shuffled, DAG.getConstant(0, DL, WidenVT),
|
|
ISD::SETNE);
|
|
}
|
|
|
|
MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
|
|
|
|
// Store the return value in a single variable instead of structured bindings
|
|
// so that we can pass it to GetSlide below, which cannot capture structured
|
|
// bindings until C++20.
|
|
auto TrueMaskVL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
|
|
auto [TrueMask, VL] = TrueMaskVL;
|
|
|
|
if (SVN->isSplat()) {
|
|
const int Lane = SVN->getSplatIndex();
|
|
if (Lane >= 0) {
|
|
MVT SVT = VT.getVectorElementType();
|
|
|
|
// Turn splatted vector load into a strided load with an X0 stride.
|
|
SDValue V = V1;
|
|
// Peek through CONCAT_VECTORS as VectorCombine can concat a vector
|
|
// with undef.
|
|
// FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
|
|
int Offset = Lane;
|
|
if (V.getOpcode() == ISD::CONCAT_VECTORS) {
|
|
int OpElements =
|
|
V.getOperand(0).getSimpleValueType().getVectorNumElements();
|
|
V = V.getOperand(Offset / OpElements);
|
|
Offset %= OpElements;
|
|
}
|
|
|
|
// We need to ensure the load isn't atomic or volatile.
|
|
if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
|
|
auto *Ld = cast<LoadSDNode>(V);
|
|
Offset *= SVT.getStoreSize();
|
|
SDValue NewAddr = DAG.getMemBasePlusOffset(
|
|
Ld->getBasePtr(), TypeSize::getFixed(Offset), DL);
|
|
|
|
// If this is SEW=64 on RV32, use a strided load with a stride of x0.
|
|
if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
|
|
SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
|
|
SDValue IntID =
|
|
DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
|
|
SDValue Ops[] = {Ld->getChain(),
|
|
IntID,
|
|
DAG.getUNDEF(ContainerVT),
|
|
NewAddr,
|
|
DAG.getRegister(RISCV::X0, XLenVT),
|
|
VL};
|
|
SDValue NewLoad = DAG.getMemIntrinsicNode(
|
|
ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
|
|
DAG.getMachineFunction().getMachineMemOperand(
|
|
Ld->getMemOperand(), Offset, SVT.getStoreSize()));
|
|
DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
|
|
return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
|
|
}
|
|
|
|
MVT SplatVT = ContainerVT;
|
|
|
|
// f16 with zvfhmin and bf16 need to use an integer scalar load.
|
|
if (SVT == MVT::bf16 ||
|
|
(SVT == MVT::f16 && !Subtarget.hasStdExtZfh())) {
|
|
SVT = MVT::i16;
|
|
SplatVT = ContainerVT.changeVectorElementType(SVT);
|
|
}
|
|
|
|
// Otherwise use a scalar load and splat. This will give the best
|
|
// opportunity to fold a splat into the operation. ISel can turn it into
|
|
// the x0 strided load if we aren't able to fold away the select.
|
|
if (SVT.isFloatingPoint())
|
|
V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
|
|
Ld->getPointerInfo().getWithOffset(Offset),
|
|
Ld->getBaseAlign(), Ld->getMemOperand()->getFlags());
|
|
else
|
|
V = DAG.getExtLoad(ISD::EXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
|
|
Ld->getPointerInfo().getWithOffset(Offset), SVT,
|
|
Ld->getBaseAlign(),
|
|
Ld->getMemOperand()->getFlags());
|
|
DAG.makeEquivalentMemoryOrdering(Ld, V);
|
|
|
|
unsigned Opc = SplatVT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
|
|
: RISCVISD::VMV_V_X_VL;
|
|
SDValue Splat =
|
|
DAG.getNode(Opc, DL, SplatVT, DAG.getUNDEF(ContainerVT), V, VL);
|
|
Splat = DAG.getBitcast(ContainerVT, Splat);
|
|
return convertFromScalableVector(VT, Splat, DAG, Subtarget);
|
|
}
|
|
|
|
V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
|
|
assert(Lane < (int)NumElts && "Unexpected lane!");
|
|
SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT,
|
|
V1, DAG.getConstant(Lane, DL, XLenVT),
|
|
DAG.getUNDEF(ContainerVT), TrueMask, VL);
|
|
return convertFromScalableVector(VT, Gather, DAG, Subtarget);
|
|
}
|
|
}
|
|
|
|
// For exact VLEN m2 or greater, try to split to m1 operations if we
|
|
// can split cleanly.
|
|
if (SDValue V = lowerShuffleViaVRegSplitting(SVN, DAG, Subtarget))
|
|
return V;
|
|
|
|
ArrayRef<int> Mask = SVN->getMask();
|
|
|
|
if (SDValue V =
|
|
lowerVECTOR_SHUFFLEAsVSlide1(DL, VT, V1, V2, Mask, Subtarget, DAG))
|
|
return V;
|
|
|
|
if (SDValue V =
|
|
lowerVECTOR_SHUFFLEAsVSlidedown(DL, VT, V1, V2, Mask, Subtarget, DAG))
|
|
return V;
|
|
|
|
// A bitrotate will be one instruction on Zvkb, so try to lower to it first if
|
|
// available.
|
|
if (Subtarget.hasStdExtZvkb())
|
|
if (SDValue V = lowerVECTOR_SHUFFLEAsRotate(SVN, DAG, Subtarget))
|
|
return V;
|
|
|
|
if (ShuffleVectorInst::isReverseMask(Mask, NumElts) && V2.isUndef() &&
|
|
NumElts != 2)
|
|
return DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V1);
|
|
|
|
// If this is a deinterleave(2,4,8) and we can widen the vector, then we can
|
|
// use shift and truncate to perform the shuffle.
|
|
// TODO: For Factor=6, we can perform the first step of the deinterleave via
|
|
// shift-and-trunc reducing total cost for everything except an mf8 result.
|
|
// TODO: For Factor=4,8, we can do the same when the ratio isn't high enough
|
|
// to do the entire operation.
|
|
if (VT.getScalarSizeInBits() < Subtarget.getELen()) {
|
|
const unsigned MaxFactor = Subtarget.getELen() / VT.getScalarSizeInBits();
|
|
assert(MaxFactor == 2 || MaxFactor == 4 || MaxFactor == 8);
|
|
for (unsigned Factor = 2; Factor <= MaxFactor; Factor <<= 1) {
|
|
unsigned Index = 0;
|
|
if (ShuffleVectorInst::isDeInterleaveMaskOfFactor(Mask, Factor, Index) &&
|
|
1 < count_if(Mask, [](int Idx) { return Idx != -1; })) {
|
|
if (SDValue Src = getSingleShuffleSrc(VT, V1, V2))
|
|
return getDeinterleaveShiftAndTrunc(DL, VT, Src, Factor, Index, DAG);
|
|
if (1 < count_if(Mask,
|
|
[&Mask](int Idx) { return Idx < (int)Mask.size(); }) &&
|
|
1 < count_if(Mask, [&Mask](int Idx) {
|
|
return Idx >= (int)Mask.size();
|
|
})) {
|
|
// Narrow each source and concatenate them.
|
|
// FIXME: For small LMUL it is better to concatenate first.
|
|
MVT EltVT = VT.getVectorElementType();
|
|
auto EltCnt = VT.getVectorElementCount();
|
|
MVT SubVT =
|
|
MVT::getVectorVT(EltVT, EltCnt.divideCoefficientBy(Factor));
|
|
|
|
SDValue Lo =
|
|
getDeinterleaveShiftAndTrunc(DL, SubVT, V1, Factor, Index, DAG);
|
|
SDValue Hi =
|
|
getDeinterleaveShiftAndTrunc(DL, SubVT, V2, Factor, Index, DAG);
|
|
|
|
SDValue Concat =
|
|
DAG.getNode(ISD::CONCAT_VECTORS, DL,
|
|
SubVT.getDoubleNumVectorElementsVT(), Lo, Hi);
|
|
if (Factor == 2)
|
|
return Concat;
|
|
|
|
SDValue Vec = DAG.getUNDEF(VT);
|
|
return DAG.getInsertSubvector(DL, Vec, Concat, 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If this is a deinterleave(2), try using vunzip{a,b}. This mostly catches
|
|
// e64 which can't match above.
|
|
unsigned Index = 0;
|
|
if (Subtarget.hasVendorXRivosVizip() &&
|
|
ShuffleVectorInst::isDeInterleaveMaskOfFactor(Mask, 2, Index) &&
|
|
1 < count_if(Mask, [](int Idx) { return Idx != -1; })) {
|
|
unsigned Opc =
|
|
Index == 0 ? RISCVISD::RI_VUNZIP2A_VL : RISCVISD::RI_VUNZIP2B_VL;
|
|
if (V2.isUndef())
|
|
return lowerVZIP(Opc, V1, V2, DL, DAG, Subtarget);
|
|
if (auto VLEN = Subtarget.getRealVLen();
|
|
VLEN && VT.getSizeInBits().getKnownMinValue() % *VLEN == 0)
|
|
return lowerVZIP(Opc, V1, V2, DL, DAG, Subtarget);
|
|
if (SDValue Src = foldConcatVector(V1, V2)) {
|
|
EVT NewVT = VT.getDoubleNumVectorElementsVT();
|
|
Src = DAG.getExtractSubvector(DL, NewVT, Src, 0);
|
|
SDValue Res =
|
|
lowerVZIP(Opc, Src, DAG.getUNDEF(NewVT), DL, DAG, Subtarget);
|
|
return DAG.getExtractSubvector(DL, VT, Res, 0);
|
|
}
|
|
// Deinterleave each source and concatenate them, or concat first, then
|
|
// deinterleave.
|
|
if (1 < count_if(Mask,
|
|
[&Mask](int Idx) { return Idx < (int)Mask.size(); }) &&
|
|
1 < count_if(Mask,
|
|
[&Mask](int Idx) { return Idx >= (int)Mask.size(); })) {
|
|
|
|
const unsigned EltSize = VT.getScalarSizeInBits();
|
|
const unsigned MinVLMAX = Subtarget.getRealMinVLen() / EltSize;
|
|
if (NumElts < MinVLMAX) {
|
|
MVT ConcatVT = VT.getDoubleNumVectorElementsVT();
|
|
SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, DL, ConcatVT, V1, V2);
|
|
SDValue Res =
|
|
lowerVZIP(Opc, Concat, DAG.getUNDEF(ConcatVT), DL, DAG, Subtarget);
|
|
return DAG.getExtractSubvector(DL, VT, Res, 0);
|
|
}
|
|
|
|
SDValue Lo = lowerVZIP(Opc, V1, DAG.getUNDEF(VT), DL, DAG, Subtarget);
|
|
SDValue Hi = lowerVZIP(Opc, V2, DAG.getUNDEF(VT), DL, DAG, Subtarget);
|
|
|
|
MVT SubVT = VT.getHalfNumVectorElementsVT();
|
|
return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT,
|
|
DAG.getExtractSubvector(DL, SubVT, Lo, 0),
|
|
DAG.getExtractSubvector(DL, SubVT, Hi, 0));
|
|
}
|
|
}
|
|
|
|
if (SDValue V =
|
|
lowerVECTOR_SHUFFLEAsVSlideup(DL, VT, V1, V2, Mask, Subtarget, DAG))
|
|
return V;
|
|
|
|
// Detect an interleave shuffle and lower to
|
|
// (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1))
|
|
int EvenSrc, OddSrc;
|
|
if (isInterleaveShuffle(Mask, VT, EvenSrc, OddSrc, Subtarget) &&
|
|
!(NumElts == 2 &&
|
|
ShuffleVectorInst::isSingleSourceMask(Mask, Mask.size()))) {
|
|
// Extract the halves of the vectors.
|
|
MVT HalfVT = VT.getHalfNumVectorElementsVT();
|
|
|
|
// Recognize if one half is actually undef; the matching above will
|
|
// otherwise reuse the even stream for the undef one. This improves
|
|
// spread(2) shuffles.
|
|
bool LaneIsUndef[2] = { true, true};
|
|
for (unsigned i = 0; i < Mask.size(); i++)
|
|
LaneIsUndef[i % 2] &= (Mask[i] == -1);
|
|
|
|
int Size = Mask.size();
|
|
SDValue EvenV, OddV;
|
|
if (LaneIsUndef[0]) {
|
|
EvenV = DAG.getUNDEF(HalfVT);
|
|
} else {
|
|
assert(EvenSrc >= 0 && "Undef source?");
|
|
EvenV = (EvenSrc / Size) == 0 ? V1 : V2;
|
|
EvenV = DAG.getExtractSubvector(DL, HalfVT, EvenV, EvenSrc % Size);
|
|
}
|
|
|
|
if (LaneIsUndef[1]) {
|
|
OddV = DAG.getUNDEF(HalfVT);
|
|
} else {
|
|
assert(OddSrc >= 0 && "Undef source?");
|
|
OddV = (OddSrc / Size) == 0 ? V1 : V2;
|
|
OddV = DAG.getExtractSubvector(DL, HalfVT, OddV, OddSrc % Size);
|
|
}
|
|
|
|
// Prefer vzip2a if available.
|
|
// TODO: Extend to matching zip2b if EvenSrc and OddSrc allow.
|
|
if (Subtarget.hasVendorXRivosVizip()) {
|
|
EvenV = DAG.getInsertSubvector(DL, DAG.getUNDEF(VT), EvenV, 0);
|
|
OddV = DAG.getInsertSubvector(DL, DAG.getUNDEF(VT), OddV, 0);
|
|
return lowerVZIP(RISCVISD::RI_VZIP2A_VL, EvenV, OddV, DL, DAG, Subtarget);
|
|
}
|
|
return getWideningInterleave(EvenV, OddV, DL, DAG, Subtarget);
|
|
}
|
|
|
|
// Recognize a pattern which can handled via a pair of vslideup/vslidedown
|
|
// instructions (in any combination) with masking on the second instruction.
|
|
// Also handles masked slides into an identity source, and single slides
|
|
// without masking. Avoid matching bit rotates (which are not also element
|
|
// rotates) as slide pairs. This is a performance heuristic, not a
|
|
// functional check.
|
|
std::array<std::pair<int, int>, 2> SrcInfo;
|
|
unsigned RotateAmt;
|
|
MVT RotateVT;
|
|
if (::isMaskedSlidePair(Mask, SrcInfo) &&
|
|
(isElementRotate(SrcInfo, NumElts) ||
|
|
!isLegalBitRotate(Mask, VT, Subtarget, RotateVT, RotateAmt))) {
|
|
SDValue Sources[2];
|
|
auto GetSourceFor = [&](const std::pair<int, int> &Info) {
|
|
int SrcIdx = Info.first;
|
|
assert(SrcIdx == 0 || SrcIdx == 1);
|
|
SDValue &Src = Sources[SrcIdx];
|
|
if (!Src) {
|
|
SDValue SrcV = SrcIdx == 0 ? V1 : V2;
|
|
Src = convertToScalableVector(ContainerVT, SrcV, DAG, Subtarget);
|
|
}
|
|
return Src;
|
|
};
|
|
auto GetSlide = [&](const std::pair<int, int> &Src, SDValue Mask,
|
|
SDValue Passthru) {
|
|
auto [TrueMask, VL] = TrueMaskVL;
|
|
SDValue SrcV = GetSourceFor(Src);
|
|
int SlideAmt = Src.second;
|
|
if (SlideAmt == 0) {
|
|
// Should never be second operation
|
|
assert(Mask == TrueMask);
|
|
return SrcV;
|
|
}
|
|
if (SlideAmt < 0)
|
|
return getVSlidedown(DAG, Subtarget, DL, ContainerVT, Passthru, SrcV,
|
|
DAG.getConstant(-SlideAmt, DL, XLenVT), Mask, VL,
|
|
RISCVVType::TAIL_AGNOSTIC);
|
|
return getVSlideup(DAG, Subtarget, DL, ContainerVT, Passthru, SrcV,
|
|
DAG.getConstant(SlideAmt, DL, XLenVT), Mask, VL,
|
|
RISCVVType::TAIL_AGNOSTIC);
|
|
};
|
|
|
|
if (SrcInfo[1].first == -1) {
|
|
SDValue Res = DAG.getUNDEF(ContainerVT);
|
|
Res = GetSlide(SrcInfo[0], TrueMask, Res);
|
|
return convertFromScalableVector(VT, Res, DAG, Subtarget);
|
|
}
|
|
|
|
if (Subtarget.hasVendorXRivosVizip()) {
|
|
bool TryWiden = false;
|
|
unsigned Factor;
|
|
if (isZipEven(SrcInfo, Mask, Factor)) {
|
|
if (Factor == 1) {
|
|
SDValue Src1 = SrcInfo[0].first == 0 ? V1 : V2;
|
|
SDValue Src2 = SrcInfo[1].first == 0 ? V1 : V2;
|
|
return lowerVZIP(RISCVISD::RI_VZIPEVEN_VL, Src1, Src2, DL, DAG,
|
|
Subtarget);
|
|
}
|
|
TryWiden = true;
|
|
}
|
|
if (isZipOdd(SrcInfo, Mask, Factor)) {
|
|
if (Factor == 1) {
|
|
SDValue Src1 = SrcInfo[1].first == 0 ? V1 : V2;
|
|
SDValue Src2 = SrcInfo[0].first == 0 ? V1 : V2;
|
|
return lowerVZIP(RISCVISD::RI_VZIPODD_VL, Src1, Src2, DL, DAG,
|
|
Subtarget);
|
|
}
|
|
TryWiden = true;
|
|
}
|
|
// If we found a widening oppurtunity which would let us form a
|
|
// zipeven or zipodd, use the generic code to widen the shuffle
|
|
// and recurse through this logic.
|
|
if (TryWiden)
|
|
if (SDValue V = tryWidenMaskForShuffle(Op, DAG))
|
|
return V;
|
|
}
|
|
|
|
// Build the mask. Note that vslideup unconditionally preserves elements
|
|
// below the slide amount in the destination, and thus those elements are
|
|
// undefined in the mask. If the mask ends up all true (or undef), it
|
|
// will be folded away by general logic.
|
|
SmallVector<SDValue> MaskVals;
|
|
for (unsigned i = 0; i != Mask.size(); ++i) {
|
|
int M = Mask[i];
|
|
if (M < 0 || (SrcInfo[1].second > 0 && i < (unsigned)SrcInfo[1].second)) {
|
|
MaskVals.push_back(DAG.getUNDEF(XLenVT));
|
|
continue;
|
|
}
|
|
int Src = M >= (int)NumElts;
|
|
int Diff = (int)i - (M % NumElts);
|
|
bool C = Src == SrcInfo[1].first && Diff == SrcInfo[1].second;
|
|
assert(C ^ (Src == SrcInfo[0].first && Diff == SrcInfo[0].second) &&
|
|
"Must match exactly one of the two slides");
|
|
MaskVals.push_back(DAG.getConstant(C, DL, XLenVT));
|
|
}
|
|
assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
|
|
MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
|
|
SDValue SelectMask = convertToScalableVector(
|
|
ContainerVT.changeVectorElementType(MVT::i1),
|
|
DAG.getBuildVector(MaskVT, DL, MaskVals), DAG, Subtarget);
|
|
|
|
SDValue Res = DAG.getUNDEF(ContainerVT);
|
|
Res = GetSlide(SrcInfo[0], TrueMask, Res);
|
|
Res = GetSlide(SrcInfo[1], SelectMask, Res);
|
|
return convertFromScalableVector(VT, Res, DAG, Subtarget);
|
|
}
|
|
|
|
// Handle any remaining single source shuffles
|
|
assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
|
|
if (V2.isUndef()) {
|
|
// We might be able to express the shuffle as a bitrotate. But even if we
|
|
// don't have Zvkb and have to expand, the expanded sequence of approx. 2
|
|
// shifts and a vor will have a higher throughput than a vrgather.
|
|
if (SDValue V = lowerVECTOR_SHUFFLEAsRotate(SVN, DAG, Subtarget))
|
|
return V;
|
|
|
|
if (SDValue V = lowerVECTOR_SHUFFLEAsVRGatherVX(SVN, Subtarget, DAG))
|
|
return V;
|
|
|
|
// Match a spread(4,8) which can be done via extend and shift. Spread(2)
|
|
// is fully covered in interleave(2) above, so it is ignored here.
|
|
if (VT.getScalarSizeInBits() < Subtarget.getELen()) {
|
|
unsigned MaxFactor = Subtarget.getELen() / VT.getScalarSizeInBits();
|
|
assert(MaxFactor == 2 || MaxFactor == 4 || MaxFactor == 8);
|
|
for (unsigned Factor = 4; Factor <= MaxFactor; Factor <<= 1) {
|
|
unsigned Index;
|
|
if (isSpreadMask(Mask, Factor, Index)) {
|
|
MVT NarrowVT =
|
|
MVT::getVectorVT(VT.getVectorElementType(), NumElts / Factor);
|
|
SDValue Src = DAG.getExtractSubvector(DL, NarrowVT, V1, 0);
|
|
return getWideningSpread(Src, Factor, Index, DL, DAG);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If only a prefix of the source elements influence a prefix of the
|
|
// destination elements, try to see if we can reduce the required LMUL
|
|
unsigned MinVLen = Subtarget.getRealMinVLen();
|
|
unsigned MinVLMAX = MinVLen / VT.getScalarSizeInBits();
|
|
if (NumElts > MinVLMAX) {
|
|
unsigned MaxIdx = 0;
|
|
for (auto [I, M] : enumerate(Mask)) {
|
|
if (M == -1)
|
|
continue;
|
|
MaxIdx = std::max(std::max((unsigned)I, (unsigned)M), MaxIdx);
|
|
}
|
|
unsigned NewNumElts =
|
|
std::max((uint64_t)MinVLMAX, PowerOf2Ceil(MaxIdx + 1));
|
|
if (NewNumElts != NumElts) {
|
|
MVT NewVT = MVT::getVectorVT(VT.getVectorElementType(), NewNumElts);
|
|
V1 = DAG.getExtractSubvector(DL, NewVT, V1, 0);
|
|
SDValue Res = DAG.getVectorShuffle(NewVT, DL, V1, DAG.getUNDEF(NewVT),
|
|
Mask.take_front(NewNumElts));
|
|
return DAG.getInsertSubvector(DL, DAG.getUNDEF(VT), Res, 0);
|
|
}
|
|
}
|
|
|
|
// Before hitting generic lowering fallbacks, try to widen the mask
|
|
// to a wider SEW.
|
|
if (SDValue V = tryWidenMaskForShuffle(Op, DAG))
|
|
return V;
|
|
|
|
// Can we generate a vcompress instead of a vrgather? These scale better
|
|
// at high LMUL, at the cost of not being able to fold a following select
|
|
// into them. The mask constants are also smaller than the index vector
|
|
// constants, and thus easier to materialize.
|
|
if (isCompressMask(Mask)) {
|
|
SmallVector<SDValue> MaskVals(NumElts,
|
|
DAG.getConstant(false, DL, XLenVT));
|
|
for (auto Idx : Mask) {
|
|
if (Idx == -1)
|
|
break;
|
|
assert(Idx >= 0 && (unsigned)Idx < NumElts);
|
|
MaskVals[Idx] = DAG.getConstant(true, DL, XLenVT);
|
|
}
|
|
MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
|
|
SDValue CompressMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
|
|
return DAG.getNode(ISD::VECTOR_COMPRESS, DL, VT, V1, CompressMask,
|
|
DAG.getUNDEF(VT));
|
|
}
|
|
|
|
if (VT.getScalarSizeInBits() == 8 &&
|
|
any_of(Mask, [&](const auto &Idx) { return Idx > 255; })) {
|
|
// On such a vector we're unable to use i8 as the index type.
|
|
// FIXME: We could promote the index to i16 and use vrgatherei16, but that
|
|
// may involve vector splitting if we're already at LMUL=8, or our
|
|
// user-supplied maximum fixed-length LMUL.
|
|
return SDValue();
|
|
}
|
|
|
|
// Base case for the two operand recursion below - handle the worst case
|
|
// single source shuffle.
|
|
unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL;
|
|
MVT IndexVT = VT.changeTypeToInteger();
|
|
// Since we can't introduce illegal index types at this stage, use i16 and
|
|
// vrgatherei16 if the corresponding index type for plain vrgather is greater
|
|
// than XLenVT.
|
|
if (IndexVT.getScalarType().bitsGT(XLenVT)) {
|
|
GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL;
|
|
IndexVT = IndexVT.changeVectorElementType(MVT::i16);
|
|
}
|
|
|
|
// If the mask allows, we can do all the index computation in 16 bits. This
|
|
// requires less work and less register pressure at high LMUL, and creates
|
|
// smaller constants which may be cheaper to materialize.
|
|
if (IndexVT.getScalarType().bitsGT(MVT::i16) && isUInt<16>(NumElts - 1) &&
|
|
(IndexVT.getSizeInBits() / Subtarget.getRealMinVLen()) > 1) {
|
|
GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL;
|
|
IndexVT = IndexVT.changeVectorElementType(MVT::i16);
|
|
}
|
|
|
|
MVT IndexContainerVT =
|
|
ContainerVT.changeVectorElementType(IndexVT.getScalarType());
|
|
|
|
V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
|
|
SmallVector<SDValue> GatherIndicesLHS;
|
|
for (int MaskIndex : Mask) {
|
|
bool IsLHSIndex = MaskIndex < (int)NumElts && MaskIndex >= 0;
|
|
GatherIndicesLHS.push_back(IsLHSIndex
|
|
? DAG.getConstant(MaskIndex, DL, XLenVT)
|
|
: DAG.getUNDEF(XLenVT));
|
|
}
|
|
SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
|
|
LHSIndices =
|
|
convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget);
|
|
// At m1 and less, there's no point trying any of the high LMUL splitting
|
|
// techniques. TODO: Should we reconsider this for DLEN < VLEN?
|
|
if (NumElts <= MinVLMAX) {
|
|
SDValue Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices,
|
|
DAG.getUNDEF(ContainerVT), TrueMask, VL);
|
|
return convertFromScalableVector(VT, Gather, DAG, Subtarget);
|
|
}
|
|
|
|
const MVT M1VT = RISCVTargetLowering::getM1VT(ContainerVT);
|
|
EVT SubIndexVT = M1VT.changeVectorElementType(IndexVT.getScalarType());
|
|
auto [InnerTrueMask, InnerVL] =
|
|
getDefaultScalableVLOps(M1VT, DL, DAG, Subtarget);
|
|
int N =
|
|
ContainerVT.getVectorMinNumElements() / M1VT.getVectorMinNumElements();
|
|
assert(isPowerOf2_32(N) && N <= 8);
|
|
|
|
// If we have a locally repeating mask, then we can reuse the first
|
|
// register in the index register group for all registers within the
|
|
// source register group. TODO: This generalizes to m2, and m4.
|
|
if (isLocalRepeatingShuffle(Mask, MinVLMAX)) {
|
|
SDValue SubIndex = DAG.getExtractSubvector(DL, SubIndexVT, LHSIndices, 0);
|
|
SDValue Gather = DAG.getUNDEF(ContainerVT);
|
|
for (int i = 0; i < N; i++) {
|
|
unsigned SubIdx = M1VT.getVectorMinNumElements() * i;
|
|
SDValue SubV1 = DAG.getExtractSubvector(DL, M1VT, V1, SubIdx);
|
|
SDValue SubVec =
|
|
DAG.getNode(GatherVVOpc, DL, M1VT, SubV1, SubIndex,
|
|
DAG.getUNDEF(M1VT), InnerTrueMask, InnerVL);
|
|
Gather = DAG.getInsertSubvector(DL, Gather, SubVec, SubIdx);
|
|
}
|
|
return convertFromScalableVector(VT, Gather, DAG, Subtarget);
|
|
}
|
|
|
|
// If we have a shuffle which only uses the first register in our source
|
|
// register group, and repeats the same index across all spans, we can
|
|
// use a single vrgather (and possibly some register moves).
|
|
// TODO: This can be generalized for m2 or m4, or for any shuffle for
|
|
// which we can do a linear number of shuffles to form an m1 which
|
|
// contains all the output elements.
|
|
if (isLowSourceShuffle(Mask, MinVLMAX) &&
|
|
isSpanSplatShuffle(Mask, MinVLMAX)) {
|
|
SDValue SubV1 = DAG.getExtractSubvector(DL, M1VT, V1, 0);
|
|
SDValue SubIndex = DAG.getExtractSubvector(DL, SubIndexVT, LHSIndices, 0);
|
|
SDValue SubVec = DAG.getNode(GatherVVOpc, DL, M1VT, SubV1, SubIndex,
|
|
DAG.getUNDEF(M1VT), InnerTrueMask, InnerVL);
|
|
SDValue Gather = DAG.getUNDEF(ContainerVT);
|
|
for (int i = 0; i < N; i++)
|
|
Gather = DAG.getInsertSubvector(DL, Gather, SubVec,
|
|
M1VT.getVectorMinNumElements() * i);
|
|
return convertFromScalableVector(VT, Gather, DAG, Subtarget);
|
|
}
|
|
|
|
// If we have a shuffle which only uses the first register in our
|
|
// source register group, we can do a linear number of m1 vrgathers
|
|
// reusing the same source register (but with different indices)
|
|
// TODO: This can be generalized for m2 or m4, or for any shuffle
|
|
// for which we can do a vslidedown followed by this expansion.
|
|
if (isLowSourceShuffle(Mask, MinVLMAX)) {
|
|
SDValue SlideAmt =
|
|
DAG.getElementCount(DL, XLenVT, M1VT.getVectorElementCount());
|
|
SDValue SubV1 = DAG.getExtractSubvector(DL, M1VT, V1, 0);
|
|
SDValue Gather = DAG.getUNDEF(ContainerVT);
|
|
for (int i = 0; i < N; i++) {
|
|
if (i != 0)
|
|
LHSIndices = getVSlidedown(DAG, Subtarget, DL, IndexContainerVT,
|
|
DAG.getUNDEF(IndexContainerVT), LHSIndices,
|
|
SlideAmt, TrueMask, VL);
|
|
SDValue SubIndex =
|
|
DAG.getExtractSubvector(DL, SubIndexVT, LHSIndices, 0);
|
|
SDValue SubVec =
|
|
DAG.getNode(GatherVVOpc, DL, M1VT, SubV1, SubIndex,
|
|
DAG.getUNDEF(M1VT), InnerTrueMask, InnerVL);
|
|
Gather = DAG.getInsertSubvector(DL, Gather, SubVec,
|
|
M1VT.getVectorMinNumElements() * i);
|
|
}
|
|
return convertFromScalableVector(VT, Gather, DAG, Subtarget);
|
|
}
|
|
|
|
// Fallback to generic vrgather if we can't find anything better.
|
|
// On many machines, this will be O(LMUL^2)
|
|
SDValue Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices,
|
|
DAG.getUNDEF(ContainerVT), TrueMask, VL);
|
|
return convertFromScalableVector(VT, Gather, DAG, Subtarget);
|
|
}
|
|
|
|
// As a backup, shuffles can be lowered via a vrgather instruction, possibly
|
|
// merged with a second vrgather.
|
|
SmallVector<int> ShuffleMaskLHS, ShuffleMaskRHS;
|
|
|
|
// Now construct the mask that will be used by the blended vrgather operation.
|
|
// Construct the appropriate indices into each vector.
|
|
for (int MaskIndex : Mask) {
|
|
bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts;
|
|
ShuffleMaskLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0
|
|
? MaskIndex : -1);
|
|
ShuffleMaskRHS.push_back(IsLHSOrUndefIndex ? -1 : (MaskIndex - NumElts));
|
|
}
|
|
|
|
// If the mask indices are disjoint between the two sources, we can lower it
|
|
// as a vselect + a single source vrgather.vv. Don't do this if we think the
|
|
// operands may end up being lowered to something cheaper than a vrgather.vv.
|
|
if (!DAG.isSplatValue(V2) && !DAG.isSplatValue(V1) &&
|
|
!ShuffleVectorSDNode::isSplatMask(ShuffleMaskLHS) &&
|
|
!ShuffleVectorSDNode::isSplatMask(ShuffleMaskRHS) &&
|
|
!ShuffleVectorInst::isIdentityMask(ShuffleMaskLHS, NumElts) &&
|
|
!ShuffleVectorInst::isIdentityMask(ShuffleMaskRHS, NumElts))
|
|
if (SDValue V = lowerDisjointIndicesShuffle(SVN, DAG, Subtarget))
|
|
return V;
|
|
|
|
// Before hitting generic lowering fallbacks, try to widen the mask
|
|
// to a wider SEW.
|
|
if (SDValue V = tryWidenMaskForShuffle(Op, DAG))
|
|
return V;
|
|
|
|
// Try to pick a profitable operand order.
|
|
bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
|
|
SwapOps = SwapOps ^ ShuffleVectorInst::isIdentityMask(ShuffleMaskRHS, NumElts);
|
|
|
|
// Recursively invoke lowering for each operand if we had two
|
|
// independent single source shuffles, and then combine the result via a
|
|
// vselect. Note that the vselect will likely be folded back into the
|
|
// second permute (vrgather, or other) by the post-isel combine.
|
|
V1 = DAG.getVectorShuffle(VT, DL, V1, DAG.getUNDEF(VT), ShuffleMaskLHS);
|
|
V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), ShuffleMaskRHS);
|
|
|
|
SmallVector<SDValue> MaskVals;
|
|
for (int MaskIndex : Mask) {
|
|
bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ !SwapOps;
|
|
MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
|
|
}
|
|
|
|
assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
|
|
MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
|
|
SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
|
|
|
|
if (SwapOps)
|
|
return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
|
|
return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V2, V1);
|
|
}
|
|
|
|
bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
|
|
// Only support legal VTs for other shuffles for now.
|
|
if (!isTypeLegal(VT))
|
|
return false;
|
|
|
|
// Support splats for any type. These should type legalize well.
|
|
if (ShuffleVectorSDNode::isSplatMask(M))
|
|
return true;
|
|
|
|
const unsigned NumElts = M.size();
|
|
MVT SVT = VT.getSimpleVT();
|
|
|
|
// Not for i1 vectors.
|
|
if (SVT.getScalarType() == MVT::i1)
|
|
return false;
|
|
|
|
std::array<std::pair<int, int>, 2> SrcInfo;
|
|
int Dummy1, Dummy2;
|
|
return ShuffleVectorInst::isReverseMask(M, NumElts) ||
|
|
(::isMaskedSlidePair(M, SrcInfo) &&
|
|
isElementRotate(SrcInfo, NumElts)) ||
|
|
isInterleaveShuffle(M, SVT, Dummy1, Dummy2, Subtarget);
|
|
}
|
|
|
|
// Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting
|
|
// the exponent.
|
|
SDValue
|
|
RISCVTargetLowering::lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
MVT VT = Op.getSimpleValueType();
|
|
unsigned EltSize = VT.getScalarSizeInBits();
|
|
SDValue Src = Op.getOperand(0);
|
|
SDLoc DL(Op);
|
|
MVT ContainerVT = VT;
|
|
|
|
SDValue Mask, VL;
|
|
if (Op->isVPOpcode()) {
|
|
Mask = Op.getOperand(1);
|
|
if (VT.isFixedLengthVector())
|
|
Mask = convertToScalableVector(getMaskTypeFor(ContainerVT), Mask, DAG,
|
|
Subtarget);
|
|
VL = Op.getOperand(2);
|
|
}
|
|
|
|
// We choose FP type that can represent the value if possible. Otherwise, we
|
|
// use rounding to zero conversion for correct exponent of the result.
|
|
// TODO: Use f16 for i8 when possible?
|
|
MVT FloatEltVT = (EltSize >= 32) ? MVT::f64 : MVT::f32;
|
|
if (!isTypeLegal(MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount())))
|
|
FloatEltVT = MVT::f32;
|
|
MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
|
|
|
|
// Legal types should have been checked in the RISCVTargetLowering
|
|
// constructor.
|
|
// TODO: Splitting may make sense in some cases.
|
|
assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) &&
|
|
"Expected legal float type!");
|
|
|
|
// For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X.
|
|
// The trailing zero count is equal to log2 of this single bit value.
|
|
if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) {
|
|
SDValue Neg = DAG.getNegative(Src, DL, VT);
|
|
Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg);
|
|
} else if (Op.getOpcode() == ISD::VP_CTTZ_ZERO_UNDEF) {
|
|
SDValue Neg = DAG.getNode(ISD::VP_SUB, DL, VT, DAG.getConstant(0, DL, VT),
|
|
Src, Mask, VL);
|
|
Src = DAG.getNode(ISD::VP_AND, DL, VT, Src, Neg, Mask, VL);
|
|
}
|
|
|
|
// We have a legal FP type, convert to it.
|
|
SDValue FloatVal;
|
|
if (FloatVT.bitsGT(VT)) {
|
|
if (Op->isVPOpcode())
|
|
FloatVal = DAG.getNode(ISD::VP_UINT_TO_FP, DL, FloatVT, Src, Mask, VL);
|
|
else
|
|
FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src);
|
|
} else {
|
|
// Use RTZ to avoid rounding influencing exponent of FloatVal.
|
|
if (VT.isFixedLengthVector()) {
|
|
ContainerVT = getContainerForFixedLengthVector(VT);
|
|
Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
|
|
}
|
|
if (!Op->isVPOpcode())
|
|
std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
|
|
SDValue RTZRM =
|
|
DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT());
|
|
MVT ContainerFloatVT =
|
|
MVT::getVectorVT(FloatEltVT, ContainerVT.getVectorElementCount());
|
|
FloatVal = DAG.getNode(RISCVISD::VFCVT_RM_F_XU_VL, DL, ContainerFloatVT,
|
|
Src, Mask, RTZRM, VL);
|
|
if (VT.isFixedLengthVector())
|
|
FloatVal = convertFromScalableVector(FloatVT, FloatVal, DAG, Subtarget);
|
|
}
|
|
// Bitcast to integer and shift the exponent to the LSB.
|
|
EVT IntVT = FloatVT.changeVectorElementTypeToInteger();
|
|
SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal);
|
|
unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23;
|
|
|
|
SDValue Exp;
|
|
// Restore back to original type. Truncation after SRL is to generate vnsrl.
|
|
if (Op->isVPOpcode()) {
|
|
Exp = DAG.getNode(ISD::VP_SRL, DL, IntVT, Bitcast,
|
|
DAG.getConstant(ShiftAmt, DL, IntVT), Mask, VL);
|
|
Exp = DAG.getVPZExtOrTrunc(DL, VT, Exp, Mask, VL);
|
|
} else {
|
|
Exp = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast,
|
|
DAG.getConstant(ShiftAmt, DL, IntVT));
|
|
if (IntVT.bitsLT(VT))
|
|
Exp = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Exp);
|
|
else if (IntVT.bitsGT(VT))
|
|
Exp = DAG.getNode(ISD::TRUNCATE, DL, VT, Exp);
|
|
}
|
|
|
|
// The exponent contains log2 of the value in biased form.
|
|
unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127;
|
|
// For trailing zeros, we just need to subtract the bias.
|
|
if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF)
|
|
return DAG.getNode(ISD::SUB, DL, VT, Exp,
|
|
DAG.getConstant(ExponentBias, DL, VT));
|
|
if (Op.getOpcode() == ISD::VP_CTTZ_ZERO_UNDEF)
|
|
return DAG.getNode(ISD::VP_SUB, DL, VT, Exp,
|
|
DAG.getConstant(ExponentBias, DL, VT), Mask, VL);
|
|
|
|
// For leading zeros, we need to remove the bias and convert from log2 to
|
|
// leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)).
|
|
unsigned Adjust = ExponentBias + (EltSize - 1);
|
|
SDValue Res;
|
|
if (Op->isVPOpcode())
|
|
Res = DAG.getNode(ISD::VP_SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Exp,
|
|
Mask, VL);
|
|
else
|
|
Res = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Exp);
|
|
|
|
// The above result with zero input equals to Adjust which is greater than
|
|
// EltSize. Hence, we can do min(Res, EltSize) for CTLZ.
|
|
if (Op.getOpcode() == ISD::CTLZ)
|
|
Res = DAG.getNode(ISD::UMIN, DL, VT, Res, DAG.getConstant(EltSize, DL, VT));
|
|
else if (Op.getOpcode() == ISD::VP_CTLZ)
|
|
Res = DAG.getNode(ISD::VP_UMIN, DL, VT, Res,
|
|
DAG.getConstant(EltSize, DL, VT), Mask, VL);
|
|
return Res;
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerVPCttzElements(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
SDValue Source = Op->getOperand(0);
|
|
MVT SrcVT = Source.getSimpleValueType();
|
|
SDValue Mask = Op->getOperand(1);
|
|
SDValue EVL = Op->getOperand(2);
|
|
|
|
if (SrcVT.isFixedLengthVector()) {
|
|
MVT ContainerVT = getContainerForFixedLengthVector(SrcVT);
|
|
Source = convertToScalableVector(ContainerVT, Source, DAG, Subtarget);
|
|
Mask = convertToScalableVector(getMaskTypeFor(ContainerVT), Mask, DAG,
|
|
Subtarget);
|
|
SrcVT = ContainerVT;
|
|
}
|
|
|
|
// Convert to boolean vector.
|
|
if (SrcVT.getScalarType() != MVT::i1) {
|
|
SDValue AllZero = DAG.getConstant(0, DL, SrcVT);
|
|
SrcVT = MVT::getVectorVT(MVT::i1, SrcVT.getVectorElementCount());
|
|
Source = DAG.getNode(RISCVISD::SETCC_VL, DL, SrcVT,
|
|
{Source, AllZero, DAG.getCondCode(ISD::SETNE),
|
|
DAG.getUNDEF(SrcVT), Mask, EVL});
|
|
}
|
|
|
|
SDValue Res = DAG.getNode(RISCVISD::VFIRST_VL, DL, XLenVT, Source, Mask, EVL);
|
|
if (Op->getOpcode() == ISD::VP_CTTZ_ELTS_ZERO_UNDEF)
|
|
// In this case, we can interpret poison as -1, so nothing to do further.
|
|
return Res;
|
|
|
|
// Convert -1 to VL.
|
|
SDValue SetCC =
|
|
DAG.getSetCC(DL, XLenVT, Res, DAG.getConstant(0, DL, XLenVT), ISD::SETLT);
|
|
Res = DAG.getSelect(DL, XLenVT, SetCC, EVL, Res);
|
|
return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Res);
|
|
}
|
|
|
|
// While RVV has alignment restrictions, we should always be able to load as a
|
|
// legal equivalently-sized byte-typed vector instead. This method is
|
|
// responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If
|
|
// the load is already correctly-aligned, it returns SDValue().
|
|
SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
auto *Load = cast<LoadSDNode>(Op);
|
|
assert(Load && Load->getMemoryVT().isVector() && "Expected vector load");
|
|
|
|
if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
|
|
Load->getMemoryVT(),
|
|
*Load->getMemOperand()))
|
|
return SDValue();
|
|
|
|
SDLoc DL(Op);
|
|
MVT VT = Op.getSimpleValueType();
|
|
unsigned EltSizeBits = VT.getScalarSizeInBits();
|
|
assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
|
|
"Unexpected unaligned RVV load type");
|
|
MVT NewVT =
|
|
MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
|
|
assert(NewVT.isValid() &&
|
|
"Expecting equally-sized RVV vector types to be legal");
|
|
SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(),
|
|
Load->getPointerInfo(), Load->getBaseAlign(),
|
|
Load->getMemOperand()->getFlags());
|
|
return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL);
|
|
}
|
|
|
|
// While RVV has alignment restrictions, we should always be able to store as a
|
|
// legal equivalently-sized byte-typed vector instead. This method is
|
|
// responsible for re-expressing a ISD::STORE via a correctly-aligned type. It
|
|
// returns SDValue() if the store is already correctly aligned.
|
|
SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
auto *Store = cast<StoreSDNode>(Op);
|
|
assert(Store && Store->getValue().getValueType().isVector() &&
|
|
"Expected vector store");
|
|
|
|
if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
|
|
Store->getMemoryVT(),
|
|
*Store->getMemOperand()))
|
|
return SDValue();
|
|
|
|
SDLoc DL(Op);
|
|
SDValue StoredVal = Store->getValue();
|
|
MVT VT = StoredVal.getSimpleValueType();
|
|
unsigned EltSizeBits = VT.getScalarSizeInBits();
|
|
assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
|
|
"Unexpected unaligned RVV store type");
|
|
MVT NewVT =
|
|
MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
|
|
assert(NewVT.isValid() &&
|
|
"Expecting equally-sized RVV vector types to be legal");
|
|
StoredVal = DAG.getBitcast(NewVT, StoredVal);
|
|
return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(),
|
|
Store->getPointerInfo(), Store->getBaseAlign(),
|
|
Store->getMemOperand()->getFlags());
|
|
}
|
|
|
|
static SDValue lowerConstant(SDValue Op, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
assert(Op.getValueType() == MVT::i64 && "Unexpected VT");
|
|
|
|
int64_t Imm = cast<ConstantSDNode>(Op)->getSExtValue();
|
|
|
|
// All simm32 constants should be handled by isel.
|
|
// NOTE: The getMaxBuildIntsCost call below should return a value >= 2 making
|
|
// this check redundant, but small immediates are common so this check
|
|
// should have better compile time.
|
|
if (isInt<32>(Imm))
|
|
return Op;
|
|
|
|
// We only need to cost the immediate, if constant pool lowering is enabled.
|
|
if (!Subtarget.useConstantPoolForLargeInts())
|
|
return Op;
|
|
|
|
RISCVMatInt::InstSeq Seq = RISCVMatInt::generateInstSeq(Imm, Subtarget);
|
|
if (Seq.size() <= Subtarget.getMaxBuildIntsCost())
|
|
return Op;
|
|
|
|
// Optimizations below are disabled for opt size. If we're optimizing for
|
|
// size, use a constant pool.
|
|
if (DAG.shouldOptForSize())
|
|
return SDValue();
|
|
|
|
// Special case. See if we can build the constant as (ADD (SLLI X, C), X) do
|
|
// that if it will avoid a constant pool.
|
|
// It will require an extra temporary register though.
|
|
// If we have Zba we can use (ADD_UW X, (SLLI X, 32)) to handle cases where
|
|
// low and high 32 bits are the same and bit 31 and 63 are set.
|
|
unsigned ShiftAmt, AddOpc;
|
|
RISCVMatInt::InstSeq SeqLo =
|
|
RISCVMatInt::generateTwoRegInstSeq(Imm, Subtarget, ShiftAmt, AddOpc);
|
|
if (!SeqLo.empty() && (SeqLo.size() + 2) <= Subtarget.getMaxBuildIntsCost())
|
|
return Op;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerConstantFP(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
MVT VT = Op.getSimpleValueType();
|
|
const APFloat &Imm = cast<ConstantFPSDNode>(Op)->getValueAPF();
|
|
|
|
// Can this constant be selected by a Zfa FLI instruction?
|
|
bool Negate = false;
|
|
int Index = getLegalZfaFPImm(Imm, VT);
|
|
|
|
// If the constant is negative, try negating.
|
|
if (Index < 0 && Imm.isNegative()) {
|
|
Index = getLegalZfaFPImm(-Imm, VT);
|
|
Negate = true;
|
|
}
|
|
|
|
// If we couldn't find a FLI lowering, fall back to generic code.
|
|
if (Index < 0)
|
|
return SDValue();
|
|
|
|
// Emit an FLI+FNEG. We use a custom node to hide from constant folding.
|
|
SDLoc DL(Op);
|
|
SDValue Const =
|
|
DAG.getNode(RISCVISD::FLI, DL, VT,
|
|
DAG.getTargetConstant(Index, DL, Subtarget.getXLenVT()));
|
|
if (!Negate)
|
|
return Const;
|
|
|
|
return DAG.getNode(ISD::FNEG, DL, VT, Const);
|
|
}
|
|
|
|
static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
SDLoc dl(Op);
|
|
AtomicOrdering FenceOrdering =
|
|
static_cast<AtomicOrdering>(Op.getConstantOperandVal(1));
|
|
SyncScope::ID FenceSSID =
|
|
static_cast<SyncScope::ID>(Op.getConstantOperandVal(2));
|
|
|
|
if (Subtarget.hasStdExtZtso()) {
|
|
// The only fence that needs an instruction is a sequentially-consistent
|
|
// cross-thread fence.
|
|
if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
|
|
FenceSSID == SyncScope::System)
|
|
return Op;
|
|
|
|
// MEMBARRIER is a compiler barrier; it codegens to a no-op.
|
|
return DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
|
|
}
|
|
|
|
// singlethread fences only synchronize with signal handlers on the same
|
|
// thread and thus only need to preserve instruction order, not actually
|
|
// enforce memory ordering.
|
|
if (FenceSSID == SyncScope::SingleThread)
|
|
// MEMBARRIER is a compiler barrier; it codegens to a no-op.
|
|
return DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
|
|
|
|
return Op;
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::LowerIS_FPCLASS(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
MVT VT = Op.getSimpleValueType();
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
unsigned Check = Op.getConstantOperandVal(1);
|
|
unsigned TDCMask = 0;
|
|
if (Check & fcSNan)
|
|
TDCMask |= RISCV::FPMASK_Signaling_NaN;
|
|
if (Check & fcQNan)
|
|
TDCMask |= RISCV::FPMASK_Quiet_NaN;
|
|
if (Check & fcPosInf)
|
|
TDCMask |= RISCV::FPMASK_Positive_Infinity;
|
|
if (Check & fcNegInf)
|
|
TDCMask |= RISCV::FPMASK_Negative_Infinity;
|
|
if (Check & fcPosNormal)
|
|
TDCMask |= RISCV::FPMASK_Positive_Normal;
|
|
if (Check & fcNegNormal)
|
|
TDCMask |= RISCV::FPMASK_Negative_Normal;
|
|
if (Check & fcPosSubnormal)
|
|
TDCMask |= RISCV::FPMASK_Positive_Subnormal;
|
|
if (Check & fcNegSubnormal)
|
|
TDCMask |= RISCV::FPMASK_Negative_Subnormal;
|
|
if (Check & fcPosZero)
|
|
TDCMask |= RISCV::FPMASK_Positive_Zero;
|
|
if (Check & fcNegZero)
|
|
TDCMask |= RISCV::FPMASK_Negative_Zero;
|
|
|
|
bool IsOneBitMask = isPowerOf2_32(TDCMask);
|
|
|
|
SDValue TDCMaskV = DAG.getConstant(TDCMask, DL, XLenVT);
|
|
|
|
if (VT.isVector()) {
|
|
SDValue Op0 = Op.getOperand(0);
|
|
MVT VT0 = Op.getOperand(0).getSimpleValueType();
|
|
|
|
if (VT.isScalableVector()) {
|
|
MVT DstVT = VT0.changeVectorElementTypeToInteger();
|
|
auto [Mask, VL] = getDefaultScalableVLOps(VT0, DL, DAG, Subtarget);
|
|
if (Op.getOpcode() == ISD::VP_IS_FPCLASS) {
|
|
Mask = Op.getOperand(2);
|
|
VL = Op.getOperand(3);
|
|
}
|
|
SDValue FPCLASS = DAG.getNode(RISCVISD::FCLASS_VL, DL, DstVT, Op0, Mask,
|
|
VL, Op->getFlags());
|
|
if (IsOneBitMask)
|
|
return DAG.getSetCC(DL, VT, FPCLASS,
|
|
DAG.getConstant(TDCMask, DL, DstVT),
|
|
ISD::CondCode::SETEQ);
|
|
SDValue AND = DAG.getNode(ISD::AND, DL, DstVT, FPCLASS,
|
|
DAG.getConstant(TDCMask, DL, DstVT));
|
|
return DAG.getSetCC(DL, VT, AND, DAG.getConstant(0, DL, DstVT),
|
|
ISD::SETNE);
|
|
}
|
|
|
|
MVT ContainerVT0 = getContainerForFixedLengthVector(VT0);
|
|
MVT ContainerVT = getContainerForFixedLengthVector(VT);
|
|
MVT ContainerDstVT = ContainerVT0.changeVectorElementTypeToInteger();
|
|
auto [Mask, VL] = getDefaultVLOps(VT0, ContainerVT0, DL, DAG, Subtarget);
|
|
if (Op.getOpcode() == ISD::VP_IS_FPCLASS) {
|
|
Mask = Op.getOperand(2);
|
|
MVT MaskContainerVT =
|
|
getContainerForFixedLengthVector(Mask.getSimpleValueType());
|
|
Mask = convertToScalableVector(MaskContainerVT, Mask, DAG, Subtarget);
|
|
VL = Op.getOperand(3);
|
|
}
|
|
Op0 = convertToScalableVector(ContainerVT0, Op0, DAG, Subtarget);
|
|
|
|
SDValue FPCLASS = DAG.getNode(RISCVISD::FCLASS_VL, DL, ContainerDstVT, Op0,
|
|
Mask, VL, Op->getFlags());
|
|
|
|
TDCMaskV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerDstVT,
|
|
DAG.getUNDEF(ContainerDstVT), TDCMaskV, VL);
|
|
if (IsOneBitMask) {
|
|
SDValue VMSEQ =
|
|
DAG.getNode(RISCVISD::SETCC_VL, DL, ContainerVT,
|
|
{FPCLASS, TDCMaskV, DAG.getCondCode(ISD::SETEQ),
|
|
DAG.getUNDEF(ContainerVT), Mask, VL});
|
|
return convertFromScalableVector(VT, VMSEQ, DAG, Subtarget);
|
|
}
|
|
SDValue AND = DAG.getNode(RISCVISD::AND_VL, DL, ContainerDstVT, FPCLASS,
|
|
TDCMaskV, DAG.getUNDEF(ContainerDstVT), Mask, VL);
|
|
|
|
SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
|
|
SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerDstVT,
|
|
DAG.getUNDEF(ContainerDstVT), SplatZero, VL);
|
|
|
|
SDValue VMSNE = DAG.getNode(RISCVISD::SETCC_VL, DL, ContainerVT,
|
|
{AND, SplatZero, DAG.getCondCode(ISD::SETNE),
|
|
DAG.getUNDEF(ContainerVT), Mask, VL});
|
|
return convertFromScalableVector(VT, VMSNE, DAG, Subtarget);
|
|
}
|
|
|
|
SDValue FCLASS = DAG.getNode(RISCVISD::FCLASS, DL, XLenVT, Op.getOperand(0));
|
|
SDValue AND = DAG.getNode(ISD::AND, DL, XLenVT, FCLASS, TDCMaskV);
|
|
SDValue Res = DAG.getSetCC(DL, XLenVT, AND, DAG.getConstant(0, DL, XLenVT),
|
|
ISD::CondCode::SETNE);
|
|
return DAG.getNode(ISD::TRUNCATE, DL, VT, Res);
|
|
}
|
|
|
|
// Lower fmaximum and fminimum. Unlike our fmax and fmin instructions, these
|
|
// operations propagate nans.
|
|
static SDValue lowerFMAXIMUM_FMINIMUM(SDValue Op, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
SDLoc DL(Op);
|
|
MVT VT = Op.getSimpleValueType();
|
|
|
|
SDValue X = Op.getOperand(0);
|
|
SDValue Y = Op.getOperand(1);
|
|
|
|
if (!VT.isVector()) {
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
// If X is a nan, replace Y with X. If Y is a nan, replace X with Y. This
|
|
// ensures that when one input is a nan, the other will also be a nan
|
|
// allowing the nan to propagate. If both inputs are nan, this will swap the
|
|
// inputs which is harmless.
|
|
|
|
SDValue NewY = Y;
|
|
if (!Op->getFlags().hasNoNaNs() && !DAG.isKnownNeverNaN(X)) {
|
|
SDValue XIsNonNan = DAG.getSetCC(DL, XLenVT, X, X, ISD::SETOEQ);
|
|
NewY = DAG.getSelect(DL, VT, XIsNonNan, Y, X);
|
|
}
|
|
|
|
SDValue NewX = X;
|
|
if (!Op->getFlags().hasNoNaNs() && !DAG.isKnownNeverNaN(Y)) {
|
|
SDValue YIsNonNan = DAG.getSetCC(DL, XLenVT, Y, Y, ISD::SETOEQ);
|
|
NewX = DAG.getSelect(DL, VT, YIsNonNan, X, Y);
|
|
}
|
|
|
|
unsigned Opc =
|
|
Op.getOpcode() == ISD::FMAXIMUM ? RISCVISD::FMAX : RISCVISD::FMIN;
|
|
return DAG.getNode(Opc, DL, VT, NewX, NewY);
|
|
}
|
|
|
|
// Check no NaNs before converting to fixed vector scalable.
|
|
bool XIsNeverNan = Op->getFlags().hasNoNaNs() || DAG.isKnownNeverNaN(X);
|
|
bool YIsNeverNan = Op->getFlags().hasNoNaNs() || DAG.isKnownNeverNaN(Y);
|
|
|
|
MVT ContainerVT = VT;
|
|
if (VT.isFixedLengthVector()) {
|
|
ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
|
|
X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
|
|
Y = convertToScalableVector(ContainerVT, Y, DAG, Subtarget);
|
|
}
|
|
|
|
SDValue Mask, VL;
|
|
if (Op->isVPOpcode()) {
|
|
Mask = Op.getOperand(2);
|
|
if (VT.isFixedLengthVector())
|
|
Mask = convertToScalableVector(getMaskTypeFor(ContainerVT), Mask, DAG,
|
|
Subtarget);
|
|
VL = Op.getOperand(3);
|
|
} else {
|
|
std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
|
|
}
|
|
|
|
SDValue NewY = Y;
|
|
if (!XIsNeverNan) {
|
|
SDValue XIsNonNan = DAG.getNode(RISCVISD::SETCC_VL, DL, Mask.getValueType(),
|
|
{X, X, DAG.getCondCode(ISD::SETOEQ),
|
|
DAG.getUNDEF(ContainerVT), Mask, VL});
|
|
NewY = DAG.getNode(RISCVISD::VMERGE_VL, DL, ContainerVT, XIsNonNan, Y, X,
|
|
DAG.getUNDEF(ContainerVT), VL);
|
|
}
|
|
|
|
SDValue NewX = X;
|
|
if (!YIsNeverNan) {
|
|
SDValue YIsNonNan = DAG.getNode(RISCVISD::SETCC_VL, DL, Mask.getValueType(),
|
|
{Y, Y, DAG.getCondCode(ISD::SETOEQ),
|
|
DAG.getUNDEF(ContainerVT), Mask, VL});
|
|
NewX = DAG.getNode(RISCVISD::VMERGE_VL, DL, ContainerVT, YIsNonNan, X, Y,
|
|
DAG.getUNDEF(ContainerVT), VL);
|
|
}
|
|
|
|
unsigned Opc =
|
|
Op.getOpcode() == ISD::FMAXIMUM || Op->getOpcode() == ISD::VP_FMAXIMUM
|
|
? RISCVISD::VFMAX_VL
|
|
: RISCVISD::VFMIN_VL;
|
|
SDValue Res = DAG.getNode(Opc, DL, ContainerVT, NewX, NewY,
|
|
DAG.getUNDEF(ContainerVT), Mask, VL);
|
|
if (VT.isFixedLengthVector())
|
|
Res = convertFromScalableVector(VT, Res, DAG, Subtarget);
|
|
return Res;
|
|
}
|
|
|
|
static SDValue lowerFABSorFNEG(SDValue Op, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
bool IsFABS = Op.getOpcode() == ISD::FABS;
|
|
assert((IsFABS || Op.getOpcode() == ISD::FNEG) &&
|
|
"Wrong opcode for lowering FABS or FNEG.");
|
|
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
MVT VT = Op.getSimpleValueType();
|
|
assert((VT == MVT::f16 || VT == MVT::bf16) && "Unexpected type");
|
|
|
|
SDLoc DL(Op);
|
|
SDValue Fmv =
|
|
DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op.getOperand(0));
|
|
|
|
APInt Mask = IsFABS ? APInt::getSignedMaxValue(16) : APInt::getSignMask(16);
|
|
Mask = Mask.sext(Subtarget.getXLen());
|
|
|
|
unsigned LogicOpc = IsFABS ? ISD::AND : ISD::XOR;
|
|
SDValue Logic =
|
|
DAG.getNode(LogicOpc, DL, XLenVT, Fmv, DAG.getConstant(Mask, DL, XLenVT));
|
|
return DAG.getNode(RISCVISD::FMV_H_X, DL, VT, Logic);
|
|
}
|
|
|
|
static SDValue lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
assert(Op.getOpcode() == ISD::FCOPYSIGN && "Unexpected opcode");
|
|
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
MVT VT = Op.getSimpleValueType();
|
|
assert((VT == MVT::f16 || VT == MVT::bf16) && "Unexpected type");
|
|
|
|
SDValue Mag = Op.getOperand(0);
|
|
SDValue Sign = Op.getOperand(1);
|
|
|
|
SDLoc DL(Op);
|
|
|
|
// Get sign bit into an integer value.
|
|
unsigned SignSize = Sign.getValueSizeInBits();
|
|
SDValue SignAsInt = [&]() {
|
|
if (SignSize == Subtarget.getXLen())
|
|
return DAG.getNode(ISD::BITCAST, DL, XLenVT, Sign);
|
|
switch (SignSize) {
|
|
case 16:
|
|
return DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Sign);
|
|
case 32:
|
|
return DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, XLenVT, Sign);
|
|
case 64: {
|
|
assert(XLenVT == MVT::i32 && "Unexpected type");
|
|
// Copy the upper word to integer.
|
|
SignSize = 32;
|
|
return DAG.getNode(RISCVISD::SplitF64, DL, {MVT::i32, MVT::i32}, Sign)
|
|
.getValue(1);
|
|
}
|
|
default:
|
|
llvm_unreachable("Unexpected sign size");
|
|
}
|
|
}();
|
|
|
|
// Get the signbit at the right position for MagAsInt.
|
|
if (int ShiftAmount = (int)SignSize - (int)Mag.getValueSizeInBits())
|
|
SignAsInt = DAG.getNode(ShiftAmount > 0 ? ISD::SRL : ISD::SHL, DL, XLenVT,
|
|
SignAsInt,
|
|
DAG.getConstant(std::abs(ShiftAmount), DL, XLenVT));
|
|
|
|
// Mask the sign bit and any bits above it. The extra bits will be dropped
|
|
// when we convert back to FP.
|
|
SDValue SignMask = DAG.getConstant(
|
|
APInt::getSignMask(16).sext(Subtarget.getXLen()), DL, XLenVT);
|
|
SDValue SignBit = DAG.getNode(ISD::AND, DL, XLenVT, SignAsInt, SignMask);
|
|
|
|
// Transform Mag value to integer, and clear the sign bit.
|
|
SDValue MagAsInt = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Mag);
|
|
SDValue ClearSignMask = DAG.getConstant(
|
|
APInt::getSignedMaxValue(16).sext(Subtarget.getXLen()), DL, XLenVT);
|
|
SDValue ClearedSign =
|
|
DAG.getNode(ISD::AND, DL, XLenVT, MagAsInt, ClearSignMask);
|
|
|
|
SDValue CopiedSign = DAG.getNode(ISD::OR, DL, XLenVT, ClearedSign, SignBit,
|
|
SDNodeFlags::Disjoint);
|
|
|
|
return DAG.getNode(RISCVISD::FMV_H_X, DL, VT, CopiedSign);
|
|
}
|
|
|
|
/// Get a RISC-V target specified VL op for a given SDNode.
|
|
static unsigned getRISCVVLOp(SDValue Op) {
|
|
#define OP_CASE(NODE) \
|
|
case ISD::NODE: \
|
|
return RISCVISD::NODE##_VL;
|
|
#define VP_CASE(NODE) \
|
|
case ISD::VP_##NODE: \
|
|
return RISCVISD::NODE##_VL;
|
|
// clang-format off
|
|
switch (Op.getOpcode()) {
|
|
default:
|
|
llvm_unreachable("don't have RISC-V specified VL op for this SDNode");
|
|
OP_CASE(ADD)
|
|
OP_CASE(SUB)
|
|
OP_CASE(MUL)
|
|
OP_CASE(MULHS)
|
|
OP_CASE(MULHU)
|
|
OP_CASE(SDIV)
|
|
OP_CASE(SREM)
|
|
OP_CASE(UDIV)
|
|
OP_CASE(UREM)
|
|
OP_CASE(SHL)
|
|
OP_CASE(SRA)
|
|
OP_CASE(SRL)
|
|
OP_CASE(ROTL)
|
|
OP_CASE(ROTR)
|
|
OP_CASE(BSWAP)
|
|
OP_CASE(CTTZ)
|
|
OP_CASE(CTLZ)
|
|
OP_CASE(CTPOP)
|
|
OP_CASE(BITREVERSE)
|
|
OP_CASE(SADDSAT)
|
|
OP_CASE(UADDSAT)
|
|
OP_CASE(SSUBSAT)
|
|
OP_CASE(USUBSAT)
|
|
OP_CASE(AVGFLOORS)
|
|
OP_CASE(AVGFLOORU)
|
|
OP_CASE(AVGCEILS)
|
|
OP_CASE(AVGCEILU)
|
|
OP_CASE(FADD)
|
|
OP_CASE(FSUB)
|
|
OP_CASE(FMUL)
|
|
OP_CASE(FDIV)
|
|
OP_CASE(FNEG)
|
|
OP_CASE(FABS)
|
|
OP_CASE(FSQRT)
|
|
OP_CASE(SMIN)
|
|
OP_CASE(SMAX)
|
|
OP_CASE(UMIN)
|
|
OP_CASE(UMAX)
|
|
OP_CASE(STRICT_FADD)
|
|
OP_CASE(STRICT_FSUB)
|
|
OP_CASE(STRICT_FMUL)
|
|
OP_CASE(STRICT_FDIV)
|
|
OP_CASE(STRICT_FSQRT)
|
|
VP_CASE(ADD) // VP_ADD
|
|
VP_CASE(SUB) // VP_SUB
|
|
VP_CASE(MUL) // VP_MUL
|
|
VP_CASE(SDIV) // VP_SDIV
|
|
VP_CASE(SREM) // VP_SREM
|
|
VP_CASE(UDIV) // VP_UDIV
|
|
VP_CASE(UREM) // VP_UREM
|
|
VP_CASE(SHL) // VP_SHL
|
|
VP_CASE(FADD) // VP_FADD
|
|
VP_CASE(FSUB) // VP_FSUB
|
|
VP_CASE(FMUL) // VP_FMUL
|
|
VP_CASE(FDIV) // VP_FDIV
|
|
VP_CASE(FNEG) // VP_FNEG
|
|
VP_CASE(FABS) // VP_FABS
|
|
VP_CASE(SMIN) // VP_SMIN
|
|
VP_CASE(SMAX) // VP_SMAX
|
|
VP_CASE(UMIN) // VP_UMIN
|
|
VP_CASE(UMAX) // VP_UMAX
|
|
VP_CASE(FCOPYSIGN) // VP_FCOPYSIGN
|
|
VP_CASE(SETCC) // VP_SETCC
|
|
VP_CASE(SINT_TO_FP) // VP_SINT_TO_FP
|
|
VP_CASE(UINT_TO_FP) // VP_UINT_TO_FP
|
|
VP_CASE(BITREVERSE) // VP_BITREVERSE
|
|
VP_CASE(SADDSAT) // VP_SADDSAT
|
|
VP_CASE(UADDSAT) // VP_UADDSAT
|
|
VP_CASE(SSUBSAT) // VP_SSUBSAT
|
|
VP_CASE(USUBSAT) // VP_USUBSAT
|
|
VP_CASE(BSWAP) // VP_BSWAP
|
|
VP_CASE(CTLZ) // VP_CTLZ
|
|
VP_CASE(CTTZ) // VP_CTTZ
|
|
VP_CASE(CTPOP) // VP_CTPOP
|
|
case ISD::CTLZ_ZERO_UNDEF:
|
|
case ISD::VP_CTLZ_ZERO_UNDEF:
|
|
return RISCVISD::CTLZ_VL;
|
|
case ISD::CTTZ_ZERO_UNDEF:
|
|
case ISD::VP_CTTZ_ZERO_UNDEF:
|
|
return RISCVISD::CTTZ_VL;
|
|
case ISD::FMA:
|
|
case ISD::VP_FMA:
|
|
return RISCVISD::VFMADD_VL;
|
|
case ISD::STRICT_FMA:
|
|
return RISCVISD::STRICT_VFMADD_VL;
|
|
case ISD::AND:
|
|
case ISD::VP_AND:
|
|
if (Op.getSimpleValueType().getVectorElementType() == MVT::i1)
|
|
return RISCVISD::VMAND_VL;
|
|
return RISCVISD::AND_VL;
|
|
case ISD::OR:
|
|
case ISD::VP_OR:
|
|
if (Op.getSimpleValueType().getVectorElementType() == MVT::i1)
|
|
return RISCVISD::VMOR_VL;
|
|
return RISCVISD::OR_VL;
|
|
case ISD::XOR:
|
|
case ISD::VP_XOR:
|
|
if (Op.getSimpleValueType().getVectorElementType() == MVT::i1)
|
|
return RISCVISD::VMXOR_VL;
|
|
return RISCVISD::XOR_VL;
|
|
case ISD::VP_SELECT:
|
|
case ISD::VP_MERGE:
|
|
return RISCVISD::VMERGE_VL;
|
|
case ISD::VP_SRA:
|
|
return RISCVISD::SRA_VL;
|
|
case ISD::VP_SRL:
|
|
return RISCVISD::SRL_VL;
|
|
case ISD::VP_SQRT:
|
|
return RISCVISD::FSQRT_VL;
|
|
case ISD::VP_SIGN_EXTEND:
|
|
return RISCVISD::VSEXT_VL;
|
|
case ISD::VP_ZERO_EXTEND:
|
|
return RISCVISD::VZEXT_VL;
|
|
case ISD::VP_FP_TO_SINT:
|
|
return RISCVISD::VFCVT_RTZ_X_F_VL;
|
|
case ISD::VP_FP_TO_UINT:
|
|
return RISCVISD::VFCVT_RTZ_XU_F_VL;
|
|
case ISD::FMINNUM:
|
|
case ISD::FMINIMUMNUM:
|
|
case ISD::VP_FMINNUM:
|
|
return RISCVISD::VFMIN_VL;
|
|
case ISD::FMAXNUM:
|
|
case ISD::FMAXIMUMNUM:
|
|
case ISD::VP_FMAXNUM:
|
|
return RISCVISD::VFMAX_VL;
|
|
case ISD::LRINT:
|
|
case ISD::VP_LRINT:
|
|
case ISD::LLRINT:
|
|
case ISD::VP_LLRINT:
|
|
return RISCVISD::VFCVT_RM_X_F_VL;
|
|
}
|
|
// clang-format on
|
|
#undef OP_CASE
|
|
#undef VP_CASE
|
|
}
|
|
|
|
static bool isPromotedOpNeedingSplit(SDValue Op,
|
|
const RISCVSubtarget &Subtarget) {
|
|
return (Op.getValueType() == MVT::nxv32f16 &&
|
|
(Subtarget.hasVInstructionsF16Minimal() &&
|
|
!Subtarget.hasVInstructionsF16())) ||
|
|
Op.getValueType() == MVT::nxv32bf16;
|
|
}
|
|
|
|
static SDValue SplitVectorOp(SDValue Op, SelectionDAG &DAG) {
|
|
auto [LoVT, HiVT] = DAG.GetSplitDestVTs(Op.getValueType());
|
|
SDLoc DL(Op);
|
|
|
|
SmallVector<SDValue, 4> LoOperands(Op.getNumOperands());
|
|
SmallVector<SDValue, 4> HiOperands(Op.getNumOperands());
|
|
|
|
for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
|
|
if (!Op.getOperand(j).getValueType().isVector()) {
|
|
LoOperands[j] = Op.getOperand(j);
|
|
HiOperands[j] = Op.getOperand(j);
|
|
continue;
|
|
}
|
|
std::tie(LoOperands[j], HiOperands[j]) =
|
|
DAG.SplitVector(Op.getOperand(j), DL);
|
|
}
|
|
|
|
SDValue LoRes =
|
|
DAG.getNode(Op.getOpcode(), DL, LoVT, LoOperands, Op->getFlags());
|
|
SDValue HiRes =
|
|
DAG.getNode(Op.getOpcode(), DL, HiVT, HiOperands, Op->getFlags());
|
|
|
|
return DAG.getNode(ISD::CONCAT_VECTORS, DL, Op.getValueType(), LoRes, HiRes);
|
|
}
|
|
|
|
static SDValue SplitVPOp(SDValue Op, SelectionDAG &DAG) {
|
|
assert(ISD::isVPOpcode(Op.getOpcode()) && "Not a VP op");
|
|
auto [LoVT, HiVT] = DAG.GetSplitDestVTs(Op.getValueType());
|
|
SDLoc DL(Op);
|
|
|
|
SmallVector<SDValue, 4> LoOperands(Op.getNumOperands());
|
|
SmallVector<SDValue, 4> HiOperands(Op.getNumOperands());
|
|
|
|
for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
|
|
if (ISD::getVPExplicitVectorLengthIdx(Op.getOpcode()) == j) {
|
|
std::tie(LoOperands[j], HiOperands[j]) =
|
|
DAG.SplitEVL(Op.getOperand(j), Op.getValueType(), DL);
|
|
continue;
|
|
}
|
|
if (!Op.getOperand(j).getValueType().isVector()) {
|
|
LoOperands[j] = Op.getOperand(j);
|
|
HiOperands[j] = Op.getOperand(j);
|
|
continue;
|
|
}
|
|
std::tie(LoOperands[j], HiOperands[j]) =
|
|
DAG.SplitVector(Op.getOperand(j), DL);
|
|
}
|
|
|
|
SDValue LoRes =
|
|
DAG.getNode(Op.getOpcode(), DL, LoVT, LoOperands, Op->getFlags());
|
|
SDValue HiRes =
|
|
DAG.getNode(Op.getOpcode(), DL, HiVT, HiOperands, Op->getFlags());
|
|
|
|
return DAG.getNode(ISD::CONCAT_VECTORS, DL, Op.getValueType(), LoRes, HiRes);
|
|
}
|
|
|
|
static SDValue SplitVectorReductionOp(SDValue Op, SelectionDAG &DAG) {
|
|
SDLoc DL(Op);
|
|
|
|
auto [Lo, Hi] = DAG.SplitVector(Op.getOperand(1), DL);
|
|
auto [MaskLo, MaskHi] = DAG.SplitVector(Op.getOperand(2), DL);
|
|
auto [EVLLo, EVLHi] =
|
|
DAG.SplitEVL(Op.getOperand(3), Op.getOperand(1).getValueType(), DL);
|
|
|
|
SDValue ResLo =
|
|
DAG.getNode(Op.getOpcode(), DL, Op.getValueType(),
|
|
{Op.getOperand(0), Lo, MaskLo, EVLLo}, Op->getFlags());
|
|
return DAG.getNode(Op.getOpcode(), DL, Op.getValueType(),
|
|
{ResLo, Hi, MaskHi, EVLHi}, Op->getFlags());
|
|
}
|
|
|
|
static SDValue SplitStrictFPVectorOp(SDValue Op, SelectionDAG &DAG) {
|
|
|
|
assert(Op->isStrictFPOpcode());
|
|
|
|
auto [LoVT, HiVT] = DAG.GetSplitDestVTs(Op->getValueType(0));
|
|
|
|
SDVTList LoVTs = DAG.getVTList(LoVT, Op->getValueType(1));
|
|
SDVTList HiVTs = DAG.getVTList(HiVT, Op->getValueType(1));
|
|
|
|
SDLoc DL(Op);
|
|
|
|
SmallVector<SDValue, 4> LoOperands(Op.getNumOperands());
|
|
SmallVector<SDValue, 4> HiOperands(Op.getNumOperands());
|
|
|
|
for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
|
|
if (!Op.getOperand(j).getValueType().isVector()) {
|
|
LoOperands[j] = Op.getOperand(j);
|
|
HiOperands[j] = Op.getOperand(j);
|
|
continue;
|
|
}
|
|
std::tie(LoOperands[j], HiOperands[j]) =
|
|
DAG.SplitVector(Op.getOperand(j), DL);
|
|
}
|
|
|
|
SDValue LoRes =
|
|
DAG.getNode(Op.getOpcode(), DL, LoVTs, LoOperands, Op->getFlags());
|
|
HiOperands[0] = LoRes.getValue(1);
|
|
SDValue HiRes =
|
|
DAG.getNode(Op.getOpcode(), DL, HiVTs, HiOperands, Op->getFlags());
|
|
|
|
SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, Op->getValueType(0),
|
|
LoRes.getValue(0), HiRes.getValue(0));
|
|
return DAG.getMergeValues({V, HiRes.getValue(1)}, DL);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
switch (Op.getOpcode()) {
|
|
default:
|
|
report_fatal_error("unimplemented operand");
|
|
case ISD::ATOMIC_FENCE:
|
|
return LowerATOMIC_FENCE(Op, DAG, Subtarget);
|
|
case ISD::GlobalAddress:
|
|
return lowerGlobalAddress(Op, DAG);
|
|
case ISD::BlockAddress:
|
|
return lowerBlockAddress(Op, DAG);
|
|
case ISD::ConstantPool:
|
|
return lowerConstantPool(Op, DAG);
|
|
case ISD::JumpTable:
|
|
return lowerJumpTable(Op, DAG);
|
|
case ISD::GlobalTLSAddress:
|
|
return lowerGlobalTLSAddress(Op, DAG);
|
|
case ISD::Constant:
|
|
return lowerConstant(Op, DAG, Subtarget);
|
|
case ISD::ConstantFP:
|
|
return lowerConstantFP(Op, DAG);
|
|
case ISD::SELECT:
|
|
return lowerSELECT(Op, DAG);
|
|
case ISD::BRCOND:
|
|
return lowerBRCOND(Op, DAG);
|
|
case ISD::VASTART:
|
|
return lowerVASTART(Op, DAG);
|
|
case ISD::FRAMEADDR:
|
|
return lowerFRAMEADDR(Op, DAG);
|
|
case ISD::RETURNADDR:
|
|
return lowerRETURNADDR(Op, DAG);
|
|
case ISD::SHL_PARTS:
|
|
return lowerShiftLeftParts(Op, DAG);
|
|
case ISD::SRA_PARTS:
|
|
return lowerShiftRightParts(Op, DAG, true);
|
|
case ISD::SRL_PARTS:
|
|
return lowerShiftRightParts(Op, DAG, false);
|
|
case ISD::ROTL:
|
|
case ISD::ROTR:
|
|
if (Op.getValueType().isFixedLengthVector()) {
|
|
assert(Subtarget.hasStdExtZvkb());
|
|
return lowerToScalableOp(Op, DAG);
|
|
}
|
|
assert(Subtarget.hasVendorXTHeadBb() &&
|
|
!(Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb()) &&
|
|
"Unexpected custom legalization");
|
|
// XTHeadBb only supports rotate by constant.
|
|
if (!isa<ConstantSDNode>(Op.getOperand(1)))
|
|
return SDValue();
|
|
return Op;
|
|
case ISD::BITCAST: {
|
|
SDLoc DL(Op);
|
|
EVT VT = Op.getValueType();
|
|
SDValue Op0 = Op.getOperand(0);
|
|
EVT Op0VT = Op0.getValueType();
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
if (Op0VT == MVT::i16 &&
|
|
((VT == MVT::f16 && Subtarget.hasStdExtZfhminOrZhinxmin()) ||
|
|
(VT == MVT::bf16 && Subtarget.hasStdExtZfbfmin()))) {
|
|
SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
|
|
return DAG.getNode(RISCVISD::FMV_H_X, DL, VT, NewOp0);
|
|
}
|
|
if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
|
|
Subtarget.hasStdExtFOrZfinx()) {
|
|
SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
|
|
return DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
|
|
}
|
|
if (VT == MVT::f64 && Op0VT == MVT::i64 && !Subtarget.is64Bit() &&
|
|
Subtarget.hasStdExtDOrZdinx()) {
|
|
SDValue Lo, Hi;
|
|
std::tie(Lo, Hi) = DAG.SplitScalar(Op0, DL, MVT::i32, MVT::i32);
|
|
return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
|
|
}
|
|
|
|
// Consider other scalar<->scalar casts as legal if the types are legal.
|
|
// Otherwise expand them.
|
|
if (!VT.isVector() && !Op0VT.isVector()) {
|
|
if (isTypeLegal(VT) && isTypeLegal(Op0VT))
|
|
return Op;
|
|
return SDValue();
|
|
}
|
|
|
|
assert(!VT.isScalableVector() && !Op0VT.isScalableVector() &&
|
|
"Unexpected types");
|
|
|
|
if (VT.isFixedLengthVector()) {
|
|
// We can handle fixed length vector bitcasts with a simple replacement
|
|
// in isel.
|
|
if (Op0VT.isFixedLengthVector())
|
|
return Op;
|
|
// When bitcasting from scalar to fixed-length vector, insert the scalar
|
|
// into a one-element vector of the result type, and perform a vector
|
|
// bitcast.
|
|
if (!Op0VT.isVector()) {
|
|
EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
|
|
if (!isTypeLegal(BVT))
|
|
return SDValue();
|
|
return DAG.getBitcast(
|
|
VT, DAG.getInsertVectorElt(DL, DAG.getUNDEF(BVT), Op0, 0));
|
|
}
|
|
return SDValue();
|
|
}
|
|
// Custom-legalize bitcasts from fixed-length vector types to scalar types
|
|
// thus: bitcast the vector to a one-element vector type whose element type
|
|
// is the same as the result type, and extract the first element.
|
|
if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
|
|
EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
|
|
if (!isTypeLegal(BVT))
|
|
return SDValue();
|
|
SDValue BVec = DAG.getBitcast(BVT, Op0);
|
|
return DAG.getExtractVectorElt(DL, VT, BVec, 0);
|
|
}
|
|
return SDValue();
|
|
}
|
|
case ISD::INTRINSIC_WO_CHAIN:
|
|
return LowerINTRINSIC_WO_CHAIN(Op, DAG);
|
|
case ISD::INTRINSIC_W_CHAIN:
|
|
return LowerINTRINSIC_W_CHAIN(Op, DAG);
|
|
case ISD::INTRINSIC_VOID:
|
|
return LowerINTRINSIC_VOID(Op, DAG);
|
|
case ISD::IS_FPCLASS:
|
|
return LowerIS_FPCLASS(Op, DAG);
|
|
case ISD::BITREVERSE: {
|
|
MVT VT = Op.getSimpleValueType();
|
|
if (VT.isFixedLengthVector()) {
|
|
assert(Subtarget.hasStdExtZvbb());
|
|
return lowerToScalableOp(Op, DAG);
|
|
}
|
|
SDLoc DL(Op);
|
|
assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization");
|
|
assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode");
|
|
// Expand bitreverse to a bswap(rev8) followed by brev8.
|
|
SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0));
|
|
return DAG.getNode(RISCVISD::BREV8, DL, VT, BSwap);
|
|
}
|
|
case ISD::TRUNCATE:
|
|
case ISD::TRUNCATE_SSAT_S:
|
|
case ISD::TRUNCATE_USAT_U:
|
|
// Only custom-lower vector truncates
|
|
if (!Op.getSimpleValueType().isVector())
|
|
return Op;
|
|
return lowerVectorTruncLike(Op, DAG);
|
|
case ISD::ANY_EXTEND:
|
|
case ISD::ZERO_EXTEND:
|
|
if (Op.getOperand(0).getValueType().isVector() &&
|
|
Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
|
|
return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
|
|
return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
|
|
case ISD::SIGN_EXTEND:
|
|
if (Op.getOperand(0).getValueType().isVector() &&
|
|
Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
|
|
return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
|
|
return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
|
|
case ISD::SPLAT_VECTOR_PARTS:
|
|
return lowerSPLAT_VECTOR_PARTS(Op, DAG);
|
|
case ISD::INSERT_VECTOR_ELT:
|
|
return lowerINSERT_VECTOR_ELT(Op, DAG);
|
|
case ISD::EXTRACT_VECTOR_ELT:
|
|
return lowerEXTRACT_VECTOR_ELT(Op, DAG);
|
|
case ISD::SCALAR_TO_VECTOR: {
|
|
MVT VT = Op.getSimpleValueType();
|
|
SDLoc DL(Op);
|
|
SDValue Scalar = Op.getOperand(0);
|
|
if (VT.getVectorElementType() == MVT::i1) {
|
|
MVT WideVT = VT.changeVectorElementType(MVT::i8);
|
|
SDValue V = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, WideVT, Scalar);
|
|
return DAG.getNode(ISD::TRUNCATE, DL, VT, V);
|
|
}
|
|
MVT ContainerVT = VT;
|
|
if (VT.isFixedLengthVector())
|
|
ContainerVT = getContainerForFixedLengthVector(VT);
|
|
SDValue VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
|
|
|
|
SDValue V;
|
|
if (VT.isFloatingPoint()) {
|
|
V = DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, ContainerVT,
|
|
DAG.getUNDEF(ContainerVT), Scalar, VL);
|
|
} else {
|
|
Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, Subtarget.getXLenVT(), Scalar);
|
|
V = DAG.getNode(RISCVISD::VMV_S_X_VL, DL, ContainerVT,
|
|
DAG.getUNDEF(ContainerVT), Scalar, VL);
|
|
}
|
|
if (VT.isFixedLengthVector())
|
|
V = convertFromScalableVector(VT, V, DAG, Subtarget);
|
|
return V;
|
|
}
|
|
case ISD::VSCALE: {
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
MVT VT = Op.getSimpleValueType();
|
|
SDLoc DL(Op);
|
|
SDValue Res = DAG.getNode(RISCVISD::READ_VLENB, DL, XLenVT);
|
|
// We define our scalable vector types for lmul=1 to use a 64 bit known
|
|
// minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
|
|
// vscale as VLENB / 8.
|
|
static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!");
|
|
if (Subtarget.getRealMinVLen() < RISCV::RVVBitsPerBlock)
|
|
report_fatal_error("Support for VLEN==32 is incomplete.");
|
|
// We assume VLENB is a multiple of 8. We manually choose the best shift
|
|
// here because SimplifyDemandedBits isn't always able to simplify it.
|
|
uint64_t Val = Op.getConstantOperandVal(0);
|
|
if (isPowerOf2_64(Val)) {
|
|
uint64_t Log2 = Log2_64(Val);
|
|
if (Log2 < 3) {
|
|
SDNodeFlags Flags;
|
|
Flags.setExact(true);
|
|
Res = DAG.getNode(ISD::SRL, DL, XLenVT, Res,
|
|
DAG.getConstant(3 - Log2, DL, XLenVT), Flags);
|
|
} else if (Log2 > 3) {
|
|
Res = DAG.getNode(ISD::SHL, DL, XLenVT, Res,
|
|
DAG.getConstant(Log2 - 3, DL, XLenVT));
|
|
}
|
|
} else if ((Val % 8) == 0) {
|
|
// If the multiplier is a multiple of 8, scale it down to avoid needing
|
|
// to shift the VLENB value.
|
|
Res = DAG.getNode(ISD::MUL, DL, XLenVT, Res,
|
|
DAG.getConstant(Val / 8, DL, XLenVT));
|
|
} else {
|
|
SDNodeFlags Flags;
|
|
Flags.setExact(true);
|
|
SDValue VScale = DAG.getNode(ISD::SRL, DL, XLenVT, Res,
|
|
DAG.getConstant(3, DL, XLenVT), Flags);
|
|
Res = DAG.getNode(ISD::MUL, DL, XLenVT, VScale,
|
|
DAG.getConstant(Val, DL, XLenVT));
|
|
}
|
|
return DAG.getNode(ISD::TRUNCATE, DL, VT, Res);
|
|
}
|
|
case ISD::FPOWI: {
|
|
// Custom promote f16 powi with illegal i32 integer type on RV64. Once
|
|
// promoted this will be legalized into a libcall by LegalizeIntegerTypes.
|
|
if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() &&
|
|
Op.getOperand(1).getValueType() == MVT::i32) {
|
|
SDLoc DL(Op);
|
|
SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0));
|
|
SDValue Powi =
|
|
DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1));
|
|
return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi,
|
|
DAG.getIntPtrConstant(0, DL, /*isTarget=*/true));
|
|
}
|
|
return SDValue();
|
|
}
|
|
case ISD::FMAXIMUM:
|
|
case ISD::FMINIMUM:
|
|
if (isPromotedOpNeedingSplit(Op, Subtarget))
|
|
return SplitVectorOp(Op, DAG);
|
|
return lowerFMAXIMUM_FMINIMUM(Op, DAG, Subtarget);
|
|
case ISD::FP_EXTEND:
|
|
case ISD::FP_ROUND:
|
|
return lowerVectorFPExtendOrRoundLike(Op, DAG);
|
|
case ISD::STRICT_FP_ROUND:
|
|
case ISD::STRICT_FP_EXTEND:
|
|
return lowerStrictFPExtendOrRoundLike(Op, DAG);
|
|
case ISD::SINT_TO_FP:
|
|
case ISD::UINT_TO_FP:
|
|
if (Op.getValueType().isVector() &&
|
|
((Op.getValueType().getScalarType() == MVT::f16 &&
|
|
(Subtarget.hasVInstructionsF16Minimal() &&
|
|
!Subtarget.hasVInstructionsF16())) ||
|
|
Op.getValueType().getScalarType() == MVT::bf16)) {
|
|
if (isPromotedOpNeedingSplit(Op, Subtarget))
|
|
return SplitVectorOp(Op, DAG);
|
|
// int -> f32
|
|
SDLoc DL(Op);
|
|
MVT NVT =
|
|
MVT::getVectorVT(MVT::f32, Op.getValueType().getVectorElementCount());
|
|
SDValue NC = DAG.getNode(Op.getOpcode(), DL, NVT, Op->ops());
|
|
// f32 -> [b]f16
|
|
return DAG.getNode(ISD::FP_ROUND, DL, Op.getValueType(), NC,
|
|
DAG.getIntPtrConstant(0, DL, /*isTarget=*/true));
|
|
}
|
|
[[fallthrough]];
|
|
case ISD::FP_TO_SINT:
|
|
case ISD::FP_TO_UINT:
|
|
if (SDValue Op1 = Op.getOperand(0);
|
|
Op1.getValueType().isVector() &&
|
|
((Op1.getValueType().getScalarType() == MVT::f16 &&
|
|
(Subtarget.hasVInstructionsF16Minimal() &&
|
|
!Subtarget.hasVInstructionsF16())) ||
|
|
Op1.getValueType().getScalarType() == MVT::bf16)) {
|
|
if (isPromotedOpNeedingSplit(Op1, Subtarget))
|
|
return SplitVectorOp(Op, DAG);
|
|
// [b]f16 -> f32
|
|
SDLoc DL(Op);
|
|
MVT NVT = MVT::getVectorVT(MVT::f32,
|
|
Op1.getValueType().getVectorElementCount());
|
|
SDValue WidenVec = DAG.getNode(ISD::FP_EXTEND, DL, NVT, Op1);
|
|
// f32 -> int
|
|
return DAG.getNode(Op.getOpcode(), DL, Op.getValueType(), WidenVec);
|
|
}
|
|
[[fallthrough]];
|
|
case ISD::STRICT_FP_TO_SINT:
|
|
case ISD::STRICT_FP_TO_UINT:
|
|
case ISD::STRICT_SINT_TO_FP:
|
|
case ISD::STRICT_UINT_TO_FP: {
|
|
// RVV can only do fp<->int conversions to types half/double the size as
|
|
// the source. We custom-lower any conversions that do two hops into
|
|
// sequences.
|
|
MVT VT = Op.getSimpleValueType();
|
|
if (VT.isScalarInteger())
|
|
return lowerFP_TO_INT(Op, DAG, Subtarget);
|
|
bool IsStrict = Op->isStrictFPOpcode();
|
|
SDValue Src = Op.getOperand(0 + IsStrict);
|
|
MVT SrcVT = Src.getSimpleValueType();
|
|
if (SrcVT.isScalarInteger())
|
|
return lowerINT_TO_FP(Op, DAG, Subtarget);
|
|
if (!VT.isVector())
|
|
return Op;
|
|
SDLoc DL(Op);
|
|
MVT EltVT = VT.getVectorElementType();
|
|
MVT SrcEltVT = SrcVT.getVectorElementType();
|
|
unsigned EltSize = EltVT.getSizeInBits();
|
|
unsigned SrcEltSize = SrcEltVT.getSizeInBits();
|
|
assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
|
|
"Unexpected vector element types");
|
|
|
|
bool IsInt2FP = SrcEltVT.isInteger();
|
|
// Widening conversions
|
|
if (EltSize > (2 * SrcEltSize)) {
|
|
if (IsInt2FP) {
|
|
// Do a regular integer sign/zero extension then convert to float.
|
|
MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize / 2),
|
|
VT.getVectorElementCount());
|
|
unsigned ExtOpcode = (Op.getOpcode() == ISD::UINT_TO_FP ||
|
|
Op.getOpcode() == ISD::STRICT_UINT_TO_FP)
|
|
? ISD::ZERO_EXTEND
|
|
: ISD::SIGN_EXTEND;
|
|
SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
|
|
if (IsStrict)
|
|
return DAG.getNode(Op.getOpcode(), DL, Op->getVTList(),
|
|
Op.getOperand(0), Ext);
|
|
return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
|
|
}
|
|
// FP2Int
|
|
assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
|
|
// Do one doubling fp_extend then complete the operation by converting
|
|
// to int.
|
|
MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
|
|
if (IsStrict) {
|
|
auto [FExt, Chain] =
|
|
DAG.getStrictFPExtendOrRound(Src, Op.getOperand(0), DL, InterimFVT);
|
|
return DAG.getNode(Op.getOpcode(), DL, Op->getVTList(), Chain, FExt);
|
|
}
|
|
SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
|
|
return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
|
|
}
|
|
|
|
// Narrowing conversions
|
|
if (SrcEltSize > (2 * EltSize)) {
|
|
if (IsInt2FP) {
|
|
// One narrowing int_to_fp, then an fp_round.
|
|
assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
|
|
MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
|
|
if (IsStrict) {
|
|
SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL,
|
|
DAG.getVTList(InterimFVT, MVT::Other),
|
|
Op.getOperand(0), Src);
|
|
SDValue Chain = Int2FP.getValue(1);
|
|
return DAG.getStrictFPExtendOrRound(Int2FP, Chain, DL, VT).first;
|
|
}
|
|
SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
|
|
return DAG.getFPExtendOrRound(Int2FP, DL, VT);
|
|
}
|
|
// FP2Int
|
|
// One narrowing fp_to_int, then truncate the integer. If the float isn't
|
|
// representable by the integer, the result is poison.
|
|
MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
|
|
VT.getVectorElementCount());
|
|
if (IsStrict) {
|
|
SDValue FP2Int =
|
|
DAG.getNode(Op.getOpcode(), DL, DAG.getVTList(IVecVT, MVT::Other),
|
|
Op.getOperand(0), Src);
|
|
SDValue Res = DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
|
|
return DAG.getMergeValues({Res, FP2Int.getValue(1)}, DL);
|
|
}
|
|
SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
|
|
return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
|
|
}
|
|
|
|
// Scalable vectors can exit here. Patterns will handle equally-sized
|
|
// conversions halving/doubling ones.
|
|
if (!VT.isFixedLengthVector())
|
|
return Op;
|
|
|
|
// For fixed-length vectors we lower to a custom "VL" node.
|
|
unsigned RVVOpc = 0;
|
|
switch (Op.getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Impossible opcode");
|
|
case ISD::FP_TO_SINT:
|
|
RVVOpc = RISCVISD::VFCVT_RTZ_X_F_VL;
|
|
break;
|
|
case ISD::FP_TO_UINT:
|
|
RVVOpc = RISCVISD::VFCVT_RTZ_XU_F_VL;
|
|
break;
|
|
case ISD::SINT_TO_FP:
|
|
RVVOpc = RISCVISD::SINT_TO_FP_VL;
|
|
break;
|
|
case ISD::UINT_TO_FP:
|
|
RVVOpc = RISCVISD::UINT_TO_FP_VL;
|
|
break;
|
|
case ISD::STRICT_FP_TO_SINT:
|
|
RVVOpc = RISCVISD::STRICT_VFCVT_RTZ_X_F_VL;
|
|
break;
|
|
case ISD::STRICT_FP_TO_UINT:
|
|
RVVOpc = RISCVISD::STRICT_VFCVT_RTZ_XU_F_VL;
|
|
break;
|
|
case ISD::STRICT_SINT_TO_FP:
|
|
RVVOpc = RISCVISD::STRICT_SINT_TO_FP_VL;
|
|
break;
|
|
case ISD::STRICT_UINT_TO_FP:
|
|
RVVOpc = RISCVISD::STRICT_UINT_TO_FP_VL;
|
|
break;
|
|
}
|
|
|
|
MVT ContainerVT = getContainerForFixedLengthVector(VT);
|
|
MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
|
|
assert(ContainerVT.getVectorElementCount() == SrcContainerVT.getVectorElementCount() &&
|
|
"Expected same element count");
|
|
|
|
auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
|
|
|
|
Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
|
|
if (IsStrict) {
|
|
Src = DAG.getNode(RVVOpc, DL, DAG.getVTList(ContainerVT, MVT::Other),
|
|
Op.getOperand(0), Src, Mask, VL);
|
|
SDValue SubVec = convertFromScalableVector(VT, Src, DAG, Subtarget);
|
|
return DAG.getMergeValues({SubVec, Src.getValue(1)}, DL);
|
|
}
|
|
Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
|
|
return convertFromScalableVector(VT, Src, DAG, Subtarget);
|
|
}
|
|
case ISD::FP_TO_SINT_SAT:
|
|
case ISD::FP_TO_UINT_SAT:
|
|
return lowerFP_TO_INT_SAT(Op, DAG, Subtarget);
|
|
case ISD::FP_TO_BF16: {
|
|
// Custom lower to ensure the libcall return is passed in an FPR on hard
|
|
// float ABIs.
|
|
assert(!Subtarget.isSoftFPABI() && "Unexpected custom legalization");
|
|
SDLoc DL(Op);
|
|
MakeLibCallOptions CallOptions;
|
|
RTLIB::Libcall LC =
|
|
RTLIB::getFPROUND(Op.getOperand(0).getValueType(), MVT::bf16);
|
|
SDValue Res =
|
|
makeLibCall(DAG, LC, MVT::f32, Op.getOperand(0), CallOptions, DL).first;
|
|
if (Subtarget.is64Bit())
|
|
return DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Res);
|
|
return DAG.getBitcast(MVT::i32, Res);
|
|
}
|
|
case ISD::BF16_TO_FP: {
|
|
assert(Subtarget.hasStdExtFOrZfinx() && "Unexpected custom legalization");
|
|
MVT VT = Op.getSimpleValueType();
|
|
SDLoc DL(Op);
|
|
Op = DAG.getNode(
|
|
ISD::SHL, DL, Op.getOperand(0).getValueType(), Op.getOperand(0),
|
|
DAG.getShiftAmountConstant(16, Op.getOperand(0).getValueType(), DL));
|
|
SDValue Res = Subtarget.is64Bit()
|
|
? DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Op)
|
|
: DAG.getBitcast(MVT::f32, Op);
|
|
// fp_extend if the target VT is bigger than f32.
|
|
if (VT != MVT::f32)
|
|
return DAG.getNode(ISD::FP_EXTEND, DL, VT, Res);
|
|
return Res;
|
|
}
|
|
case ISD::STRICT_FP_TO_FP16:
|
|
case ISD::FP_TO_FP16: {
|
|
// Custom lower to ensure the libcall return is passed in an FPR on hard
|
|
// float ABIs.
|
|
assert(Subtarget.hasStdExtFOrZfinx() && "Unexpected custom legalisation");
|
|
SDLoc DL(Op);
|
|
MakeLibCallOptions CallOptions;
|
|
bool IsStrict = Op->isStrictFPOpcode();
|
|
SDValue Op0 = IsStrict ? Op.getOperand(1) : Op.getOperand(0);
|
|
SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
|
|
RTLIB::Libcall LC = RTLIB::getFPROUND(Op0.getValueType(), MVT::f16);
|
|
SDValue Res;
|
|
std::tie(Res, Chain) =
|
|
makeLibCall(DAG, LC, MVT::f32, Op0, CallOptions, DL, Chain);
|
|
if (Subtarget.is64Bit())
|
|
return DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Res);
|
|
SDValue Result = DAG.getBitcast(MVT::i32, IsStrict ? Res.getValue(0) : Res);
|
|
if (IsStrict)
|
|
return DAG.getMergeValues({Result, Chain}, DL);
|
|
return Result;
|
|
}
|
|
case ISD::STRICT_FP16_TO_FP:
|
|
case ISD::FP16_TO_FP: {
|
|
// Custom lower to ensure the libcall argument is passed in an FPR on hard
|
|
// float ABIs.
|
|
assert(Subtarget.hasStdExtFOrZfinx() && "Unexpected custom legalisation");
|
|
SDLoc DL(Op);
|
|
MakeLibCallOptions CallOptions;
|
|
bool IsStrict = Op->isStrictFPOpcode();
|
|
SDValue Op0 = IsStrict ? Op.getOperand(1) : Op.getOperand(0);
|
|
SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
|
|
SDValue Arg = Subtarget.is64Bit()
|
|
? DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Op0)
|
|
: DAG.getBitcast(MVT::f32, Op0);
|
|
SDValue Res;
|
|
std::tie(Res, Chain) = makeLibCall(DAG, RTLIB::FPEXT_F16_F32, MVT::f32, Arg,
|
|
CallOptions, DL, Chain);
|
|
if (IsStrict)
|
|
return DAG.getMergeValues({Res, Chain}, DL);
|
|
return Res;
|
|
}
|
|
case ISD::FTRUNC:
|
|
case ISD::FCEIL:
|
|
case ISD::FFLOOR:
|
|
case ISD::FNEARBYINT:
|
|
case ISD::FRINT:
|
|
case ISD::FROUND:
|
|
case ISD::FROUNDEVEN:
|
|
if (isPromotedOpNeedingSplit(Op, Subtarget))
|
|
return SplitVectorOp(Op, DAG);
|
|
return lowerFTRUNC_FCEIL_FFLOOR_FROUND(Op, DAG, Subtarget);
|
|
case ISD::LRINT:
|
|
case ISD::LLRINT:
|
|
if (Op.getValueType().isVector())
|
|
return lowerVectorXRINT(Op, DAG, Subtarget);
|
|
[[fallthrough]];
|
|
case ISD::LROUND:
|
|
case ISD::LLROUND: {
|
|
assert(Op.getOperand(0).getValueType() == MVT::f16 &&
|
|
"Unexpected custom legalisation");
|
|
SDLoc DL(Op);
|
|
SDValue Ext = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0));
|
|
return DAG.getNode(Op.getOpcode(), DL, Op.getValueType(), Ext);
|
|
}
|
|
case ISD::STRICT_LRINT:
|
|
case ISD::STRICT_LLRINT:
|
|
case ISD::STRICT_LROUND:
|
|
case ISD::STRICT_LLROUND: {
|
|
assert(Op.getOperand(1).getValueType() == MVT::f16 &&
|
|
"Unexpected custom legalisation");
|
|
SDLoc DL(Op);
|
|
SDValue Ext = DAG.getNode(ISD::STRICT_FP_EXTEND, DL, {MVT::f32, MVT::Other},
|
|
{Op.getOperand(0), Op.getOperand(1)});
|
|
return DAG.getNode(Op.getOpcode(), DL, {Op.getValueType(), MVT::Other},
|
|
{Ext.getValue(1), Ext.getValue(0)});
|
|
}
|
|
case ISD::VECREDUCE_ADD:
|
|
case ISD::VECREDUCE_UMAX:
|
|
case ISD::VECREDUCE_SMAX:
|
|
case ISD::VECREDUCE_UMIN:
|
|
case ISD::VECREDUCE_SMIN:
|
|
return lowerVECREDUCE(Op, DAG);
|
|
case ISD::VECREDUCE_AND:
|
|
case ISD::VECREDUCE_OR:
|
|
case ISD::VECREDUCE_XOR:
|
|
if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
|
|
return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false);
|
|
return lowerVECREDUCE(Op, DAG);
|
|
case ISD::VECREDUCE_FADD:
|
|
case ISD::VECREDUCE_SEQ_FADD:
|
|
case ISD::VECREDUCE_FMIN:
|
|
case ISD::VECREDUCE_FMAX:
|
|
case ISD::VECREDUCE_FMAXIMUM:
|
|
case ISD::VECREDUCE_FMINIMUM:
|
|
return lowerFPVECREDUCE(Op, DAG);
|
|
case ISD::VP_REDUCE_ADD:
|
|
case ISD::VP_REDUCE_UMAX:
|
|
case ISD::VP_REDUCE_SMAX:
|
|
case ISD::VP_REDUCE_UMIN:
|
|
case ISD::VP_REDUCE_SMIN:
|
|
case ISD::VP_REDUCE_FADD:
|
|
case ISD::VP_REDUCE_SEQ_FADD:
|
|
case ISD::VP_REDUCE_FMIN:
|
|
case ISD::VP_REDUCE_FMAX:
|
|
case ISD::VP_REDUCE_FMINIMUM:
|
|
case ISD::VP_REDUCE_FMAXIMUM:
|
|
if (isPromotedOpNeedingSplit(Op.getOperand(1), Subtarget))
|
|
return SplitVectorReductionOp(Op, DAG);
|
|
return lowerVPREDUCE(Op, DAG);
|
|
case ISD::VP_REDUCE_AND:
|
|
case ISD::VP_REDUCE_OR:
|
|
case ISD::VP_REDUCE_XOR:
|
|
if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1)
|
|
return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true);
|
|
return lowerVPREDUCE(Op, DAG);
|
|
case ISD::VP_CTTZ_ELTS:
|
|
case ISD::VP_CTTZ_ELTS_ZERO_UNDEF:
|
|
return lowerVPCttzElements(Op, DAG);
|
|
case ISD::UNDEF: {
|
|
MVT ContainerVT = getContainerForFixedLengthVector(Op.getSimpleValueType());
|
|
return convertFromScalableVector(Op.getSimpleValueType(),
|
|
DAG.getUNDEF(ContainerVT), DAG, Subtarget);
|
|
}
|
|
case ISD::INSERT_SUBVECTOR:
|
|
return lowerINSERT_SUBVECTOR(Op, DAG);
|
|
case ISD::EXTRACT_SUBVECTOR:
|
|
return lowerEXTRACT_SUBVECTOR(Op, DAG);
|
|
case ISD::VECTOR_DEINTERLEAVE:
|
|
return lowerVECTOR_DEINTERLEAVE(Op, DAG);
|
|
case ISD::VECTOR_INTERLEAVE:
|
|
return lowerVECTOR_INTERLEAVE(Op, DAG);
|
|
case ISD::STEP_VECTOR:
|
|
return lowerSTEP_VECTOR(Op, DAG);
|
|
case ISD::VECTOR_REVERSE:
|
|
return lowerVECTOR_REVERSE(Op, DAG);
|
|
case ISD::VECTOR_SPLICE:
|
|
return lowerVECTOR_SPLICE(Op, DAG);
|
|
case ISD::BUILD_VECTOR: {
|
|
MVT VT = Op.getSimpleValueType();
|
|
MVT EltVT = VT.getVectorElementType();
|
|
if (!Subtarget.is64Bit() && EltVT == MVT::i64)
|
|
return lowerBuildVectorViaVID(Op, DAG, Subtarget);
|
|
return lowerBUILD_VECTOR(Op, DAG, Subtarget);
|
|
}
|
|
case ISD::SPLAT_VECTOR: {
|
|
MVT VT = Op.getSimpleValueType();
|
|
MVT EltVT = VT.getVectorElementType();
|
|
if ((EltVT == MVT::f16 && !Subtarget.hasStdExtZvfh()) ||
|
|
EltVT == MVT::bf16) {
|
|
SDLoc DL(Op);
|
|
SDValue Elt;
|
|
if ((EltVT == MVT::bf16 && Subtarget.hasStdExtZfbfmin()) ||
|
|
(EltVT == MVT::f16 && Subtarget.hasStdExtZfhmin()))
|
|
Elt = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, Subtarget.getXLenVT(),
|
|
Op.getOperand(0));
|
|
else
|
|
Elt = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Op.getOperand(0));
|
|
MVT IVT = VT.changeVectorElementType(MVT::i16);
|
|
return DAG.getNode(ISD::BITCAST, DL, VT,
|
|
DAG.getNode(ISD::SPLAT_VECTOR, DL, IVT, Elt));
|
|
}
|
|
|
|
if (EltVT == MVT::i1)
|
|
return lowerVectorMaskSplat(Op, DAG);
|
|
return SDValue();
|
|
}
|
|
case ISD::VECTOR_SHUFFLE:
|
|
return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
|
|
case ISD::CONCAT_VECTORS: {
|
|
// Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
|
|
// better than going through the stack, as the default expansion does.
|
|
SDLoc DL(Op);
|
|
MVT VT = Op.getSimpleValueType();
|
|
MVT ContainerVT = VT;
|
|
if (VT.isFixedLengthVector())
|
|
ContainerVT = ::getContainerForFixedLengthVector(DAG, VT, Subtarget);
|
|
|
|
// Recursively split concat_vectors with more than 2 operands:
|
|
//
|
|
// concat_vector op1, op2, op3, op4
|
|
// ->
|
|
// concat_vector (concat_vector op1, op2), (concat_vector op3, op4)
|
|
//
|
|
// This reduces the length of the chain of vslideups and allows us to
|
|
// perform the vslideups at a smaller LMUL, limited to MF2.
|
|
if (Op.getNumOperands() > 2 &&
|
|
ContainerVT.bitsGE(RISCVTargetLowering::getM1VT(ContainerVT))) {
|
|
MVT HalfVT = VT.getHalfNumVectorElementsVT();
|
|
assert(isPowerOf2_32(Op.getNumOperands()));
|
|
size_t HalfNumOps = Op.getNumOperands() / 2;
|
|
SDValue Lo = DAG.getNode(ISD::CONCAT_VECTORS, DL, HalfVT,
|
|
Op->ops().take_front(HalfNumOps));
|
|
SDValue Hi = DAG.getNode(ISD::CONCAT_VECTORS, DL, HalfVT,
|
|
Op->ops().drop_front(HalfNumOps));
|
|
return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
|
|
}
|
|
|
|
unsigned NumOpElts =
|
|
Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
|
|
SDValue Vec = DAG.getUNDEF(VT);
|
|
for (const auto &OpIdx : enumerate(Op->ops())) {
|
|
SDValue SubVec = OpIdx.value();
|
|
// Don't insert undef subvectors.
|
|
if (SubVec.isUndef())
|
|
continue;
|
|
Vec = DAG.getInsertSubvector(DL, Vec, SubVec, OpIdx.index() * NumOpElts);
|
|
}
|
|
return Vec;
|
|
}
|
|
case ISD::LOAD: {
|
|
auto *Load = cast<LoadSDNode>(Op);
|
|
EVT VT = Load->getValueType(0);
|
|
if (VT == MVT::f64) {
|
|
assert(Subtarget.hasStdExtZdinx() && !Subtarget.hasStdExtZilsd() &&
|
|
!Subtarget.is64Bit() && "Unexpected custom legalisation");
|
|
|
|
// Replace a double precision load with two i32 loads and a BuildPairF64.
|
|
SDLoc DL(Op);
|
|
SDValue BasePtr = Load->getBasePtr();
|
|
SDValue Chain = Load->getChain();
|
|
|
|
SDValue Lo =
|
|
DAG.getLoad(MVT::i32, DL, Chain, BasePtr, Load->getPointerInfo(),
|
|
Load->getBaseAlign(), Load->getMemOperand()->getFlags());
|
|
BasePtr = DAG.getObjectPtrOffset(DL, BasePtr, TypeSize::getFixed(4));
|
|
SDValue Hi = DAG.getLoad(
|
|
MVT::i32, DL, Chain, BasePtr, Load->getPointerInfo().getWithOffset(4),
|
|
Load->getBaseAlign(), Load->getMemOperand()->getFlags());
|
|
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1),
|
|
Hi.getValue(1));
|
|
|
|
SDValue Pair = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
|
|
return DAG.getMergeValues({Pair, Chain}, DL);
|
|
}
|
|
|
|
// Handle normal vector tuple load.
|
|
if (VT.isRISCVVectorTuple()) {
|
|
SDLoc DL(Op);
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
unsigned NF = VT.getRISCVVectorTupleNumFields();
|
|
unsigned Sz = VT.getSizeInBits().getKnownMinValue();
|
|
unsigned NumElts = Sz / (NF * 8);
|
|
int Log2LMUL = Log2_64(NumElts) - 3;
|
|
|
|
auto Flag = SDNodeFlags();
|
|
Flag.setNoUnsignedWrap(true);
|
|
SDValue Ret = DAG.getUNDEF(VT);
|
|
SDValue BasePtr = Load->getBasePtr();
|
|
SDValue VROffset = DAG.getNode(RISCVISD::READ_VLENB, DL, XLenVT);
|
|
VROffset =
|
|
DAG.getNode(ISD::SHL, DL, XLenVT, VROffset,
|
|
DAG.getConstant(std::max(Log2LMUL, 0), DL, XLenVT));
|
|
SmallVector<SDValue, 8> OutChains;
|
|
|
|
// Load NF vector registers and combine them to a vector tuple.
|
|
for (unsigned i = 0; i < NF; ++i) {
|
|
SDValue LoadVal = DAG.getLoad(
|
|
MVT::getScalableVectorVT(MVT::i8, NumElts), DL, Load->getChain(),
|
|
BasePtr, MachinePointerInfo(Load->getAddressSpace()), Align(8));
|
|
OutChains.push_back(LoadVal.getValue(1));
|
|
Ret = DAG.getNode(RISCVISD::TUPLE_INSERT, DL, VT, Ret, LoadVal,
|
|
DAG.getVectorIdxConstant(i, DL));
|
|
BasePtr = DAG.getNode(ISD::ADD, DL, XLenVT, BasePtr, VROffset, Flag);
|
|
}
|
|
return DAG.getMergeValues(
|
|
{Ret, DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains)}, DL);
|
|
}
|
|
|
|
if (auto V = expandUnalignedRVVLoad(Op, DAG))
|
|
return V;
|
|
if (Op.getValueType().isFixedLengthVector())
|
|
return lowerFixedLengthVectorLoadToRVV(Op, DAG);
|
|
return Op;
|
|
}
|
|
case ISD::STORE: {
|
|
auto *Store = cast<StoreSDNode>(Op);
|
|
SDValue StoredVal = Store->getValue();
|
|
EVT VT = StoredVal.getValueType();
|
|
if (VT == MVT::f64) {
|
|
assert(Subtarget.hasStdExtZdinx() && !Subtarget.hasStdExtZilsd() &&
|
|
!Subtarget.is64Bit() && "Unexpected custom legalisation");
|
|
|
|
// Replace a double precision store with a SplitF64 and i32 stores.
|
|
SDValue DL(Op);
|
|
SDValue BasePtr = Store->getBasePtr();
|
|
SDValue Chain = Store->getChain();
|
|
SDValue Split = DAG.getNode(RISCVISD::SplitF64, DL,
|
|
DAG.getVTList(MVT::i32, MVT::i32), StoredVal);
|
|
|
|
SDValue Lo = DAG.getStore(Chain, DL, Split.getValue(0), BasePtr,
|
|
Store->getPointerInfo(), Store->getBaseAlign(),
|
|
Store->getMemOperand()->getFlags());
|
|
BasePtr = DAG.getObjectPtrOffset(DL, BasePtr, TypeSize::getFixed(4));
|
|
SDValue Hi = DAG.getStore(Chain, DL, Split.getValue(1), BasePtr,
|
|
Store->getPointerInfo().getWithOffset(4),
|
|
Store->getBaseAlign(),
|
|
Store->getMemOperand()->getFlags());
|
|
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi);
|
|
}
|
|
if (VT == MVT::i64) {
|
|
assert(Subtarget.hasStdExtZilsd() && !Subtarget.is64Bit() &&
|
|
"Unexpected custom legalisation");
|
|
if (Store->isTruncatingStore())
|
|
return SDValue();
|
|
|
|
if (!Subtarget.enableUnalignedScalarMem() && Store->getAlign() < 8)
|
|
return SDValue();
|
|
|
|
SDLoc DL(Op);
|
|
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, StoredVal,
|
|
DAG.getTargetConstant(0, DL, MVT::i32));
|
|
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, StoredVal,
|
|
DAG.getTargetConstant(1, DL, MVT::i32));
|
|
|
|
return DAG.getMemIntrinsicNode(
|
|
RISCVISD::SD_RV32, DL, DAG.getVTList(MVT::Other),
|
|
{Store->getChain(), Lo, Hi, Store->getBasePtr()}, MVT::i64,
|
|
Store->getMemOperand());
|
|
}
|
|
// Handle normal vector tuple store.
|
|
if (VT.isRISCVVectorTuple()) {
|
|
SDLoc DL(Op);
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
unsigned NF = VT.getRISCVVectorTupleNumFields();
|
|
unsigned Sz = VT.getSizeInBits().getKnownMinValue();
|
|
unsigned NumElts = Sz / (NF * 8);
|
|
int Log2LMUL = Log2_64(NumElts) - 3;
|
|
|
|
auto Flag = SDNodeFlags();
|
|
Flag.setNoUnsignedWrap(true);
|
|
SDValue Ret;
|
|
SDValue Chain = Store->getChain();
|
|
SDValue BasePtr = Store->getBasePtr();
|
|
SDValue VROffset = DAG.getNode(RISCVISD::READ_VLENB, DL, XLenVT);
|
|
VROffset =
|
|
DAG.getNode(ISD::SHL, DL, XLenVT, VROffset,
|
|
DAG.getConstant(std::max(Log2LMUL, 0), DL, XLenVT));
|
|
|
|
// Extract subregisters in a vector tuple and store them individually.
|
|
for (unsigned i = 0; i < NF; ++i) {
|
|
auto Extract = DAG.getNode(RISCVISD::TUPLE_EXTRACT, DL,
|
|
MVT::getScalableVectorVT(MVT::i8, NumElts),
|
|
StoredVal, DAG.getVectorIdxConstant(i, DL));
|
|
Ret = DAG.getStore(Chain, DL, Extract, BasePtr,
|
|
MachinePointerInfo(Store->getAddressSpace()),
|
|
Store->getBaseAlign(),
|
|
Store->getMemOperand()->getFlags());
|
|
Chain = Ret.getValue(0);
|
|
BasePtr = DAG.getNode(ISD::ADD, DL, XLenVT, BasePtr, VROffset, Flag);
|
|
}
|
|
return Ret;
|
|
}
|
|
|
|
if (auto V = expandUnalignedRVVStore(Op, DAG))
|
|
return V;
|
|
if (Op.getOperand(1).getValueType().isFixedLengthVector())
|
|
return lowerFixedLengthVectorStoreToRVV(Op, DAG);
|
|
return Op;
|
|
}
|
|
case ISD::MLOAD:
|
|
case ISD::VP_LOAD:
|
|
return lowerMaskedLoad(Op, DAG);
|
|
case ISD::MSTORE:
|
|
case ISD::VP_STORE:
|
|
return lowerMaskedStore(Op, DAG);
|
|
case ISD::VECTOR_COMPRESS:
|
|
return lowerVectorCompress(Op, DAG);
|
|
case ISD::SELECT_CC: {
|
|
// This occurs because we custom legalize SETGT and SETUGT for setcc. That
|
|
// causes LegalizeDAG to think we need to custom legalize select_cc. Expand
|
|
// into separate SETCC+SELECT just like LegalizeDAG.
|
|
SDValue Tmp1 = Op.getOperand(0);
|
|
SDValue Tmp2 = Op.getOperand(1);
|
|
SDValue True = Op.getOperand(2);
|
|
SDValue False = Op.getOperand(3);
|
|
EVT VT = Op.getValueType();
|
|
SDValue CC = Op.getOperand(4);
|
|
EVT CmpVT = Tmp1.getValueType();
|
|
EVT CCVT =
|
|
getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT);
|
|
SDLoc DL(Op);
|
|
SDValue Cond =
|
|
DAG.getNode(ISD::SETCC, DL, CCVT, Tmp1, Tmp2, CC, Op->getFlags());
|
|
return DAG.getSelect(DL, VT, Cond, True, False);
|
|
}
|
|
case ISD::SETCC: {
|
|
MVT OpVT = Op.getOperand(0).getSimpleValueType();
|
|
if (OpVT.isScalarInteger()) {
|
|
MVT VT = Op.getSimpleValueType();
|
|
SDValue LHS = Op.getOperand(0);
|
|
SDValue RHS = Op.getOperand(1);
|
|
ISD::CondCode CCVal = cast<CondCodeSDNode>(Op.getOperand(2))->get();
|
|
assert((CCVal == ISD::SETGT || CCVal == ISD::SETUGT) &&
|
|
"Unexpected CondCode");
|
|
|
|
SDLoc DL(Op);
|
|
|
|
// If the RHS is a constant in the range [-2049, 0) or (0, 2046], we can
|
|
// convert this to the equivalent of (set(u)ge X, C+1) by using
|
|
// (xori (slti(u) X, C+1), 1). This avoids materializing a small constant
|
|
// in a register.
|
|
if (isa<ConstantSDNode>(RHS)) {
|
|
int64_t Imm = cast<ConstantSDNode>(RHS)->getSExtValue();
|
|
if (Imm != 0 && isInt<12>((uint64_t)Imm + 1)) {
|
|
// If this is an unsigned compare and the constant is -1, incrementing
|
|
// the constant would change behavior. The result should be false.
|
|
if (CCVal == ISD::SETUGT && Imm == -1)
|
|
return DAG.getConstant(0, DL, VT);
|
|
// Using getSetCCSwappedOperands will convert SET(U)GT->SET(U)LT.
|
|
CCVal = ISD::getSetCCSwappedOperands(CCVal);
|
|
SDValue SetCC = DAG.getSetCC(
|
|
DL, VT, LHS, DAG.getSignedConstant(Imm + 1, DL, OpVT), CCVal);
|
|
return DAG.getLogicalNOT(DL, SetCC, VT);
|
|
}
|
|
}
|
|
|
|
// Not a constant we could handle, swap the operands and condition code to
|
|
// SETLT/SETULT.
|
|
CCVal = ISD::getSetCCSwappedOperands(CCVal);
|
|
return DAG.getSetCC(DL, VT, RHS, LHS, CCVal);
|
|
}
|
|
|
|
if (isPromotedOpNeedingSplit(Op.getOperand(0), Subtarget))
|
|
return SplitVectorOp(Op, DAG);
|
|
|
|
return lowerFixedLengthVectorSetccToRVV(Op, DAG);
|
|
}
|
|
case ISD::ADD:
|
|
case ISD::SUB:
|
|
case ISD::MUL:
|
|
case ISD::MULHS:
|
|
case ISD::MULHU:
|
|
case ISD::AND:
|
|
case ISD::OR:
|
|
case ISD::XOR:
|
|
case ISD::SDIV:
|
|
case ISD::SREM:
|
|
case ISD::UDIV:
|
|
case ISD::UREM:
|
|
case ISD::BSWAP:
|
|
case ISD::CTPOP:
|
|
return lowerToScalableOp(Op, DAG);
|
|
case ISD::SHL:
|
|
case ISD::SRA:
|
|
case ISD::SRL:
|
|
if (Op.getSimpleValueType().isFixedLengthVector())
|
|
return lowerToScalableOp(Op, DAG);
|
|
// This can be called for an i32 shift amount that needs to be promoted.
|
|
assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() &&
|
|
"Unexpected custom legalisation");
|
|
return SDValue();
|
|
case ISD::FABS:
|
|
case ISD::FNEG:
|
|
if (Op.getValueType() == MVT::f16 || Op.getValueType() == MVT::bf16)
|
|
return lowerFABSorFNEG(Op, DAG, Subtarget);
|
|
[[fallthrough]];
|
|
case ISD::FADD:
|
|
case ISD::FSUB:
|
|
case ISD::FMUL:
|
|
case ISD::FDIV:
|
|
case ISD::FSQRT:
|
|
case ISD::FMA:
|
|
case ISD::FMINNUM:
|
|
case ISD::FMAXNUM:
|
|
case ISD::FMINIMUMNUM:
|
|
case ISD::FMAXIMUMNUM:
|
|
if (isPromotedOpNeedingSplit(Op, Subtarget))
|
|
return SplitVectorOp(Op, DAG);
|
|
[[fallthrough]];
|
|
case ISD::AVGFLOORS:
|
|
case ISD::AVGFLOORU:
|
|
case ISD::AVGCEILS:
|
|
case ISD::AVGCEILU:
|
|
case ISD::SMIN:
|
|
case ISD::SMAX:
|
|
case ISD::UMIN:
|
|
case ISD::UMAX:
|
|
case ISD::UADDSAT:
|
|
case ISD::USUBSAT:
|
|
case ISD::SADDSAT:
|
|
case ISD::SSUBSAT:
|
|
return lowerToScalableOp(Op, DAG);
|
|
case ISD::ABDS:
|
|
case ISD::ABDU: {
|
|
SDLoc dl(Op);
|
|
EVT VT = Op->getValueType(0);
|
|
SDValue LHS = DAG.getFreeze(Op->getOperand(0));
|
|
SDValue RHS = DAG.getFreeze(Op->getOperand(1));
|
|
bool IsSigned = Op->getOpcode() == ISD::ABDS;
|
|
|
|
// abds(lhs, rhs) -> sub(smax(lhs,rhs), smin(lhs,rhs))
|
|
// abdu(lhs, rhs) -> sub(umax(lhs,rhs), umin(lhs,rhs))
|
|
unsigned MaxOpc = IsSigned ? ISD::SMAX : ISD::UMAX;
|
|
unsigned MinOpc = IsSigned ? ISD::SMIN : ISD::UMIN;
|
|
SDValue Max = DAG.getNode(MaxOpc, dl, VT, LHS, RHS);
|
|
SDValue Min = DAG.getNode(MinOpc, dl, VT, LHS, RHS);
|
|
return DAG.getNode(ISD::SUB, dl, VT, Max, Min);
|
|
}
|
|
case ISD::ABS:
|
|
case ISD::VP_ABS:
|
|
return lowerABS(Op, DAG);
|
|
case ISD::CTLZ:
|
|
case ISD::CTLZ_ZERO_UNDEF:
|
|
case ISD::CTTZ:
|
|
case ISD::CTTZ_ZERO_UNDEF:
|
|
if (Subtarget.hasStdExtZvbb())
|
|
return lowerToScalableOp(Op, DAG);
|
|
assert(Op.getOpcode() != ISD::CTTZ);
|
|
return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG);
|
|
case ISD::VSELECT:
|
|
return lowerFixedLengthVectorSelectToRVV(Op, DAG);
|
|
case ISD::FCOPYSIGN:
|
|
if (Op.getValueType() == MVT::f16 || Op.getValueType() == MVT::bf16)
|
|
return lowerFCOPYSIGN(Op, DAG, Subtarget);
|
|
if (isPromotedOpNeedingSplit(Op, Subtarget))
|
|
return SplitVectorOp(Op, DAG);
|
|
return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
|
|
case ISD::STRICT_FADD:
|
|
case ISD::STRICT_FSUB:
|
|
case ISD::STRICT_FMUL:
|
|
case ISD::STRICT_FDIV:
|
|
case ISD::STRICT_FSQRT:
|
|
case ISD::STRICT_FMA:
|
|
if (isPromotedOpNeedingSplit(Op, Subtarget))
|
|
return SplitStrictFPVectorOp(Op, DAG);
|
|
return lowerToScalableOp(Op, DAG);
|
|
case ISD::STRICT_FSETCC:
|
|
case ISD::STRICT_FSETCCS:
|
|
return lowerVectorStrictFSetcc(Op, DAG);
|
|
case ISD::STRICT_FCEIL:
|
|
case ISD::STRICT_FRINT:
|
|
case ISD::STRICT_FFLOOR:
|
|
case ISD::STRICT_FTRUNC:
|
|
case ISD::STRICT_FNEARBYINT:
|
|
case ISD::STRICT_FROUND:
|
|
case ISD::STRICT_FROUNDEVEN:
|
|
return lowerVectorStrictFTRUNC_FCEIL_FFLOOR_FROUND(Op, DAG, Subtarget);
|
|
case ISD::MGATHER:
|
|
case ISD::VP_GATHER:
|
|
return lowerMaskedGather(Op, DAG);
|
|
case ISD::MSCATTER:
|
|
case ISD::VP_SCATTER:
|
|
return lowerMaskedScatter(Op, DAG);
|
|
case ISD::GET_ROUNDING:
|
|
return lowerGET_ROUNDING(Op, DAG);
|
|
case ISD::SET_ROUNDING:
|
|
return lowerSET_ROUNDING(Op, DAG);
|
|
case ISD::GET_FPENV:
|
|
return lowerGET_FPENV(Op, DAG);
|
|
case ISD::SET_FPENV:
|
|
return lowerSET_FPENV(Op, DAG);
|
|
case ISD::RESET_FPENV:
|
|
return lowerRESET_FPENV(Op, DAG);
|
|
case ISD::EH_DWARF_CFA:
|
|
return lowerEH_DWARF_CFA(Op, DAG);
|
|
case ISD::VP_MERGE:
|
|
if (Op.getSimpleValueType().getVectorElementType() == MVT::i1)
|
|
return lowerVPMergeMask(Op, DAG);
|
|
[[fallthrough]];
|
|
case ISD::VP_SELECT:
|
|
case ISD::VP_ADD:
|
|
case ISD::VP_SUB:
|
|
case ISD::VP_MUL:
|
|
case ISD::VP_SDIV:
|
|
case ISD::VP_UDIV:
|
|
case ISD::VP_SREM:
|
|
case ISD::VP_UREM:
|
|
case ISD::VP_UADDSAT:
|
|
case ISD::VP_USUBSAT:
|
|
case ISD::VP_SADDSAT:
|
|
case ISD::VP_SSUBSAT:
|
|
case ISD::VP_LRINT:
|
|
case ISD::VP_LLRINT:
|
|
return lowerVPOp(Op, DAG);
|
|
case ISD::VP_AND:
|
|
case ISD::VP_OR:
|
|
case ISD::VP_XOR:
|
|
return lowerLogicVPOp(Op, DAG);
|
|
case ISD::VP_FADD:
|
|
case ISD::VP_FSUB:
|
|
case ISD::VP_FMUL:
|
|
case ISD::VP_FDIV:
|
|
case ISD::VP_FNEG:
|
|
case ISD::VP_FABS:
|
|
case ISD::VP_SQRT:
|
|
case ISD::VP_FMA:
|
|
case ISD::VP_FMINNUM:
|
|
case ISD::VP_FMAXNUM:
|
|
case ISD::VP_FCOPYSIGN:
|
|
if (isPromotedOpNeedingSplit(Op, Subtarget))
|
|
return SplitVPOp(Op, DAG);
|
|
[[fallthrough]];
|
|
case ISD::VP_SRA:
|
|
case ISD::VP_SRL:
|
|
case ISD::VP_SHL:
|
|
return lowerVPOp(Op, DAG);
|
|
case ISD::VP_IS_FPCLASS:
|
|
return LowerIS_FPCLASS(Op, DAG);
|
|
case ISD::VP_SIGN_EXTEND:
|
|
case ISD::VP_ZERO_EXTEND:
|
|
if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1)
|
|
return lowerVPExtMaskOp(Op, DAG);
|
|
return lowerVPOp(Op, DAG);
|
|
case ISD::VP_TRUNCATE:
|
|
return lowerVectorTruncLike(Op, DAG);
|
|
case ISD::VP_FP_EXTEND:
|
|
case ISD::VP_FP_ROUND:
|
|
return lowerVectorFPExtendOrRoundLike(Op, DAG);
|
|
case ISD::VP_SINT_TO_FP:
|
|
case ISD::VP_UINT_TO_FP:
|
|
if (Op.getValueType().isVector() &&
|
|
((Op.getValueType().getScalarType() == MVT::f16 &&
|
|
(Subtarget.hasVInstructionsF16Minimal() &&
|
|
!Subtarget.hasVInstructionsF16())) ||
|
|
Op.getValueType().getScalarType() == MVT::bf16)) {
|
|
if (isPromotedOpNeedingSplit(Op, Subtarget))
|
|
return SplitVectorOp(Op, DAG);
|
|
// int -> f32
|
|
SDLoc DL(Op);
|
|
MVT NVT =
|
|
MVT::getVectorVT(MVT::f32, Op.getValueType().getVectorElementCount());
|
|
auto NC = DAG.getNode(Op.getOpcode(), DL, NVT, Op->ops());
|
|
// f32 -> [b]f16
|
|
return DAG.getNode(ISD::FP_ROUND, DL, Op.getValueType(), NC,
|
|
DAG.getIntPtrConstant(0, DL, /*isTarget=*/true));
|
|
}
|
|
[[fallthrough]];
|
|
case ISD::VP_FP_TO_SINT:
|
|
case ISD::VP_FP_TO_UINT:
|
|
if (SDValue Op1 = Op.getOperand(0);
|
|
Op1.getValueType().isVector() &&
|
|
((Op1.getValueType().getScalarType() == MVT::f16 &&
|
|
(Subtarget.hasVInstructionsF16Minimal() &&
|
|
!Subtarget.hasVInstructionsF16())) ||
|
|
Op1.getValueType().getScalarType() == MVT::bf16)) {
|
|
if (isPromotedOpNeedingSplit(Op1, Subtarget))
|
|
return SplitVectorOp(Op, DAG);
|
|
// [b]f16 -> f32
|
|
SDLoc DL(Op);
|
|
MVT NVT = MVT::getVectorVT(MVT::f32,
|
|
Op1.getValueType().getVectorElementCount());
|
|
SDValue WidenVec = DAG.getNode(ISD::FP_EXTEND, DL, NVT, Op1);
|
|
// f32 -> int
|
|
return DAG.getNode(Op.getOpcode(), DL, Op.getValueType(),
|
|
{WidenVec, Op.getOperand(1), Op.getOperand(2)});
|
|
}
|
|
return lowerVPFPIntConvOp(Op, DAG);
|
|
case ISD::VP_SETCC:
|
|
if (isPromotedOpNeedingSplit(Op.getOperand(0), Subtarget))
|
|
return SplitVPOp(Op, DAG);
|
|
if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1)
|
|
return lowerVPSetCCMaskOp(Op, DAG);
|
|
[[fallthrough]];
|
|
case ISD::VP_SMIN:
|
|
case ISD::VP_SMAX:
|
|
case ISD::VP_UMIN:
|
|
case ISD::VP_UMAX:
|
|
case ISD::VP_BITREVERSE:
|
|
case ISD::VP_BSWAP:
|
|
return lowerVPOp(Op, DAG);
|
|
case ISD::VP_CTLZ:
|
|
case ISD::VP_CTLZ_ZERO_UNDEF:
|
|
if (Subtarget.hasStdExtZvbb())
|
|
return lowerVPOp(Op, DAG);
|
|
return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG);
|
|
case ISD::VP_CTTZ:
|
|
case ISD::VP_CTTZ_ZERO_UNDEF:
|
|
if (Subtarget.hasStdExtZvbb())
|
|
return lowerVPOp(Op, DAG);
|
|
return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG);
|
|
case ISD::VP_CTPOP:
|
|
return lowerVPOp(Op, DAG);
|
|
case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
|
|
return lowerVPStridedLoad(Op, DAG);
|
|
case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
|
|
return lowerVPStridedStore(Op, DAG);
|
|
case ISD::VP_FCEIL:
|
|
case ISD::VP_FFLOOR:
|
|
case ISD::VP_FRINT:
|
|
case ISD::VP_FNEARBYINT:
|
|
case ISD::VP_FROUND:
|
|
case ISD::VP_FROUNDEVEN:
|
|
case ISD::VP_FROUNDTOZERO:
|
|
if (isPromotedOpNeedingSplit(Op, Subtarget))
|
|
return SplitVPOp(Op, DAG);
|
|
return lowerVectorFTRUNC_FCEIL_FFLOOR_FROUND(Op, DAG, Subtarget);
|
|
case ISD::VP_FMAXIMUM:
|
|
case ISD::VP_FMINIMUM:
|
|
if (isPromotedOpNeedingSplit(Op, Subtarget))
|
|
return SplitVPOp(Op, DAG);
|
|
return lowerFMAXIMUM_FMINIMUM(Op, DAG, Subtarget);
|
|
case ISD::EXPERIMENTAL_VP_SPLICE:
|
|
return lowerVPSpliceExperimental(Op, DAG);
|
|
case ISD::EXPERIMENTAL_VP_REVERSE:
|
|
return lowerVPReverseExperimental(Op, DAG);
|
|
case ISD::EXPERIMENTAL_VP_SPLAT:
|
|
return lowerVPSplatExperimental(Op, DAG);
|
|
case ISD::CLEAR_CACHE: {
|
|
assert(getTargetMachine().getTargetTriple().isOSLinux() &&
|
|
"llvm.clear_cache only needs custom lower on Linux targets");
|
|
SDLoc DL(Op);
|
|
SDValue Flags = DAG.getConstant(0, DL, Subtarget.getXLenVT());
|
|
return emitFlushICache(DAG, Op.getOperand(0), Op.getOperand(1),
|
|
Op.getOperand(2), Flags, DL);
|
|
}
|
|
case ISD::DYNAMIC_STACKALLOC:
|
|
return lowerDYNAMIC_STACKALLOC(Op, DAG);
|
|
case ISD::INIT_TRAMPOLINE:
|
|
return lowerINIT_TRAMPOLINE(Op, DAG);
|
|
case ISD::ADJUST_TRAMPOLINE:
|
|
return lowerADJUST_TRAMPOLINE(Op, DAG);
|
|
case ISD::PARTIAL_REDUCE_UMLA:
|
|
case ISD::PARTIAL_REDUCE_SMLA:
|
|
case ISD::PARTIAL_REDUCE_SUMLA:
|
|
return lowerPARTIAL_REDUCE_MLA(Op, DAG);
|
|
}
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::emitFlushICache(SelectionDAG &DAG, SDValue InChain,
|
|
SDValue Start, SDValue End,
|
|
SDValue Flags, SDLoc DL) const {
|
|
MakeLibCallOptions CallOptions;
|
|
std::pair<SDValue, SDValue> CallResult =
|
|
makeLibCall(DAG, RTLIB::RISCV_FLUSH_ICACHE, MVT::isVoid,
|
|
{Start, End, Flags}, CallOptions, DL, InChain);
|
|
|
|
// This function returns void so only the out chain matters.
|
|
return CallResult.second;
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerINIT_TRAMPOLINE(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
if (!Subtarget.is64Bit())
|
|
llvm::report_fatal_error("Trampolines only implemented for RV64");
|
|
|
|
// Create an MCCodeEmitter to encode instructions.
|
|
TargetLoweringObjectFile *TLO = getTargetMachine().getObjFileLowering();
|
|
assert(TLO);
|
|
MCContext &MCCtx = TLO->getContext();
|
|
|
|
std::unique_ptr<MCCodeEmitter> CodeEmitter(
|
|
createRISCVMCCodeEmitter(*getTargetMachine().getMCInstrInfo(), MCCtx));
|
|
|
|
SDValue Root = Op.getOperand(0);
|
|
SDValue Trmp = Op.getOperand(1); // trampoline
|
|
SDLoc dl(Op);
|
|
|
|
const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
|
|
|
|
// We store in the trampoline buffer the following instructions and data.
|
|
// Offset:
|
|
// 0: auipc t2, 0
|
|
// 4: ld t0, 24(t2)
|
|
// 8: ld t2, 16(t2)
|
|
// 12: jalr t0
|
|
// 16: <StaticChainOffset>
|
|
// 24: <FunctionAddressOffset>
|
|
// 32:
|
|
// Offset with branch control flow protection enabled:
|
|
// 0: lpad <imm20>
|
|
// 4: auipc t3, 0
|
|
// 8: ld t2, 28(t3)
|
|
// 12: ld t3, 20(t3)
|
|
// 16: jalr t2
|
|
// 20: <StaticChainOffset>
|
|
// 28: <FunctionAddressOffset>
|
|
// 36:
|
|
|
|
const bool HasCFBranch =
|
|
Subtarget.hasStdExtZicfilp() &&
|
|
DAG.getMachineFunction().getFunction().getParent()->getModuleFlag(
|
|
"cf-protection-branch");
|
|
const unsigned StaticChainIdx = HasCFBranch ? 5 : 4;
|
|
const unsigned StaticChainOffset = StaticChainIdx * 4;
|
|
const unsigned FunctionAddressOffset = StaticChainOffset + 8;
|
|
|
|
const MCSubtargetInfo *STI = getTargetMachine().getMCSubtargetInfo();
|
|
assert(STI);
|
|
auto GetEncoding = [&](const MCInst &MC) {
|
|
SmallVector<char, 4> CB;
|
|
SmallVector<MCFixup> Fixups;
|
|
CodeEmitter->encodeInstruction(MC, CB, Fixups, *STI);
|
|
uint32_t Encoding = support::endian::read32le(CB.data());
|
|
return Encoding;
|
|
};
|
|
|
|
SmallVector<SDValue> OutChains;
|
|
|
|
SmallVector<uint32_t> Encodings;
|
|
if (!HasCFBranch) {
|
|
Encodings.append(
|
|
{// auipc t2, 0
|
|
// Loads the current PC into t2.
|
|
GetEncoding(MCInstBuilder(RISCV::AUIPC).addReg(RISCV::X7).addImm(0)),
|
|
// ld t0, 24(t2)
|
|
// Loads the function address into t0. Note that we are using offsets
|
|
// pc-relative to the first instruction of the trampoline.
|
|
GetEncoding(MCInstBuilder(RISCV::LD)
|
|
.addReg(RISCV::X5)
|
|
.addReg(RISCV::X7)
|
|
.addImm(FunctionAddressOffset)),
|
|
// ld t2, 16(t2)
|
|
// Load the value of the static chain.
|
|
GetEncoding(MCInstBuilder(RISCV::LD)
|
|
.addReg(RISCV::X7)
|
|
.addReg(RISCV::X7)
|
|
.addImm(StaticChainOffset)),
|
|
// jalr t0
|
|
// Jump to the function.
|
|
GetEncoding(MCInstBuilder(RISCV::JALR)
|
|
.addReg(RISCV::X0)
|
|
.addReg(RISCV::X5)
|
|
.addImm(0))});
|
|
} else {
|
|
Encodings.append(
|
|
{// auipc x0, <imm20> (lpad <imm20>)
|
|
// Landing pad.
|
|
GetEncoding(MCInstBuilder(RISCV::AUIPC).addReg(RISCV::X0).addImm(0)),
|
|
// auipc t3, 0
|
|
// Loads the current PC into t3.
|
|
GetEncoding(MCInstBuilder(RISCV::AUIPC).addReg(RISCV::X28).addImm(0)),
|
|
// ld t2, (FunctionAddressOffset - 4)(t3)
|
|
// Loads the function address into t2. Note that we are using offsets
|
|
// pc-relative to the SECOND instruction of the trampoline.
|
|
GetEncoding(MCInstBuilder(RISCV::LD)
|
|
.addReg(RISCV::X7)
|
|
.addReg(RISCV::X28)
|
|
.addImm(FunctionAddressOffset - 4)),
|
|
// ld t3, (StaticChainOffset - 4)(t3)
|
|
// Load the value of the static chain.
|
|
GetEncoding(MCInstBuilder(RISCV::LD)
|
|
.addReg(RISCV::X28)
|
|
.addReg(RISCV::X28)
|
|
.addImm(StaticChainOffset - 4)),
|
|
// jalr t2
|
|
// Software-guarded jump to the function.
|
|
GetEncoding(MCInstBuilder(RISCV::JALR)
|
|
.addReg(RISCV::X0)
|
|
.addReg(RISCV::X7)
|
|
.addImm(0))});
|
|
}
|
|
|
|
// Store encoded instructions.
|
|
for (auto [Idx, Encoding] : llvm::enumerate(Encodings)) {
|
|
SDValue Addr = Idx > 0 ? DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
|
|
DAG.getConstant(Idx * 4, dl, MVT::i64))
|
|
: Trmp;
|
|
OutChains.push_back(DAG.getTruncStore(
|
|
Root, dl, DAG.getConstant(Encoding, dl, MVT::i64), Addr,
|
|
MachinePointerInfo(TrmpAddr, Idx * 4), MVT::i32));
|
|
}
|
|
|
|
// Now store the variable part of the trampoline.
|
|
SDValue FunctionAddress = Op.getOperand(2);
|
|
SDValue StaticChain = Op.getOperand(3);
|
|
|
|
// Store the given static chain and function pointer in the trampoline buffer.
|
|
struct OffsetValuePair {
|
|
const unsigned Offset;
|
|
const SDValue Value;
|
|
SDValue Addr = SDValue(); // Used to cache the address.
|
|
} OffsetValues[] = {
|
|
{StaticChainOffset, StaticChain},
|
|
{FunctionAddressOffset, FunctionAddress},
|
|
};
|
|
for (auto &OffsetValue : OffsetValues) {
|
|
SDValue Addr =
|
|
DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
|
|
DAG.getConstant(OffsetValue.Offset, dl, MVT::i64));
|
|
OffsetValue.Addr = Addr;
|
|
OutChains.push_back(
|
|
DAG.getStore(Root, dl, OffsetValue.Value, Addr,
|
|
MachinePointerInfo(TrmpAddr, OffsetValue.Offset)));
|
|
}
|
|
|
|
assert(OutChains.size() == StaticChainIdx + 2 &&
|
|
"Size of OutChains mismatch");
|
|
SDValue StoreToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
|
|
|
|
// The end of instructions of trampoline is the same as the static chain
|
|
// address that we computed earlier.
|
|
SDValue EndOfTrmp = OffsetValues[0].Addr;
|
|
|
|
// Call clear cache on the trampoline instructions.
|
|
SDValue Chain = DAG.getNode(ISD::CLEAR_CACHE, dl, MVT::Other, StoreToken,
|
|
Trmp, EndOfTrmp);
|
|
|
|
return Chain;
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerADJUST_TRAMPOLINE(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
if (!Subtarget.is64Bit())
|
|
llvm::report_fatal_error("Trampolines only implemented for RV64");
|
|
|
|
return Op.getOperand(0);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerPARTIAL_REDUCE_MLA(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
// Currently, only the vqdot and vqdotu case (from zvqdotq) should be legal.
|
|
// TODO: There are many other sub-cases we could potentially lower, are
|
|
// any of them worthwhile? Ex: via vredsum, vwredsum, vwwmaccu, etc..
|
|
SDLoc DL(Op);
|
|
MVT VT = Op.getSimpleValueType();
|
|
SDValue Accum = Op.getOperand(0);
|
|
assert(Accum.getSimpleValueType() == VT &&
|
|
VT.getVectorElementType() == MVT::i32);
|
|
SDValue A = Op.getOperand(1);
|
|
SDValue B = Op.getOperand(2);
|
|
MVT ArgVT = A.getSimpleValueType();
|
|
assert(ArgVT == B.getSimpleValueType() &&
|
|
ArgVT.getVectorElementType() == MVT::i8);
|
|
(void)ArgVT;
|
|
|
|
// The zvqdotq pseudos are defined with sources and destination both
|
|
// being i32. This cast is needed for correctness to avoid incorrect
|
|
// .vx matching of i8 splats.
|
|
A = DAG.getBitcast(VT, A);
|
|
B = DAG.getBitcast(VT, B);
|
|
|
|
MVT ContainerVT = VT;
|
|
if (VT.isFixedLengthVector()) {
|
|
ContainerVT = getContainerForFixedLengthVector(VT);
|
|
Accum = convertToScalableVector(ContainerVT, Accum, DAG, Subtarget);
|
|
A = convertToScalableVector(ContainerVT, A, DAG, Subtarget);
|
|
B = convertToScalableVector(ContainerVT, B, DAG, Subtarget);
|
|
}
|
|
|
|
unsigned Opc;
|
|
switch (Op.getOpcode()) {
|
|
case ISD::PARTIAL_REDUCE_SMLA:
|
|
Opc = RISCVISD::VQDOT_VL;
|
|
break;
|
|
case ISD::PARTIAL_REDUCE_UMLA:
|
|
Opc = RISCVISD::VQDOTU_VL;
|
|
break;
|
|
case ISD::PARTIAL_REDUCE_SUMLA:
|
|
Opc = RISCVISD::VQDOTSU_VL;
|
|
break;
|
|
default:
|
|
llvm_unreachable("Unexpected opcode");
|
|
}
|
|
auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
|
|
SDValue Res = DAG.getNode(Opc, DL, ContainerVT, {A, B, Accum, Mask, VL});
|
|
if (VT.isFixedLengthVector())
|
|
Res = convertFromScalableVector(VT, Res, DAG, Subtarget);
|
|
return Res;
|
|
}
|
|
|
|
static SDValue getTargetNode(GlobalAddressSDNode *N, const SDLoc &DL, EVT Ty,
|
|
SelectionDAG &DAG, unsigned Flags) {
|
|
return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
|
|
}
|
|
|
|
static SDValue getTargetNode(BlockAddressSDNode *N, const SDLoc &DL, EVT Ty,
|
|
SelectionDAG &DAG, unsigned Flags) {
|
|
return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
|
|
Flags);
|
|
}
|
|
|
|
static SDValue getTargetNode(ConstantPoolSDNode *N, const SDLoc &DL, EVT Ty,
|
|
SelectionDAG &DAG, unsigned Flags) {
|
|
return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
|
|
N->getOffset(), Flags);
|
|
}
|
|
|
|
static SDValue getTargetNode(JumpTableSDNode *N, const SDLoc &DL, EVT Ty,
|
|
SelectionDAG &DAG, unsigned Flags) {
|
|
return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
|
|
}
|
|
|
|
static SDValue getLargeGlobalAddress(GlobalAddressSDNode *N, const SDLoc &DL,
|
|
EVT Ty, SelectionDAG &DAG) {
|
|
RISCVConstantPoolValue *CPV = RISCVConstantPoolValue::Create(N->getGlobal());
|
|
SDValue CPAddr = DAG.getTargetConstantPool(CPV, Ty, Align(8));
|
|
SDValue LC = DAG.getNode(RISCVISD::LLA, DL, Ty, CPAddr);
|
|
return DAG.getLoad(
|
|
Ty, DL, DAG.getEntryNode(), LC,
|
|
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
|
|
}
|
|
|
|
static SDValue getLargeExternalSymbol(ExternalSymbolSDNode *N, const SDLoc &DL,
|
|
EVT Ty, SelectionDAG &DAG) {
|
|
RISCVConstantPoolValue *CPV =
|
|
RISCVConstantPoolValue::Create(*DAG.getContext(), N->getSymbol());
|
|
SDValue CPAddr = DAG.getTargetConstantPool(CPV, Ty, Align(8));
|
|
SDValue LC = DAG.getNode(RISCVISD::LLA, DL, Ty, CPAddr);
|
|
return DAG.getLoad(
|
|
Ty, DL, DAG.getEntryNode(), LC,
|
|
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
|
|
}
|
|
|
|
template <class NodeTy>
|
|
SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
|
|
bool IsLocal, bool IsExternWeak) const {
|
|
SDLoc DL(N);
|
|
EVT Ty = getPointerTy(DAG.getDataLayout());
|
|
|
|
// When HWASAN is used and tagging of global variables is enabled
|
|
// they should be accessed via the GOT, since the tagged address of a global
|
|
// is incompatible with existing code models. This also applies to non-pic
|
|
// mode.
|
|
if (isPositionIndependent() || Subtarget.allowTaggedGlobals()) {
|
|
SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
|
|
if (IsLocal && !Subtarget.allowTaggedGlobals())
|
|
// Use PC-relative addressing to access the symbol. This generates the
|
|
// pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
|
|
// %pcrel_lo(auipc)).
|
|
return DAG.getNode(RISCVISD::LLA, DL, Ty, Addr);
|
|
|
|
// Use PC-relative addressing to access the GOT for this symbol, then load
|
|
// the address from the GOT. This generates the pattern (PseudoLGA sym),
|
|
// which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
|
|
SDValue Load =
|
|
SDValue(DAG.getMachineNode(RISCV::PseudoLGA, DL, Ty, Addr), 0);
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineMemOperand *MemOp = MF.getMachineMemOperand(
|
|
MachinePointerInfo::getGOT(MF),
|
|
MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
|
|
MachineMemOperand::MOInvariant,
|
|
LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8));
|
|
DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp});
|
|
return Load;
|
|
}
|
|
|
|
switch (getTargetMachine().getCodeModel()) {
|
|
default:
|
|
report_fatal_error("Unsupported code model for lowering");
|
|
case CodeModel::Small: {
|
|
// Generate a sequence for accessing addresses within the first 2 GiB of
|
|
// address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
|
|
SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
|
|
SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
|
|
SDValue MNHi = DAG.getNode(RISCVISD::HI, DL, Ty, AddrHi);
|
|
return DAG.getNode(RISCVISD::ADD_LO, DL, Ty, MNHi, AddrLo);
|
|
}
|
|
case CodeModel::Medium: {
|
|
SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
|
|
if (IsExternWeak) {
|
|
// An extern weak symbol may be undefined, i.e. have value 0, which may
|
|
// not be within 2GiB of PC, so use GOT-indirect addressing to access the
|
|
// symbol. This generates the pattern (PseudoLGA sym), which expands to
|
|
// (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
|
|
SDValue Load =
|
|
SDValue(DAG.getMachineNode(RISCV::PseudoLGA, DL, Ty, Addr), 0);
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineMemOperand *MemOp = MF.getMachineMemOperand(
|
|
MachinePointerInfo::getGOT(MF),
|
|
MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
|
|
MachineMemOperand::MOInvariant,
|
|
LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8));
|
|
DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp});
|
|
return Load;
|
|
}
|
|
|
|
// Generate a sequence for accessing addresses within any 2GiB range within
|
|
// the address space. This generates the pattern (PseudoLLA sym), which
|
|
// expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
|
|
return DAG.getNode(RISCVISD::LLA, DL, Ty, Addr);
|
|
}
|
|
case CodeModel::Large: {
|
|
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N))
|
|
return getLargeGlobalAddress(G, DL, Ty, DAG);
|
|
|
|
// Using pc-relative mode for other node type.
|
|
SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
|
|
return DAG.getNode(RISCVISD::LLA, DL, Ty, Addr);
|
|
}
|
|
}
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
|
|
assert(N->getOffset() == 0 && "unexpected offset in global node");
|
|
const GlobalValue *GV = N->getGlobal();
|
|
return getAddr(N, DAG, GV->isDSOLocal(), GV->hasExternalWeakLinkage());
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
|
|
|
|
return getAddr(N, DAG);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
|
|
|
|
return getAddr(N, DAG);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
|
|
|
|
return getAddr(N, DAG);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
|
|
SelectionDAG &DAG,
|
|
bool UseGOT) const {
|
|
SDLoc DL(N);
|
|
EVT Ty = getPointerTy(DAG.getDataLayout());
|
|
const GlobalValue *GV = N->getGlobal();
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
if (UseGOT) {
|
|
// Use PC-relative addressing to access the GOT for this TLS symbol, then
|
|
// load the address from the GOT and add the thread pointer. This generates
|
|
// the pattern (PseudoLA_TLS_IE sym), which expands to
|
|
// (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
|
|
SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
|
|
SDValue Load =
|
|
SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineMemOperand *MemOp = MF.getMachineMemOperand(
|
|
MachinePointerInfo::getGOT(MF),
|
|
MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
|
|
MachineMemOperand::MOInvariant,
|
|
LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8));
|
|
DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp});
|
|
|
|
// Add the thread pointer.
|
|
SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
|
|
return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
|
|
}
|
|
|
|
// Generate a sequence for accessing the address relative to the thread
|
|
// pointer, with the appropriate adjustment for the thread pointer offset.
|
|
// This generates the pattern
|
|
// (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
|
|
SDValue AddrHi =
|
|
DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
|
|
SDValue AddrAdd =
|
|
DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
|
|
SDValue AddrLo =
|
|
DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
|
|
|
|
SDValue MNHi = DAG.getNode(RISCVISD::HI, DL, Ty, AddrHi);
|
|
SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
|
|
SDValue MNAdd =
|
|
DAG.getNode(RISCVISD::ADD_TPREL, DL, Ty, MNHi, TPReg, AddrAdd);
|
|
return DAG.getNode(RISCVISD::ADD_LO, DL, Ty, MNAdd, AddrLo);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(N);
|
|
EVT Ty = getPointerTy(DAG.getDataLayout());
|
|
IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
|
|
const GlobalValue *GV = N->getGlobal();
|
|
|
|
// Use a PC-relative addressing mode to access the global dynamic GOT address.
|
|
// This generates the pattern (PseudoLA_TLS_GD sym), which expands to
|
|
// (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
|
|
SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
|
|
SDValue Load =
|
|
SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
|
|
|
|
// Prepare argument list to generate call.
|
|
ArgListTy Args;
|
|
ArgListEntry Entry;
|
|
Entry.Node = Load;
|
|
Entry.Ty = CallTy;
|
|
Args.push_back(Entry);
|
|
|
|
// Setup call to __tls_get_addr.
|
|
TargetLowering::CallLoweringInfo CLI(DAG);
|
|
CLI.setDebugLoc(DL)
|
|
.setChain(DAG.getEntryNode())
|
|
.setLibCallee(CallingConv::C, CallTy,
|
|
DAG.getExternalSymbol("__tls_get_addr", Ty),
|
|
std::move(Args));
|
|
|
|
return LowerCallTo(CLI).first;
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::getTLSDescAddr(GlobalAddressSDNode *N,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(N);
|
|
EVT Ty = getPointerTy(DAG.getDataLayout());
|
|
const GlobalValue *GV = N->getGlobal();
|
|
|
|
// Use a PC-relative addressing mode to access the global dynamic GOT address.
|
|
// This generates the pattern (PseudoLA_TLSDESC sym), which expands to
|
|
//
|
|
// auipc tX, %tlsdesc_hi(symbol) // R_RISCV_TLSDESC_HI20(symbol)
|
|
// lw tY, tX, %tlsdesc_load_lo(label) // R_RISCV_TLSDESC_LOAD_LO12(label)
|
|
// addi a0, tX, %tlsdesc_add_lo(label) // R_RISCV_TLSDESC_ADD_LO12(label)
|
|
// jalr t0, tY // R_RISCV_TLSDESC_CALL(label)
|
|
SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
|
|
return SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLSDESC, DL, Ty, Addr), 0);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
|
|
assert(N->getOffset() == 0 && "unexpected offset in global node");
|
|
|
|
if (DAG.getTarget().useEmulatedTLS())
|
|
return LowerToTLSEmulatedModel(N, DAG);
|
|
|
|
TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
|
|
|
|
if (DAG.getMachineFunction().getFunction().getCallingConv() ==
|
|
CallingConv::GHC)
|
|
report_fatal_error("In GHC calling convention TLS is not supported");
|
|
|
|
SDValue Addr;
|
|
switch (Model) {
|
|
case TLSModel::LocalExec:
|
|
Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
|
|
break;
|
|
case TLSModel::InitialExec:
|
|
Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
|
|
break;
|
|
case TLSModel::LocalDynamic:
|
|
case TLSModel::GeneralDynamic:
|
|
Addr = DAG.getTarget().useTLSDESC() ? getTLSDescAddr(N, DAG)
|
|
: getDynamicTLSAddr(N, DAG);
|
|
break;
|
|
}
|
|
|
|
return Addr;
|
|
}
|
|
|
|
// Return true if Val is equal to (setcc LHS, RHS, CC).
|
|
// Return false if Val is the inverse of (setcc LHS, RHS, CC).
|
|
// Otherwise, return std::nullopt.
|
|
static std::optional<bool> matchSetCC(SDValue LHS, SDValue RHS,
|
|
ISD::CondCode CC, SDValue Val) {
|
|
assert(Val->getOpcode() == ISD::SETCC);
|
|
SDValue LHS2 = Val.getOperand(0);
|
|
SDValue RHS2 = Val.getOperand(1);
|
|
ISD::CondCode CC2 = cast<CondCodeSDNode>(Val.getOperand(2))->get();
|
|
|
|
if (LHS == LHS2 && RHS == RHS2) {
|
|
if (CC == CC2)
|
|
return true;
|
|
if (CC == ISD::getSetCCInverse(CC2, LHS2.getValueType()))
|
|
return false;
|
|
} else if (LHS == RHS2 && RHS == LHS2) {
|
|
CC2 = ISD::getSetCCSwappedOperands(CC2);
|
|
if (CC == CC2)
|
|
return true;
|
|
if (CC == ISD::getSetCCInverse(CC2, LHS2.getValueType()))
|
|
return false;
|
|
}
|
|
|
|
return std::nullopt;
|
|
}
|
|
|
|
static SDValue combineSelectToBinOp(SDNode *N, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
SDValue CondV = N->getOperand(0);
|
|
SDValue TrueV = N->getOperand(1);
|
|
SDValue FalseV = N->getOperand(2);
|
|
MVT VT = N->getSimpleValueType(0);
|
|
SDLoc DL(N);
|
|
|
|
if (!Subtarget.hasConditionalMoveFusion()) {
|
|
// (select c, -1, y) -> -c | y
|
|
if (isAllOnesConstant(TrueV)) {
|
|
SDValue Neg = DAG.getNegative(CondV, DL, VT);
|
|
return DAG.getNode(ISD::OR, DL, VT, Neg, DAG.getFreeze(FalseV));
|
|
}
|
|
// (select c, y, -1) -> (c-1) | y
|
|
if (isAllOnesConstant(FalseV)) {
|
|
SDValue Neg = DAG.getNode(ISD::ADD, DL, VT, CondV,
|
|
DAG.getAllOnesConstant(DL, VT));
|
|
return DAG.getNode(ISD::OR, DL, VT, Neg, DAG.getFreeze(TrueV));
|
|
}
|
|
|
|
// (select c, 0, y) -> (c-1) & y
|
|
if (isNullConstant(TrueV)) {
|
|
SDValue Neg = DAG.getNode(ISD::ADD, DL, VT, CondV,
|
|
DAG.getAllOnesConstant(DL, VT));
|
|
return DAG.getNode(ISD::AND, DL, VT, Neg, DAG.getFreeze(FalseV));
|
|
}
|
|
// (select c, y, 0) -> -c & y
|
|
if (isNullConstant(FalseV)) {
|
|
SDValue Neg = DAG.getNegative(CondV, DL, VT);
|
|
return DAG.getNode(ISD::AND, DL, VT, Neg, DAG.getFreeze(TrueV));
|
|
}
|
|
}
|
|
|
|
// select c, ~x, x --> xor -c, x
|
|
if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV)) {
|
|
const APInt &TrueVal = TrueV->getAsAPIntVal();
|
|
const APInt &FalseVal = FalseV->getAsAPIntVal();
|
|
if (~TrueVal == FalseVal) {
|
|
SDValue Neg = DAG.getNegative(CondV, DL, VT);
|
|
return DAG.getNode(ISD::XOR, DL, VT, Neg, FalseV);
|
|
}
|
|
}
|
|
|
|
// Try to fold (select (setcc lhs, rhs, cc), truev, falsev) into bitwise ops
|
|
// when both truev and falsev are also setcc.
|
|
if (CondV.getOpcode() == ISD::SETCC && TrueV.getOpcode() == ISD::SETCC &&
|
|
FalseV.getOpcode() == ISD::SETCC) {
|
|
SDValue LHS = CondV.getOperand(0);
|
|
SDValue RHS = CondV.getOperand(1);
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
|
|
|
|
// (select x, x, y) -> x | y
|
|
// (select !x, x, y) -> x & y
|
|
if (std::optional<bool> MatchResult = matchSetCC(LHS, RHS, CC, TrueV)) {
|
|
return DAG.getNode(*MatchResult ? ISD::OR : ISD::AND, DL, VT, TrueV,
|
|
DAG.getFreeze(FalseV));
|
|
}
|
|
// (select x, y, x) -> x & y
|
|
// (select !x, y, x) -> x | y
|
|
if (std::optional<bool> MatchResult = matchSetCC(LHS, RHS, CC, FalseV)) {
|
|
return DAG.getNode(*MatchResult ? ISD::AND : ISD::OR, DL, VT,
|
|
DAG.getFreeze(TrueV), FalseV);
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// Transform `binOp (select cond, x, c0), c1` where `c0` and `c1` are constants
|
|
// into `select cond, binOp(x, c1), binOp(c0, c1)` if profitable.
|
|
// For now we only consider transformation profitable if `binOp(c0, c1)` ends up
|
|
// being `0` or `-1`. In such cases we can replace `select` with `and`.
|
|
// TODO: Should we also do this if `binOp(c0, c1)` is cheaper to materialize
|
|
// than `c0`?
|
|
static SDValue
|
|
foldBinOpIntoSelectIfProfitable(SDNode *BO, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
if (Subtarget.hasShortForwardBranchOpt())
|
|
return SDValue();
|
|
|
|
unsigned SelOpNo = 0;
|
|
SDValue Sel = BO->getOperand(0);
|
|
if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) {
|
|
SelOpNo = 1;
|
|
Sel = BO->getOperand(1);
|
|
}
|
|
|
|
if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse())
|
|
return SDValue();
|
|
|
|
unsigned ConstSelOpNo = 1;
|
|
unsigned OtherSelOpNo = 2;
|
|
if (!isa<ConstantSDNode>(Sel->getOperand(ConstSelOpNo))) {
|
|
ConstSelOpNo = 2;
|
|
OtherSelOpNo = 1;
|
|
}
|
|
SDValue ConstSelOp = Sel->getOperand(ConstSelOpNo);
|
|
ConstantSDNode *ConstSelOpNode = dyn_cast<ConstantSDNode>(ConstSelOp);
|
|
if (!ConstSelOpNode || ConstSelOpNode->isOpaque())
|
|
return SDValue();
|
|
|
|
SDValue ConstBinOp = BO->getOperand(SelOpNo ^ 1);
|
|
ConstantSDNode *ConstBinOpNode = dyn_cast<ConstantSDNode>(ConstBinOp);
|
|
if (!ConstBinOpNode || ConstBinOpNode->isOpaque())
|
|
return SDValue();
|
|
|
|
SDLoc DL(Sel);
|
|
EVT VT = BO->getValueType(0);
|
|
|
|
SDValue NewConstOps[2] = {ConstSelOp, ConstBinOp};
|
|
if (SelOpNo == 1)
|
|
std::swap(NewConstOps[0], NewConstOps[1]);
|
|
|
|
SDValue NewConstOp =
|
|
DAG.FoldConstantArithmetic(BO->getOpcode(), DL, VT, NewConstOps);
|
|
if (!NewConstOp)
|
|
return SDValue();
|
|
|
|
const APInt &NewConstAPInt = NewConstOp->getAsAPIntVal();
|
|
if (!NewConstAPInt.isZero() && !NewConstAPInt.isAllOnes())
|
|
return SDValue();
|
|
|
|
SDValue OtherSelOp = Sel->getOperand(OtherSelOpNo);
|
|
SDValue NewNonConstOps[2] = {OtherSelOp, ConstBinOp};
|
|
if (SelOpNo == 1)
|
|
std::swap(NewNonConstOps[0], NewNonConstOps[1]);
|
|
SDValue NewNonConstOp = DAG.getNode(BO->getOpcode(), DL, VT, NewNonConstOps);
|
|
|
|
SDValue NewT = (ConstSelOpNo == 1) ? NewConstOp : NewNonConstOp;
|
|
SDValue NewF = (ConstSelOpNo == 1) ? NewNonConstOp : NewConstOp;
|
|
return DAG.getSelect(DL, VT, Sel.getOperand(0), NewT, NewF);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
|
|
SDValue CondV = Op.getOperand(0);
|
|
SDValue TrueV = Op.getOperand(1);
|
|
SDValue FalseV = Op.getOperand(2);
|
|
SDLoc DL(Op);
|
|
MVT VT = Op.getSimpleValueType();
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
// Lower vector SELECTs to VSELECTs by splatting the condition.
|
|
if (VT.isVector()) {
|
|
MVT SplatCondVT = VT.changeVectorElementType(MVT::i1);
|
|
SDValue CondSplat = DAG.getSplat(SplatCondVT, DL, CondV);
|
|
return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV);
|
|
}
|
|
|
|
// When Zicond or XVentanaCondOps is present, emit CZERO_EQZ and CZERO_NEZ
|
|
// nodes to implement the SELECT. Performing the lowering here allows for
|
|
// greater control over when CZERO_{EQZ/NEZ} are used vs another branchless
|
|
// sequence or RISCVISD::SELECT_CC node (branch-based select).
|
|
if ((Subtarget.hasStdExtZicond() || Subtarget.hasVendorXVentanaCondOps()) &&
|
|
VT.isScalarInteger()) {
|
|
// (select c, t, 0) -> (czero_eqz t, c)
|
|
if (isNullConstant(FalseV))
|
|
return DAG.getNode(RISCVISD::CZERO_EQZ, DL, VT, TrueV, CondV);
|
|
// (select c, 0, f) -> (czero_nez f, c)
|
|
if (isNullConstant(TrueV))
|
|
return DAG.getNode(RISCVISD::CZERO_NEZ, DL, VT, FalseV, CondV);
|
|
|
|
// (select c, (and f, x), f) -> (or (and f, x), (czero_nez f, c))
|
|
if (TrueV.getOpcode() == ISD::AND &&
|
|
(TrueV.getOperand(0) == FalseV || TrueV.getOperand(1) == FalseV))
|
|
return DAG.getNode(
|
|
ISD::OR, DL, VT, TrueV,
|
|
DAG.getNode(RISCVISD::CZERO_NEZ, DL, VT, FalseV, CondV));
|
|
// (select c, t, (and t, x)) -> (or (czero_eqz t, c), (and t, x))
|
|
if (FalseV.getOpcode() == ISD::AND &&
|
|
(FalseV.getOperand(0) == TrueV || FalseV.getOperand(1) == TrueV))
|
|
return DAG.getNode(
|
|
ISD::OR, DL, VT, FalseV,
|
|
DAG.getNode(RISCVISD::CZERO_EQZ, DL, VT, TrueV, CondV));
|
|
|
|
// Try some other optimizations before falling back to generic lowering.
|
|
if (SDValue V = combineSelectToBinOp(Op.getNode(), DAG, Subtarget))
|
|
return V;
|
|
|
|
// (select c, c1, c2) -> (add (czero_nez c2 - c1, c), c1)
|
|
// (select c, c1, c2) -> (add (czero_eqz c1 - c2, c), c2)
|
|
if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV)) {
|
|
const APInt &TrueVal = TrueV->getAsAPIntVal();
|
|
const APInt &FalseVal = FalseV->getAsAPIntVal();
|
|
|
|
// Prefer these over Zicond to avoid materializing an immediate:
|
|
// (select (x < 0), y, z) -> x >> (XLEN - 1) & (y - z) + z
|
|
// (select (x > -1), z, y) -> x >> (XLEN - 1) & (y - z) + z
|
|
if (CondV.getOpcode() == ISD::SETCC &&
|
|
CondV.getOperand(0).getValueType() == VT && CondV.hasOneUse()) {
|
|
ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
|
|
if ((CCVal == ISD::SETLT && isNullConstant(CondV.getOperand(1))) ||
|
|
(CCVal == ISD::SETGT && isAllOnesConstant(CondV.getOperand(1)))) {
|
|
int64_t TrueImm = TrueVal.getSExtValue();
|
|
int64_t FalseImm = FalseVal.getSExtValue();
|
|
if (CCVal == ISD::SETGT)
|
|
std::swap(TrueImm, FalseImm);
|
|
if (isInt<12>(TrueImm) && isInt<12>(FalseImm) &&
|
|
isInt<12>(TrueImm - FalseImm)) {
|
|
SDValue SRA =
|
|
DAG.getNode(ISD::SRA, DL, VT, CondV.getOperand(0),
|
|
DAG.getConstant(Subtarget.getXLen() - 1, DL, VT));
|
|
SDValue AND =
|
|
DAG.getNode(ISD::AND, DL, VT, SRA,
|
|
DAG.getSignedConstant(TrueImm - FalseImm, DL, VT));
|
|
return DAG.getNode(ISD::ADD, DL, VT, AND,
|
|
DAG.getSignedConstant(FalseImm, DL, VT));
|
|
}
|
|
}
|
|
}
|
|
|
|
const int TrueValCost = RISCVMatInt::getIntMatCost(
|
|
TrueVal, Subtarget.getXLen(), Subtarget, /*CompressionCost=*/true);
|
|
const int FalseValCost = RISCVMatInt::getIntMatCost(
|
|
FalseVal, Subtarget.getXLen(), Subtarget, /*CompressionCost=*/true);
|
|
bool IsCZERO_NEZ = TrueValCost <= FalseValCost;
|
|
SDValue LHSVal = DAG.getConstant(
|
|
IsCZERO_NEZ ? FalseVal - TrueVal : TrueVal - FalseVal, DL, VT);
|
|
SDValue RHSVal =
|
|
DAG.getConstant(IsCZERO_NEZ ? TrueVal : FalseVal, DL, VT);
|
|
SDValue CMOV =
|
|
DAG.getNode(IsCZERO_NEZ ? RISCVISD::CZERO_NEZ : RISCVISD::CZERO_EQZ,
|
|
DL, VT, LHSVal, CondV);
|
|
return DAG.getNode(ISD::ADD, DL, VT, CMOV, RHSVal);
|
|
}
|
|
|
|
// (select c, c1, t) -> (add (czero_nez t - c1, c), c1)
|
|
// (select c, t, c1) -> (add (czero_eqz t - c1, c), c1)
|
|
if (isa<ConstantSDNode>(TrueV) != isa<ConstantSDNode>(FalseV)) {
|
|
bool IsCZERO_NEZ = isa<ConstantSDNode>(TrueV);
|
|
SDValue ConstVal = IsCZERO_NEZ ? TrueV : FalseV;
|
|
SDValue RegV = IsCZERO_NEZ ? FalseV : TrueV;
|
|
int64_t RawConstVal = cast<ConstantSDNode>(ConstVal)->getSExtValue();
|
|
// Fall back to XORI if Const == -0x800
|
|
if (RawConstVal == -0x800) {
|
|
SDValue XorOp = DAG.getNode(ISD::XOR, DL, VT, RegV, ConstVal);
|
|
SDValue CMOV =
|
|
DAG.getNode(IsCZERO_NEZ ? RISCVISD::CZERO_NEZ : RISCVISD::CZERO_EQZ,
|
|
DL, VT, XorOp, CondV);
|
|
return DAG.getNode(ISD::XOR, DL, VT, CMOV, ConstVal);
|
|
}
|
|
// Efficient only if the constant and its negation fit into `ADDI`
|
|
// Prefer Add/Sub over Xor since can be compressed for small immediates
|
|
if (isInt<12>(RawConstVal)) {
|
|
SDValue SubOp = DAG.getNode(ISD::SUB, DL, VT, RegV, ConstVal);
|
|
SDValue CMOV =
|
|
DAG.getNode(IsCZERO_NEZ ? RISCVISD::CZERO_NEZ : RISCVISD::CZERO_EQZ,
|
|
DL, VT, SubOp, CondV);
|
|
return DAG.getNode(ISD::ADD, DL, VT, CMOV, ConstVal);
|
|
}
|
|
}
|
|
|
|
// (select c, t, f) -> (or (czero_eqz t, c), (czero_nez f, c))
|
|
// Unless we have the short forward branch optimization.
|
|
if (!Subtarget.hasConditionalMoveFusion())
|
|
return DAG.getNode(
|
|
ISD::OR, DL, VT,
|
|
DAG.getNode(RISCVISD::CZERO_EQZ, DL, VT, TrueV, CondV),
|
|
DAG.getNode(RISCVISD::CZERO_NEZ, DL, VT, FalseV, CondV));
|
|
}
|
|
|
|
if (SDValue V = combineSelectToBinOp(Op.getNode(), DAG, Subtarget))
|
|
return V;
|
|
|
|
if (Op.hasOneUse()) {
|
|
unsigned UseOpc = Op->user_begin()->getOpcode();
|
|
if (isBinOp(UseOpc) && DAG.isSafeToSpeculativelyExecute(UseOpc)) {
|
|
SDNode *BinOp = *Op->user_begin();
|
|
if (SDValue NewSel = foldBinOpIntoSelectIfProfitable(*Op->user_begin(),
|
|
DAG, Subtarget)) {
|
|
DAG.ReplaceAllUsesWith(BinOp, &NewSel);
|
|
// Opcode check is necessary because foldBinOpIntoSelectIfProfitable
|
|
// may return a constant node and cause crash in lowerSELECT.
|
|
if (NewSel.getOpcode() == ISD::SELECT)
|
|
return lowerSELECT(NewSel, DAG);
|
|
return NewSel;
|
|
}
|
|
}
|
|
}
|
|
|
|
// (select cc, 1.0, 0.0) -> (sint_to_fp (zext cc))
|
|
// (select cc, 0.0, 1.0) -> (sint_to_fp (zext (xor cc, 1)))
|
|
const ConstantFPSDNode *FPTV = dyn_cast<ConstantFPSDNode>(TrueV);
|
|
const ConstantFPSDNode *FPFV = dyn_cast<ConstantFPSDNode>(FalseV);
|
|
if (FPTV && FPFV) {
|
|
if (FPTV->isExactlyValue(1.0) && FPFV->isExactlyValue(0.0))
|
|
return DAG.getNode(ISD::SINT_TO_FP, DL, VT, CondV);
|
|
if (FPTV->isExactlyValue(0.0) && FPFV->isExactlyValue(1.0)) {
|
|
SDValue XOR = DAG.getNode(ISD::XOR, DL, XLenVT, CondV,
|
|
DAG.getConstant(1, DL, XLenVT));
|
|
return DAG.getNode(ISD::SINT_TO_FP, DL, VT, XOR);
|
|
}
|
|
}
|
|
|
|
// If the condition is not an integer SETCC which operates on XLenVT, we need
|
|
// to emit a RISCVISD::SELECT_CC comparing the condition to zero. i.e.:
|
|
// (select condv, truev, falsev)
|
|
// -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
|
|
if (CondV.getOpcode() != ISD::SETCC ||
|
|
CondV.getOperand(0).getSimpleValueType() != XLenVT) {
|
|
SDValue Zero = DAG.getConstant(0, DL, XLenVT);
|
|
SDValue SetNE = DAG.getCondCode(ISD::SETNE);
|
|
|
|
SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
|
|
|
|
return DAG.getNode(RISCVISD::SELECT_CC, DL, VT, Ops);
|
|
}
|
|
|
|
// If the CondV is the output of a SETCC node which operates on XLenVT inputs,
|
|
// then merge the SETCC node into the lowered RISCVISD::SELECT_CC to take
|
|
// advantage of the integer compare+branch instructions. i.e.:
|
|
// (select (setcc lhs, rhs, cc), truev, falsev)
|
|
// -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
|
|
SDValue LHS = CondV.getOperand(0);
|
|
SDValue RHS = CondV.getOperand(1);
|
|
ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
|
|
|
|
// Special case for a select of 2 constants that have a difference of 1.
|
|
// Normally this is done by DAGCombine, but if the select is introduced by
|
|
// type legalization or op legalization, we miss it. Restricting to SETLT
|
|
// case for now because that is what signed saturating add/sub need.
|
|
// FIXME: We don't need the condition to be SETLT or even a SETCC,
|
|
// but we would probably want to swap the true/false values if the condition
|
|
// is SETGE/SETLE to avoid an XORI.
|
|
if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
|
|
CCVal == ISD::SETLT) {
|
|
const APInt &TrueVal = TrueV->getAsAPIntVal();
|
|
const APInt &FalseVal = FalseV->getAsAPIntVal();
|
|
if (TrueVal - 1 == FalseVal)
|
|
return DAG.getNode(ISD::ADD, DL, VT, CondV, FalseV);
|
|
if (TrueVal + 1 == FalseVal)
|
|
return DAG.getNode(ISD::SUB, DL, VT, FalseV, CondV);
|
|
}
|
|
|
|
translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
|
|
// 1 < x ? x : 1 -> 0 < x ? x : 1
|
|
if (isOneConstant(LHS) && (CCVal == ISD::SETLT || CCVal == ISD::SETULT) &&
|
|
RHS == TrueV && LHS == FalseV) {
|
|
LHS = DAG.getConstant(0, DL, VT);
|
|
// 0 <u x is the same as x != 0.
|
|
if (CCVal == ISD::SETULT) {
|
|
std::swap(LHS, RHS);
|
|
CCVal = ISD::SETNE;
|
|
}
|
|
}
|
|
|
|
// x <s -1 ? x : -1 -> x <s 0 ? x : -1
|
|
if (isAllOnesConstant(RHS) && CCVal == ISD::SETLT && LHS == TrueV &&
|
|
RHS == FalseV) {
|
|
RHS = DAG.getConstant(0, DL, VT);
|
|
}
|
|
|
|
SDValue TargetCC = DAG.getCondCode(CCVal);
|
|
|
|
if (isa<ConstantSDNode>(TrueV) && !isa<ConstantSDNode>(FalseV)) {
|
|
// (select (setcc lhs, rhs, CC), constant, falsev)
|
|
// -> (select (setcc lhs, rhs, InverseCC), falsev, constant)
|
|
std::swap(TrueV, FalseV);
|
|
TargetCC = DAG.getCondCode(ISD::getSetCCInverse(CCVal, LHS.getValueType()));
|
|
}
|
|
|
|
SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
|
|
return DAG.getNode(RISCVISD::SELECT_CC, DL, VT, Ops);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
|
|
SDValue CondV = Op.getOperand(1);
|
|
SDLoc DL(Op);
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
if (CondV.getOpcode() == ISD::SETCC &&
|
|
CondV.getOperand(0).getValueType() == XLenVT) {
|
|
SDValue LHS = CondV.getOperand(0);
|
|
SDValue RHS = CondV.getOperand(1);
|
|
ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
|
|
|
|
translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
|
|
|
|
SDValue TargetCC = DAG.getCondCode(CCVal);
|
|
return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
|
|
LHS, RHS, TargetCC, Op.getOperand(2));
|
|
}
|
|
|
|
return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
|
|
CondV, DAG.getConstant(0, DL, XLenVT),
|
|
DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
|
|
|
|
SDLoc DL(Op);
|
|
SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
|
|
getPointerTy(MF.getDataLayout()));
|
|
|
|
// vastart just stores the address of the VarArgsFrameIndex slot into the
|
|
// memory location argument.
|
|
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
|
|
return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
|
|
MachinePointerInfo(SV));
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
MFI.setFrameAddressIsTaken(true);
|
|
Register FrameReg = RI.getFrameRegister(MF);
|
|
int XLenInBytes = Subtarget.getXLen() / 8;
|
|
|
|
EVT VT = Op.getValueType();
|
|
SDLoc DL(Op);
|
|
SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
|
|
unsigned Depth = Op.getConstantOperandVal(0);
|
|
while (Depth--) {
|
|
int Offset = -(XLenInBytes * 2);
|
|
SDValue Ptr = DAG.getNode(
|
|
ISD::ADD, DL, VT, FrameAddr,
|
|
DAG.getSignedConstant(Offset, DL, getPointerTy(DAG.getDataLayout())));
|
|
FrameAddr =
|
|
DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
|
|
}
|
|
return FrameAddr;
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
MFI.setReturnAddressIsTaken(true);
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
int XLenInBytes = Subtarget.getXLen() / 8;
|
|
|
|
if (verifyReturnAddressArgumentIsConstant(Op, DAG))
|
|
return SDValue();
|
|
|
|
EVT VT = Op.getValueType();
|
|
SDLoc DL(Op);
|
|
unsigned Depth = Op.getConstantOperandVal(0);
|
|
if (Depth) {
|
|
int Off = -XLenInBytes;
|
|
SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
|
|
SDValue Offset = DAG.getSignedConstant(Off, DL, VT);
|
|
return DAG.getLoad(VT, DL, DAG.getEntryNode(),
|
|
DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
|
|
MachinePointerInfo());
|
|
}
|
|
|
|
// Return the value of the return address register, marking it an implicit
|
|
// live-in.
|
|
Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
|
|
return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
SDValue Lo = Op.getOperand(0);
|
|
SDValue Hi = Op.getOperand(1);
|
|
SDValue Shamt = Op.getOperand(2);
|
|
EVT VT = Lo.getValueType();
|
|
|
|
// if Shamt-XLEN < 0: // Shamt < XLEN
|
|
// Lo = Lo << Shamt
|
|
// Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt))
|
|
// else:
|
|
// Lo = 0
|
|
// Hi = Lo << (Shamt-XLEN)
|
|
|
|
SDValue Zero = DAG.getConstant(0, DL, VT);
|
|
SDValue One = DAG.getConstant(1, DL, VT);
|
|
SDValue MinusXLen = DAG.getSignedConstant(-(int)Subtarget.getXLen(), DL, VT);
|
|
SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
|
|
SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
|
|
SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
|
|
|
|
SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
|
|
SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
|
|
SDValue ShiftRightLo =
|
|
DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
|
|
SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
|
|
SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
|
|
SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
|
|
|
|
SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
|
|
|
|
Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
|
|
Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
|
|
|
|
SDValue Parts[2] = {Lo, Hi};
|
|
return DAG.getMergeValues(Parts, DL);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
|
|
bool IsSRA) const {
|
|
SDLoc DL(Op);
|
|
SDValue Lo = Op.getOperand(0);
|
|
SDValue Hi = Op.getOperand(1);
|
|
SDValue Shamt = Op.getOperand(2);
|
|
EVT VT = Lo.getValueType();
|
|
|
|
// SRA expansion:
|
|
// if Shamt-XLEN < 0: // Shamt < XLEN
|
|
// Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - ShAmt))
|
|
// Hi = Hi >>s Shamt
|
|
// else:
|
|
// Lo = Hi >>s (Shamt-XLEN);
|
|
// Hi = Hi >>s (XLEN-1)
|
|
//
|
|
// SRL expansion:
|
|
// if Shamt-XLEN < 0: // Shamt < XLEN
|
|
// Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - ShAmt))
|
|
// Hi = Hi >>u Shamt
|
|
// else:
|
|
// Lo = Hi >>u (Shamt-XLEN);
|
|
// Hi = 0;
|
|
|
|
unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
|
|
|
|
SDValue Zero = DAG.getConstant(0, DL, VT);
|
|
SDValue One = DAG.getConstant(1, DL, VT);
|
|
SDValue MinusXLen = DAG.getSignedConstant(-(int)Subtarget.getXLen(), DL, VT);
|
|
SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
|
|
SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
|
|
SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
|
|
|
|
SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
|
|
SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
|
|
SDValue ShiftLeftHi =
|
|
DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
|
|
SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
|
|
SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
|
|
SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
|
|
SDValue HiFalse =
|
|
IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
|
|
|
|
SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
|
|
|
|
Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
|
|
Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
|
|
|
|
SDValue Parts[2] = {Lo, Hi};
|
|
return DAG.getMergeValues(Parts, DL);
|
|
}
|
|
|
|
// Lower splats of i1 types to SETCC. For each mask vector type, we have a
|
|
// legal equivalently-sized i8 type, so we can use that as a go-between.
|
|
SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
MVT VT = Op.getSimpleValueType();
|
|
SDValue SplatVal = Op.getOperand(0);
|
|
// All-zeros or all-ones splats are handled specially.
|
|
if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) {
|
|
SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
|
|
return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL);
|
|
}
|
|
if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) {
|
|
SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
|
|
return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL);
|
|
}
|
|
MVT InterVT = VT.changeVectorElementType(MVT::i8);
|
|
SplatVal = DAG.getNode(ISD::AND, DL, SplatVal.getValueType(), SplatVal,
|
|
DAG.getConstant(1, DL, SplatVal.getValueType()));
|
|
SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal);
|
|
SDValue Zero = DAG.getConstant(0, DL, InterVT);
|
|
return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE);
|
|
}
|
|
|
|
// Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
|
|
// illegal (currently only vXi64 RV32).
|
|
// FIXME: We could also catch non-constant sign-extended i32 values and lower
|
|
// them to VMV_V_X_VL.
|
|
SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
MVT VecVT = Op.getSimpleValueType();
|
|
assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
|
|
"Unexpected SPLAT_VECTOR_PARTS lowering");
|
|
|
|
assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
|
|
SDValue Lo = Op.getOperand(0);
|
|
SDValue Hi = Op.getOperand(1);
|
|
|
|
MVT ContainerVT = VecVT;
|
|
if (VecVT.isFixedLengthVector())
|
|
ContainerVT = getContainerForFixedLengthVector(VecVT);
|
|
|
|
auto VL = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).second;
|
|
|
|
SDValue Res =
|
|
splatPartsI64WithVL(DL, ContainerVT, SDValue(), Lo, Hi, VL, DAG);
|
|
|
|
if (VecVT.isFixedLengthVector())
|
|
Res = convertFromScalableVector(VecVT, Res, DAG, Subtarget);
|
|
|
|
return Res;
|
|
}
|
|
|
|
// Custom-lower extensions from mask vectors by using a vselect either with 1
|
|
// for zero/any-extension or -1 for sign-extension:
|
|
// (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
|
|
// Note that any-extension is lowered identically to zero-extension.
|
|
SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
|
|
int64_t ExtTrueVal) const {
|
|
SDLoc DL(Op);
|
|
MVT VecVT = Op.getSimpleValueType();
|
|
SDValue Src = Op.getOperand(0);
|
|
// Only custom-lower extensions from mask types
|
|
assert(Src.getValueType().isVector() &&
|
|
Src.getValueType().getVectorElementType() == MVT::i1);
|
|
|
|
if (VecVT.isScalableVector()) {
|
|
SDValue SplatZero = DAG.getConstant(0, DL, VecVT);
|
|
SDValue SplatTrueVal = DAG.getSignedConstant(ExtTrueVal, DL, VecVT);
|
|
if (Src.getOpcode() == ISD::XOR &&
|
|
ISD::isConstantSplatVectorAllOnes(Src.getOperand(1).getNode()))
|
|
return DAG.getNode(ISD::VSELECT, DL, VecVT, Src.getOperand(0), SplatZero,
|
|
SplatTrueVal);
|
|
return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
|
|
}
|
|
|
|
MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
|
|
MVT I1ContainerVT =
|
|
MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
|
|
|
|
SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
|
|
|
|
SDValue VL = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).second;
|
|
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
|
|
SDValue SplatTrueVal = DAG.getSignedConstant(ExtTrueVal, DL, XLenVT);
|
|
|
|
if (Src.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
|
|
SDValue Xor = Src.getOperand(0);
|
|
if (Xor.getOpcode() == RISCVISD::VMXOR_VL) {
|
|
SDValue ScalableOnes = Xor.getOperand(1);
|
|
if (ScalableOnes.getOpcode() == ISD::INSERT_SUBVECTOR &&
|
|
ScalableOnes.getOperand(0).isUndef() &&
|
|
ISD::isConstantSplatVectorAllOnes(
|
|
ScalableOnes.getOperand(1).getNode())) {
|
|
CC = Xor.getOperand(0);
|
|
std::swap(SplatZero, SplatTrueVal);
|
|
}
|
|
}
|
|
}
|
|
|
|
SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
|
|
DAG.getUNDEF(ContainerVT), SplatZero, VL);
|
|
SplatTrueVal = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
|
|
DAG.getUNDEF(ContainerVT), SplatTrueVal, VL);
|
|
SDValue Select =
|
|
DAG.getNode(RISCVISD::VMERGE_VL, DL, ContainerVT, CC, SplatTrueVal,
|
|
SplatZero, DAG.getUNDEF(ContainerVT), VL);
|
|
|
|
return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
|
|
SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
|
|
MVT ExtVT = Op.getSimpleValueType();
|
|
// Only custom-lower extensions from fixed-length vector types.
|
|
if (!ExtVT.isFixedLengthVector())
|
|
return Op;
|
|
MVT VT = Op.getOperand(0).getSimpleValueType();
|
|
// Grab the canonical container type for the extended type. Infer the smaller
|
|
// type from that to ensure the same number of vector elements, as we know
|
|
// the LMUL will be sufficient to hold the smaller type.
|
|
MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
|
|
// Get the extended container type manually to ensure the same number of
|
|
// vector elements between source and dest.
|
|
MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
|
|
ContainerExtVT.getVectorElementCount());
|
|
|
|
SDValue Op1 =
|
|
convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
|
|
|
|
SDLoc DL(Op);
|
|
auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
|
|
|
|
SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
|
|
|
|
return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
|
|
}
|
|
|
|
// Custom-lower truncations from vectors to mask vectors by using a mask and a
|
|
// setcc operation:
|
|
// (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
|
|
SDValue RISCVTargetLowering::lowerVectorMaskTruncLike(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNCATE;
|
|
SDLoc DL(Op);
|
|
EVT MaskVT = Op.getValueType();
|
|
// Only expect to custom-lower truncations to mask types
|
|
assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
|
|
"Unexpected type for vector mask lowering");
|
|
SDValue Src = Op.getOperand(0);
|
|
MVT VecVT = Src.getSimpleValueType();
|
|
SDValue Mask, VL;
|
|
if (IsVPTrunc) {
|
|
Mask = Op.getOperand(1);
|
|
VL = Op.getOperand(2);
|
|
}
|
|
// If this is a fixed vector, we need to convert it to a scalable vector.
|
|
MVT ContainerVT = VecVT;
|
|
|
|
if (VecVT.isFixedLengthVector()) {
|
|
ContainerVT = getContainerForFixedLengthVector(VecVT);
|
|
Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
|
|
if (IsVPTrunc) {
|
|
MVT MaskContainerVT =
|
|
getContainerForFixedLengthVector(Mask.getSimpleValueType());
|
|
Mask = convertToScalableVector(MaskContainerVT, Mask, DAG, Subtarget);
|
|
}
|
|
}
|
|
|
|
if (!IsVPTrunc) {
|
|
std::tie(Mask, VL) =
|
|
getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
|
|
}
|
|
|
|
SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
|
|
SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
|
|
|
|
SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
|
|
DAG.getUNDEF(ContainerVT), SplatOne, VL);
|
|
SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
|
|
DAG.getUNDEF(ContainerVT), SplatZero, VL);
|
|
|
|
MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
|
|
SDValue Trunc = DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne,
|
|
DAG.getUNDEF(ContainerVT), Mask, VL);
|
|
Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT,
|
|
{Trunc, SplatZero, DAG.getCondCode(ISD::SETNE),
|
|
DAG.getUNDEF(MaskContainerVT), Mask, VL});
|
|
if (MaskVT.isFixedLengthVector())
|
|
Trunc = convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
|
|
return Trunc;
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerVectorTruncLike(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
unsigned Opc = Op.getOpcode();
|
|
bool IsVPTrunc = Opc == ISD::VP_TRUNCATE;
|
|
SDLoc DL(Op);
|
|
|
|
MVT VT = Op.getSimpleValueType();
|
|
// Only custom-lower vector truncates
|
|
assert(VT.isVector() && "Unexpected type for vector truncate lowering");
|
|
|
|
// Truncates to mask types are handled differently
|
|
if (VT.getVectorElementType() == MVT::i1)
|
|
return lowerVectorMaskTruncLike(Op, DAG);
|
|
|
|
// RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
|
|
// truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
|
|
// truncate by one power of two at a time.
|
|
MVT DstEltVT = VT.getVectorElementType();
|
|
|
|
SDValue Src = Op.getOperand(0);
|
|
MVT SrcVT = Src.getSimpleValueType();
|
|
MVT SrcEltVT = SrcVT.getVectorElementType();
|
|
|
|
assert(DstEltVT.bitsLT(SrcEltVT) && isPowerOf2_64(DstEltVT.getSizeInBits()) &&
|
|
isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
|
|
"Unexpected vector truncate lowering");
|
|
|
|
MVT ContainerVT = SrcVT;
|
|
SDValue Mask, VL;
|
|
if (IsVPTrunc) {
|
|
Mask = Op.getOperand(1);
|
|
VL = Op.getOperand(2);
|
|
}
|
|
if (SrcVT.isFixedLengthVector()) {
|
|
ContainerVT = getContainerForFixedLengthVector(SrcVT);
|
|
Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
|
|
if (IsVPTrunc) {
|
|
MVT MaskVT = getMaskTypeFor(ContainerVT);
|
|
Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
|
|
}
|
|
}
|
|
|
|
SDValue Result = Src;
|
|
if (!IsVPTrunc) {
|
|
std::tie(Mask, VL) =
|
|
getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
|
|
}
|
|
|
|
unsigned NewOpc;
|
|
if (Opc == ISD::TRUNCATE_SSAT_S)
|
|
NewOpc = RISCVISD::TRUNCATE_VECTOR_VL_SSAT;
|
|
else if (Opc == ISD::TRUNCATE_USAT_U)
|
|
NewOpc = RISCVISD::TRUNCATE_VECTOR_VL_USAT;
|
|
else
|
|
NewOpc = RISCVISD::TRUNCATE_VECTOR_VL;
|
|
|
|
do {
|
|
SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
|
|
MVT ResultVT = ContainerVT.changeVectorElementType(SrcEltVT);
|
|
Result = DAG.getNode(NewOpc, DL, ResultVT, Result, Mask, VL);
|
|
} while (SrcEltVT != DstEltVT);
|
|
|
|
if (SrcVT.isFixedLengthVector())
|
|
Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
|
|
|
|
return Result;
|
|
}
|
|
|
|
SDValue
|
|
RISCVTargetLowering::lowerStrictFPExtendOrRoundLike(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue Src = Op.getOperand(1);
|
|
MVT VT = Op.getSimpleValueType();
|
|
MVT SrcVT = Src.getSimpleValueType();
|
|
MVT ContainerVT = VT;
|
|
if (VT.isFixedLengthVector()) {
|
|
MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
|
|
ContainerVT =
|
|
SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
|
|
Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
|
|
}
|
|
|
|
auto [Mask, VL] = getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
|
|
|
|
// RVV can only widen/truncate fp to types double/half the size as the source.
|
|
if ((VT.getVectorElementType() == MVT::f64 &&
|
|
(SrcVT.getVectorElementType() == MVT::f16 ||
|
|
SrcVT.getVectorElementType() == MVT::bf16)) ||
|
|
((VT.getVectorElementType() == MVT::f16 ||
|
|
VT.getVectorElementType() == MVT::bf16) &&
|
|
SrcVT.getVectorElementType() == MVT::f64)) {
|
|
// For double rounding, the intermediate rounding should be round-to-odd.
|
|
unsigned InterConvOpc = Op.getOpcode() == ISD::STRICT_FP_EXTEND
|
|
? RISCVISD::STRICT_FP_EXTEND_VL
|
|
: RISCVISD::STRICT_VFNCVT_ROD_VL;
|
|
MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
|
|
Src = DAG.getNode(InterConvOpc, DL, DAG.getVTList(InterVT, MVT::Other),
|
|
Chain, Src, Mask, VL);
|
|
Chain = Src.getValue(1);
|
|
}
|
|
|
|
unsigned ConvOpc = Op.getOpcode() == ISD::STRICT_FP_EXTEND
|
|
? RISCVISD::STRICT_FP_EXTEND_VL
|
|
: RISCVISD::STRICT_FP_ROUND_VL;
|
|
SDValue Res = DAG.getNode(ConvOpc, DL, DAG.getVTList(ContainerVT, MVT::Other),
|
|
Chain, Src, Mask, VL);
|
|
if (VT.isFixedLengthVector()) {
|
|
// StrictFP operations have two result values. Their lowered result should
|
|
// have same result count.
|
|
SDValue SubVec = convertFromScalableVector(VT, Res, DAG, Subtarget);
|
|
Res = DAG.getMergeValues({SubVec, Res.getValue(1)}, DL);
|
|
}
|
|
return Res;
|
|
}
|
|
|
|
SDValue
|
|
RISCVTargetLowering::lowerVectorFPExtendOrRoundLike(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
bool IsVP =
|
|
Op.getOpcode() == ISD::VP_FP_ROUND || Op.getOpcode() == ISD::VP_FP_EXTEND;
|
|
bool IsExtend =
|
|
Op.getOpcode() == ISD::VP_FP_EXTEND || Op.getOpcode() == ISD::FP_EXTEND;
|
|
// RVV can only do truncate fp to types half the size as the source. We
|
|
// custom-lower f64->f16 rounds via RVV's round-to-odd float
|
|
// conversion instruction.
|
|
SDLoc DL(Op);
|
|
MVT VT = Op.getSimpleValueType();
|
|
|
|
assert(VT.isVector() && "Unexpected type for vector truncate lowering");
|
|
|
|
SDValue Src = Op.getOperand(0);
|
|
MVT SrcVT = Src.getSimpleValueType();
|
|
|
|
bool IsDirectExtend =
|
|
IsExtend && (VT.getVectorElementType() != MVT::f64 ||
|
|
(SrcVT.getVectorElementType() != MVT::f16 &&
|
|
SrcVT.getVectorElementType() != MVT::bf16));
|
|
bool IsDirectTrunc = !IsExtend && ((VT.getVectorElementType() != MVT::f16 &&
|
|
VT.getVectorElementType() != MVT::bf16) ||
|
|
SrcVT.getVectorElementType() != MVT::f64);
|
|
|
|
bool IsDirectConv = IsDirectExtend || IsDirectTrunc;
|
|
|
|
// We have regular SD node patterns for direct non-VL extends.
|
|
if (VT.isScalableVector() && IsDirectConv && !IsVP)
|
|
return Op;
|
|
|
|
// Prepare any fixed-length vector operands.
|
|
MVT ContainerVT = VT;
|
|
SDValue Mask, VL;
|
|
if (IsVP) {
|
|
Mask = Op.getOperand(1);
|
|
VL = Op.getOperand(2);
|
|
}
|
|
if (VT.isFixedLengthVector()) {
|
|
MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
|
|
ContainerVT =
|
|
SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
|
|
Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
|
|
if (IsVP) {
|
|
MVT MaskVT = getMaskTypeFor(ContainerVT);
|
|
Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
|
|
}
|
|
}
|
|
|
|
if (!IsVP)
|
|
std::tie(Mask, VL) =
|
|
getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
|
|
|
|
unsigned ConvOpc = IsExtend ? RISCVISD::FP_EXTEND_VL : RISCVISD::FP_ROUND_VL;
|
|
|
|
if (IsDirectConv) {
|
|
Src = DAG.getNode(ConvOpc, DL, ContainerVT, Src, Mask, VL);
|
|
if (VT.isFixedLengthVector())
|
|
Src = convertFromScalableVector(VT, Src, DAG, Subtarget);
|
|
return Src;
|
|
}
|
|
|
|
unsigned InterConvOpc =
|
|
IsExtend ? RISCVISD::FP_EXTEND_VL : RISCVISD::VFNCVT_ROD_VL;
|
|
|
|
MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
|
|
SDValue IntermediateConv =
|
|
DAG.getNode(InterConvOpc, DL, InterVT, Src, Mask, VL);
|
|
SDValue Result =
|
|
DAG.getNode(ConvOpc, DL, ContainerVT, IntermediateConv, Mask, VL);
|
|
if (VT.isFixedLengthVector())
|
|
return convertFromScalableVector(VT, Result, DAG, Subtarget);
|
|
return Result;
|
|
}
|
|
|
|
// Given a scalable vector type and an index into it, returns the type for the
|
|
// smallest subvector that the index fits in. This can be used to reduce LMUL
|
|
// for operations like vslidedown.
|
|
//
|
|
// E.g. With Zvl128b, index 3 in a nxv4i32 fits within the first nxv2i32.
|
|
static std::optional<MVT>
|
|
getSmallestVTForIndex(MVT VecVT, unsigned MaxIdx, SDLoc DL, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
assert(VecVT.isScalableVector());
|
|
const unsigned EltSize = VecVT.getScalarSizeInBits();
|
|
const unsigned VectorBitsMin = Subtarget.getRealMinVLen();
|
|
const unsigned MinVLMAX = VectorBitsMin / EltSize;
|
|
MVT SmallerVT;
|
|
if (MaxIdx < MinVLMAX)
|
|
SmallerVT = RISCVTargetLowering::getM1VT(VecVT);
|
|
else if (MaxIdx < MinVLMAX * 2)
|
|
SmallerVT =
|
|
RISCVTargetLowering::getM1VT(VecVT).getDoubleNumVectorElementsVT();
|
|
else if (MaxIdx < MinVLMAX * 4)
|
|
SmallerVT = RISCVTargetLowering::getM1VT(VecVT)
|
|
.getDoubleNumVectorElementsVT()
|
|
.getDoubleNumVectorElementsVT();
|
|
if (!SmallerVT.isValid() || !VecVT.bitsGT(SmallerVT))
|
|
return std::nullopt;
|
|
return SmallerVT;
|
|
}
|
|
|
|
static bool isValidVisniInsertExtractIndex(SDValue Idx) {
|
|
auto *IdxC = dyn_cast<ConstantSDNode>(Idx);
|
|
if (!IdxC || isNullConstant(Idx))
|
|
return false;
|
|
return isUInt<5>(IdxC->getZExtValue());
|
|
}
|
|
|
|
// Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
|
|
// first position of a vector, and that vector is slid up to the insert index.
|
|
// By limiting the active vector length to index+1 and merging with the
|
|
// original vector (with an undisturbed tail policy for elements >= VL), we
|
|
// achieve the desired result of leaving all elements untouched except the one
|
|
// at VL-1, which is replaced with the desired value.
|
|
SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
MVT VecVT = Op.getSimpleValueType();
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
SDValue Vec = Op.getOperand(0);
|
|
SDValue Val = Op.getOperand(1);
|
|
MVT ValVT = Val.getSimpleValueType();
|
|
SDValue Idx = Op.getOperand(2);
|
|
|
|
if (VecVT.getVectorElementType() == MVT::i1) {
|
|
// FIXME: For now we just promote to an i8 vector and insert into that,
|
|
// but this is probably not optimal.
|
|
MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
|
|
Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
|
|
Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx);
|
|
return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec);
|
|
}
|
|
|
|
if ((ValVT == MVT::f16 && !Subtarget.hasVInstructionsF16()) ||
|
|
ValVT == MVT::bf16) {
|
|
// If we don't have vfmv.s.f for f16/bf16, use fmv.x.h first.
|
|
MVT IntVT = VecVT.changeTypeToInteger();
|
|
SDValue IntInsert = DAG.getNode(
|
|
ISD::INSERT_VECTOR_ELT, DL, IntVT, DAG.getBitcast(IntVT, Vec),
|
|
DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Val), Idx);
|
|
return DAG.getBitcast(VecVT, IntInsert);
|
|
}
|
|
|
|
MVT ContainerVT = VecVT;
|
|
// If the operand is a fixed-length vector, convert to a scalable one.
|
|
if (VecVT.isFixedLengthVector()) {
|
|
ContainerVT = getContainerForFixedLengthVector(VecVT);
|
|
Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
|
|
}
|
|
|
|
// If we know the index we're going to insert at, we can shrink Vec so that
|
|
// we're performing the scalar inserts and slideup on a smaller LMUL.
|
|
SDValue OrigVec = Vec;
|
|
std::optional<unsigned> AlignedIdx;
|
|
if (auto *IdxC = dyn_cast<ConstantSDNode>(Idx)) {
|
|
const unsigned OrigIdx = IdxC->getZExtValue();
|
|
// Do we know an upper bound on LMUL?
|
|
if (auto ShrunkVT = getSmallestVTForIndex(ContainerVT, OrigIdx,
|
|
DL, DAG, Subtarget)) {
|
|
ContainerVT = *ShrunkVT;
|
|
AlignedIdx = 0;
|
|
}
|
|
|
|
// If we're compiling for an exact VLEN value, we can always perform
|
|
// the insert in m1 as we can determine the register corresponding to
|
|
// the index in the register group.
|
|
const MVT M1VT = RISCVTargetLowering::getM1VT(ContainerVT);
|
|
if (auto VLEN = Subtarget.getRealVLen(); VLEN && ContainerVT.bitsGT(M1VT)) {
|
|
EVT ElemVT = VecVT.getVectorElementType();
|
|
unsigned ElemsPerVReg = *VLEN / ElemVT.getFixedSizeInBits();
|
|
unsigned RemIdx = OrigIdx % ElemsPerVReg;
|
|
unsigned SubRegIdx = OrigIdx / ElemsPerVReg;
|
|
AlignedIdx = SubRegIdx * M1VT.getVectorElementCount().getKnownMinValue();
|
|
Idx = DAG.getVectorIdxConstant(RemIdx, DL);
|
|
ContainerVT = M1VT;
|
|
}
|
|
|
|
if (AlignedIdx)
|
|
Vec = DAG.getExtractSubvector(DL, ContainerVT, Vec, *AlignedIdx);
|
|
}
|
|
|
|
bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
|
|
// Even i64-element vectors on RV32 can be lowered without scalar
|
|
// legalization if the most-significant 32 bits of the value are not affected
|
|
// by the sign-extension of the lower 32 bits.
|
|
// TODO: We could also catch sign extensions of a 32-bit value.
|
|
if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
|
|
const auto *CVal = cast<ConstantSDNode>(Val);
|
|
if (isInt<32>(CVal->getSExtValue())) {
|
|
IsLegalInsert = true;
|
|
Val = DAG.getSignedConstant(CVal->getSExtValue(), DL, MVT::i32);
|
|
}
|
|
}
|
|
|
|
auto [Mask, VL] = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
|
|
|
|
SDValue ValInVec;
|
|
|
|
if (IsLegalInsert) {
|
|
unsigned Opc =
|
|
VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
|
|
if (isNullConstant(Idx)) {
|
|
if (!VecVT.isFloatingPoint())
|
|
Val = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Val);
|
|
Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
|
|
|
|
if (AlignedIdx)
|
|
Vec = DAG.getInsertSubvector(DL, OrigVec, Vec, *AlignedIdx);
|
|
if (!VecVT.isFixedLengthVector())
|
|
return Vec;
|
|
return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
|
|
}
|
|
|
|
// Use ri.vinsert.v.x if available.
|
|
if (Subtarget.hasVendorXRivosVisni() && VecVT.isInteger() &&
|
|
isValidVisniInsertExtractIndex(Idx)) {
|
|
// Tail policy applies to elements past VLMAX (by assumption Idx < VLMAX)
|
|
SDValue PolicyOp =
|
|
DAG.getTargetConstant(RISCVVType::TAIL_AGNOSTIC, DL, XLenVT);
|
|
Vec = DAG.getNode(RISCVISD::RI_VINSERT_VL, DL, ContainerVT, Vec, Val, Idx,
|
|
VL, PolicyOp);
|
|
if (AlignedIdx)
|
|
Vec = DAG.getInsertSubvector(DL, OrigVec, Vec, *AlignedIdx);
|
|
if (!VecVT.isFixedLengthVector())
|
|
return Vec;
|
|
return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
|
|
}
|
|
|
|
ValInVec = lowerScalarInsert(Val, VL, ContainerVT, DL, DAG, Subtarget);
|
|
} else {
|
|
// On RV32, i64-element vectors must be specially handled to place the
|
|
// value at element 0, by using two vslide1down instructions in sequence on
|
|
// the i32 split lo/hi value. Use an equivalently-sized i32 vector for
|
|
// this.
|
|
SDValue ValLo, ValHi;
|
|
std::tie(ValLo, ValHi) = DAG.SplitScalar(Val, DL, MVT::i32, MVT::i32);
|
|
MVT I32ContainerVT =
|
|
MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
|
|
SDValue I32Mask =
|
|
getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
|
|
// Limit the active VL to two.
|
|
SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
|
|
// If the Idx is 0 we can insert directly into the vector.
|
|
if (isNullConstant(Idx)) {
|
|
// First slide in the lo value, then the hi in above it. We use slide1down
|
|
// to avoid the register group overlap constraint of vslide1up.
|
|
ValInVec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32ContainerVT,
|
|
Vec, Vec, ValLo, I32Mask, InsertI64VL);
|
|
// If the source vector is undef don't pass along the tail elements from
|
|
// the previous slide1down.
|
|
SDValue Tail = Vec.isUndef() ? Vec : ValInVec;
|
|
ValInVec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32ContainerVT,
|
|
Tail, ValInVec, ValHi, I32Mask, InsertI64VL);
|
|
// Bitcast back to the right container type.
|
|
ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
|
|
|
|
if (AlignedIdx)
|
|
ValInVec = DAG.getInsertSubvector(DL, OrigVec, ValInVec, *AlignedIdx);
|
|
if (!VecVT.isFixedLengthVector())
|
|
return ValInVec;
|
|
return convertFromScalableVector(VecVT, ValInVec, DAG, Subtarget);
|
|
}
|
|
|
|
// First slide in the lo value, then the hi in above it. We use slide1down
|
|
// to avoid the register group overlap constraint of vslide1up.
|
|
ValInVec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32ContainerVT,
|
|
DAG.getUNDEF(I32ContainerVT),
|
|
DAG.getUNDEF(I32ContainerVT), ValLo,
|
|
I32Mask, InsertI64VL);
|
|
ValInVec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32ContainerVT,
|
|
DAG.getUNDEF(I32ContainerVT), ValInVec, ValHi,
|
|
I32Mask, InsertI64VL);
|
|
// Bitcast back to the right container type.
|
|
ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
|
|
}
|
|
|
|
// Now that the value is in a vector, slide it into position.
|
|
SDValue InsertVL =
|
|
DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
|
|
|
|
// Use tail agnostic policy if Idx is the last index of Vec.
|
|
unsigned Policy = RISCVVType::TAIL_UNDISTURBED_MASK_UNDISTURBED;
|
|
if (VecVT.isFixedLengthVector() && isa<ConstantSDNode>(Idx) &&
|
|
Idx->getAsZExtVal() + 1 == VecVT.getVectorNumElements())
|
|
Policy = RISCVVType::TAIL_AGNOSTIC;
|
|
SDValue Slideup = getVSlideup(DAG, Subtarget, DL, ContainerVT, Vec, ValInVec,
|
|
Idx, Mask, InsertVL, Policy);
|
|
|
|
if (AlignedIdx)
|
|
Slideup = DAG.getInsertSubvector(DL, OrigVec, Slideup, *AlignedIdx);
|
|
if (!VecVT.isFixedLengthVector())
|
|
return Slideup;
|
|
return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
|
|
}
|
|
|
|
// Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
|
|
// extract the first element: (extractelt (slidedown vec, idx), 0). For integer
|
|
// types this is done using VMV_X_S to allow us to glean information about the
|
|
// sign bits of the result.
|
|
SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
SDValue Idx = Op.getOperand(1);
|
|
SDValue Vec = Op.getOperand(0);
|
|
EVT EltVT = Op.getValueType();
|
|
MVT VecVT = Vec.getSimpleValueType();
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
if (VecVT.getVectorElementType() == MVT::i1) {
|
|
// Use vfirst.m to extract the first bit.
|
|
if (isNullConstant(Idx)) {
|
|
MVT ContainerVT = VecVT;
|
|
if (VecVT.isFixedLengthVector()) {
|
|
ContainerVT = getContainerForFixedLengthVector(VecVT);
|
|
Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
|
|
}
|
|
auto [Mask, VL] = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
|
|
SDValue Vfirst =
|
|
DAG.getNode(RISCVISD::VFIRST_VL, DL, XLenVT, Vec, Mask, VL);
|
|
SDValue Res = DAG.getSetCC(DL, XLenVT, Vfirst,
|
|
DAG.getConstant(0, DL, XLenVT), ISD::SETEQ);
|
|
return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Res);
|
|
}
|
|
if (VecVT.isFixedLengthVector()) {
|
|
unsigned NumElts = VecVT.getVectorNumElements();
|
|
if (NumElts >= 8) {
|
|
MVT WideEltVT;
|
|
unsigned WidenVecLen;
|
|
SDValue ExtractElementIdx;
|
|
SDValue ExtractBitIdx;
|
|
unsigned MaxEEW = Subtarget.getELen();
|
|
MVT LargestEltVT = MVT::getIntegerVT(
|
|
std::min(MaxEEW, unsigned(XLenVT.getSizeInBits())));
|
|
if (NumElts <= LargestEltVT.getSizeInBits()) {
|
|
assert(isPowerOf2_32(NumElts) &&
|
|
"the number of elements should be power of 2");
|
|
WideEltVT = MVT::getIntegerVT(NumElts);
|
|
WidenVecLen = 1;
|
|
ExtractElementIdx = DAG.getConstant(0, DL, XLenVT);
|
|
ExtractBitIdx = Idx;
|
|
} else {
|
|
WideEltVT = LargestEltVT;
|
|
WidenVecLen = NumElts / WideEltVT.getSizeInBits();
|
|
// extract element index = index / element width
|
|
ExtractElementIdx = DAG.getNode(
|
|
ISD::SRL, DL, XLenVT, Idx,
|
|
DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT));
|
|
// mask bit index = index % element width
|
|
ExtractBitIdx = DAG.getNode(
|
|
ISD::AND, DL, XLenVT, Idx,
|
|
DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT));
|
|
}
|
|
MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen);
|
|
Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec);
|
|
SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT,
|
|
Vec, ExtractElementIdx);
|
|
// Extract the bit from GPR.
|
|
SDValue ShiftRight =
|
|
DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx);
|
|
SDValue Res = DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight,
|
|
DAG.getConstant(1, DL, XLenVT));
|
|
return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Res);
|
|
}
|
|
}
|
|
// Otherwise, promote to an i8 vector and extract from that.
|
|
MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
|
|
Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
|
|
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
|
|
}
|
|
|
|
if ((EltVT == MVT::f16 && !Subtarget.hasVInstructionsF16()) ||
|
|
EltVT == MVT::bf16) {
|
|
// If we don't have vfmv.f.s for f16/bf16, extract to a gpr then use fmv.h.x
|
|
MVT IntVT = VecVT.changeTypeToInteger();
|
|
SDValue IntVec = DAG.getBitcast(IntVT, Vec);
|
|
SDValue IntExtract =
|
|
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT, IntVec, Idx);
|
|
return DAG.getNode(RISCVISD::FMV_H_X, DL, EltVT, IntExtract);
|
|
}
|
|
|
|
// If this is a fixed vector, we need to convert it to a scalable vector.
|
|
MVT ContainerVT = VecVT;
|
|
if (VecVT.isFixedLengthVector()) {
|
|
ContainerVT = getContainerForFixedLengthVector(VecVT);
|
|
Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
|
|
}
|
|
|
|
// If we're compiling for an exact VLEN value and we have a known
|
|
// constant index, we can always perform the extract in m1 (or
|
|
// smaller) as we can determine the register corresponding to
|
|
// the index in the register group.
|
|
const auto VLen = Subtarget.getRealVLen();
|
|
if (auto *IdxC = dyn_cast<ConstantSDNode>(Idx);
|
|
IdxC && VLen && VecVT.getSizeInBits().getKnownMinValue() > *VLen) {
|
|
MVT M1VT = RISCVTargetLowering::getM1VT(ContainerVT);
|
|
unsigned OrigIdx = IdxC->getZExtValue();
|
|
EVT ElemVT = VecVT.getVectorElementType();
|
|
unsigned ElemsPerVReg = *VLen / ElemVT.getFixedSizeInBits();
|
|
unsigned RemIdx = OrigIdx % ElemsPerVReg;
|
|
unsigned SubRegIdx = OrigIdx / ElemsPerVReg;
|
|
unsigned ExtractIdx =
|
|
SubRegIdx * M1VT.getVectorElementCount().getKnownMinValue();
|
|
Vec = DAG.getExtractSubvector(DL, M1VT, Vec, ExtractIdx);
|
|
Idx = DAG.getVectorIdxConstant(RemIdx, DL);
|
|
ContainerVT = M1VT;
|
|
}
|
|
|
|
// Reduce the LMUL of our slidedown and vmv.x.s to the smallest LMUL which
|
|
// contains our index.
|
|
std::optional<uint64_t> MaxIdx;
|
|
if (VecVT.isFixedLengthVector())
|
|
MaxIdx = VecVT.getVectorNumElements() - 1;
|
|
if (auto *IdxC = dyn_cast<ConstantSDNode>(Idx))
|
|
MaxIdx = IdxC->getZExtValue();
|
|
if (MaxIdx) {
|
|
if (auto SmallerVT =
|
|
getSmallestVTForIndex(ContainerVT, *MaxIdx, DL, DAG, Subtarget)) {
|
|
ContainerVT = *SmallerVT;
|
|
Vec = DAG.getExtractSubvector(DL, ContainerVT, Vec, 0);
|
|
}
|
|
}
|
|
|
|
// Use ri.vextract.x.v if available.
|
|
// TODO: Avoid index 0 and just use the vmv.x.s
|
|
if (Subtarget.hasVendorXRivosVisni() && EltVT.isInteger() &&
|
|
isValidVisniInsertExtractIndex(Idx)) {
|
|
SDValue Elt = DAG.getNode(RISCVISD::RI_VEXTRACT, DL, XLenVT, Vec, Idx);
|
|
return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt);
|
|
}
|
|
|
|
// If after narrowing, the required slide is still greater than LMUL2,
|
|
// fallback to generic expansion and go through the stack. This is done
|
|
// for a subtle reason: extracting *all* elements out of a vector is
|
|
// widely expected to be linear in vector size, but because vslidedown
|
|
// is linear in LMUL, performing N extracts using vslidedown becomes
|
|
// O(n^2) / (VLEN/ETYPE) work. On the surface, going through the stack
|
|
// seems to have the same problem (the store is linear in LMUL), but the
|
|
// generic expansion *memoizes* the store, and thus for many extracts of
|
|
// the same vector we end up with one store and a bunch of loads.
|
|
// TODO: We don't have the same code for insert_vector_elt because we
|
|
// have BUILD_VECTOR and handle the degenerate case there. Should we
|
|
// consider adding an inverse BUILD_VECTOR node?
|
|
MVT LMUL2VT =
|
|
RISCVTargetLowering::getM1VT(ContainerVT).getDoubleNumVectorElementsVT();
|
|
if (ContainerVT.bitsGT(LMUL2VT) && VecVT.isFixedLengthVector())
|
|
return SDValue();
|
|
|
|
// If the index is 0, the vector is already in the right position.
|
|
if (!isNullConstant(Idx)) {
|
|
// Use a VL of 1 to avoid processing more elements than we need.
|
|
auto [Mask, VL] = getDefaultVLOps(1, ContainerVT, DL, DAG, Subtarget);
|
|
Vec = getVSlidedown(DAG, Subtarget, DL, ContainerVT,
|
|
DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
|
|
}
|
|
|
|
if (!EltVT.isInteger()) {
|
|
// Floating-point extracts are handled in TableGen.
|
|
return DAG.getExtractVectorElt(DL, EltVT, Vec, 0);
|
|
}
|
|
|
|
SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
|
|
return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
|
|
}
|
|
|
|
// Some RVV intrinsics may claim that they want an integer operand to be
|
|
// promoted or expanded.
|
|
static SDValue lowerVectorIntrinsicScalars(SDValue Op, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
assert((Op.getOpcode() == ISD::INTRINSIC_VOID ||
|
|
Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
|
|
Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
|
|
"Unexpected opcode");
|
|
|
|
if (!Subtarget.hasVInstructions())
|
|
return SDValue();
|
|
|
|
bool HasChain = Op.getOpcode() == ISD::INTRINSIC_VOID ||
|
|
Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
|
|
unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
|
|
|
|
SDLoc DL(Op);
|
|
|
|
const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
|
|
RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
|
|
if (!II || !II->hasScalarOperand())
|
|
return SDValue();
|
|
|
|
unsigned SplatOp = II->ScalarOperand + 1 + HasChain;
|
|
assert(SplatOp < Op.getNumOperands());
|
|
|
|
SmallVector<SDValue, 8> Operands(Op->ops());
|
|
SDValue &ScalarOp = Operands[SplatOp];
|
|
MVT OpVT = ScalarOp.getSimpleValueType();
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
// If this isn't a scalar, or its type is XLenVT we're done.
|
|
if (!OpVT.isScalarInteger() || OpVT == XLenVT)
|
|
return SDValue();
|
|
|
|
// Simplest case is that the operand needs to be promoted to XLenVT.
|
|
if (OpVT.bitsLT(XLenVT)) {
|
|
// If the operand is a constant, sign extend to increase our chances
|
|
// of being able to use a .vi instruction. ANY_EXTEND would become a
|
|
// a zero extend and the simm5 check in isel would fail.
|
|
// FIXME: Should we ignore the upper bits in isel instead?
|
|
unsigned ExtOpc =
|
|
isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
|
|
ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
|
|
return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
|
|
}
|
|
|
|
// Use the previous operand to get the vXi64 VT. The result might be a mask
|
|
// VT for compares. Using the previous operand assumes that the previous
|
|
// operand will never have a smaller element size than a scalar operand and
|
|
// that a widening operation never uses SEW=64.
|
|
// NOTE: If this fails the below assert, we can probably just find the
|
|
// element count from any operand or result and use it to construct the VT.
|
|
assert(II->ScalarOperand > 0 && "Unexpected splat operand!");
|
|
MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
|
|
|
|
// The more complex case is when the scalar is larger than XLenVT.
|
|
assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
|
|
VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
|
|
|
|
// If this is a sign-extended 32-bit value, we can truncate it and rely on the
|
|
// instruction to sign-extend since SEW>XLEN.
|
|
if (DAG.ComputeNumSignBits(ScalarOp) > 32) {
|
|
ScalarOp = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, ScalarOp);
|
|
return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
|
|
}
|
|
|
|
switch (IntNo) {
|
|
case Intrinsic::riscv_vslide1up:
|
|
case Intrinsic::riscv_vslide1down:
|
|
case Intrinsic::riscv_vslide1up_mask:
|
|
case Intrinsic::riscv_vslide1down_mask: {
|
|
// We need to special case these when the scalar is larger than XLen.
|
|
unsigned NumOps = Op.getNumOperands();
|
|
bool IsMasked = NumOps == 7;
|
|
|
|
// Convert the vector source to the equivalent nxvXi32 vector.
|
|
MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
|
|
SDValue Vec = DAG.getBitcast(I32VT, Operands[2]);
|
|
SDValue ScalarLo, ScalarHi;
|
|
std::tie(ScalarLo, ScalarHi) =
|
|
DAG.SplitScalar(ScalarOp, DL, MVT::i32, MVT::i32);
|
|
|
|
// Double the VL since we halved SEW.
|
|
SDValue AVL = getVLOperand(Op);
|
|
SDValue I32VL;
|
|
|
|
// Optimize for constant AVL
|
|
if (isa<ConstantSDNode>(AVL)) {
|
|
const auto [MinVLMAX, MaxVLMAX] =
|
|
RISCVTargetLowering::computeVLMAXBounds(VT, Subtarget);
|
|
|
|
uint64_t AVLInt = AVL->getAsZExtVal();
|
|
if (AVLInt <= MinVLMAX) {
|
|
I32VL = DAG.getConstant(2 * AVLInt, DL, XLenVT);
|
|
} else if (AVLInt >= 2 * MaxVLMAX) {
|
|
// Just set vl to VLMAX in this situation
|
|
I32VL = DAG.getRegister(RISCV::X0, XLenVT);
|
|
} else {
|
|
// For AVL between (MinVLMAX, 2 * MaxVLMAX), the actual working vl
|
|
// is related to the hardware implementation.
|
|
// So let the following code handle
|
|
}
|
|
}
|
|
if (!I32VL) {
|
|
RISCVVType::VLMUL Lmul = RISCVTargetLowering::getLMUL(VT);
|
|
SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT);
|
|
unsigned Sew = RISCVVType::encodeSEW(VT.getScalarSizeInBits());
|
|
SDValue SEW = DAG.getConstant(Sew, DL, XLenVT);
|
|
SDValue SETVL =
|
|
DAG.getTargetConstant(Intrinsic::riscv_vsetvli, DL, MVT::i32);
|
|
// Using vsetvli instruction to get actually used length which related to
|
|
// the hardware implementation
|
|
SDValue VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVL, AVL,
|
|
SEW, LMUL);
|
|
I32VL =
|
|
DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
|
|
}
|
|
|
|
SDValue I32Mask = getAllOnesMask(I32VT, I32VL, DL, DAG);
|
|
|
|
// Shift the two scalar parts in using SEW=32 slide1up/slide1down
|
|
// instructions.
|
|
SDValue Passthru;
|
|
if (IsMasked)
|
|
Passthru = DAG.getUNDEF(I32VT);
|
|
else
|
|
Passthru = DAG.getBitcast(I32VT, Operands[1]);
|
|
|
|
if (IntNo == Intrinsic::riscv_vslide1up ||
|
|
IntNo == Intrinsic::riscv_vslide1up_mask) {
|
|
Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
|
|
ScalarHi, I32Mask, I32VL);
|
|
Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
|
|
ScalarLo, I32Mask, I32VL);
|
|
} else {
|
|
Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
|
|
ScalarLo, I32Mask, I32VL);
|
|
Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
|
|
ScalarHi, I32Mask, I32VL);
|
|
}
|
|
|
|
// Convert back to nxvXi64.
|
|
Vec = DAG.getBitcast(VT, Vec);
|
|
|
|
if (!IsMasked)
|
|
return Vec;
|
|
// Apply mask after the operation.
|
|
SDValue Mask = Operands[NumOps - 3];
|
|
SDValue MaskedOff = Operands[1];
|
|
// Assume Policy operand is the last operand.
|
|
uint64_t Policy = Operands[NumOps - 1]->getAsZExtVal();
|
|
// We don't need to select maskedoff if it's undef.
|
|
if (MaskedOff.isUndef())
|
|
return Vec;
|
|
// TAMU
|
|
if (Policy == RISCVVType::TAIL_AGNOSTIC)
|
|
return DAG.getNode(RISCVISD::VMERGE_VL, DL, VT, Mask, Vec, MaskedOff,
|
|
DAG.getUNDEF(VT), AVL);
|
|
// TUMA or TUMU: Currently we always emit tumu policy regardless of tuma.
|
|
// It's fine because vmerge does not care mask policy.
|
|
return DAG.getNode(RISCVISD::VMERGE_VL, DL, VT, Mask, Vec, MaskedOff,
|
|
MaskedOff, AVL);
|
|
}
|
|
}
|
|
|
|
// We need to convert the scalar to a splat vector.
|
|
SDValue VL = getVLOperand(Op);
|
|
assert(VL.getValueType() == XLenVT);
|
|
ScalarOp = splatSplitI64WithVL(DL, VT, SDValue(), ScalarOp, VL, DAG);
|
|
return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
|
|
}
|
|
|
|
// Lower the llvm.get.vector.length intrinsic to vsetvli. We only support
|
|
// scalable vector llvm.get.vector.length for now.
|
|
//
|
|
// We need to convert from a scalable VF to a vsetvli with VLMax equal to
|
|
// (vscale * VF). The vscale and VF are independent of element width. We use
|
|
// SEW=8 for the vsetvli because it is the only element width that supports all
|
|
// fractional LMULs. The LMUL is chosen so that with SEW=8 the VLMax is
|
|
// (vscale * VF). Where vscale is defined as VLEN/RVVBitsPerBlock. The
|
|
// InsertVSETVLI pass can fix up the vtype of the vsetvli if a different
|
|
// SEW and LMUL are better for the surrounding vector instructions.
|
|
static SDValue lowerGetVectorLength(SDNode *N, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
// The smallest LMUL is only valid for the smallest element width.
|
|
const unsigned ElementWidth = 8;
|
|
|
|
// Determine the VF that corresponds to LMUL 1 for ElementWidth.
|
|
unsigned LMul1VF = RISCV::RVVBitsPerBlock / ElementWidth;
|
|
// We don't support VF==1 with ELEN==32.
|
|
[[maybe_unused]] unsigned MinVF =
|
|
RISCV::RVVBitsPerBlock / Subtarget.getELen();
|
|
|
|
[[maybe_unused]] unsigned VF = N->getConstantOperandVal(2);
|
|
assert(VF >= MinVF && VF <= (LMul1VF * 8) && isPowerOf2_32(VF) &&
|
|
"Unexpected VF");
|
|
|
|
bool Fractional = VF < LMul1VF;
|
|
unsigned LMulVal = Fractional ? LMul1VF / VF : VF / LMul1VF;
|
|
unsigned VLMUL = (unsigned)RISCVVType::encodeLMUL(LMulVal, Fractional);
|
|
unsigned VSEW = RISCVVType::encodeSEW(ElementWidth);
|
|
|
|
SDLoc DL(N);
|
|
|
|
SDValue LMul = DAG.getTargetConstant(VLMUL, DL, XLenVT);
|
|
SDValue Sew = DAG.getTargetConstant(VSEW, DL, XLenVT);
|
|
|
|
SDValue AVL = DAG.getNode(ISD::ZERO_EXTEND, DL, XLenVT, N->getOperand(1));
|
|
|
|
SDValue ID = DAG.getTargetConstant(Intrinsic::riscv_vsetvli, DL, XLenVT);
|
|
SDValue Res =
|
|
DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, ID, AVL, Sew, LMul);
|
|
return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), Res);
|
|
}
|
|
|
|
static SDValue lowerCttzElts(SDNode *N, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
SDValue Op0 = N->getOperand(1);
|
|
MVT OpVT = Op0.getSimpleValueType();
|
|
MVT ContainerVT = OpVT;
|
|
if (OpVT.isFixedLengthVector()) {
|
|
ContainerVT = getContainerForFixedLengthVector(DAG, OpVT, Subtarget);
|
|
Op0 = convertToScalableVector(ContainerVT, Op0, DAG, Subtarget);
|
|
}
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
SDLoc DL(N);
|
|
auto [Mask, VL] = getDefaultVLOps(OpVT, ContainerVT, DL, DAG, Subtarget);
|
|
SDValue Res = DAG.getNode(RISCVISD::VFIRST_VL, DL, XLenVT, Op0, Mask, VL);
|
|
if (isOneConstant(N->getOperand(2)))
|
|
return Res;
|
|
|
|
// Convert -1 to VL.
|
|
SDValue Setcc =
|
|
DAG.getSetCC(DL, XLenVT, Res, DAG.getConstant(0, DL, XLenVT), ISD::SETLT);
|
|
VL = DAG.getElementCount(DL, XLenVT, OpVT.getVectorElementCount());
|
|
return DAG.getSelect(DL, XLenVT, Setcc, VL, Res);
|
|
}
|
|
|
|
static inline void promoteVCIXScalar(const SDValue &Op,
|
|
SmallVectorImpl<SDValue> &Operands,
|
|
SelectionDAG &DAG) {
|
|
const RISCVSubtarget &Subtarget =
|
|
DAG.getMachineFunction().getSubtarget<RISCVSubtarget>();
|
|
|
|
bool HasChain = Op.getOpcode() == ISD::INTRINSIC_VOID ||
|
|
Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
|
|
unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
|
|
SDLoc DL(Op);
|
|
|
|
const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
|
|
RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
|
|
if (!II || !II->hasScalarOperand())
|
|
return;
|
|
|
|
unsigned SplatOp = II->ScalarOperand + 1;
|
|
assert(SplatOp < Op.getNumOperands());
|
|
|
|
SDValue &ScalarOp = Operands[SplatOp];
|
|
MVT OpVT = ScalarOp.getSimpleValueType();
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
// The code below is partially copied from lowerVectorIntrinsicScalars.
|
|
// If this isn't a scalar, or its type is XLenVT we're done.
|
|
if (!OpVT.isScalarInteger() || OpVT == XLenVT)
|
|
return;
|
|
|
|
// Manually emit promote operation for scalar operation.
|
|
if (OpVT.bitsLT(XLenVT)) {
|
|
unsigned ExtOpc =
|
|
isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
|
|
ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
|
|
}
|
|
}
|
|
|
|
static void processVCIXOperands(SDValue &OrigOp,
|
|
SmallVectorImpl<SDValue> &Operands,
|
|
SelectionDAG &DAG) {
|
|
promoteVCIXScalar(OrigOp, Operands, DAG);
|
|
const RISCVSubtarget &Subtarget =
|
|
DAG.getMachineFunction().getSubtarget<RISCVSubtarget>();
|
|
for (SDValue &V : Operands) {
|
|
EVT ValType = V.getValueType();
|
|
if (ValType.isVector() && ValType.isFloatingPoint()) {
|
|
MVT InterimIVT =
|
|
MVT::getVectorVT(MVT::getIntegerVT(ValType.getScalarSizeInBits()),
|
|
ValType.getVectorElementCount());
|
|
V = DAG.getBitcast(InterimIVT, V);
|
|
}
|
|
if (ValType.isFixedLengthVector()) {
|
|
MVT OpContainerVT = getContainerForFixedLengthVector(
|
|
DAG, V.getSimpleValueType(), Subtarget);
|
|
V = convertToScalableVector(OpContainerVT, V, DAG, Subtarget);
|
|
}
|
|
}
|
|
}
|
|
|
|
// LMUL * VLEN should be greater than or equal to EGS * SEW
|
|
static inline bool isValidEGW(int EGS, EVT VT,
|
|
const RISCVSubtarget &Subtarget) {
|
|
return (Subtarget.getRealMinVLen() *
|
|
VT.getSizeInBits().getKnownMinValue()) / RISCV::RVVBitsPerBlock >=
|
|
EGS * VT.getScalarSizeInBits();
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
unsigned IntNo = Op.getConstantOperandVal(0);
|
|
SDLoc DL(Op);
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
switch (IntNo) {
|
|
default:
|
|
break; // Don't custom lower most intrinsics.
|
|
case Intrinsic::riscv_tuple_insert: {
|
|
SDValue Vec = Op.getOperand(1);
|
|
SDValue SubVec = Op.getOperand(2);
|
|
SDValue Index = Op.getOperand(3);
|
|
|
|
return DAG.getNode(RISCVISD::TUPLE_INSERT, DL, Op.getValueType(), Vec,
|
|
SubVec, Index);
|
|
}
|
|
case Intrinsic::riscv_tuple_extract: {
|
|
SDValue Vec = Op.getOperand(1);
|
|
SDValue Index = Op.getOperand(2);
|
|
|
|
return DAG.getNode(RISCVISD::TUPLE_EXTRACT, DL, Op.getValueType(), Vec,
|
|
Index);
|
|
}
|
|
case Intrinsic::thread_pointer: {
|
|
EVT PtrVT = getPointerTy(DAG.getDataLayout());
|
|
return DAG.getRegister(RISCV::X4, PtrVT);
|
|
}
|
|
case Intrinsic::riscv_orc_b:
|
|
case Intrinsic::riscv_brev8:
|
|
case Intrinsic::riscv_sha256sig0:
|
|
case Intrinsic::riscv_sha256sig1:
|
|
case Intrinsic::riscv_sha256sum0:
|
|
case Intrinsic::riscv_sha256sum1:
|
|
case Intrinsic::riscv_sm3p0:
|
|
case Intrinsic::riscv_sm3p1: {
|
|
unsigned Opc;
|
|
switch (IntNo) {
|
|
case Intrinsic::riscv_orc_b: Opc = RISCVISD::ORC_B; break;
|
|
case Intrinsic::riscv_brev8: Opc = RISCVISD::BREV8; break;
|
|
case Intrinsic::riscv_sha256sig0: Opc = RISCVISD::SHA256SIG0; break;
|
|
case Intrinsic::riscv_sha256sig1: Opc = RISCVISD::SHA256SIG1; break;
|
|
case Intrinsic::riscv_sha256sum0: Opc = RISCVISD::SHA256SUM0; break;
|
|
case Intrinsic::riscv_sha256sum1: Opc = RISCVISD::SHA256SUM1; break;
|
|
case Intrinsic::riscv_sm3p0: Opc = RISCVISD::SM3P0; break;
|
|
case Intrinsic::riscv_sm3p1: Opc = RISCVISD::SM3P1; break;
|
|
}
|
|
|
|
return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1));
|
|
}
|
|
case Intrinsic::riscv_sm4ks:
|
|
case Intrinsic::riscv_sm4ed: {
|
|
unsigned Opc =
|
|
IntNo == Intrinsic::riscv_sm4ks ? RISCVISD::SM4KS : RISCVISD::SM4ED;
|
|
|
|
return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2),
|
|
Op.getOperand(3));
|
|
}
|
|
case Intrinsic::riscv_zip:
|
|
case Intrinsic::riscv_unzip: {
|
|
unsigned Opc =
|
|
IntNo == Intrinsic::riscv_zip ? RISCVISD::ZIP : RISCVISD::UNZIP;
|
|
return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1));
|
|
}
|
|
case Intrinsic::riscv_mopr:
|
|
return DAG.getNode(RISCVISD::MOPR, DL, XLenVT, Op.getOperand(1),
|
|
Op.getOperand(2));
|
|
|
|
case Intrinsic::riscv_moprr: {
|
|
return DAG.getNode(RISCVISD::MOPRR, DL, XLenVT, Op.getOperand(1),
|
|
Op.getOperand(2), Op.getOperand(3));
|
|
}
|
|
case Intrinsic::riscv_clmul:
|
|
return DAG.getNode(RISCVISD::CLMUL, DL, XLenVT, Op.getOperand(1),
|
|
Op.getOperand(2));
|
|
case Intrinsic::riscv_clmulh:
|
|
case Intrinsic::riscv_clmulr: {
|
|
unsigned Opc =
|
|
IntNo == Intrinsic::riscv_clmulh ? RISCVISD::CLMULH : RISCVISD::CLMULR;
|
|
return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
|
|
}
|
|
case Intrinsic::experimental_get_vector_length:
|
|
return lowerGetVectorLength(Op.getNode(), DAG, Subtarget);
|
|
case Intrinsic::experimental_cttz_elts:
|
|
return lowerCttzElts(Op.getNode(), DAG, Subtarget);
|
|
case Intrinsic::riscv_vmv_x_s: {
|
|
SDValue Res = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Op.getOperand(1));
|
|
return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Res);
|
|
}
|
|
case Intrinsic::riscv_vfmv_f_s:
|
|
return DAG.getExtractVectorElt(DL, Op.getValueType(), Op.getOperand(1), 0);
|
|
case Intrinsic::riscv_vmv_v_x:
|
|
return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
|
|
Op.getOperand(3), Op.getSimpleValueType(), DL, DAG,
|
|
Subtarget);
|
|
case Intrinsic::riscv_vfmv_v_f:
|
|
return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
|
|
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
|
|
case Intrinsic::riscv_vmv_s_x: {
|
|
SDValue Scalar = Op.getOperand(2);
|
|
|
|
if (Scalar.getValueType().bitsLE(XLenVT)) {
|
|
Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
|
|
return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
|
|
Op.getOperand(1), Scalar, Op.getOperand(3));
|
|
}
|
|
|
|
assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
|
|
|
|
// This is an i64 value that lives in two scalar registers. We have to
|
|
// insert this in a convoluted way. First we build vXi64 splat containing
|
|
// the two values that we assemble using some bit math. Next we'll use
|
|
// vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
|
|
// to merge element 0 from our splat into the source vector.
|
|
// FIXME: This is probably not the best way to do this, but it is
|
|
// consistent with INSERT_VECTOR_ELT lowering so it is a good starting
|
|
// point.
|
|
// sw lo, (a0)
|
|
// sw hi, 4(a0)
|
|
// vlse vX, (a0)
|
|
//
|
|
// vid.v vVid
|
|
// vmseq.vx mMask, vVid, 0
|
|
// vmerge.vvm vDest, vSrc, vVal, mMask
|
|
MVT VT = Op.getSimpleValueType();
|
|
SDValue Vec = Op.getOperand(1);
|
|
SDValue VL = getVLOperand(Op);
|
|
|
|
SDValue SplattedVal = splatSplitI64WithVL(DL, VT, SDValue(), Scalar, VL, DAG);
|
|
if (Op.getOperand(1).isUndef())
|
|
return SplattedVal;
|
|
SDValue SplattedIdx =
|
|
DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
|
|
DAG.getConstant(0, DL, MVT::i32), VL);
|
|
|
|
MVT MaskVT = getMaskTypeFor(VT);
|
|
SDValue Mask = getAllOnesMask(VT, VL, DL, DAG);
|
|
SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
|
|
SDValue SelectCond =
|
|
DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT,
|
|
{VID, SplattedIdx, DAG.getCondCode(ISD::SETEQ),
|
|
DAG.getUNDEF(MaskVT), Mask, VL});
|
|
return DAG.getNode(RISCVISD::VMERGE_VL, DL, VT, SelectCond, SplattedVal,
|
|
Vec, DAG.getUNDEF(VT), VL);
|
|
}
|
|
case Intrinsic::riscv_vfmv_s_f:
|
|
return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, Op.getSimpleValueType(),
|
|
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
|
|
// EGS * EEW >= 128 bits
|
|
case Intrinsic::riscv_vaesdf_vv:
|
|
case Intrinsic::riscv_vaesdf_vs:
|
|
case Intrinsic::riscv_vaesdm_vv:
|
|
case Intrinsic::riscv_vaesdm_vs:
|
|
case Intrinsic::riscv_vaesef_vv:
|
|
case Intrinsic::riscv_vaesef_vs:
|
|
case Intrinsic::riscv_vaesem_vv:
|
|
case Intrinsic::riscv_vaesem_vs:
|
|
case Intrinsic::riscv_vaeskf1:
|
|
case Intrinsic::riscv_vaeskf2:
|
|
case Intrinsic::riscv_vaesz_vs:
|
|
case Intrinsic::riscv_vsm4k:
|
|
case Intrinsic::riscv_vsm4r_vv:
|
|
case Intrinsic::riscv_vsm4r_vs: {
|
|
if (!isValidEGW(4, Op.getSimpleValueType(), Subtarget) ||
|
|
!isValidEGW(4, Op->getOperand(1).getSimpleValueType(), Subtarget) ||
|
|
!isValidEGW(4, Op->getOperand(2).getSimpleValueType(), Subtarget))
|
|
report_fatal_error("EGW should be greater than or equal to 4 * SEW.");
|
|
return Op;
|
|
}
|
|
// EGS * EEW >= 256 bits
|
|
case Intrinsic::riscv_vsm3c:
|
|
case Intrinsic::riscv_vsm3me: {
|
|
if (!isValidEGW(8, Op.getSimpleValueType(), Subtarget) ||
|
|
!isValidEGW(8, Op->getOperand(1).getSimpleValueType(), Subtarget))
|
|
report_fatal_error("EGW should be greater than or equal to 8 * SEW.");
|
|
return Op;
|
|
}
|
|
// zvknha(SEW=32)/zvknhb(SEW=[32|64])
|
|
case Intrinsic::riscv_vsha2ch:
|
|
case Intrinsic::riscv_vsha2cl:
|
|
case Intrinsic::riscv_vsha2ms: {
|
|
if (Op->getSimpleValueType(0).getScalarSizeInBits() == 64 &&
|
|
!Subtarget.hasStdExtZvknhb())
|
|
report_fatal_error("SEW=64 needs Zvknhb to be enabled.");
|
|
if (!isValidEGW(4, Op.getSimpleValueType(), Subtarget) ||
|
|
!isValidEGW(4, Op->getOperand(1).getSimpleValueType(), Subtarget) ||
|
|
!isValidEGW(4, Op->getOperand(2).getSimpleValueType(), Subtarget))
|
|
report_fatal_error("EGW should be greater than or equal to 4 * SEW.");
|
|
return Op;
|
|
}
|
|
case Intrinsic::riscv_sf_vc_v_x:
|
|
case Intrinsic::riscv_sf_vc_v_i:
|
|
case Intrinsic::riscv_sf_vc_v_xv:
|
|
case Intrinsic::riscv_sf_vc_v_iv:
|
|
case Intrinsic::riscv_sf_vc_v_vv:
|
|
case Intrinsic::riscv_sf_vc_v_fv:
|
|
case Intrinsic::riscv_sf_vc_v_xvv:
|
|
case Intrinsic::riscv_sf_vc_v_ivv:
|
|
case Intrinsic::riscv_sf_vc_v_vvv:
|
|
case Intrinsic::riscv_sf_vc_v_fvv:
|
|
case Intrinsic::riscv_sf_vc_v_xvw:
|
|
case Intrinsic::riscv_sf_vc_v_ivw:
|
|
case Intrinsic::riscv_sf_vc_v_vvw:
|
|
case Intrinsic::riscv_sf_vc_v_fvw: {
|
|
MVT VT = Op.getSimpleValueType();
|
|
|
|
SmallVector<SDValue> Operands{Op->op_values()};
|
|
processVCIXOperands(Op, Operands, DAG);
|
|
|
|
MVT RetVT = VT;
|
|
if (VT.isFixedLengthVector())
|
|
RetVT = getContainerForFixedLengthVector(VT);
|
|
else if (VT.isFloatingPoint())
|
|
RetVT = MVT::getVectorVT(MVT::getIntegerVT(VT.getScalarSizeInBits()),
|
|
VT.getVectorElementCount());
|
|
|
|
SDValue NewNode = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, RetVT, Operands);
|
|
|
|
if (VT.isFixedLengthVector())
|
|
NewNode = convertFromScalableVector(VT, NewNode, DAG, Subtarget);
|
|
else if (VT.isFloatingPoint())
|
|
NewNode = DAG.getBitcast(VT, NewNode);
|
|
|
|
if (Op == NewNode)
|
|
break;
|
|
|
|
return NewNode;
|
|
}
|
|
}
|
|
|
|
return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
|
|
}
|
|
|
|
static inline SDValue getVCIXISDNodeWCHAIN(SDValue &Op, SelectionDAG &DAG,
|
|
unsigned Type) {
|
|
SDLoc DL(Op);
|
|
SmallVector<SDValue> Operands{Op->op_values()};
|
|
Operands.erase(Operands.begin() + 1);
|
|
|
|
const RISCVSubtarget &Subtarget =
|
|
DAG.getMachineFunction().getSubtarget<RISCVSubtarget>();
|
|
MVT VT = Op.getSimpleValueType();
|
|
MVT RetVT = VT;
|
|
MVT FloatVT = VT;
|
|
|
|
if (VT.isFloatingPoint()) {
|
|
RetVT = MVT::getVectorVT(MVT::getIntegerVT(VT.getScalarSizeInBits()),
|
|
VT.getVectorElementCount());
|
|
FloatVT = RetVT;
|
|
}
|
|
if (VT.isFixedLengthVector())
|
|
RetVT = getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), RetVT,
|
|
Subtarget);
|
|
|
|
processVCIXOperands(Op, Operands, DAG);
|
|
|
|
SDVTList VTs = DAG.getVTList({RetVT, MVT::Other});
|
|
SDValue NewNode = DAG.getNode(Type, DL, VTs, Operands);
|
|
SDValue Chain = NewNode.getValue(1);
|
|
|
|
if (VT.isFixedLengthVector())
|
|
NewNode = convertFromScalableVector(FloatVT, NewNode, DAG, Subtarget);
|
|
if (VT.isFloatingPoint())
|
|
NewNode = DAG.getBitcast(VT, NewNode);
|
|
|
|
NewNode = DAG.getMergeValues({NewNode, Chain}, DL);
|
|
|
|
return NewNode;
|
|
}
|
|
|
|
static inline SDValue getVCIXISDNodeVOID(SDValue &Op, SelectionDAG &DAG,
|
|
unsigned Type) {
|
|
SmallVector<SDValue> Operands{Op->op_values()};
|
|
Operands.erase(Operands.begin() + 1);
|
|
processVCIXOperands(Op, Operands, DAG);
|
|
|
|
return DAG.getNode(Type, SDLoc(Op), Op.getValueType(), Operands);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
unsigned IntNo = Op.getConstantOperandVal(1);
|
|
switch (IntNo) {
|
|
default:
|
|
break;
|
|
case Intrinsic::riscv_seg2_load_mask:
|
|
case Intrinsic::riscv_seg3_load_mask:
|
|
case Intrinsic::riscv_seg4_load_mask:
|
|
case Intrinsic::riscv_seg5_load_mask:
|
|
case Intrinsic::riscv_seg6_load_mask:
|
|
case Intrinsic::riscv_seg7_load_mask:
|
|
case Intrinsic::riscv_seg8_load_mask: {
|
|
SDLoc DL(Op);
|
|
static const Intrinsic::ID VlsegInts[7] = {
|
|
Intrinsic::riscv_vlseg2_mask, Intrinsic::riscv_vlseg3_mask,
|
|
Intrinsic::riscv_vlseg4_mask, Intrinsic::riscv_vlseg5_mask,
|
|
Intrinsic::riscv_vlseg6_mask, Intrinsic::riscv_vlseg7_mask,
|
|
Intrinsic::riscv_vlseg8_mask};
|
|
unsigned NF = Op->getNumValues() - 1;
|
|
assert(NF >= 2 && NF <= 8 && "Unexpected seg number");
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
MVT VT = Op->getSimpleValueType(0);
|
|
MVT ContainerVT = getContainerForFixedLengthVector(VT);
|
|
unsigned Sz = NF * ContainerVT.getVectorMinNumElements() *
|
|
ContainerVT.getScalarSizeInBits();
|
|
EVT VecTupTy = MVT::getRISCVVectorTupleVT(Sz, NF);
|
|
|
|
// Operands: (chain, int_id, pointer, mask, vl)
|
|
SDValue VL = Op.getOperand(Op.getNumOperands() - 1);
|
|
SDValue Mask = Op.getOperand(3);
|
|
MVT MaskVT = Mask.getSimpleValueType();
|
|
MVT MaskContainerVT =
|
|
::getContainerForFixedLengthVector(DAG, MaskVT, Subtarget);
|
|
Mask = convertToScalableVector(MaskContainerVT, Mask, DAG, Subtarget);
|
|
|
|
SDValue IntID = DAG.getTargetConstant(VlsegInts[NF - 2], DL, XLenVT);
|
|
auto *Load = cast<MemIntrinsicSDNode>(Op);
|
|
|
|
SDVTList VTs = DAG.getVTList({VecTupTy, MVT::Other});
|
|
SDValue Ops[] = {
|
|
Load->getChain(),
|
|
IntID,
|
|
DAG.getUNDEF(VecTupTy),
|
|
Op.getOperand(2),
|
|
Mask,
|
|
VL,
|
|
DAG.getTargetConstant(
|
|
RISCVVType::TAIL_AGNOSTIC | RISCVVType::MASK_AGNOSTIC, DL, XLenVT),
|
|
DAG.getTargetConstant(Log2_64(VT.getScalarSizeInBits()), DL, XLenVT)};
|
|
SDValue Result =
|
|
DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
|
|
Load->getMemoryVT(), Load->getMemOperand());
|
|
SmallVector<SDValue, 9> Results;
|
|
for (unsigned int RetIdx = 0; RetIdx < NF; RetIdx++) {
|
|
SDValue SubVec =
|
|
DAG.getNode(RISCVISD::TUPLE_EXTRACT, DL, ContainerVT,
|
|
Result.getValue(0), DAG.getVectorIdxConstant(RetIdx, DL));
|
|
Results.push_back(convertFromScalableVector(VT, SubVec, DAG, Subtarget));
|
|
}
|
|
Results.push_back(Result.getValue(1));
|
|
return DAG.getMergeValues(Results, DL);
|
|
}
|
|
case Intrinsic::riscv_sf_vc_v_x_se:
|
|
return getVCIXISDNodeWCHAIN(Op, DAG, RISCVISD::SF_VC_V_X_SE);
|
|
case Intrinsic::riscv_sf_vc_v_i_se:
|
|
return getVCIXISDNodeWCHAIN(Op, DAG, RISCVISD::SF_VC_V_I_SE);
|
|
case Intrinsic::riscv_sf_vc_v_xv_se:
|
|
return getVCIXISDNodeWCHAIN(Op, DAG, RISCVISD::SF_VC_V_XV_SE);
|
|
case Intrinsic::riscv_sf_vc_v_iv_se:
|
|
return getVCIXISDNodeWCHAIN(Op, DAG, RISCVISD::SF_VC_V_IV_SE);
|
|
case Intrinsic::riscv_sf_vc_v_vv_se:
|
|
return getVCIXISDNodeWCHAIN(Op, DAG, RISCVISD::SF_VC_V_VV_SE);
|
|
case Intrinsic::riscv_sf_vc_v_fv_se:
|
|
return getVCIXISDNodeWCHAIN(Op, DAG, RISCVISD::SF_VC_V_FV_SE);
|
|
case Intrinsic::riscv_sf_vc_v_xvv_se:
|
|
return getVCIXISDNodeWCHAIN(Op, DAG, RISCVISD::SF_VC_V_XVV_SE);
|
|
case Intrinsic::riscv_sf_vc_v_ivv_se:
|
|
return getVCIXISDNodeWCHAIN(Op, DAG, RISCVISD::SF_VC_V_IVV_SE);
|
|
case Intrinsic::riscv_sf_vc_v_vvv_se:
|
|
return getVCIXISDNodeWCHAIN(Op, DAG, RISCVISD::SF_VC_V_VVV_SE);
|
|
case Intrinsic::riscv_sf_vc_v_fvv_se:
|
|
return getVCIXISDNodeWCHAIN(Op, DAG, RISCVISD::SF_VC_V_FVV_SE);
|
|
case Intrinsic::riscv_sf_vc_v_xvw_se:
|
|
return getVCIXISDNodeWCHAIN(Op, DAG, RISCVISD::SF_VC_V_XVW_SE);
|
|
case Intrinsic::riscv_sf_vc_v_ivw_se:
|
|
return getVCIXISDNodeWCHAIN(Op, DAG, RISCVISD::SF_VC_V_IVW_SE);
|
|
case Intrinsic::riscv_sf_vc_v_vvw_se:
|
|
return getVCIXISDNodeWCHAIN(Op, DAG, RISCVISD::SF_VC_V_VVW_SE);
|
|
case Intrinsic::riscv_sf_vc_v_fvw_se:
|
|
return getVCIXISDNodeWCHAIN(Op, DAG, RISCVISD::SF_VC_V_FVW_SE);
|
|
}
|
|
|
|
return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
unsigned IntNo = Op.getConstantOperandVal(1);
|
|
switch (IntNo) {
|
|
default:
|
|
break;
|
|
case Intrinsic::riscv_seg2_store_mask:
|
|
case Intrinsic::riscv_seg3_store_mask:
|
|
case Intrinsic::riscv_seg4_store_mask:
|
|
case Intrinsic::riscv_seg5_store_mask:
|
|
case Intrinsic::riscv_seg6_store_mask:
|
|
case Intrinsic::riscv_seg7_store_mask:
|
|
case Intrinsic::riscv_seg8_store_mask: {
|
|
SDLoc DL(Op);
|
|
static const Intrinsic::ID VssegInts[] = {
|
|
Intrinsic::riscv_vsseg2_mask, Intrinsic::riscv_vsseg3_mask,
|
|
Intrinsic::riscv_vsseg4_mask, Intrinsic::riscv_vsseg5_mask,
|
|
Intrinsic::riscv_vsseg6_mask, Intrinsic::riscv_vsseg7_mask,
|
|
Intrinsic::riscv_vsseg8_mask};
|
|
|
|
// Operands: (chain, int_id, vec*, ptr, mask, vl)
|
|
unsigned NF = Op->getNumOperands() - 5;
|
|
assert(NF >= 2 && NF <= 8 && "Unexpected seg number");
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
MVT VT = Op->getOperand(2).getSimpleValueType();
|
|
MVT ContainerVT = getContainerForFixedLengthVector(VT);
|
|
unsigned Sz = NF * ContainerVT.getVectorMinNumElements() *
|
|
ContainerVT.getScalarSizeInBits();
|
|
EVT VecTupTy = MVT::getRISCVVectorTupleVT(Sz, NF);
|
|
|
|
SDValue VL = Op.getOperand(Op.getNumOperands() - 1);
|
|
SDValue Mask = Op.getOperand(Op.getNumOperands() - 2);
|
|
MVT MaskVT = Mask.getSimpleValueType();
|
|
MVT MaskContainerVT =
|
|
::getContainerForFixedLengthVector(DAG, MaskVT, Subtarget);
|
|
Mask = convertToScalableVector(MaskContainerVT, Mask, DAG, Subtarget);
|
|
|
|
SDValue IntID = DAG.getTargetConstant(VssegInts[NF - 2], DL, XLenVT);
|
|
SDValue Ptr = Op->getOperand(NF + 2);
|
|
|
|
auto *FixedIntrinsic = cast<MemIntrinsicSDNode>(Op);
|
|
|
|
SDValue StoredVal = DAG.getUNDEF(VecTupTy);
|
|
for (unsigned i = 0; i < NF; i++)
|
|
StoredVal = DAG.getNode(
|
|
RISCVISD::TUPLE_INSERT, DL, VecTupTy, StoredVal,
|
|
convertToScalableVector(
|
|
ContainerVT, FixedIntrinsic->getOperand(2 + i), DAG, Subtarget),
|
|
DAG.getVectorIdxConstant(i, DL));
|
|
|
|
SDValue Ops[] = {
|
|
FixedIntrinsic->getChain(),
|
|
IntID,
|
|
StoredVal,
|
|
Ptr,
|
|
Mask,
|
|
VL,
|
|
DAG.getTargetConstant(Log2_64(VT.getScalarSizeInBits()), DL, XLenVT)};
|
|
|
|
return DAG.getMemIntrinsicNode(
|
|
ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other), Ops,
|
|
FixedIntrinsic->getMemoryVT(), FixedIntrinsic->getMemOperand());
|
|
}
|
|
case Intrinsic::riscv_sf_vc_xv_se:
|
|
return getVCIXISDNodeVOID(Op, DAG, RISCVISD::SF_VC_XV_SE);
|
|
case Intrinsic::riscv_sf_vc_iv_se:
|
|
return getVCIXISDNodeVOID(Op, DAG, RISCVISD::SF_VC_IV_SE);
|
|
case Intrinsic::riscv_sf_vc_vv_se:
|
|
return getVCIXISDNodeVOID(Op, DAG, RISCVISD::SF_VC_VV_SE);
|
|
case Intrinsic::riscv_sf_vc_fv_se:
|
|
return getVCIXISDNodeVOID(Op, DAG, RISCVISD::SF_VC_FV_SE);
|
|
case Intrinsic::riscv_sf_vc_xvv_se:
|
|
return getVCIXISDNodeVOID(Op, DAG, RISCVISD::SF_VC_XVV_SE);
|
|
case Intrinsic::riscv_sf_vc_ivv_se:
|
|
return getVCIXISDNodeVOID(Op, DAG, RISCVISD::SF_VC_IVV_SE);
|
|
case Intrinsic::riscv_sf_vc_vvv_se:
|
|
return getVCIXISDNodeVOID(Op, DAG, RISCVISD::SF_VC_VVV_SE);
|
|
case Intrinsic::riscv_sf_vc_fvv_se:
|
|
return getVCIXISDNodeVOID(Op, DAG, RISCVISD::SF_VC_FVV_SE);
|
|
case Intrinsic::riscv_sf_vc_xvw_se:
|
|
return getVCIXISDNodeVOID(Op, DAG, RISCVISD::SF_VC_XVW_SE);
|
|
case Intrinsic::riscv_sf_vc_ivw_se:
|
|
return getVCIXISDNodeVOID(Op, DAG, RISCVISD::SF_VC_IVW_SE);
|
|
case Intrinsic::riscv_sf_vc_vvw_se:
|
|
return getVCIXISDNodeVOID(Op, DAG, RISCVISD::SF_VC_VVW_SE);
|
|
case Intrinsic::riscv_sf_vc_fvw_se:
|
|
return getVCIXISDNodeVOID(Op, DAG, RISCVISD::SF_VC_FVW_SE);
|
|
}
|
|
|
|
return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
|
|
}
|
|
|
|
static unsigned getRVVReductionOp(unsigned ISDOpcode) {
|
|
switch (ISDOpcode) {
|
|
default:
|
|
llvm_unreachable("Unhandled reduction");
|
|
case ISD::VP_REDUCE_ADD:
|
|
case ISD::VECREDUCE_ADD:
|
|
return RISCVISD::VECREDUCE_ADD_VL;
|
|
case ISD::VP_REDUCE_UMAX:
|
|
case ISD::VECREDUCE_UMAX:
|
|
return RISCVISD::VECREDUCE_UMAX_VL;
|
|
case ISD::VP_REDUCE_SMAX:
|
|
case ISD::VECREDUCE_SMAX:
|
|
return RISCVISD::VECREDUCE_SMAX_VL;
|
|
case ISD::VP_REDUCE_UMIN:
|
|
case ISD::VECREDUCE_UMIN:
|
|
return RISCVISD::VECREDUCE_UMIN_VL;
|
|
case ISD::VP_REDUCE_SMIN:
|
|
case ISD::VECREDUCE_SMIN:
|
|
return RISCVISD::VECREDUCE_SMIN_VL;
|
|
case ISD::VP_REDUCE_AND:
|
|
case ISD::VECREDUCE_AND:
|
|
return RISCVISD::VECREDUCE_AND_VL;
|
|
case ISD::VP_REDUCE_OR:
|
|
case ISD::VECREDUCE_OR:
|
|
return RISCVISD::VECREDUCE_OR_VL;
|
|
case ISD::VP_REDUCE_XOR:
|
|
case ISD::VECREDUCE_XOR:
|
|
return RISCVISD::VECREDUCE_XOR_VL;
|
|
case ISD::VP_REDUCE_FADD:
|
|
return RISCVISD::VECREDUCE_FADD_VL;
|
|
case ISD::VP_REDUCE_SEQ_FADD:
|
|
return RISCVISD::VECREDUCE_SEQ_FADD_VL;
|
|
case ISD::VP_REDUCE_FMAX:
|
|
case ISD::VP_REDUCE_FMAXIMUM:
|
|
return RISCVISD::VECREDUCE_FMAX_VL;
|
|
case ISD::VP_REDUCE_FMIN:
|
|
case ISD::VP_REDUCE_FMINIMUM:
|
|
return RISCVISD::VECREDUCE_FMIN_VL;
|
|
}
|
|
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op,
|
|
SelectionDAG &DAG,
|
|
bool IsVP) const {
|
|
SDLoc DL(Op);
|
|
SDValue Vec = Op.getOperand(IsVP ? 1 : 0);
|
|
MVT VecVT = Vec.getSimpleValueType();
|
|
assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
|
|
Op.getOpcode() == ISD::VECREDUCE_OR ||
|
|
Op.getOpcode() == ISD::VECREDUCE_XOR ||
|
|
Op.getOpcode() == ISD::VP_REDUCE_AND ||
|
|
Op.getOpcode() == ISD::VP_REDUCE_OR ||
|
|
Op.getOpcode() == ISD::VP_REDUCE_XOR) &&
|
|
"Unexpected reduction lowering");
|
|
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
MVT ContainerVT = VecVT;
|
|
if (VecVT.isFixedLengthVector()) {
|
|
ContainerVT = getContainerForFixedLengthVector(VecVT);
|
|
Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
|
|
}
|
|
|
|
SDValue Mask, VL;
|
|
if (IsVP) {
|
|
Mask = Op.getOperand(2);
|
|
VL = Op.getOperand(3);
|
|
} else {
|
|
std::tie(Mask, VL) =
|
|
getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
|
|
}
|
|
|
|
ISD::CondCode CC;
|
|
switch (Op.getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Unhandled reduction");
|
|
case ISD::VECREDUCE_AND:
|
|
case ISD::VP_REDUCE_AND: {
|
|
// vcpop ~x == 0
|
|
SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
|
|
if (IsVP || VecVT.isFixedLengthVector())
|
|
Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL);
|
|
else
|
|
Vec = DAG.getNode(ISD::XOR, DL, ContainerVT, Vec, TrueMask);
|
|
Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
|
|
CC = ISD::SETEQ;
|
|
break;
|
|
}
|
|
case ISD::VECREDUCE_OR:
|
|
case ISD::VP_REDUCE_OR:
|
|
// vcpop x != 0
|
|
Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
|
|
CC = ISD::SETNE;
|
|
break;
|
|
case ISD::VECREDUCE_XOR:
|
|
case ISD::VP_REDUCE_XOR: {
|
|
// ((vcpop x) & 1) != 0
|
|
SDValue One = DAG.getConstant(1, DL, XLenVT);
|
|
Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
|
|
Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
|
|
CC = ISD::SETNE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
SDValue Zero = DAG.getConstant(0, DL, XLenVT);
|
|
SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC);
|
|
SetCC = DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), SetCC);
|
|
|
|
if (!IsVP)
|
|
return SetCC;
|
|
|
|
// Now include the start value in the operation.
|
|
// Note that we must return the start value when no elements are operated
|
|
// upon. The vcpop instructions we've emitted in each case above will return
|
|
// 0 for an inactive vector, and so we've already received the neutral value:
|
|
// AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we
|
|
// can simply include the start value.
|
|
unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
|
|
return DAG.getNode(BaseOpc, DL, Op.getValueType(), SetCC, Op.getOperand(0));
|
|
}
|
|
|
|
static bool isNonZeroAVL(SDValue AVL) {
|
|
auto *RegisterAVL = dyn_cast<RegisterSDNode>(AVL);
|
|
auto *ImmAVL = dyn_cast<ConstantSDNode>(AVL);
|
|
return (RegisterAVL && RegisterAVL->getReg() == RISCV::X0) ||
|
|
(ImmAVL && ImmAVL->getZExtValue() >= 1);
|
|
}
|
|
|
|
/// Helper to lower a reduction sequence of the form:
|
|
/// scalar = reduce_op vec, scalar_start
|
|
static SDValue lowerReductionSeq(unsigned RVVOpcode, MVT ResVT,
|
|
SDValue StartValue, SDValue Vec, SDValue Mask,
|
|
SDValue VL, const SDLoc &DL, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
const MVT VecVT = Vec.getSimpleValueType();
|
|
const MVT M1VT = RISCVTargetLowering::getM1VT(VecVT);
|
|
const MVT XLenVT = Subtarget.getXLenVT();
|
|
const bool NonZeroAVL = isNonZeroAVL(VL);
|
|
|
|
// The reduction needs an LMUL1 input; do the splat at either LMUL1
|
|
// or the original VT if fractional.
|
|
auto InnerVT = VecVT.bitsLE(M1VT) ? VecVT : M1VT;
|
|
// We reuse the VL of the reduction to reduce vsetvli toggles if we can
|
|
// prove it is non-zero. For the AVL=0 case, we need the scalar to
|
|
// be the result of the reduction operation.
|
|
auto InnerVL = NonZeroAVL ? VL : DAG.getConstant(1, DL, XLenVT);
|
|
SDValue InitialValue =
|
|
lowerScalarInsert(StartValue, InnerVL, InnerVT, DL, DAG, Subtarget);
|
|
if (M1VT != InnerVT)
|
|
InitialValue =
|
|
DAG.getInsertSubvector(DL, DAG.getUNDEF(M1VT), InitialValue, 0);
|
|
SDValue PassThru = NonZeroAVL ? DAG.getUNDEF(M1VT) : InitialValue;
|
|
SDValue Policy = DAG.getTargetConstant(RISCVVType::TAIL_AGNOSTIC, DL, XLenVT);
|
|
SDValue Ops[] = {PassThru, Vec, InitialValue, Mask, VL, Policy};
|
|
SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, Ops);
|
|
return DAG.getExtractVectorElt(DL, ResVT, Reduction, 0);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
SDValue Vec = Op.getOperand(0);
|
|
EVT VecEVT = Vec.getValueType();
|
|
|
|
unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
|
|
|
|
// Due to ordering in legalize types we may have a vector type that needs to
|
|
// be split. Do that manually so we can get down to a legal type.
|
|
while (getTypeAction(*DAG.getContext(), VecEVT) ==
|
|
TargetLowering::TypeSplitVector) {
|
|
auto [Lo, Hi] = DAG.SplitVector(Vec, DL);
|
|
VecEVT = Lo.getValueType();
|
|
Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
|
|
}
|
|
|
|
// TODO: The type may need to be widened rather than split. Or widened before
|
|
// it can be split.
|
|
if (!isTypeLegal(VecEVT))
|
|
return SDValue();
|
|
|
|
MVT VecVT = VecEVT.getSimpleVT();
|
|
MVT VecEltVT = VecVT.getVectorElementType();
|
|
unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
|
|
|
|
MVT ContainerVT = VecVT;
|
|
if (VecVT.isFixedLengthVector()) {
|
|
ContainerVT = getContainerForFixedLengthVector(VecVT);
|
|
Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
|
|
}
|
|
|
|
auto [Mask, VL] = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
|
|
|
|
SDValue StartV = DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
|
|
switch (BaseOpc) {
|
|
case ISD::AND:
|
|
case ISD::OR:
|
|
case ISD::UMAX:
|
|
case ISD::UMIN:
|
|
case ISD::SMAX:
|
|
case ISD::SMIN:
|
|
StartV = DAG.getExtractVectorElt(DL, VecEltVT, Vec, 0);
|
|
}
|
|
return lowerReductionSeq(RVVOpcode, Op.getSimpleValueType(), StartV, Vec,
|
|
Mask, VL, DL, DAG, Subtarget);
|
|
}
|
|
|
|
// Given a reduction op, this function returns the matching reduction opcode,
|
|
// the vector SDValue and the scalar SDValue required to lower this to a
|
|
// RISCVISD node.
|
|
static std::tuple<unsigned, SDValue, SDValue>
|
|
getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT,
|
|
const RISCVSubtarget &Subtarget) {
|
|
SDLoc DL(Op);
|
|
auto Flags = Op->getFlags();
|
|
unsigned Opcode = Op.getOpcode();
|
|
switch (Opcode) {
|
|
default:
|
|
llvm_unreachable("Unhandled reduction");
|
|
case ISD::VECREDUCE_FADD: {
|
|
// Use positive zero if we can. It is cheaper to materialize.
|
|
SDValue Zero =
|
|
DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT);
|
|
return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero);
|
|
}
|
|
case ISD::VECREDUCE_SEQ_FADD:
|
|
return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
|
|
Op.getOperand(0));
|
|
case ISD::VECREDUCE_FMINIMUM:
|
|
case ISD::VECREDUCE_FMAXIMUM:
|
|
case ISD::VECREDUCE_FMIN:
|
|
case ISD::VECREDUCE_FMAX: {
|
|
SDValue Front = DAG.getExtractVectorElt(DL, EltVT, Op.getOperand(0), 0);
|
|
unsigned RVVOpc =
|
|
(Opcode == ISD::VECREDUCE_FMIN || Opcode == ISD::VECREDUCE_FMINIMUM)
|
|
? RISCVISD::VECREDUCE_FMIN_VL
|
|
: RISCVISD::VECREDUCE_FMAX_VL;
|
|
return std::make_tuple(RVVOpc, Op.getOperand(0), Front);
|
|
}
|
|
}
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
MVT VecEltVT = Op.getSimpleValueType();
|
|
|
|
unsigned RVVOpcode;
|
|
SDValue VectorVal, ScalarVal;
|
|
std::tie(RVVOpcode, VectorVal, ScalarVal) =
|
|
getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT, Subtarget);
|
|
MVT VecVT = VectorVal.getSimpleValueType();
|
|
|
|
MVT ContainerVT = VecVT;
|
|
if (VecVT.isFixedLengthVector()) {
|
|
ContainerVT = getContainerForFixedLengthVector(VecVT);
|
|
VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
|
|
}
|
|
|
|
MVT ResVT = Op.getSimpleValueType();
|
|
auto [Mask, VL] = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
|
|
SDValue Res = lowerReductionSeq(RVVOpcode, ResVT, ScalarVal, VectorVal, Mask,
|
|
VL, DL, DAG, Subtarget);
|
|
if (Op.getOpcode() != ISD::VECREDUCE_FMINIMUM &&
|
|
Op.getOpcode() != ISD::VECREDUCE_FMAXIMUM)
|
|
return Res;
|
|
|
|
if (Op->getFlags().hasNoNaNs())
|
|
return Res;
|
|
|
|
// Force output to NaN if any element is Nan.
|
|
SDValue IsNan =
|
|
DAG.getNode(RISCVISD::SETCC_VL, DL, Mask.getValueType(),
|
|
{VectorVal, VectorVal, DAG.getCondCode(ISD::SETNE),
|
|
DAG.getUNDEF(Mask.getValueType()), Mask, VL});
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
SDValue CPop = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, IsNan, Mask, VL);
|
|
SDValue NoNaNs = DAG.getSetCC(DL, XLenVT, CPop,
|
|
DAG.getConstant(0, DL, XLenVT), ISD::SETEQ);
|
|
return DAG.getSelect(
|
|
DL, ResVT, NoNaNs, Res,
|
|
DAG.getConstantFP(APFloat::getNaN(ResVT.getFltSemantics()), DL, ResVT));
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
unsigned Opc = Op.getOpcode();
|
|
SDValue Start = Op.getOperand(0);
|
|
SDValue Vec = Op.getOperand(1);
|
|
EVT VecEVT = Vec.getValueType();
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
// TODO: The type may need to be widened rather than split. Or widened before
|
|
// it can be split.
|
|
if (!isTypeLegal(VecEVT))
|
|
return SDValue();
|
|
|
|
MVT VecVT = VecEVT.getSimpleVT();
|
|
unsigned RVVOpcode = getRVVReductionOp(Opc);
|
|
|
|
if (VecVT.isFixedLengthVector()) {
|
|
auto ContainerVT = getContainerForFixedLengthVector(VecVT);
|
|
Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
|
|
}
|
|
|
|
SDValue VL = Op.getOperand(3);
|
|
SDValue Mask = Op.getOperand(2);
|
|
SDValue Res =
|
|
lowerReductionSeq(RVVOpcode, Op.getSimpleValueType(), Op.getOperand(0),
|
|
Vec, Mask, VL, DL, DAG, Subtarget);
|
|
if ((Opc != ISD::VP_REDUCE_FMINIMUM && Opc != ISD::VP_REDUCE_FMAXIMUM) ||
|
|
Op->getFlags().hasNoNaNs())
|
|
return Res;
|
|
|
|
// Propagate NaNs.
|
|
MVT PredVT = getMaskTypeFor(Vec.getSimpleValueType());
|
|
// Check if any of the elements in Vec is NaN.
|
|
SDValue IsNaN = DAG.getNode(
|
|
RISCVISD::SETCC_VL, DL, PredVT,
|
|
{Vec, Vec, DAG.getCondCode(ISD::SETNE), DAG.getUNDEF(PredVT), Mask, VL});
|
|
SDValue VCPop = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, IsNaN, Mask, VL);
|
|
// Check if the start value is NaN.
|
|
SDValue StartIsNaN = DAG.getSetCC(DL, XLenVT, Start, Start, ISD::SETUO);
|
|
VCPop = DAG.getNode(ISD::OR, DL, XLenVT, VCPop, StartIsNaN);
|
|
SDValue NoNaNs = DAG.getSetCC(DL, XLenVT, VCPop,
|
|
DAG.getConstant(0, DL, XLenVT), ISD::SETEQ);
|
|
MVT ResVT = Res.getSimpleValueType();
|
|
return DAG.getSelect(
|
|
DL, ResVT, NoNaNs, Res,
|
|
DAG.getConstantFP(APFloat::getNaN(ResVT.getFltSemantics()), DL, ResVT));
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDValue Vec = Op.getOperand(0);
|
|
SDValue SubVec = Op.getOperand(1);
|
|
MVT VecVT = Vec.getSimpleValueType();
|
|
MVT SubVecVT = SubVec.getSimpleValueType();
|
|
|
|
SDLoc DL(Op);
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
unsigned OrigIdx = Op.getConstantOperandVal(2);
|
|
const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
|
|
|
|
if (OrigIdx == 0 && Vec.isUndef())
|
|
return Op;
|
|
|
|
// We don't have the ability to slide mask vectors up indexed by their i1
|
|
// elements; the smallest we can do is i8. Often we are able to bitcast to
|
|
// equivalent i8 vectors. Note that when inserting a fixed-length vector
|
|
// into a scalable one, we might not necessarily have enough scalable
|
|
// elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
|
|
if (SubVecVT.getVectorElementType() == MVT::i1) {
|
|
if (VecVT.getVectorMinNumElements() >= 8 &&
|
|
SubVecVT.getVectorMinNumElements() >= 8) {
|
|
assert(OrigIdx % 8 == 0 && "Invalid index");
|
|
assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
|
|
SubVecVT.getVectorMinNumElements() % 8 == 0 &&
|
|
"Unexpected mask vector lowering");
|
|
OrigIdx /= 8;
|
|
SubVecVT =
|
|
MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
|
|
SubVecVT.isScalableVector());
|
|
VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
|
|
VecVT.isScalableVector());
|
|
Vec = DAG.getBitcast(VecVT, Vec);
|
|
SubVec = DAG.getBitcast(SubVecVT, SubVec);
|
|
} else {
|
|
// We can't slide this mask vector up indexed by its i1 elements.
|
|
// This poses a problem when we wish to insert a scalable vector which
|
|
// can't be re-expressed as a larger type. Just choose the slow path and
|
|
// extend to a larger type, then truncate back down.
|
|
MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
|
|
MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
|
|
Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
|
|
SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
|
|
Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
|
|
Op.getOperand(2));
|
|
SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
|
|
return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
|
|
}
|
|
}
|
|
|
|
// If the subvector vector is a fixed-length type and we don't know VLEN
|
|
// exactly, we cannot use subregister manipulation to simplify the codegen; we
|
|
// don't know which register of a LMUL group contains the specific subvector
|
|
// as we only know the minimum register size. Therefore we must slide the
|
|
// vector group up the full amount.
|
|
const auto VLen = Subtarget.getRealVLen();
|
|
if (SubVecVT.isFixedLengthVector() && !VLen) {
|
|
MVT ContainerVT = VecVT;
|
|
if (VecVT.isFixedLengthVector()) {
|
|
ContainerVT = getContainerForFixedLengthVector(VecVT);
|
|
Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
|
|
}
|
|
|
|
SubVec = DAG.getInsertSubvector(DL, DAG.getUNDEF(ContainerVT), SubVec, 0);
|
|
|
|
SDValue Mask =
|
|
getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
|
|
// Set the vector length to only the number of elements we care about. Note
|
|
// that for slideup this includes the offset.
|
|
unsigned EndIndex = OrigIdx + SubVecVT.getVectorNumElements();
|
|
SDValue VL = DAG.getConstant(EndIndex, DL, XLenVT);
|
|
|
|
// Use tail agnostic policy if we're inserting over Vec's tail.
|
|
unsigned Policy = RISCVVType::TAIL_UNDISTURBED_MASK_UNDISTURBED;
|
|
if (VecVT.isFixedLengthVector() && EndIndex == VecVT.getVectorNumElements())
|
|
Policy = RISCVVType::TAIL_AGNOSTIC;
|
|
|
|
// If we're inserting into the lowest elements, use a tail undisturbed
|
|
// vmv.v.v.
|
|
if (OrigIdx == 0) {
|
|
SubVec =
|
|
DAG.getNode(RISCVISD::VMV_V_V_VL, DL, ContainerVT, Vec, SubVec, VL);
|
|
} else {
|
|
SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
|
|
SubVec = getVSlideup(DAG, Subtarget, DL, ContainerVT, Vec, SubVec,
|
|
SlideupAmt, Mask, VL, Policy);
|
|
}
|
|
|
|
if (VecVT.isFixedLengthVector())
|
|
SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget);
|
|
return DAG.getBitcast(Op.getValueType(), SubVec);
|
|
}
|
|
|
|
MVT ContainerVecVT = VecVT;
|
|
if (VecVT.isFixedLengthVector()) {
|
|
ContainerVecVT = getContainerForFixedLengthVector(VecVT);
|
|
Vec = convertToScalableVector(ContainerVecVT, Vec, DAG, Subtarget);
|
|
}
|
|
|
|
MVT ContainerSubVecVT = SubVecVT;
|
|
if (SubVecVT.isFixedLengthVector()) {
|
|
ContainerSubVecVT = getContainerForFixedLengthVector(SubVecVT);
|
|
SubVec = convertToScalableVector(ContainerSubVecVT, SubVec, DAG, Subtarget);
|
|
}
|
|
|
|
unsigned SubRegIdx;
|
|
ElementCount RemIdx;
|
|
// insert_subvector scales the index by vscale if the subvector is scalable,
|
|
// and decomposeSubvectorInsertExtractToSubRegs takes this into account. So if
|
|
// we have a fixed length subvector, we need to adjust the index by 1/vscale.
|
|
if (SubVecVT.isFixedLengthVector()) {
|
|
assert(VLen);
|
|
unsigned Vscale = *VLen / RISCV::RVVBitsPerBlock;
|
|
auto Decompose =
|
|
RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
|
|
ContainerVecVT, ContainerSubVecVT, OrigIdx / Vscale, TRI);
|
|
SubRegIdx = Decompose.first;
|
|
RemIdx = ElementCount::getFixed((Decompose.second * Vscale) +
|
|
(OrigIdx % Vscale));
|
|
} else {
|
|
auto Decompose =
|
|
RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
|
|
ContainerVecVT, ContainerSubVecVT, OrigIdx, TRI);
|
|
SubRegIdx = Decompose.first;
|
|
RemIdx = ElementCount::getScalable(Decompose.second);
|
|
}
|
|
|
|
TypeSize VecRegSize = TypeSize::getScalable(RISCV::RVVBitsPerBlock);
|
|
assert(isPowerOf2_64(
|
|
Subtarget.expandVScale(SubVecVT.getSizeInBits()).getKnownMinValue()));
|
|
bool ExactlyVecRegSized =
|
|
Subtarget.expandVScale(SubVecVT.getSizeInBits())
|
|
.isKnownMultipleOf(Subtarget.expandVScale(VecRegSize));
|
|
|
|
// 1. If the Idx has been completely eliminated and this subvector's size is
|
|
// a vector register or a multiple thereof, or the surrounding elements are
|
|
// undef, then this is a subvector insert which naturally aligns to a vector
|
|
// register. These can easily be handled using subregister manipulation.
|
|
// 2. If the subvector isn't an exact multiple of a valid register group size,
|
|
// then the insertion must preserve the undisturbed elements of the register.
|
|
// We do this by lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1
|
|
// vector type (which resolves to a subregister copy), performing a VSLIDEUP
|
|
// to place the subvector within the vector register, and an INSERT_SUBVECTOR
|
|
// of that LMUL=1 type back into the larger vector (resolving to another
|
|
// subregister operation). See below for how our VSLIDEUP works. We go via a
|
|
// LMUL=1 type to avoid allocating a large register group to hold our
|
|
// subvector.
|
|
if (RemIdx.isZero() && (ExactlyVecRegSized || Vec.isUndef())) {
|
|
if (SubVecVT.isFixedLengthVector()) {
|
|
// We may get NoSubRegister if inserting at index 0 and the subvec
|
|
// container is the same as the vector, e.g. vec=v4i32,subvec=v4i32,idx=0
|
|
if (SubRegIdx == RISCV::NoSubRegister) {
|
|
assert(OrigIdx == 0);
|
|
return Op;
|
|
}
|
|
|
|
// Use a insert_subvector that will resolve to an insert subreg.
|
|
assert(VLen);
|
|
unsigned Vscale = *VLen / RISCV::RVVBitsPerBlock;
|
|
SDValue Insert =
|
|
DAG.getInsertSubvector(DL, Vec, SubVec, OrigIdx / Vscale);
|
|
if (VecVT.isFixedLengthVector())
|
|
Insert = convertFromScalableVector(VecVT, Insert, DAG, Subtarget);
|
|
return Insert;
|
|
}
|
|
return Op;
|
|
}
|
|
|
|
// VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
|
|
// OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
|
|
// (in our case undisturbed). This means we can set up a subvector insertion
|
|
// where OFFSET is the insertion offset, and the VL is the OFFSET plus the
|
|
// size of the subvector.
|
|
MVT InterSubVT = ContainerVecVT;
|
|
SDValue AlignedExtract = Vec;
|
|
unsigned AlignedIdx = OrigIdx - RemIdx.getKnownMinValue();
|
|
if (SubVecVT.isFixedLengthVector()) {
|
|
assert(VLen);
|
|
AlignedIdx /= *VLen / RISCV::RVVBitsPerBlock;
|
|
}
|
|
if (ContainerVecVT.bitsGT(RISCVTargetLowering::getM1VT(ContainerVecVT))) {
|
|
InterSubVT = RISCVTargetLowering::getM1VT(ContainerVecVT);
|
|
// Extract a subvector equal to the nearest full vector register type. This
|
|
// should resolve to a EXTRACT_SUBREG instruction.
|
|
AlignedExtract = DAG.getExtractSubvector(DL, InterSubVT, Vec, AlignedIdx);
|
|
}
|
|
|
|
SubVec = DAG.getInsertSubvector(DL, DAG.getUNDEF(InterSubVT), SubVec, 0);
|
|
|
|
auto [Mask, VL] = getDefaultVLOps(VecVT, ContainerVecVT, DL, DAG, Subtarget);
|
|
|
|
ElementCount EndIndex = RemIdx + SubVecVT.getVectorElementCount();
|
|
VL = DAG.getElementCount(DL, XLenVT, SubVecVT.getVectorElementCount());
|
|
|
|
// Use tail agnostic policy if we're inserting over InterSubVT's tail.
|
|
unsigned Policy = RISCVVType::TAIL_UNDISTURBED_MASK_UNDISTURBED;
|
|
if (Subtarget.expandVScale(EndIndex) ==
|
|
Subtarget.expandVScale(InterSubVT.getVectorElementCount()))
|
|
Policy = RISCVVType::TAIL_AGNOSTIC;
|
|
|
|
// If we're inserting into the lowest elements, use a tail undisturbed
|
|
// vmv.v.v.
|
|
if (RemIdx.isZero()) {
|
|
SubVec = DAG.getNode(RISCVISD::VMV_V_V_VL, DL, InterSubVT, AlignedExtract,
|
|
SubVec, VL);
|
|
} else {
|
|
SDValue SlideupAmt = DAG.getElementCount(DL, XLenVT, RemIdx);
|
|
|
|
// Construct the vector length corresponding to RemIdx + length(SubVecVT).
|
|
VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
|
|
|
|
SubVec = getVSlideup(DAG, Subtarget, DL, InterSubVT, AlignedExtract, SubVec,
|
|
SlideupAmt, Mask, VL, Policy);
|
|
}
|
|
|
|
// If required, insert this subvector back into the correct vector register.
|
|
// This should resolve to an INSERT_SUBREG instruction.
|
|
if (ContainerVecVT.bitsGT(InterSubVT))
|
|
SubVec = DAG.getInsertSubvector(DL, Vec, SubVec, AlignedIdx);
|
|
|
|
if (VecVT.isFixedLengthVector())
|
|
SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget);
|
|
|
|
// We might have bitcast from a mask type: cast back to the original type if
|
|
// required.
|
|
return DAG.getBitcast(Op.getSimpleValueType(), SubVec);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDValue Vec = Op.getOperand(0);
|
|
MVT SubVecVT = Op.getSimpleValueType();
|
|
MVT VecVT = Vec.getSimpleValueType();
|
|
|
|
SDLoc DL(Op);
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
unsigned OrigIdx = Op.getConstantOperandVal(1);
|
|
const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
|
|
|
|
// With an index of 0 this is a cast-like subvector, which can be performed
|
|
// with subregister operations.
|
|
if (OrigIdx == 0)
|
|
return Op;
|
|
|
|
// We don't have the ability to slide mask vectors down indexed by their i1
|
|
// elements; the smallest we can do is i8. Often we are able to bitcast to
|
|
// equivalent i8 vectors. Note that when extracting a fixed-length vector
|
|
// from a scalable one, we might not necessarily have enough scalable
|
|
// elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
|
|
if (SubVecVT.getVectorElementType() == MVT::i1) {
|
|
if (VecVT.getVectorMinNumElements() >= 8 &&
|
|
SubVecVT.getVectorMinNumElements() >= 8) {
|
|
assert(OrigIdx % 8 == 0 && "Invalid index");
|
|
assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
|
|
SubVecVT.getVectorMinNumElements() % 8 == 0 &&
|
|
"Unexpected mask vector lowering");
|
|
OrigIdx /= 8;
|
|
SubVecVT =
|
|
MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
|
|
SubVecVT.isScalableVector());
|
|
VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
|
|
VecVT.isScalableVector());
|
|
Vec = DAG.getBitcast(VecVT, Vec);
|
|
} else {
|
|
// We can't slide this mask vector down, indexed by its i1 elements.
|
|
// This poses a problem when we wish to extract a scalable vector which
|
|
// can't be re-expressed as a larger type. Just choose the slow path and
|
|
// extend to a larger type, then truncate back down.
|
|
// TODO: We could probably improve this when extracting certain fixed
|
|
// from fixed, where we can extract as i8 and shift the correct element
|
|
// right to reach the desired subvector?
|
|
MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
|
|
MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
|
|
Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
|
|
Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
|
|
Op.getOperand(1));
|
|
SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
|
|
return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
|
|
}
|
|
}
|
|
|
|
const auto VLen = Subtarget.getRealVLen();
|
|
|
|
// If the subvector vector is a fixed-length type and we don't know VLEN
|
|
// exactly, we cannot use subregister manipulation to simplify the codegen; we
|
|
// don't know which register of a LMUL group contains the specific subvector
|
|
// as we only know the minimum register size. Therefore we must slide the
|
|
// vector group down the full amount.
|
|
if (SubVecVT.isFixedLengthVector() && !VLen) {
|
|
MVT ContainerVT = VecVT;
|
|
if (VecVT.isFixedLengthVector()) {
|
|
ContainerVT = getContainerForFixedLengthVector(VecVT);
|
|
Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
|
|
}
|
|
|
|
// Shrink down Vec so we're performing the slidedown on a smaller LMUL.
|
|
unsigned LastIdx = OrigIdx + SubVecVT.getVectorNumElements() - 1;
|
|
if (auto ShrunkVT =
|
|
getSmallestVTForIndex(ContainerVT, LastIdx, DL, DAG, Subtarget)) {
|
|
ContainerVT = *ShrunkVT;
|
|
Vec = DAG.getExtractSubvector(DL, ContainerVT, Vec, 0);
|
|
}
|
|
|
|
SDValue Mask =
|
|
getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
|
|
// Set the vector length to only the number of elements we care about. This
|
|
// avoids sliding down elements we're going to discard straight away.
|
|
SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
|
|
SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
|
|
SDValue Slidedown =
|
|
getVSlidedown(DAG, Subtarget, DL, ContainerVT,
|
|
DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
|
|
// Now we can use a cast-like subvector extract to get the result.
|
|
Slidedown = DAG.getExtractSubvector(DL, SubVecVT, Slidedown, 0);
|
|
return DAG.getBitcast(Op.getValueType(), Slidedown);
|
|
}
|
|
|
|
if (VecVT.isFixedLengthVector()) {
|
|
VecVT = getContainerForFixedLengthVector(VecVT);
|
|
Vec = convertToScalableVector(VecVT, Vec, DAG, Subtarget);
|
|
}
|
|
|
|
MVT ContainerSubVecVT = SubVecVT;
|
|
if (SubVecVT.isFixedLengthVector())
|
|
ContainerSubVecVT = getContainerForFixedLengthVector(SubVecVT);
|
|
|
|
unsigned SubRegIdx;
|
|
ElementCount RemIdx;
|
|
// extract_subvector scales the index by vscale if the subvector is scalable,
|
|
// and decomposeSubvectorInsertExtractToSubRegs takes this into account. So if
|
|
// we have a fixed length subvector, we need to adjust the index by 1/vscale.
|
|
if (SubVecVT.isFixedLengthVector()) {
|
|
assert(VLen);
|
|
unsigned Vscale = *VLen / RISCV::RVVBitsPerBlock;
|
|
auto Decompose =
|
|
RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
|
|
VecVT, ContainerSubVecVT, OrigIdx / Vscale, TRI);
|
|
SubRegIdx = Decompose.first;
|
|
RemIdx = ElementCount::getFixed((Decompose.second * Vscale) +
|
|
(OrigIdx % Vscale));
|
|
} else {
|
|
auto Decompose =
|
|
RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
|
|
VecVT, ContainerSubVecVT, OrigIdx, TRI);
|
|
SubRegIdx = Decompose.first;
|
|
RemIdx = ElementCount::getScalable(Decompose.second);
|
|
}
|
|
|
|
// If the Idx has been completely eliminated then this is a subvector extract
|
|
// which naturally aligns to a vector register. These can easily be handled
|
|
// using subregister manipulation. We use an extract_subvector that will
|
|
// resolve to an extract subreg.
|
|
if (RemIdx.isZero()) {
|
|
if (SubVecVT.isFixedLengthVector()) {
|
|
assert(VLen);
|
|
unsigned Vscale = *VLen / RISCV::RVVBitsPerBlock;
|
|
Vec =
|
|
DAG.getExtractSubvector(DL, ContainerSubVecVT, Vec, OrigIdx / Vscale);
|
|
return convertFromScalableVector(SubVecVT, Vec, DAG, Subtarget);
|
|
}
|
|
return Op;
|
|
}
|
|
|
|
// Else SubVecVT is M1 or smaller and may need to be slid down: if SubVecVT
|
|
// was > M1 then the index would need to be a multiple of VLMAX, and so would
|
|
// divide exactly.
|
|
assert(RISCVVType::decodeVLMUL(getLMUL(ContainerSubVecVT)).second ||
|
|
getLMUL(ContainerSubVecVT) == RISCVVType::LMUL_1);
|
|
|
|
// If the vector type is an LMUL-group type, extract a subvector equal to the
|
|
// nearest full vector register type.
|
|
MVT InterSubVT = VecVT;
|
|
if (VecVT.bitsGT(RISCVTargetLowering::getM1VT(VecVT))) {
|
|
// If VecVT has an LMUL > 1, then SubVecVT should have a smaller LMUL, and
|
|
// we should have successfully decomposed the extract into a subregister.
|
|
// We use an extract_subvector that will resolve to a subreg extract.
|
|
assert(SubRegIdx != RISCV::NoSubRegister);
|
|
(void)SubRegIdx;
|
|
unsigned Idx = OrigIdx - RemIdx.getKnownMinValue();
|
|
if (SubVecVT.isFixedLengthVector()) {
|
|
assert(VLen);
|
|
Idx /= *VLen / RISCV::RVVBitsPerBlock;
|
|
}
|
|
InterSubVT = RISCVTargetLowering::getM1VT(VecVT);
|
|
Vec = DAG.getExtractSubvector(DL, InterSubVT, Vec, Idx);
|
|
}
|
|
|
|
// Slide this vector register down by the desired number of elements in order
|
|
// to place the desired subvector starting at element 0.
|
|
SDValue SlidedownAmt = DAG.getElementCount(DL, XLenVT, RemIdx);
|
|
auto [Mask, VL] = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
|
|
if (SubVecVT.isFixedLengthVector())
|
|
VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
|
|
SDValue Slidedown =
|
|
getVSlidedown(DAG, Subtarget, DL, InterSubVT, DAG.getUNDEF(InterSubVT),
|
|
Vec, SlidedownAmt, Mask, VL);
|
|
|
|
// Now the vector is in the right position, extract our final subvector. This
|
|
// should resolve to a COPY.
|
|
Slidedown = DAG.getExtractSubvector(DL, SubVecVT, Slidedown, 0);
|
|
|
|
// We might have bitcast from a mask type: cast back to the original type if
|
|
// required.
|
|
return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
|
|
}
|
|
|
|
// Widen a vector's operands to i8, then truncate its results back to the
|
|
// original type, typically i1. All operand and result types must be the same.
|
|
static SDValue widenVectorOpsToi8(SDValue N, const SDLoc &DL,
|
|
SelectionDAG &DAG) {
|
|
MVT VT = N.getSimpleValueType();
|
|
MVT WideVT = VT.changeVectorElementType(MVT::i8);
|
|
SmallVector<SDValue, 4> WideOps;
|
|
for (SDValue Op : N->ops()) {
|
|
assert(Op.getSimpleValueType() == VT &&
|
|
"Operands and result must be same type");
|
|
WideOps.push_back(DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Op));
|
|
}
|
|
|
|
unsigned NumVals = N->getNumValues();
|
|
|
|
SDVTList VTs = DAG.getVTList(SmallVector<EVT, 4>(
|
|
NumVals, N.getValueType().changeVectorElementType(MVT::i8)));
|
|
SDValue WideN = DAG.getNode(N.getOpcode(), DL, VTs, WideOps);
|
|
SmallVector<SDValue, 4> TruncVals;
|
|
for (unsigned I = 0; I < NumVals; I++) {
|
|
TruncVals.push_back(
|
|
DAG.getSetCC(DL, N->getSimpleValueType(I), WideN.getValue(I),
|
|
DAG.getConstant(0, DL, WideVT), ISD::SETNE));
|
|
}
|
|
|
|
if (TruncVals.size() > 1)
|
|
return DAG.getMergeValues(TruncVals, DL);
|
|
return TruncVals.front();
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerVECTOR_DEINTERLEAVE(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
MVT VecVT = Op.getSimpleValueType();
|
|
|
|
const unsigned Factor = Op->getNumValues();
|
|
assert(Factor <= 8);
|
|
|
|
// 1 bit element vectors need to be widened to e8
|
|
if (VecVT.getVectorElementType() == MVT::i1)
|
|
return widenVectorOpsToi8(Op, DL, DAG);
|
|
|
|
// Convert to scalable vectors first.
|
|
if (VecVT.isFixedLengthVector()) {
|
|
MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
|
|
SmallVector<SDValue, 8> Ops(Factor);
|
|
for (unsigned i = 0U; i < Factor; ++i)
|
|
Ops[i] = convertToScalableVector(ContainerVT, Op.getOperand(i), DAG,
|
|
Subtarget);
|
|
|
|
SmallVector<EVT, 8> VTs(Factor, ContainerVT);
|
|
SDValue NewDeinterleave =
|
|
DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL, VTs, Ops);
|
|
|
|
SmallVector<SDValue, 8> Res(Factor);
|
|
for (unsigned i = 0U; i < Factor; ++i)
|
|
Res[i] = convertFromScalableVector(VecVT, NewDeinterleave.getValue(i),
|
|
DAG, Subtarget);
|
|
return DAG.getMergeValues(Res, DL);
|
|
}
|
|
|
|
// If concatenating would exceed LMUL=8, we need to split.
|
|
if ((VecVT.getSizeInBits().getKnownMinValue() * Factor) >
|
|
(8 * RISCV::RVVBitsPerBlock)) {
|
|
SmallVector<SDValue, 8> Ops(Factor * 2);
|
|
for (unsigned i = 0; i != Factor; ++i) {
|
|
auto [OpLo, OpHi] = DAG.SplitVectorOperand(Op.getNode(), i);
|
|
Ops[i * 2] = OpLo;
|
|
Ops[i * 2 + 1] = OpHi;
|
|
}
|
|
|
|
SmallVector<EVT, 8> VTs(Factor, Ops[0].getValueType());
|
|
|
|
SDValue Lo = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL, VTs,
|
|
ArrayRef(Ops).slice(0, Factor));
|
|
SDValue Hi = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL, VTs,
|
|
ArrayRef(Ops).slice(Factor, Factor));
|
|
|
|
SmallVector<SDValue, 8> Res(Factor);
|
|
for (unsigned i = 0; i != Factor; ++i)
|
|
Res[i] = DAG.getNode(ISD::CONCAT_VECTORS, DL, VecVT, Lo.getValue(i),
|
|
Hi.getValue(i));
|
|
|
|
return DAG.getMergeValues(Res, DL);
|
|
}
|
|
|
|
if (Subtarget.hasVendorXRivosVizip() && Factor == 2) {
|
|
MVT VT = Op->getSimpleValueType(0);
|
|
SDValue V1 = Op->getOperand(0);
|
|
SDValue V2 = Op->getOperand(1);
|
|
|
|
// For fractional LMUL, check if we can use a higher LMUL
|
|
// instruction to avoid a vslidedown.
|
|
if (SDValue Src = foldConcatVector(V1, V2);
|
|
Src && RISCVTargetLowering::getM1VT(VT).bitsGT(VT)) {
|
|
EVT NewVT = VT.getDoubleNumVectorElementsVT();
|
|
Src = DAG.getExtractSubvector(DL, NewVT, Src, 0);
|
|
// Freeze the source so we can increase its use count.
|
|
Src = DAG.getFreeze(Src);
|
|
SDValue Even = lowerVZIP(RISCVISD::RI_VUNZIP2A_VL, Src,
|
|
DAG.getUNDEF(NewVT), DL, DAG, Subtarget);
|
|
SDValue Odd = lowerVZIP(RISCVISD::RI_VUNZIP2B_VL, Src,
|
|
DAG.getUNDEF(NewVT), DL, DAG, Subtarget);
|
|
Even = DAG.getExtractSubvector(DL, VT, Even, 0);
|
|
Odd = DAG.getExtractSubvector(DL, VT, Odd, 0);
|
|
return DAG.getMergeValues({Even, Odd}, DL);
|
|
}
|
|
|
|
// Freeze the sources so we can increase their use count.
|
|
V1 = DAG.getFreeze(V1);
|
|
V2 = DAG.getFreeze(V2);
|
|
SDValue Even =
|
|
lowerVZIP(RISCVISD::RI_VUNZIP2A_VL, V1, V2, DL, DAG, Subtarget);
|
|
SDValue Odd =
|
|
lowerVZIP(RISCVISD::RI_VUNZIP2B_VL, V1, V2, DL, DAG, Subtarget);
|
|
return DAG.getMergeValues({Even, Odd}, DL);
|
|
}
|
|
|
|
SmallVector<SDValue, 8> Ops(Op->op_values());
|
|
|
|
// Concatenate the vectors as one vector to deinterleave
|
|
MVT ConcatVT =
|
|
MVT::getVectorVT(VecVT.getVectorElementType(),
|
|
VecVT.getVectorElementCount().multiplyCoefficientBy(
|
|
PowerOf2Ceil(Factor)));
|
|
if (Ops.size() < PowerOf2Ceil(Factor))
|
|
Ops.append(PowerOf2Ceil(Factor) - Factor, DAG.getUNDEF(VecVT));
|
|
SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, DL, ConcatVT, Ops);
|
|
|
|
if (Factor == 2) {
|
|
// We can deinterleave through vnsrl.wi if the element type is smaller than
|
|
// ELEN
|
|
if (VecVT.getScalarSizeInBits() < Subtarget.getELen()) {
|
|
SDValue Even = getDeinterleaveShiftAndTrunc(DL, VecVT, Concat, 2, 0, DAG);
|
|
SDValue Odd = getDeinterleaveShiftAndTrunc(DL, VecVT, Concat, 2, 1, DAG);
|
|
return DAG.getMergeValues({Even, Odd}, DL);
|
|
}
|
|
|
|
// For the indices, use the vmv.v.x of an i8 constant to fill the largest
|
|
// possibly mask vector, then extract the required subvector. Doing this
|
|
// (instead of a vid, vmsne sequence) reduces LMUL, and allows the mask
|
|
// creation to be rematerialized during register allocation to reduce
|
|
// register pressure if needed.
|
|
|
|
MVT MaskVT = ConcatVT.changeVectorElementType(MVT::i1);
|
|
|
|
SDValue EvenSplat = DAG.getConstant(0b01010101, DL, MVT::nxv8i8);
|
|
EvenSplat = DAG.getBitcast(MVT::nxv64i1, EvenSplat);
|
|
SDValue EvenMask = DAG.getExtractSubvector(DL, MaskVT, EvenSplat, 0);
|
|
|
|
SDValue OddSplat = DAG.getConstant(0b10101010, DL, MVT::nxv8i8);
|
|
OddSplat = DAG.getBitcast(MVT::nxv64i1, OddSplat);
|
|
SDValue OddMask = DAG.getExtractSubvector(DL, MaskVT, OddSplat, 0);
|
|
|
|
// vcompress the even and odd elements into two separate vectors
|
|
SDValue EvenWide = DAG.getNode(ISD::VECTOR_COMPRESS, DL, ConcatVT, Concat,
|
|
EvenMask, DAG.getUNDEF(ConcatVT));
|
|
SDValue OddWide = DAG.getNode(ISD::VECTOR_COMPRESS, DL, ConcatVT, Concat,
|
|
OddMask, DAG.getUNDEF(ConcatVT));
|
|
|
|
// Extract the result half of the gather for even and odd
|
|
SDValue Even = DAG.getExtractSubvector(DL, VecVT, EvenWide, 0);
|
|
SDValue Odd = DAG.getExtractSubvector(DL, VecVT, OddWide, 0);
|
|
|
|
return DAG.getMergeValues({Even, Odd}, DL);
|
|
}
|
|
|
|
// Store with unit-stride store and load it back with segmented load.
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
SDValue VL = getDefaultScalableVLOps(ConcatVT, DL, DAG, Subtarget).second;
|
|
SDValue Passthru = DAG.getUNDEF(ConcatVT);
|
|
|
|
// Allocate a stack slot.
|
|
Align Alignment = DAG.getReducedAlign(VecVT, /*UseABI=*/false);
|
|
SDValue StackPtr =
|
|
DAG.CreateStackTemporary(ConcatVT.getStoreSize(), Alignment);
|
|
auto &MF = DAG.getMachineFunction();
|
|
auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
|
|
auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
|
|
|
|
SDValue StoreOps[] = {DAG.getEntryNode(),
|
|
DAG.getTargetConstant(Intrinsic::riscv_vse, DL, XLenVT),
|
|
Concat, StackPtr, VL};
|
|
|
|
SDValue Chain = DAG.getMemIntrinsicNode(
|
|
ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other), StoreOps,
|
|
ConcatVT.getVectorElementType(), PtrInfo, Alignment,
|
|
MachineMemOperand::MOStore, LocationSize::beforeOrAfterPointer());
|
|
|
|
static const Intrinsic::ID VlsegIntrinsicsIds[] = {
|
|
Intrinsic::riscv_vlseg2, Intrinsic::riscv_vlseg3, Intrinsic::riscv_vlseg4,
|
|
Intrinsic::riscv_vlseg5, Intrinsic::riscv_vlseg6, Intrinsic::riscv_vlseg7,
|
|
Intrinsic::riscv_vlseg8};
|
|
|
|
SDValue LoadOps[] = {
|
|
Chain,
|
|
DAG.getTargetConstant(VlsegIntrinsicsIds[Factor - 2], DL, XLenVT),
|
|
Passthru,
|
|
StackPtr,
|
|
VL,
|
|
DAG.getTargetConstant(Log2_64(VecVT.getScalarSizeInBits()), DL, XLenVT)};
|
|
|
|
unsigned Sz =
|
|
Factor * VecVT.getVectorMinNumElements() * VecVT.getScalarSizeInBits();
|
|
EVT VecTupTy = MVT::getRISCVVectorTupleVT(Sz, Factor);
|
|
|
|
SDValue Load = DAG.getMemIntrinsicNode(
|
|
ISD::INTRINSIC_W_CHAIN, DL, DAG.getVTList({VecTupTy, MVT::Other}),
|
|
LoadOps, ConcatVT.getVectorElementType(), PtrInfo, Alignment,
|
|
MachineMemOperand::MOLoad, LocationSize::beforeOrAfterPointer());
|
|
|
|
SmallVector<SDValue, 8> Res(Factor);
|
|
|
|
for (unsigned i = 0U; i < Factor; ++i)
|
|
Res[i] = DAG.getNode(RISCVISD::TUPLE_EXTRACT, DL, VecVT, Load,
|
|
DAG.getVectorIdxConstant(i, DL));
|
|
|
|
return DAG.getMergeValues(Res, DL);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerVECTOR_INTERLEAVE(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
MVT VecVT = Op.getSimpleValueType();
|
|
|
|
const unsigned Factor = Op.getNumOperands();
|
|
assert(Factor <= 8);
|
|
|
|
// i1 vectors need to be widened to i8
|
|
if (VecVT.getVectorElementType() == MVT::i1)
|
|
return widenVectorOpsToi8(Op, DL, DAG);
|
|
|
|
// Convert to scalable vectors first.
|
|
if (VecVT.isFixedLengthVector()) {
|
|
MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
|
|
SmallVector<SDValue, 8> Ops(Factor);
|
|
for (unsigned i = 0U; i < Factor; ++i)
|
|
Ops[i] = convertToScalableVector(ContainerVT, Op.getOperand(i), DAG,
|
|
Subtarget);
|
|
|
|
SmallVector<EVT, 8> VTs(Factor, ContainerVT);
|
|
SDValue NewInterleave = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL, VTs, Ops);
|
|
|
|
SmallVector<SDValue, 8> Res(Factor);
|
|
for (unsigned i = 0U; i < Factor; ++i)
|
|
Res[i] = convertFromScalableVector(VecVT, NewInterleave.getValue(i), DAG,
|
|
Subtarget);
|
|
return DAG.getMergeValues(Res, DL);
|
|
}
|
|
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
SDValue VL = DAG.getRegister(RISCV::X0, XLenVT);
|
|
|
|
// If the VT is larger than LMUL=8, we need to split and reassemble.
|
|
if ((VecVT.getSizeInBits().getKnownMinValue() * Factor) >
|
|
(8 * RISCV::RVVBitsPerBlock)) {
|
|
SmallVector<SDValue, 8> Ops(Factor * 2);
|
|
for (unsigned i = 0; i != Factor; ++i) {
|
|
auto [OpLo, OpHi] = DAG.SplitVectorOperand(Op.getNode(), i);
|
|
Ops[i] = OpLo;
|
|
Ops[i + Factor] = OpHi;
|
|
}
|
|
|
|
SmallVector<EVT, 8> VTs(Factor, Ops[0].getValueType());
|
|
|
|
SDValue Res[] = {DAG.getNode(ISD::VECTOR_INTERLEAVE, DL, VTs,
|
|
ArrayRef(Ops).take_front(Factor)),
|
|
DAG.getNode(ISD::VECTOR_INTERLEAVE, DL, VTs,
|
|
ArrayRef(Ops).drop_front(Factor))};
|
|
|
|
SmallVector<SDValue, 8> Concats(Factor);
|
|
for (unsigned i = 0; i != Factor; ++i) {
|
|
unsigned IdxLo = 2 * i;
|
|
unsigned IdxHi = 2 * i + 1;
|
|
Concats[i] = DAG.getNode(ISD::CONCAT_VECTORS, DL, VecVT,
|
|
Res[IdxLo / Factor].getValue(IdxLo % Factor),
|
|
Res[IdxHi / Factor].getValue(IdxHi % Factor));
|
|
}
|
|
|
|
return DAG.getMergeValues(Concats, DL);
|
|
}
|
|
|
|
SDValue Interleaved;
|
|
|
|
// Spill to the stack using a segment store for simplicity.
|
|
if (Factor != 2) {
|
|
EVT MemVT =
|
|
EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(),
|
|
VecVT.getVectorElementCount() * Factor);
|
|
|
|
// Allocate a stack slot.
|
|
Align Alignment = DAG.getReducedAlign(VecVT, /*UseABI=*/false);
|
|
SDValue StackPtr =
|
|
DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
|
|
EVT PtrVT = StackPtr.getValueType();
|
|
auto &MF = DAG.getMachineFunction();
|
|
auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
|
|
auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
|
|
|
|
static const Intrinsic::ID IntrIds[] = {
|
|
Intrinsic::riscv_vsseg2, Intrinsic::riscv_vsseg3,
|
|
Intrinsic::riscv_vsseg4, Intrinsic::riscv_vsseg5,
|
|
Intrinsic::riscv_vsseg6, Intrinsic::riscv_vsseg7,
|
|
Intrinsic::riscv_vsseg8,
|
|
};
|
|
|
|
unsigned Sz =
|
|
Factor * VecVT.getVectorMinNumElements() * VecVT.getScalarSizeInBits();
|
|
EVT VecTupTy = MVT::getRISCVVectorTupleVT(Sz, Factor);
|
|
|
|
SDValue StoredVal = DAG.getUNDEF(VecTupTy);
|
|
for (unsigned i = 0; i < Factor; i++)
|
|
StoredVal = DAG.getNode(RISCVISD::TUPLE_INSERT, DL, VecTupTy, StoredVal,
|
|
Op.getOperand(i), DAG.getConstant(i, DL, XLenVT));
|
|
|
|
SDValue Ops[] = {DAG.getEntryNode(),
|
|
DAG.getTargetConstant(IntrIds[Factor - 2], DL, XLenVT),
|
|
StoredVal,
|
|
StackPtr,
|
|
VL,
|
|
DAG.getTargetConstant(Log2_64(VecVT.getScalarSizeInBits()),
|
|
DL, XLenVT)};
|
|
|
|
SDValue Chain = DAG.getMemIntrinsicNode(
|
|
ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other), Ops,
|
|
VecVT.getVectorElementType(), PtrInfo, Alignment,
|
|
MachineMemOperand::MOStore, LocationSize::beforeOrAfterPointer());
|
|
|
|
SmallVector<SDValue, 8> Loads(Factor);
|
|
|
|
SDValue Increment =
|
|
DAG.getVScale(DL, PtrVT,
|
|
APInt(PtrVT.getFixedSizeInBits(),
|
|
VecVT.getStoreSize().getKnownMinValue()));
|
|
for (unsigned i = 0; i != Factor; ++i) {
|
|
if (i != 0)
|
|
StackPtr = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, Increment);
|
|
|
|
Loads[i] = DAG.getLoad(VecVT, DL, Chain, StackPtr, PtrInfo);
|
|
}
|
|
|
|
return DAG.getMergeValues(Loads, DL);
|
|
}
|
|
|
|
// Use ri.vzip2{a,b} if available
|
|
// TODO: Figure out the best lowering for the spread variants
|
|
if (Subtarget.hasVendorXRivosVizip() && !Op.getOperand(0).isUndef() &&
|
|
!Op.getOperand(1).isUndef()) {
|
|
// Freeze the sources so we can increase their use count.
|
|
SDValue V1 = DAG.getFreeze(Op->getOperand(0));
|
|
SDValue V2 = DAG.getFreeze(Op->getOperand(1));
|
|
SDValue Lo = lowerVZIP(RISCVISD::RI_VZIP2A_VL, V1, V2, DL, DAG, Subtarget);
|
|
SDValue Hi = lowerVZIP(RISCVISD::RI_VZIP2B_VL, V1, V2, DL, DAG, Subtarget);
|
|
return DAG.getMergeValues({Lo, Hi}, DL);
|
|
}
|
|
|
|
// If the element type is smaller than ELEN, then we can interleave with
|
|
// vwaddu.vv and vwmaccu.vx
|
|
if (VecVT.getScalarSizeInBits() < Subtarget.getELen()) {
|
|
Interleaved = getWideningInterleave(Op.getOperand(0), Op.getOperand(1), DL,
|
|
DAG, Subtarget);
|
|
} else {
|
|
// Otherwise, fallback to using vrgathere16.vv
|
|
MVT ConcatVT =
|
|
MVT::getVectorVT(VecVT.getVectorElementType(),
|
|
VecVT.getVectorElementCount().multiplyCoefficientBy(2));
|
|
SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, DL, ConcatVT,
|
|
Op.getOperand(0), Op.getOperand(1));
|
|
|
|
MVT IdxVT = ConcatVT.changeVectorElementType(MVT::i16);
|
|
|
|
// 0 1 2 3 4 5 6 7 ...
|
|
SDValue StepVec = DAG.getStepVector(DL, IdxVT);
|
|
|
|
// 1 1 1 1 1 1 1 1 ...
|
|
SDValue Ones = DAG.getSplatVector(IdxVT, DL, DAG.getConstant(1, DL, XLenVT));
|
|
|
|
// 1 0 1 0 1 0 1 0 ...
|
|
SDValue OddMask = DAG.getNode(ISD::AND, DL, IdxVT, StepVec, Ones);
|
|
OddMask = DAG.getSetCC(
|
|
DL, IdxVT.changeVectorElementType(MVT::i1), OddMask,
|
|
DAG.getSplatVector(IdxVT, DL, DAG.getConstant(0, DL, XLenVT)),
|
|
ISD::CondCode::SETNE);
|
|
|
|
SDValue VLMax = DAG.getSplatVector(IdxVT, DL, computeVLMax(VecVT, DL, DAG));
|
|
|
|
// Build up the index vector for interleaving the concatenated vector
|
|
// 0 0 1 1 2 2 3 3 ...
|
|
SDValue Idx = DAG.getNode(ISD::SRL, DL, IdxVT, StepVec, Ones);
|
|
// 0 n 1 n+1 2 n+2 3 n+3 ...
|
|
Idx =
|
|
DAG.getNode(RISCVISD::ADD_VL, DL, IdxVT, Idx, VLMax, Idx, OddMask, VL);
|
|
|
|
// Then perform the interleave
|
|
// v[0] v[n] v[1] v[n+1] v[2] v[n+2] v[3] v[n+3] ...
|
|
SDValue TrueMask = getAllOnesMask(IdxVT, VL, DL, DAG);
|
|
Interleaved = DAG.getNode(RISCVISD::VRGATHEREI16_VV_VL, DL, ConcatVT,
|
|
Concat, Idx, DAG.getUNDEF(ConcatVT), TrueMask, VL);
|
|
}
|
|
|
|
// Extract the two halves from the interleaved result
|
|
SDValue Lo = DAG.getExtractSubvector(DL, VecVT, Interleaved, 0);
|
|
SDValue Hi = DAG.getExtractSubvector(DL, VecVT, Interleaved,
|
|
VecVT.getVectorMinNumElements());
|
|
|
|
return DAG.getMergeValues({Lo, Hi}, DL);
|
|
}
|
|
|
|
// Lower step_vector to the vid instruction. Any non-identity step value must
|
|
// be accounted for my manual expansion.
|
|
SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
MVT VT = Op.getSimpleValueType();
|
|
assert(VT.isScalableVector() && "Expected scalable vector");
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
auto [Mask, VL] = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
|
|
SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
|
|
uint64_t StepValImm = Op.getConstantOperandVal(0);
|
|
if (StepValImm != 1) {
|
|
if (isPowerOf2_64(StepValImm)) {
|
|
SDValue StepVal =
|
|
DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
|
|
DAG.getConstant(Log2_64(StepValImm), DL, XLenVT), VL);
|
|
StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal);
|
|
} else {
|
|
SDValue StepVal = lowerScalarSplat(
|
|
SDValue(), DAG.getConstant(StepValImm, DL, VT.getVectorElementType()),
|
|
VL, VT, DL, DAG, Subtarget);
|
|
StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal);
|
|
}
|
|
}
|
|
return StepVec;
|
|
}
|
|
|
|
// Implement vector_reverse using vrgather.vv with indices determined by
|
|
// subtracting the id of each element from (VLMAX-1). This will convert
|
|
// the indices like so:
|
|
// (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
|
|
// TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
|
|
SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
MVT VecVT = Op.getSimpleValueType();
|
|
if (VecVT.getVectorElementType() == MVT::i1) {
|
|
MVT WidenVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
|
|
SDValue Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenVT, Op.getOperand(0));
|
|
SDValue Op2 = DAG.getNode(ISD::VECTOR_REVERSE, DL, WidenVT, Op1);
|
|
return DAG.getSetCC(DL, VecVT, Op2,
|
|
DAG.getConstant(0, DL, Op2.getValueType()), ISD::SETNE);
|
|
}
|
|
|
|
MVT ContainerVT = VecVT;
|
|
SDValue Vec = Op.getOperand(0);
|
|
if (VecVT.isFixedLengthVector()) {
|
|
ContainerVT = getContainerForFixedLengthVector(VecVT);
|
|
Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
|
|
}
|
|
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
auto [Mask, VL] = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
|
|
|
|
// On some uarchs vrgather.vv will read from every input register for each
|
|
// output register, regardless of the indices. However to reverse a vector
|
|
// each output register only needs to read from one register. So decompose it
|
|
// into LMUL * M1 vrgather.vvs, so we get O(LMUL) performance instead of
|
|
// O(LMUL^2).
|
|
//
|
|
// vsetvli a1, zero, e64, m4, ta, ma
|
|
// vrgatherei16.vv v12, v8, v16
|
|
// ->
|
|
// vsetvli a1, zero, e64, m1, ta, ma
|
|
// vrgather.vv v15, v8, v16
|
|
// vrgather.vv v14, v9, v16
|
|
// vrgather.vv v13, v10, v16
|
|
// vrgather.vv v12, v11, v16
|
|
if (ContainerVT.bitsGT(RISCVTargetLowering::getM1VT(ContainerVT)) &&
|
|
ContainerVT.getVectorElementCount().isKnownMultipleOf(2)) {
|
|
auto [Lo, Hi] = DAG.SplitVector(Vec, DL);
|
|
Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, Lo.getSimpleValueType(), Lo);
|
|
Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, Hi.getSimpleValueType(), Hi);
|
|
SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, DL, ContainerVT, Hi, Lo);
|
|
|
|
// Fixed length vectors might not fit exactly into their container, and so
|
|
// leave a gap in the front of the vector after being reversed. Slide this
|
|
// away.
|
|
//
|
|
// x x x x 3 2 1 0 <- v4i16 @ vlen=128
|
|
// 0 1 2 3 x x x x <- reverse
|
|
// x x x x 0 1 2 3 <- vslidedown.vx
|
|
if (VecVT.isFixedLengthVector()) {
|
|
SDValue Offset = DAG.getNode(
|
|
ISD::SUB, DL, XLenVT,
|
|
DAG.getElementCount(DL, XLenVT, ContainerVT.getVectorElementCount()),
|
|
DAG.getElementCount(DL, XLenVT, VecVT.getVectorElementCount()));
|
|
Concat =
|
|
getVSlidedown(DAG, Subtarget, DL, ContainerVT,
|
|
DAG.getUNDEF(ContainerVT), Concat, Offset, Mask, VL);
|
|
Concat = convertFromScalableVector(VecVT, Concat, DAG, Subtarget);
|
|
}
|
|
return Concat;
|
|
}
|
|
|
|
unsigned EltSize = ContainerVT.getScalarSizeInBits();
|
|
unsigned MinSize = ContainerVT.getSizeInBits().getKnownMinValue();
|
|
unsigned VectorBitsMax = Subtarget.getRealMaxVLen();
|
|
unsigned MaxVLMAX =
|
|
VecVT.isFixedLengthVector()
|
|
? VecVT.getVectorNumElements()
|
|
: RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
|
|
|
|
unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
|
|
MVT IntVT = ContainerVT.changeVectorElementTypeToInteger();
|
|
|
|
// If this is SEW=8 and VLMAX is potentially more than 256, we need
|
|
// to use vrgatherei16.vv.
|
|
if (MaxVLMAX > 256 && EltSize == 8) {
|
|
// If this is LMUL=8, we have to split before can use vrgatherei16.vv.
|
|
// Reverse each half, then reassemble them in reverse order.
|
|
// NOTE: It's also possible that after splitting that VLMAX no longer
|
|
// requires vrgatherei16.vv.
|
|
if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
|
|
auto [Lo, Hi] = DAG.SplitVectorOperand(Op.getNode(), 0);
|
|
auto [LoVT, HiVT] = DAG.GetSplitDestVTs(VecVT);
|
|
Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
|
|
Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
|
|
// Reassemble the low and high pieces reversed.
|
|
// FIXME: This is a CONCAT_VECTORS.
|
|
SDValue Res = DAG.getInsertSubvector(DL, DAG.getUNDEF(VecVT), Hi, 0);
|
|
return DAG.getInsertSubvector(DL, Res, Lo,
|
|
LoVT.getVectorMinNumElements());
|
|
}
|
|
|
|
// Just promote the int type to i16 which will double the LMUL.
|
|
IntVT = MVT::getVectorVT(MVT::i16, ContainerVT.getVectorElementCount());
|
|
GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
|
|
}
|
|
|
|
// At LMUL > 1, do the index computation in 16 bits to reduce register
|
|
// pressure.
|
|
if (IntVT.getScalarType().bitsGT(MVT::i16) &&
|
|
IntVT.bitsGT(RISCVTargetLowering::getM1VT(IntVT))) {
|
|
assert(isUInt<16>(MaxVLMAX - 1)); // Largest VLMAX is 65536 @ zvl65536b
|
|
GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
|
|
IntVT = IntVT.changeVectorElementType(MVT::i16);
|
|
}
|
|
|
|
// Calculate VLMAX-1 for the desired SEW.
|
|
SDValue VLMinus1 = DAG.getNode(
|
|
ISD::SUB, DL, XLenVT,
|
|
DAG.getElementCount(DL, XLenVT, VecVT.getVectorElementCount()),
|
|
DAG.getConstant(1, DL, XLenVT));
|
|
|
|
// Splat VLMAX-1 taking care to handle SEW==64 on RV32.
|
|
bool IsRV32E64 =
|
|
!Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
|
|
SDValue SplatVL;
|
|
if (!IsRV32E64)
|
|
SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
|
|
else
|
|
SplatVL = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, DAG.getUNDEF(IntVT),
|
|
VLMinus1, DAG.getRegister(RISCV::X0, XLenVT));
|
|
|
|
SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
|
|
SDValue Indices = DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID,
|
|
DAG.getUNDEF(IntVT), Mask, VL);
|
|
|
|
SDValue Gather = DAG.getNode(GatherOpc, DL, ContainerVT, Vec, Indices,
|
|
DAG.getUNDEF(ContainerVT), Mask, VL);
|
|
if (VecVT.isFixedLengthVector())
|
|
Gather = convertFromScalableVector(VecVT, Gather, DAG, Subtarget);
|
|
return Gather;
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerVECTOR_SPLICE(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
SDValue V1 = Op.getOperand(0);
|
|
SDValue V2 = Op.getOperand(1);
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
MVT VecVT = Op.getSimpleValueType();
|
|
|
|
SDValue VLMax = computeVLMax(VecVT, DL, DAG);
|
|
|
|
int64_t ImmValue = cast<ConstantSDNode>(Op.getOperand(2))->getSExtValue();
|
|
SDValue DownOffset, UpOffset;
|
|
if (ImmValue >= 0) {
|
|
// The operand is a TargetConstant, we need to rebuild it as a regular
|
|
// constant.
|
|
DownOffset = DAG.getConstant(ImmValue, DL, XLenVT);
|
|
UpOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DownOffset);
|
|
} else {
|
|
// The operand is a TargetConstant, we need to rebuild it as a regular
|
|
// constant rather than negating the original operand.
|
|
UpOffset = DAG.getConstant(-ImmValue, DL, XLenVT);
|
|
DownOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, UpOffset);
|
|
}
|
|
|
|
SDValue TrueMask = getAllOnesMask(VecVT, VLMax, DL, DAG);
|
|
|
|
SDValue SlideDown =
|
|
getVSlidedown(DAG, Subtarget, DL, VecVT, DAG.getUNDEF(VecVT), V1,
|
|
DownOffset, TrueMask, UpOffset);
|
|
return getVSlideup(DAG, Subtarget, DL, VecVT, SlideDown, V2, UpOffset,
|
|
TrueMask, DAG.getRegister(RISCV::X0, XLenVT),
|
|
RISCVVType::TAIL_AGNOSTIC);
|
|
}
|
|
|
|
SDValue
|
|
RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
auto *Load = cast<LoadSDNode>(Op);
|
|
|
|
assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
|
|
Load->getMemoryVT(),
|
|
*Load->getMemOperand()) &&
|
|
"Expecting a correctly-aligned load");
|
|
|
|
MVT VT = Op.getSimpleValueType();
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
MVT ContainerVT = getContainerForFixedLengthVector(VT);
|
|
|
|
// If we know the exact VLEN and our fixed length vector completely fills
|
|
// the container, use a whole register load instead.
|
|
const auto [MinVLMAX, MaxVLMAX] =
|
|
RISCVTargetLowering::computeVLMAXBounds(ContainerVT, Subtarget);
|
|
if (MinVLMAX == MaxVLMAX && MinVLMAX == VT.getVectorNumElements() &&
|
|
RISCVTargetLowering::getM1VT(ContainerVT).bitsLE(ContainerVT)) {
|
|
MachineMemOperand *MMO = Load->getMemOperand();
|
|
SDValue NewLoad =
|
|
DAG.getLoad(ContainerVT, DL, Load->getChain(), Load->getBasePtr(),
|
|
MMO->getPointerInfo(), MMO->getBaseAlign(), MMO->getFlags(),
|
|
MMO->getAAInfo(), MMO->getRanges());
|
|
SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
|
|
return DAG.getMergeValues({Result, NewLoad.getValue(1)}, DL);
|
|
}
|
|
|
|
SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
|
|
|
|
bool IsMaskOp = VT.getVectorElementType() == MVT::i1;
|
|
SDValue IntID = DAG.getTargetConstant(
|
|
IsMaskOp ? Intrinsic::riscv_vlm : Intrinsic::riscv_vle, DL, XLenVT);
|
|
SmallVector<SDValue, 4> Ops{Load->getChain(), IntID};
|
|
if (!IsMaskOp)
|
|
Ops.push_back(DAG.getUNDEF(ContainerVT));
|
|
Ops.push_back(Load->getBasePtr());
|
|
Ops.push_back(VL);
|
|
SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
|
|
SDValue NewLoad =
|
|
DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
|
|
Load->getMemoryVT(), Load->getMemOperand());
|
|
|
|
SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
|
|
return DAG.getMergeValues({Result, NewLoad.getValue(1)}, DL);
|
|
}
|
|
|
|
SDValue
|
|
RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
auto *Store = cast<StoreSDNode>(Op);
|
|
|
|
assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
|
|
Store->getMemoryVT(),
|
|
*Store->getMemOperand()) &&
|
|
"Expecting a correctly-aligned store");
|
|
|
|
SDValue StoreVal = Store->getValue();
|
|
MVT VT = StoreVal.getSimpleValueType();
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
// If the size less than a byte, we need to pad with zeros to make a byte.
|
|
if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
|
|
VT = MVT::v8i1;
|
|
StoreVal =
|
|
DAG.getInsertSubvector(DL, DAG.getConstant(0, DL, VT), StoreVal, 0);
|
|
}
|
|
|
|
MVT ContainerVT = getContainerForFixedLengthVector(VT);
|
|
|
|
SDValue NewValue =
|
|
convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
|
|
|
|
// If we know the exact VLEN and our fixed length vector completely fills
|
|
// the container, use a whole register store instead.
|
|
const auto [MinVLMAX, MaxVLMAX] =
|
|
RISCVTargetLowering::computeVLMAXBounds(ContainerVT, Subtarget);
|
|
if (MinVLMAX == MaxVLMAX && MinVLMAX == VT.getVectorNumElements() &&
|
|
RISCVTargetLowering::getM1VT(ContainerVT).bitsLE(ContainerVT)) {
|
|
MachineMemOperand *MMO = Store->getMemOperand();
|
|
return DAG.getStore(Store->getChain(), DL, NewValue, Store->getBasePtr(),
|
|
MMO->getPointerInfo(), MMO->getBaseAlign(),
|
|
MMO->getFlags(), MMO->getAAInfo());
|
|
}
|
|
|
|
SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
|
|
|
|
bool IsMaskOp = VT.getVectorElementType() == MVT::i1;
|
|
SDValue IntID = DAG.getTargetConstant(
|
|
IsMaskOp ? Intrinsic::riscv_vsm : Intrinsic::riscv_vse, DL, XLenVT);
|
|
return DAG.getMemIntrinsicNode(
|
|
ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other),
|
|
{Store->getChain(), IntID, NewValue, Store->getBasePtr(), VL},
|
|
Store->getMemoryVT(), Store->getMemOperand());
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
MVT VT = Op.getSimpleValueType();
|
|
|
|
const auto *MemSD = cast<MemSDNode>(Op);
|
|
EVT MemVT = MemSD->getMemoryVT();
|
|
MachineMemOperand *MMO = MemSD->getMemOperand();
|
|
SDValue Chain = MemSD->getChain();
|
|
SDValue BasePtr = MemSD->getBasePtr();
|
|
|
|
SDValue Mask, PassThru, VL;
|
|
bool IsExpandingLoad = false;
|
|
if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) {
|
|
Mask = VPLoad->getMask();
|
|
PassThru = DAG.getUNDEF(VT);
|
|
VL = VPLoad->getVectorLength();
|
|
} else {
|
|
const auto *MLoad = cast<MaskedLoadSDNode>(Op);
|
|
Mask = MLoad->getMask();
|
|
PassThru = MLoad->getPassThru();
|
|
IsExpandingLoad = MLoad->isExpandingLoad();
|
|
}
|
|
|
|
bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
|
|
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
MVT ContainerVT = VT;
|
|
if (VT.isFixedLengthVector()) {
|
|
ContainerVT = getContainerForFixedLengthVector(VT);
|
|
PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
|
|
if (!IsUnmasked) {
|
|
MVT MaskVT = getMaskTypeFor(ContainerVT);
|
|
Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
|
|
}
|
|
}
|
|
|
|
if (!VL)
|
|
VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
|
|
|
|
SDValue ExpandingVL;
|
|
if (!IsUnmasked && IsExpandingLoad) {
|
|
ExpandingVL = VL;
|
|
VL =
|
|
DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Mask,
|
|
getAllOnesMask(Mask.getSimpleValueType(), VL, DL, DAG), VL);
|
|
}
|
|
|
|
unsigned IntID = IsUnmasked || IsExpandingLoad ? Intrinsic::riscv_vle
|
|
: Intrinsic::riscv_vle_mask;
|
|
SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
|
|
if (IntID == Intrinsic::riscv_vle)
|
|
Ops.push_back(DAG.getUNDEF(ContainerVT));
|
|
else
|
|
Ops.push_back(PassThru);
|
|
Ops.push_back(BasePtr);
|
|
if (IntID == Intrinsic::riscv_vle_mask)
|
|
Ops.push_back(Mask);
|
|
Ops.push_back(VL);
|
|
if (IntID == Intrinsic::riscv_vle_mask)
|
|
Ops.push_back(DAG.getTargetConstant(RISCVVType::TAIL_AGNOSTIC, DL, XLenVT));
|
|
|
|
SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
|
|
|
|
SDValue Result =
|
|
DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
|
|
Chain = Result.getValue(1);
|
|
if (ExpandingVL) {
|
|
MVT IndexVT = ContainerVT;
|
|
if (ContainerVT.isFloatingPoint())
|
|
IndexVT = ContainerVT.changeVectorElementTypeToInteger();
|
|
|
|
MVT IndexEltVT = IndexVT.getVectorElementType();
|
|
bool UseVRGATHEREI16 = false;
|
|
// If index vector is an i8 vector and the element count exceeds 256, we
|
|
// should change the element type of index vector to i16 to avoid
|
|
// overflow.
|
|
if (IndexEltVT == MVT::i8 && VT.getVectorNumElements() > 256) {
|
|
// FIXME: We need to do vector splitting manually for LMUL=8 cases.
|
|
assert(getLMUL(IndexVT) != RISCVVType::LMUL_8);
|
|
IndexVT = IndexVT.changeVectorElementType(MVT::i16);
|
|
UseVRGATHEREI16 = true;
|
|
}
|
|
|
|
SDValue Iota =
|
|
DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
|
|
DAG.getConstant(Intrinsic::riscv_viota, DL, XLenVT),
|
|
DAG.getUNDEF(IndexVT), Mask, ExpandingVL);
|
|
Result =
|
|
DAG.getNode(UseVRGATHEREI16 ? RISCVISD::VRGATHEREI16_VV_VL
|
|
: RISCVISD::VRGATHER_VV_VL,
|
|
DL, ContainerVT, Result, Iota, PassThru, Mask, ExpandingVL);
|
|
}
|
|
|
|
if (VT.isFixedLengthVector())
|
|
Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
|
|
|
|
return DAG.getMergeValues({Result, Chain}, DL);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
|
|
const auto *MemSD = cast<MemSDNode>(Op);
|
|
EVT MemVT = MemSD->getMemoryVT();
|
|
MachineMemOperand *MMO = MemSD->getMemOperand();
|
|
SDValue Chain = MemSD->getChain();
|
|
SDValue BasePtr = MemSD->getBasePtr();
|
|
SDValue Val, Mask, VL;
|
|
|
|
bool IsCompressingStore = false;
|
|
if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) {
|
|
Val = VPStore->getValue();
|
|
Mask = VPStore->getMask();
|
|
VL = VPStore->getVectorLength();
|
|
} else {
|
|
const auto *MStore = cast<MaskedStoreSDNode>(Op);
|
|
Val = MStore->getValue();
|
|
Mask = MStore->getMask();
|
|
IsCompressingStore = MStore->isCompressingStore();
|
|
}
|
|
|
|
bool IsUnmasked =
|
|
ISD::isConstantSplatVectorAllOnes(Mask.getNode()) || IsCompressingStore;
|
|
|
|
MVT VT = Val.getSimpleValueType();
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
MVT ContainerVT = VT;
|
|
if (VT.isFixedLengthVector()) {
|
|
ContainerVT = getContainerForFixedLengthVector(VT);
|
|
|
|
Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
|
|
if (!IsUnmasked || IsCompressingStore) {
|
|
MVT MaskVT = getMaskTypeFor(ContainerVT);
|
|
Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
|
|
}
|
|
}
|
|
|
|
if (!VL)
|
|
VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
|
|
|
|
if (IsCompressingStore) {
|
|
Val = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, ContainerVT,
|
|
DAG.getConstant(Intrinsic::riscv_vcompress, DL, XLenVT),
|
|
DAG.getUNDEF(ContainerVT), Val, Mask, VL);
|
|
VL =
|
|
DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Mask,
|
|
getAllOnesMask(Mask.getSimpleValueType(), VL, DL, DAG), VL);
|
|
}
|
|
|
|
unsigned IntID =
|
|
IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask;
|
|
SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
|
|
Ops.push_back(Val);
|
|
Ops.push_back(BasePtr);
|
|
if (!IsUnmasked)
|
|
Ops.push_back(Mask);
|
|
Ops.push_back(VL);
|
|
|
|
return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
|
|
DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerVectorCompress(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
SDValue Val = Op.getOperand(0);
|
|
SDValue Mask = Op.getOperand(1);
|
|
SDValue Passthru = Op.getOperand(2);
|
|
|
|
MVT VT = Val.getSimpleValueType();
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
MVT ContainerVT = VT;
|
|
if (VT.isFixedLengthVector()) {
|
|
ContainerVT = getContainerForFixedLengthVector(VT);
|
|
MVT MaskVT = getMaskTypeFor(ContainerVT);
|
|
Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
|
|
Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
|
|
Passthru = convertToScalableVector(ContainerVT, Passthru, DAG, Subtarget);
|
|
}
|
|
|
|
SDValue VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
|
|
SDValue Res =
|
|
DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, ContainerVT,
|
|
DAG.getConstant(Intrinsic::riscv_vcompress, DL, XLenVT),
|
|
Passthru, Val, Mask, VL);
|
|
|
|
if (VT.isFixedLengthVector())
|
|
Res = convertFromScalableVector(VT, Res, DAG, Subtarget);
|
|
|
|
return Res;
|
|
}
|
|
|
|
SDValue
|
|
RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
MVT InVT = Op.getOperand(0).getSimpleValueType();
|
|
MVT ContainerVT = getContainerForFixedLengthVector(InVT);
|
|
|
|
MVT VT = Op.getSimpleValueType();
|
|
|
|
SDValue Op1 =
|
|
convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
|
|
SDValue Op2 =
|
|
convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
|
|
|
|
SDLoc DL(Op);
|
|
auto [Mask, VL] = getDefaultVLOps(VT.getVectorNumElements(), ContainerVT, DL,
|
|
DAG, Subtarget);
|
|
MVT MaskVT = getMaskTypeFor(ContainerVT);
|
|
|
|
SDValue Cmp =
|
|
DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT,
|
|
{Op1, Op2, Op.getOperand(2), DAG.getUNDEF(MaskVT), Mask, VL});
|
|
|
|
return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerVectorStrictFSetcc(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
unsigned Opc = Op.getOpcode();
|
|
SDLoc DL(Op);
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue Op1 = Op.getOperand(1);
|
|
SDValue Op2 = Op.getOperand(2);
|
|
SDValue CC = Op.getOperand(3);
|
|
ISD::CondCode CCVal = cast<CondCodeSDNode>(CC)->get();
|
|
MVT VT = Op.getSimpleValueType();
|
|
MVT InVT = Op1.getSimpleValueType();
|
|
|
|
// RVV VMFEQ/VMFNE ignores qNan, so we expand strict_fsetccs with OEQ/UNE
|
|
// condition code.
|
|
if (Opc == ISD::STRICT_FSETCCS) {
|
|
// Expand strict_fsetccs(x, oeq) to
|
|
// (and strict_fsetccs(x, y, oge), strict_fsetccs(x, y, ole))
|
|
SDVTList VTList = Op->getVTList();
|
|
if (CCVal == ISD::SETEQ || CCVal == ISD::SETOEQ) {
|
|
SDValue OLECCVal = DAG.getCondCode(ISD::SETOLE);
|
|
SDValue Tmp1 = DAG.getNode(ISD::STRICT_FSETCCS, DL, VTList, Chain, Op1,
|
|
Op2, OLECCVal);
|
|
SDValue Tmp2 = DAG.getNode(ISD::STRICT_FSETCCS, DL, VTList, Chain, Op2,
|
|
Op1, OLECCVal);
|
|
SDValue OutChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
|
|
Tmp1.getValue(1), Tmp2.getValue(1));
|
|
// Tmp1 and Tmp2 might be the same node.
|
|
if (Tmp1 != Tmp2)
|
|
Tmp1 = DAG.getNode(ISD::AND, DL, VT, Tmp1, Tmp2);
|
|
return DAG.getMergeValues({Tmp1, OutChain}, DL);
|
|
}
|
|
|
|
// Expand (strict_fsetccs x, y, une) to (not (strict_fsetccs x, y, oeq))
|
|
if (CCVal == ISD::SETNE || CCVal == ISD::SETUNE) {
|
|
SDValue OEQCCVal = DAG.getCondCode(ISD::SETOEQ);
|
|
SDValue OEQ = DAG.getNode(ISD::STRICT_FSETCCS, DL, VTList, Chain, Op1,
|
|
Op2, OEQCCVal);
|
|
SDValue Res = DAG.getNOT(DL, OEQ, VT);
|
|
return DAG.getMergeValues({Res, OEQ.getValue(1)}, DL);
|
|
}
|
|
}
|
|
|
|
MVT ContainerInVT = InVT;
|
|
if (InVT.isFixedLengthVector()) {
|
|
ContainerInVT = getContainerForFixedLengthVector(InVT);
|
|
Op1 = convertToScalableVector(ContainerInVT, Op1, DAG, Subtarget);
|
|
Op2 = convertToScalableVector(ContainerInVT, Op2, DAG, Subtarget);
|
|
}
|
|
MVT MaskVT = getMaskTypeFor(ContainerInVT);
|
|
|
|
auto [Mask, VL] = getDefaultVLOps(InVT, ContainerInVT, DL, DAG, Subtarget);
|
|
|
|
SDValue Res;
|
|
if (Opc == ISD::STRICT_FSETCC &&
|
|
(CCVal == ISD::SETLT || CCVal == ISD::SETOLT || CCVal == ISD::SETLE ||
|
|
CCVal == ISD::SETOLE)) {
|
|
// VMFLT/VMFLE/VMFGT/VMFGE raise exception for qNan. Generate a mask to only
|
|
// active when both input elements are ordered.
|
|
SDValue True = getAllOnesMask(ContainerInVT, VL, DL, DAG);
|
|
SDValue OrderMask1 = DAG.getNode(
|
|
RISCVISD::STRICT_FSETCC_VL, DL, DAG.getVTList(MaskVT, MVT::Other),
|
|
{Chain, Op1, Op1, DAG.getCondCode(ISD::SETOEQ), DAG.getUNDEF(MaskVT),
|
|
True, VL});
|
|
SDValue OrderMask2 = DAG.getNode(
|
|
RISCVISD::STRICT_FSETCC_VL, DL, DAG.getVTList(MaskVT, MVT::Other),
|
|
{Chain, Op2, Op2, DAG.getCondCode(ISD::SETOEQ), DAG.getUNDEF(MaskVT),
|
|
True, VL});
|
|
Mask =
|
|
DAG.getNode(RISCVISD::VMAND_VL, DL, MaskVT, OrderMask1, OrderMask2, VL);
|
|
// Use Mask as the passthru operand to let the result be 0 if either of the
|
|
// inputs is unordered.
|
|
Res = DAG.getNode(RISCVISD::STRICT_FSETCCS_VL, DL,
|
|
DAG.getVTList(MaskVT, MVT::Other),
|
|
{Chain, Op1, Op2, CC, Mask, Mask, VL});
|
|
} else {
|
|
unsigned RVVOpc = Opc == ISD::STRICT_FSETCC ? RISCVISD::STRICT_FSETCC_VL
|
|
: RISCVISD::STRICT_FSETCCS_VL;
|
|
Res = DAG.getNode(RVVOpc, DL, DAG.getVTList(MaskVT, MVT::Other),
|
|
{Chain, Op1, Op2, CC, DAG.getUNDEF(MaskVT), Mask, VL});
|
|
}
|
|
|
|
if (VT.isFixedLengthVector()) {
|
|
SDValue SubVec = convertFromScalableVector(VT, Res, DAG, Subtarget);
|
|
return DAG.getMergeValues({SubVec, Res.getValue(1)}, DL);
|
|
}
|
|
return Res;
|
|
}
|
|
|
|
// Lower vector ABS to smax(X, sub(0, X)).
|
|
SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
MVT VT = Op.getSimpleValueType();
|
|
SDValue X = Op.getOperand(0);
|
|
|
|
assert((Op.getOpcode() == ISD::VP_ABS || VT.isFixedLengthVector()) &&
|
|
"Unexpected type for ISD::ABS");
|
|
|
|
MVT ContainerVT = VT;
|
|
if (VT.isFixedLengthVector()) {
|
|
ContainerVT = getContainerForFixedLengthVector(VT);
|
|
X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
|
|
}
|
|
|
|
SDValue Mask, VL;
|
|
if (Op->getOpcode() == ISD::VP_ABS) {
|
|
Mask = Op->getOperand(1);
|
|
if (VT.isFixedLengthVector())
|
|
Mask = convertToScalableVector(getMaskTypeFor(ContainerVT), Mask, DAG,
|
|
Subtarget);
|
|
VL = Op->getOperand(2);
|
|
} else
|
|
std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
|
|
|
|
SDValue SplatZero = DAG.getNode(
|
|
RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT),
|
|
DAG.getConstant(0, DL, Subtarget.getXLenVT()), VL);
|
|
SDValue NegX = DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X,
|
|
DAG.getUNDEF(ContainerVT), Mask, VL);
|
|
SDValue Max = DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX,
|
|
DAG.getUNDEF(ContainerVT), Mask, VL);
|
|
|
|
if (VT.isFixedLengthVector())
|
|
Max = convertFromScalableVector(VT, Max, DAG, Subtarget);
|
|
return Max;
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
|
|
SDValue Op, SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
MVT VT = Op.getSimpleValueType();
|
|
SDValue Mag = Op.getOperand(0);
|
|
SDValue Sign = Op.getOperand(1);
|
|
assert(Mag.getValueType() == Sign.getValueType() &&
|
|
"Can only handle COPYSIGN with matching types.");
|
|
|
|
MVT ContainerVT = getContainerForFixedLengthVector(VT);
|
|
Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
|
|
Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
|
|
|
|
auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
|
|
|
|
SDValue CopySign = DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag,
|
|
Sign, DAG.getUNDEF(ContainerVT), Mask, VL);
|
|
|
|
return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
|
|
SDValue Op, SelectionDAG &DAG) const {
|
|
MVT VT = Op.getSimpleValueType();
|
|
MVT ContainerVT = getContainerForFixedLengthVector(VT);
|
|
|
|
MVT I1ContainerVT =
|
|
MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
|
|
|
|
SDValue CC =
|
|
convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
|
|
SDValue Op1 =
|
|
convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
|
|
SDValue Op2 =
|
|
convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
|
|
|
|
SDLoc DL(Op);
|
|
SDValue VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
|
|
|
|
SDValue Select = DAG.getNode(RISCVISD::VMERGE_VL, DL, ContainerVT, CC, Op1,
|
|
Op2, DAG.getUNDEF(ContainerVT), VL);
|
|
|
|
return convertFromScalableVector(VT, Select, DAG, Subtarget);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
const auto &TSInfo =
|
|
static_cast<const RISCVSelectionDAGInfo &>(DAG.getSelectionDAGInfo());
|
|
|
|
unsigned NewOpc = getRISCVVLOp(Op);
|
|
bool HasPassthruOp = TSInfo.hasPassthruOp(NewOpc);
|
|
bool HasMask = TSInfo.hasMaskOp(NewOpc);
|
|
|
|
MVT VT = Op.getSimpleValueType();
|
|
MVT ContainerVT = getContainerForFixedLengthVector(VT);
|
|
|
|
// Create list of operands by converting existing ones to scalable types.
|
|
SmallVector<SDValue, 6> Ops;
|
|
for (const SDValue &V : Op->op_values()) {
|
|
assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
|
|
|
|
// Pass through non-vector operands.
|
|
if (!V.getValueType().isVector()) {
|
|
Ops.push_back(V);
|
|
continue;
|
|
}
|
|
|
|
// "cast" fixed length vector to a scalable vector.
|
|
assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
|
|
"Only fixed length vectors are supported!");
|
|
Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
|
|
}
|
|
|
|
SDLoc DL(Op);
|
|
auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
|
|
if (HasPassthruOp)
|
|
Ops.push_back(DAG.getUNDEF(ContainerVT));
|
|
if (HasMask)
|
|
Ops.push_back(Mask);
|
|
Ops.push_back(VL);
|
|
|
|
// StrictFP operations have two result values. Their lowered result should
|
|
// have same result count.
|
|
if (Op->isStrictFPOpcode()) {
|
|
SDValue ScalableRes =
|
|
DAG.getNode(NewOpc, DL, DAG.getVTList(ContainerVT, MVT::Other), Ops,
|
|
Op->getFlags());
|
|
SDValue SubVec = convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
|
|
return DAG.getMergeValues({SubVec, ScalableRes.getValue(1)}, DL);
|
|
}
|
|
|
|
SDValue ScalableRes =
|
|
DAG.getNode(NewOpc, DL, ContainerVT, Ops, Op->getFlags());
|
|
return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
|
|
}
|
|
|
|
// Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node:
|
|
// * Operands of each node are assumed to be in the same order.
|
|
// * The EVL operand is promoted from i32 to i64 on RV64.
|
|
// * Fixed-length vectors are converted to their scalable-vector container
|
|
// types.
|
|
SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG) const {
|
|
const auto &TSInfo =
|
|
static_cast<const RISCVSelectionDAGInfo &>(DAG.getSelectionDAGInfo());
|
|
|
|
unsigned RISCVISDOpc = getRISCVVLOp(Op);
|
|
bool HasPassthruOp = TSInfo.hasPassthruOp(RISCVISDOpc);
|
|
|
|
SDLoc DL(Op);
|
|
MVT VT = Op.getSimpleValueType();
|
|
SmallVector<SDValue, 4> Ops;
|
|
|
|
MVT ContainerVT = VT;
|
|
if (VT.isFixedLengthVector())
|
|
ContainerVT = getContainerForFixedLengthVector(VT);
|
|
|
|
for (const auto &OpIdx : enumerate(Op->ops())) {
|
|
SDValue V = OpIdx.value();
|
|
assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
|
|
// Add dummy passthru value before the mask. Or if there isn't a mask,
|
|
// before EVL.
|
|
if (HasPassthruOp) {
|
|
auto MaskIdx = ISD::getVPMaskIdx(Op.getOpcode());
|
|
if (MaskIdx) {
|
|
if (*MaskIdx == OpIdx.index())
|
|
Ops.push_back(DAG.getUNDEF(ContainerVT));
|
|
} else if (ISD::getVPExplicitVectorLengthIdx(Op.getOpcode()) ==
|
|
OpIdx.index()) {
|
|
if (Op.getOpcode() == ISD::VP_MERGE) {
|
|
// For VP_MERGE, copy the false operand instead of an undef value.
|
|
Ops.push_back(Ops.back());
|
|
} else {
|
|
assert(Op.getOpcode() == ISD::VP_SELECT);
|
|
// For VP_SELECT, add an undef value.
|
|
Ops.push_back(DAG.getUNDEF(ContainerVT));
|
|
}
|
|
}
|
|
}
|
|
// VFCVT_RM_X_F_VL requires a rounding mode to be injected before the VL.
|
|
if (RISCVISDOpc == RISCVISD::VFCVT_RM_X_F_VL &&
|
|
ISD::getVPExplicitVectorLengthIdx(Op.getOpcode()) == OpIdx.index())
|
|
Ops.push_back(DAG.getTargetConstant(RISCVFPRndMode::DYN, DL,
|
|
Subtarget.getXLenVT()));
|
|
// Pass through operands which aren't fixed-length vectors.
|
|
if (!V.getValueType().isFixedLengthVector()) {
|
|
Ops.push_back(V);
|
|
continue;
|
|
}
|
|
// "cast" fixed length vector to a scalable vector.
|
|
MVT OpVT = V.getSimpleValueType();
|
|
MVT ContainerVT = getContainerForFixedLengthVector(OpVT);
|
|
assert(useRVVForFixedLengthVectorVT(OpVT) &&
|
|
"Only fixed length vectors are supported!");
|
|
Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
|
|
}
|
|
|
|
if (!VT.isFixedLengthVector())
|
|
return DAG.getNode(RISCVISDOpc, DL, VT, Ops, Op->getFlags());
|
|
|
|
SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops, Op->getFlags());
|
|
|
|
return convertFromScalableVector(VT, VPOp, DAG, Subtarget);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerVPExtMaskOp(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
MVT VT = Op.getSimpleValueType();
|
|
|
|
SDValue Src = Op.getOperand(0);
|
|
// NOTE: Mask is dropped.
|
|
SDValue VL = Op.getOperand(2);
|
|
|
|
MVT ContainerVT = VT;
|
|
if (VT.isFixedLengthVector()) {
|
|
ContainerVT = getContainerForFixedLengthVector(VT);
|
|
MVT SrcVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
|
|
Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget);
|
|
}
|
|
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
SDValue Zero = DAG.getConstant(0, DL, XLenVT);
|
|
SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
|
|
DAG.getUNDEF(ContainerVT), Zero, VL);
|
|
|
|
SDValue SplatValue = DAG.getSignedConstant(
|
|
Op.getOpcode() == ISD::VP_ZERO_EXTEND ? 1 : -1, DL, XLenVT);
|
|
SDValue Splat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
|
|
DAG.getUNDEF(ContainerVT), SplatValue, VL);
|
|
|
|
SDValue Result = DAG.getNode(RISCVISD::VMERGE_VL, DL, ContainerVT, Src, Splat,
|
|
ZeroSplat, DAG.getUNDEF(ContainerVT), VL);
|
|
if (!VT.isFixedLengthVector())
|
|
return Result;
|
|
return convertFromScalableVector(VT, Result, DAG, Subtarget);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerVPSetCCMaskOp(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
MVT VT = Op.getSimpleValueType();
|
|
|
|
SDValue Op1 = Op.getOperand(0);
|
|
SDValue Op2 = Op.getOperand(1);
|
|
ISD::CondCode Condition = cast<CondCodeSDNode>(Op.getOperand(2))->get();
|
|
// NOTE: Mask is dropped.
|
|
SDValue VL = Op.getOperand(4);
|
|
|
|
MVT ContainerVT = VT;
|
|
if (VT.isFixedLengthVector()) {
|
|
ContainerVT = getContainerForFixedLengthVector(VT);
|
|
Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
|
|
Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
|
|
}
|
|
|
|
SDValue Result;
|
|
SDValue AllOneMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
|
|
|
|
switch (Condition) {
|
|
default:
|
|
break;
|
|
// X != Y --> (X^Y)
|
|
case ISD::SETNE:
|
|
Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, Op2, VL);
|
|
break;
|
|
// X == Y --> ~(X^Y)
|
|
case ISD::SETEQ: {
|
|
SDValue Temp =
|
|
DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, Op2, VL);
|
|
Result =
|
|
DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, AllOneMask, VL);
|
|
break;
|
|
}
|
|
// X >s Y --> X == 0 & Y == 1 --> ~X & Y
|
|
// X <u Y --> X == 0 & Y == 1 --> ~X & Y
|
|
case ISD::SETGT:
|
|
case ISD::SETULT: {
|
|
SDValue Temp =
|
|
DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, AllOneMask, VL);
|
|
Result = DAG.getNode(RISCVISD::VMAND_VL, DL, ContainerVT, Temp, Op2, VL);
|
|
break;
|
|
}
|
|
// X <s Y --> X == 1 & Y == 0 --> ~Y & X
|
|
// X >u Y --> X == 1 & Y == 0 --> ~Y & X
|
|
case ISD::SETLT:
|
|
case ISD::SETUGT: {
|
|
SDValue Temp =
|
|
DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op2, AllOneMask, VL);
|
|
Result = DAG.getNode(RISCVISD::VMAND_VL, DL, ContainerVT, Op1, Temp, VL);
|
|
break;
|
|
}
|
|
// X >=s Y --> X == 0 | Y == 1 --> ~X | Y
|
|
// X <=u Y --> X == 0 | Y == 1 --> ~X | Y
|
|
case ISD::SETGE:
|
|
case ISD::SETULE: {
|
|
SDValue Temp =
|
|
DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, AllOneMask, VL);
|
|
Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, Op2, VL);
|
|
break;
|
|
}
|
|
// X <=s Y --> X == 1 | Y == 0 --> ~Y | X
|
|
// X >=u Y --> X == 1 | Y == 0 --> ~Y | X
|
|
case ISD::SETLE:
|
|
case ISD::SETUGE: {
|
|
SDValue Temp =
|
|
DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op2, AllOneMask, VL);
|
|
Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, Op1, VL);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!VT.isFixedLengthVector())
|
|
return Result;
|
|
return convertFromScalableVector(VT, Result, DAG, Subtarget);
|
|
}
|
|
|
|
// Lower Floating-Point/Integer Type-Convert VP SDNodes
|
|
SDValue RISCVTargetLowering::lowerVPFPIntConvOp(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
|
|
SDValue Src = Op.getOperand(0);
|
|
SDValue Mask = Op.getOperand(1);
|
|
SDValue VL = Op.getOperand(2);
|
|
unsigned RISCVISDOpc = getRISCVVLOp(Op);
|
|
|
|
MVT DstVT = Op.getSimpleValueType();
|
|
MVT SrcVT = Src.getSimpleValueType();
|
|
if (DstVT.isFixedLengthVector()) {
|
|
DstVT = getContainerForFixedLengthVector(DstVT);
|
|
SrcVT = getContainerForFixedLengthVector(SrcVT);
|
|
Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget);
|
|
MVT MaskVT = getMaskTypeFor(DstVT);
|
|
Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
|
|
}
|
|
|
|
unsigned DstEltSize = DstVT.getScalarSizeInBits();
|
|
unsigned SrcEltSize = SrcVT.getScalarSizeInBits();
|
|
|
|
SDValue Result;
|
|
if (DstEltSize >= SrcEltSize) { // Single-width and widening conversion.
|
|
if (SrcVT.isInteger()) {
|
|
assert(DstVT.isFloatingPoint() && "Wrong input/output vector types");
|
|
|
|
unsigned RISCVISDExtOpc = RISCVISDOpc == RISCVISD::SINT_TO_FP_VL
|
|
? RISCVISD::VSEXT_VL
|
|
: RISCVISD::VZEXT_VL;
|
|
|
|
// Do we need to do any pre-widening before converting?
|
|
if (SrcEltSize == 1) {
|
|
MVT IntVT = DstVT.changeVectorElementTypeToInteger();
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
SDValue Zero = DAG.getConstant(0, DL, XLenVT);
|
|
SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT,
|
|
DAG.getUNDEF(IntVT), Zero, VL);
|
|
SDValue One = DAG.getSignedConstant(
|
|
RISCVISDExtOpc == RISCVISD::VZEXT_VL ? 1 : -1, DL, XLenVT);
|
|
SDValue OneSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT,
|
|
DAG.getUNDEF(IntVT), One, VL);
|
|
Src = DAG.getNode(RISCVISD::VMERGE_VL, DL, IntVT, Src, OneSplat,
|
|
ZeroSplat, DAG.getUNDEF(IntVT), VL);
|
|
} else if (DstEltSize > (2 * SrcEltSize)) {
|
|
// Widen before converting.
|
|
MVT IntVT = MVT::getVectorVT(MVT::getIntegerVT(DstEltSize / 2),
|
|
DstVT.getVectorElementCount());
|
|
Src = DAG.getNode(RISCVISDExtOpc, DL, IntVT, Src, Mask, VL);
|
|
}
|
|
|
|
Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL);
|
|
} else {
|
|
assert(SrcVT.isFloatingPoint() && DstVT.isInteger() &&
|
|
"Wrong input/output vector types");
|
|
|
|
// Convert f16 to f32 then convert f32 to i64.
|
|
if (DstEltSize > (2 * SrcEltSize)) {
|
|
assert(SrcVT.getVectorElementType() == MVT::f16 && "Unexpected type!");
|
|
MVT InterimFVT =
|
|
MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount());
|
|
Src =
|
|
DAG.getNode(RISCVISD::FP_EXTEND_VL, DL, InterimFVT, Src, Mask, VL);
|
|
}
|
|
|
|
Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL);
|
|
}
|
|
} else { // Narrowing + Conversion
|
|
if (SrcVT.isInteger()) {
|
|
assert(DstVT.isFloatingPoint() && "Wrong input/output vector types");
|
|
// First do a narrowing convert to an FP type half the size, then round
|
|
// the FP type to a small FP type if needed.
|
|
|
|
MVT InterimFVT = DstVT;
|
|
if (SrcEltSize > (2 * DstEltSize)) {
|
|
assert(SrcEltSize == (4 * DstEltSize) && "Unexpected types!");
|
|
assert(DstVT.getVectorElementType() == MVT::f16 && "Unexpected type!");
|
|
InterimFVT = MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount());
|
|
}
|
|
|
|
Result = DAG.getNode(RISCVISDOpc, DL, InterimFVT, Src, Mask, VL);
|
|
|
|
if (InterimFVT != DstVT) {
|
|
Src = Result;
|
|
Result = DAG.getNode(RISCVISD::FP_ROUND_VL, DL, DstVT, Src, Mask, VL);
|
|
}
|
|
} else {
|
|
assert(SrcVT.isFloatingPoint() && DstVT.isInteger() &&
|
|
"Wrong input/output vector types");
|
|
// First do a narrowing conversion to an integer half the size, then
|
|
// truncate if needed.
|
|
|
|
if (DstEltSize == 1) {
|
|
// First convert to the same size integer, then convert to mask using
|
|
// setcc.
|
|
assert(SrcEltSize >= 16 && "Unexpected FP type!");
|
|
MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize),
|
|
DstVT.getVectorElementCount());
|
|
Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL);
|
|
|
|
// Compare the integer result to 0. The integer should be 0 or 1/-1,
|
|
// otherwise the conversion was undefined.
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
|
|
SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, InterimIVT,
|
|
DAG.getUNDEF(InterimIVT), SplatZero, VL);
|
|
Result = DAG.getNode(RISCVISD::SETCC_VL, DL, DstVT,
|
|
{Result, SplatZero, DAG.getCondCode(ISD::SETNE),
|
|
DAG.getUNDEF(DstVT), Mask, VL});
|
|
} else {
|
|
MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
|
|
DstVT.getVectorElementCount());
|
|
|
|
Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL);
|
|
|
|
while (InterimIVT != DstVT) {
|
|
SrcEltSize /= 2;
|
|
Src = Result;
|
|
InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
|
|
DstVT.getVectorElementCount());
|
|
Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, InterimIVT,
|
|
Src, Mask, VL);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
MVT VT = Op.getSimpleValueType();
|
|
if (!VT.isFixedLengthVector())
|
|
return Result;
|
|
return convertFromScalableVector(VT, Result, DAG, Subtarget);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerVPMergeMask(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
MVT VT = Op.getSimpleValueType();
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
SDValue Mask = Op.getOperand(0);
|
|
SDValue TrueVal = Op.getOperand(1);
|
|
SDValue FalseVal = Op.getOperand(2);
|
|
SDValue VL = Op.getOperand(3);
|
|
|
|
// Use default legalization if a vector of EVL type would be legal.
|
|
EVT EVLVecVT = EVT::getVectorVT(*DAG.getContext(), VL.getValueType(),
|
|
VT.getVectorElementCount());
|
|
if (isTypeLegal(EVLVecVT))
|
|
return SDValue();
|
|
|
|
MVT ContainerVT = VT;
|
|
if (VT.isFixedLengthVector()) {
|
|
ContainerVT = getContainerForFixedLengthVector(VT);
|
|
Mask = convertToScalableVector(ContainerVT, Mask, DAG, Subtarget);
|
|
TrueVal = convertToScalableVector(ContainerVT, TrueVal, DAG, Subtarget);
|
|
FalseVal = convertToScalableVector(ContainerVT, FalseVal, DAG, Subtarget);
|
|
}
|
|
|
|
// Promote to a vector of i8.
|
|
MVT PromotedVT = ContainerVT.changeVectorElementType(MVT::i8);
|
|
|
|
// Promote TrueVal and FalseVal using VLMax.
|
|
// FIXME: Is there a better way to do this?
|
|
SDValue VLMax = DAG.getRegister(RISCV::X0, XLenVT);
|
|
SDValue SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, PromotedVT,
|
|
DAG.getUNDEF(PromotedVT),
|
|
DAG.getConstant(1, DL, XLenVT), VLMax);
|
|
SDValue SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, PromotedVT,
|
|
DAG.getUNDEF(PromotedVT),
|
|
DAG.getConstant(0, DL, XLenVT), VLMax);
|
|
TrueVal = DAG.getNode(RISCVISD::VMERGE_VL, DL, PromotedVT, TrueVal, SplatOne,
|
|
SplatZero, DAG.getUNDEF(PromotedVT), VL);
|
|
// Any element past VL uses FalseVal, so use VLMax
|
|
FalseVal = DAG.getNode(RISCVISD::VMERGE_VL, DL, PromotedVT, FalseVal,
|
|
SplatOne, SplatZero, DAG.getUNDEF(PromotedVT), VLMax);
|
|
|
|
// VP_MERGE the two promoted values.
|
|
SDValue VPMerge = DAG.getNode(RISCVISD::VMERGE_VL, DL, PromotedVT, Mask,
|
|
TrueVal, FalseVal, FalseVal, VL);
|
|
|
|
// Convert back to mask.
|
|
SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
|
|
SDValue Result = DAG.getNode(
|
|
RISCVISD::SETCC_VL, DL, ContainerVT,
|
|
{VPMerge, DAG.getConstant(0, DL, PromotedVT), DAG.getCondCode(ISD::SETNE),
|
|
DAG.getUNDEF(getMaskTypeFor(ContainerVT)), TrueMask, VLMax});
|
|
|
|
if (VT.isFixedLengthVector())
|
|
Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
|
|
return Result;
|
|
}
|
|
|
|
SDValue
|
|
RISCVTargetLowering::lowerVPSpliceExperimental(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
using namespace SDPatternMatch;
|
|
|
|
SDLoc DL(Op);
|
|
|
|
SDValue Op1 = Op.getOperand(0);
|
|
SDValue Op2 = Op.getOperand(1);
|
|
SDValue Offset = Op.getOperand(2);
|
|
SDValue Mask = Op.getOperand(3);
|
|
SDValue EVL1 = Op.getOperand(4);
|
|
SDValue EVL2 = Op.getOperand(5);
|
|
|
|
const MVT XLenVT = Subtarget.getXLenVT();
|
|
MVT VT = Op.getSimpleValueType();
|
|
MVT ContainerVT = VT;
|
|
if (VT.isFixedLengthVector()) {
|
|
ContainerVT = getContainerForFixedLengthVector(VT);
|
|
Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
|
|
Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
|
|
MVT MaskVT = getMaskTypeFor(ContainerVT);
|
|
Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
|
|
}
|
|
|
|
bool IsMaskVector = VT.getVectorElementType() == MVT::i1;
|
|
if (IsMaskVector) {
|
|
ContainerVT = ContainerVT.changeVectorElementType(MVT::i8);
|
|
|
|
// Expand input operands
|
|
SDValue SplatOneOp1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
|
|
DAG.getUNDEF(ContainerVT),
|
|
DAG.getConstant(1, DL, XLenVT), EVL1);
|
|
SDValue SplatZeroOp1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
|
|
DAG.getUNDEF(ContainerVT),
|
|
DAG.getConstant(0, DL, XLenVT), EVL1);
|
|
Op1 = DAG.getNode(RISCVISD::VMERGE_VL, DL, ContainerVT, Op1, SplatOneOp1,
|
|
SplatZeroOp1, DAG.getUNDEF(ContainerVT), EVL1);
|
|
|
|
SDValue SplatOneOp2 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
|
|
DAG.getUNDEF(ContainerVT),
|
|
DAG.getConstant(1, DL, XLenVT), EVL2);
|
|
SDValue SplatZeroOp2 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
|
|
DAG.getUNDEF(ContainerVT),
|
|
DAG.getConstant(0, DL, XLenVT), EVL2);
|
|
Op2 = DAG.getNode(RISCVISD::VMERGE_VL, DL, ContainerVT, Op2, SplatOneOp2,
|
|
SplatZeroOp2, DAG.getUNDEF(ContainerVT), EVL2);
|
|
}
|
|
|
|
auto getVectorFirstEle = [](SDValue Vec) {
|
|
SDValue FirstEle;
|
|
if (sd_match(Vec, m_InsertElt(m_Value(), m_Value(FirstEle), m_Zero())))
|
|
return FirstEle;
|
|
|
|
if (Vec.getOpcode() == ISD::SPLAT_VECTOR ||
|
|
Vec.getOpcode() == ISD::BUILD_VECTOR)
|
|
return Vec.getOperand(0);
|
|
|
|
return SDValue();
|
|
};
|
|
|
|
if (!IsMaskVector && isNullConstant(Offset) && isOneConstant(EVL1))
|
|
if (auto FirstEle = getVectorFirstEle(Op->getOperand(0))) {
|
|
MVT EltVT = ContainerVT.getVectorElementType();
|
|
SDValue Result;
|
|
if ((EltVT == MVT::f16 && !Subtarget.hasVInstructionsF16()) ||
|
|
EltVT == MVT::bf16) {
|
|
EltVT = EltVT.changeTypeToInteger();
|
|
ContainerVT = ContainerVT.changeVectorElementType(EltVT);
|
|
Op2 = DAG.getBitcast(ContainerVT, Op2);
|
|
FirstEle =
|
|
DAG.getAnyExtOrTrunc(DAG.getBitcast(EltVT, FirstEle), DL, XLenVT);
|
|
}
|
|
Result = DAG.getNode(EltVT.isFloatingPoint() ? RISCVISD::VFSLIDE1UP_VL
|
|
: RISCVISD::VSLIDE1UP_VL,
|
|
DL, ContainerVT, DAG.getUNDEF(ContainerVT), Op2,
|
|
FirstEle, Mask, EVL2);
|
|
Result = DAG.getBitcast(
|
|
ContainerVT.changeVectorElementType(VT.getVectorElementType()),
|
|
Result);
|
|
return VT.isFixedLengthVector()
|
|
? convertFromScalableVector(VT, Result, DAG, Subtarget)
|
|
: Result;
|
|
}
|
|
|
|
int64_t ImmValue = cast<ConstantSDNode>(Offset)->getSExtValue();
|
|
SDValue DownOffset, UpOffset;
|
|
if (ImmValue >= 0) {
|
|
// The operand is a TargetConstant, we need to rebuild it as a regular
|
|
// constant.
|
|
DownOffset = DAG.getConstant(ImmValue, DL, XLenVT);
|
|
UpOffset = DAG.getNode(ISD::SUB, DL, XLenVT, EVL1, DownOffset);
|
|
} else {
|
|
// The operand is a TargetConstant, we need to rebuild it as a regular
|
|
// constant rather than negating the original operand.
|
|
UpOffset = DAG.getConstant(-ImmValue, DL, XLenVT);
|
|
DownOffset = DAG.getNode(ISD::SUB, DL, XLenVT, EVL1, UpOffset);
|
|
}
|
|
|
|
if (ImmValue != 0)
|
|
Op1 = getVSlidedown(DAG, Subtarget, DL, ContainerVT,
|
|
DAG.getUNDEF(ContainerVT), Op1, DownOffset, Mask,
|
|
UpOffset);
|
|
SDValue Result = getVSlideup(DAG, Subtarget, DL, ContainerVT, Op1, Op2,
|
|
UpOffset, Mask, EVL2, RISCVVType::TAIL_AGNOSTIC);
|
|
|
|
if (IsMaskVector) {
|
|
// Truncate Result back to a mask vector (Result has same EVL as Op2)
|
|
Result = DAG.getNode(
|
|
RISCVISD::SETCC_VL, DL, ContainerVT.changeVectorElementType(MVT::i1),
|
|
{Result, DAG.getConstant(0, DL, ContainerVT),
|
|
DAG.getCondCode(ISD::SETNE), DAG.getUNDEF(getMaskTypeFor(ContainerVT)),
|
|
Mask, EVL2});
|
|
}
|
|
|
|
if (!VT.isFixedLengthVector())
|
|
return Result;
|
|
return convertFromScalableVector(VT, Result, DAG, Subtarget);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerVPSplatExperimental(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
SDValue Val = Op.getOperand(0);
|
|
SDValue Mask = Op.getOperand(1);
|
|
SDValue VL = Op.getOperand(2);
|
|
MVT VT = Op.getSimpleValueType();
|
|
|
|
MVT ContainerVT = VT;
|
|
if (VT.isFixedLengthVector()) {
|
|
ContainerVT = getContainerForFixedLengthVector(VT);
|
|
MVT MaskVT = getMaskTypeFor(ContainerVT);
|
|
Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
|
|
}
|
|
|
|
SDValue Result;
|
|
if (VT.getScalarType() == MVT::i1) {
|
|
if (auto *C = dyn_cast<ConstantSDNode>(Val)) {
|
|
Result =
|
|
DAG.getNode(C->isZero() ? RISCVISD::VMCLR_VL : RISCVISD::VMSET_VL, DL,
|
|
ContainerVT, VL);
|
|
} else {
|
|
MVT WidenVT = ContainerVT.changeVectorElementType(MVT::i8);
|
|
SDValue LHS =
|
|
DAG.getNode(RISCVISD::VMV_V_X_VL, DL, WidenVT, DAG.getUNDEF(WidenVT),
|
|
DAG.getZExtOrTrunc(Val, DL, Subtarget.getXLenVT()), VL);
|
|
SDValue RHS = DAG.getConstant(0, DL, WidenVT);
|
|
Result = DAG.getNode(RISCVISD::SETCC_VL, DL, ContainerVT,
|
|
{LHS, RHS, DAG.getCondCode(ISD::SETNE),
|
|
DAG.getUNDEF(ContainerVT), Mask, VL});
|
|
}
|
|
} else {
|
|
Result =
|
|
lowerScalarSplat(SDValue(), Val, VL, ContainerVT, DL, DAG, Subtarget);
|
|
}
|
|
|
|
if (!VT.isFixedLengthVector())
|
|
return Result;
|
|
return convertFromScalableVector(VT, Result, DAG, Subtarget);
|
|
}
|
|
|
|
SDValue
|
|
RISCVTargetLowering::lowerVPReverseExperimental(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
MVT VT = Op.getSimpleValueType();
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
SDValue Op1 = Op.getOperand(0);
|
|
SDValue Mask = Op.getOperand(1);
|
|
SDValue EVL = Op.getOperand(2);
|
|
|
|
MVT ContainerVT = VT;
|
|
if (VT.isFixedLengthVector()) {
|
|
ContainerVT = getContainerForFixedLengthVector(VT);
|
|
Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
|
|
MVT MaskVT = getMaskTypeFor(ContainerVT);
|
|
Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
|
|
}
|
|
|
|
MVT GatherVT = ContainerVT;
|
|
MVT IndicesVT = ContainerVT.changeVectorElementTypeToInteger();
|
|
// Check if we are working with mask vectors
|
|
bool IsMaskVector = ContainerVT.getVectorElementType() == MVT::i1;
|
|
if (IsMaskVector) {
|
|
GatherVT = IndicesVT = ContainerVT.changeVectorElementType(MVT::i8);
|
|
|
|
// Expand input operand
|
|
SDValue SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IndicesVT,
|
|
DAG.getUNDEF(IndicesVT),
|
|
DAG.getConstant(1, DL, XLenVT), EVL);
|
|
SDValue SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IndicesVT,
|
|
DAG.getUNDEF(IndicesVT),
|
|
DAG.getConstant(0, DL, XLenVT), EVL);
|
|
Op1 = DAG.getNode(RISCVISD::VMERGE_VL, DL, IndicesVT, Op1, SplatOne,
|
|
SplatZero, DAG.getUNDEF(IndicesVT), EVL);
|
|
}
|
|
|
|
unsigned EltSize = GatherVT.getScalarSizeInBits();
|
|
unsigned MinSize = GatherVT.getSizeInBits().getKnownMinValue();
|
|
unsigned VectorBitsMax = Subtarget.getRealMaxVLen();
|
|
unsigned MaxVLMAX =
|
|
RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
|
|
|
|
unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
|
|
// If this is SEW=8 and VLMAX is unknown or more than 256, we need
|
|
// to use vrgatherei16.vv.
|
|
// TODO: It's also possible to use vrgatherei16.vv for other types to
|
|
// decrease register width for the index calculation.
|
|
// NOTE: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
|
|
if (MaxVLMAX > 256 && EltSize == 8) {
|
|
// If this is LMUL=8, we have to split before using vrgatherei16.vv.
|
|
// Split the vector in half and reverse each half using a full register
|
|
// reverse.
|
|
// Swap the halves and concatenate them.
|
|
// Slide the concatenated result by (VLMax - VL).
|
|
if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
|
|
auto [LoVT, HiVT] = DAG.GetSplitDestVTs(GatherVT);
|
|
auto [Lo, Hi] = DAG.SplitVector(Op1, DL);
|
|
|
|
SDValue LoRev = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
|
|
SDValue HiRev = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
|
|
|
|
// Reassemble the low and high pieces reversed.
|
|
// NOTE: this Result is unmasked (because we do not need masks for
|
|
// shuffles). If in the future this has to change, we can use a SELECT_VL
|
|
// between Result and UNDEF using the mask originally passed to VP_REVERSE
|
|
SDValue Result =
|
|
DAG.getNode(ISD::CONCAT_VECTORS, DL, GatherVT, HiRev, LoRev);
|
|
|
|
// Slide off any elements from past EVL that were reversed into the low
|
|
// elements.
|
|
unsigned MinElts = GatherVT.getVectorMinNumElements();
|
|
SDValue VLMax =
|
|
DAG.getVScale(DL, XLenVT, APInt(XLenVT.getSizeInBits(), MinElts));
|
|
SDValue Diff = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, EVL);
|
|
|
|
Result = getVSlidedown(DAG, Subtarget, DL, GatherVT,
|
|
DAG.getUNDEF(GatherVT), Result, Diff, Mask, EVL);
|
|
|
|
if (IsMaskVector) {
|
|
// Truncate Result back to a mask vector
|
|
Result =
|
|
DAG.getNode(RISCVISD::SETCC_VL, DL, ContainerVT,
|
|
{Result, DAG.getConstant(0, DL, GatherVT),
|
|
DAG.getCondCode(ISD::SETNE),
|
|
DAG.getUNDEF(getMaskTypeFor(ContainerVT)), Mask, EVL});
|
|
}
|
|
|
|
if (!VT.isFixedLengthVector())
|
|
return Result;
|
|
return convertFromScalableVector(VT, Result, DAG, Subtarget);
|
|
}
|
|
|
|
// Just promote the int type to i16 which will double the LMUL.
|
|
IndicesVT = MVT::getVectorVT(MVT::i16, IndicesVT.getVectorElementCount());
|
|
GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
|
|
}
|
|
|
|
SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IndicesVT, Mask, EVL);
|
|
SDValue VecLen =
|
|
DAG.getNode(ISD::SUB, DL, XLenVT, EVL, DAG.getConstant(1, DL, XLenVT));
|
|
SDValue VecLenSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IndicesVT,
|
|
DAG.getUNDEF(IndicesVT), VecLen, EVL);
|
|
SDValue VRSUB = DAG.getNode(RISCVISD::SUB_VL, DL, IndicesVT, VecLenSplat, VID,
|
|
DAG.getUNDEF(IndicesVT), Mask, EVL);
|
|
SDValue Result = DAG.getNode(GatherOpc, DL, GatherVT, Op1, VRSUB,
|
|
DAG.getUNDEF(GatherVT), Mask, EVL);
|
|
|
|
if (IsMaskVector) {
|
|
// Truncate Result back to a mask vector
|
|
Result = DAG.getNode(
|
|
RISCVISD::SETCC_VL, DL, ContainerVT,
|
|
{Result, DAG.getConstant(0, DL, GatherVT), DAG.getCondCode(ISD::SETNE),
|
|
DAG.getUNDEF(getMaskTypeFor(ContainerVT)), Mask, EVL});
|
|
}
|
|
|
|
if (!VT.isFixedLengthVector())
|
|
return Result;
|
|
return convertFromScalableVector(VT, Result, DAG, Subtarget);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
MVT VT = Op.getSimpleValueType();
|
|
if (VT.getVectorElementType() != MVT::i1)
|
|
return lowerVPOp(Op, DAG);
|
|
|
|
// It is safe to drop mask parameter as masked-off elements are undef.
|
|
SDValue Op1 = Op->getOperand(0);
|
|
SDValue Op2 = Op->getOperand(1);
|
|
SDValue VL = Op->getOperand(3);
|
|
|
|
MVT ContainerVT = VT;
|
|
const bool IsFixed = VT.isFixedLengthVector();
|
|
if (IsFixed) {
|
|
ContainerVT = getContainerForFixedLengthVector(VT);
|
|
Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
|
|
Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
|
|
}
|
|
|
|
SDLoc DL(Op);
|
|
SDValue Val = DAG.getNode(getRISCVVLOp(Op), DL, ContainerVT, Op1, Op2, VL);
|
|
if (!IsFixed)
|
|
return Val;
|
|
return convertFromScalableVector(VT, Val, DAG, Subtarget);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerVPStridedLoad(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
MVT VT = Op.getSimpleValueType();
|
|
MVT ContainerVT = VT;
|
|
if (VT.isFixedLengthVector())
|
|
ContainerVT = getContainerForFixedLengthVector(VT);
|
|
|
|
SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
|
|
|
|
auto *VPNode = cast<VPStridedLoadSDNode>(Op);
|
|
// Check if the mask is known to be all ones
|
|
SDValue Mask = VPNode->getMask();
|
|
bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
|
|
|
|
SDValue IntID = DAG.getTargetConstant(IsUnmasked ? Intrinsic::riscv_vlse
|
|
: Intrinsic::riscv_vlse_mask,
|
|
DL, XLenVT);
|
|
SmallVector<SDValue, 8> Ops{VPNode->getChain(), IntID,
|
|
DAG.getUNDEF(ContainerVT), VPNode->getBasePtr(),
|
|
VPNode->getStride()};
|
|
if (!IsUnmasked) {
|
|
if (VT.isFixedLengthVector()) {
|
|
MVT MaskVT = ContainerVT.changeVectorElementType(MVT::i1);
|
|
Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
|
|
}
|
|
Ops.push_back(Mask);
|
|
}
|
|
Ops.push_back(VPNode->getVectorLength());
|
|
if (!IsUnmasked) {
|
|
SDValue Policy =
|
|
DAG.getTargetConstant(RISCVVType::TAIL_AGNOSTIC, DL, XLenVT);
|
|
Ops.push_back(Policy);
|
|
}
|
|
|
|
SDValue Result =
|
|
DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
|
|
VPNode->getMemoryVT(), VPNode->getMemOperand());
|
|
SDValue Chain = Result.getValue(1);
|
|
|
|
if (VT.isFixedLengthVector())
|
|
Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
|
|
|
|
return DAG.getMergeValues({Result, Chain}, DL);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerVPStridedStore(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
auto *VPNode = cast<VPStridedStoreSDNode>(Op);
|
|
SDValue StoreVal = VPNode->getValue();
|
|
MVT VT = StoreVal.getSimpleValueType();
|
|
MVT ContainerVT = VT;
|
|
if (VT.isFixedLengthVector()) {
|
|
ContainerVT = getContainerForFixedLengthVector(VT);
|
|
StoreVal = convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
|
|
}
|
|
|
|
// Check if the mask is known to be all ones
|
|
SDValue Mask = VPNode->getMask();
|
|
bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
|
|
|
|
SDValue IntID = DAG.getTargetConstant(IsUnmasked ? Intrinsic::riscv_vsse
|
|
: Intrinsic::riscv_vsse_mask,
|
|
DL, XLenVT);
|
|
SmallVector<SDValue, 8> Ops{VPNode->getChain(), IntID, StoreVal,
|
|
VPNode->getBasePtr(), VPNode->getStride()};
|
|
if (!IsUnmasked) {
|
|
if (VT.isFixedLengthVector()) {
|
|
MVT MaskVT = ContainerVT.changeVectorElementType(MVT::i1);
|
|
Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
|
|
}
|
|
Ops.push_back(Mask);
|
|
}
|
|
Ops.push_back(VPNode->getVectorLength());
|
|
|
|
return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, VPNode->getVTList(),
|
|
Ops, VPNode->getMemoryVT(),
|
|
VPNode->getMemOperand());
|
|
}
|
|
|
|
// Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be
|
|
// matched to a RVV indexed load. The RVV indexed load instructions only
|
|
// support the "unsigned unscaled" addressing mode; indices are implicitly
|
|
// zero-extended or truncated to XLEN and are treated as byte offsets. Any
|
|
// signed or scaled indexing is extended to the XLEN value type and scaled
|
|
// accordingly.
|
|
SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
MVT VT = Op.getSimpleValueType();
|
|
|
|
const auto *MemSD = cast<MemSDNode>(Op.getNode());
|
|
EVT MemVT = MemSD->getMemoryVT();
|
|
MachineMemOperand *MMO = MemSD->getMemOperand();
|
|
SDValue Chain = MemSD->getChain();
|
|
SDValue BasePtr = MemSD->getBasePtr();
|
|
|
|
[[maybe_unused]] ISD::LoadExtType LoadExtType;
|
|
SDValue Index, Mask, PassThru, VL;
|
|
|
|
if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) {
|
|
Index = VPGN->getIndex();
|
|
Mask = VPGN->getMask();
|
|
PassThru = DAG.getUNDEF(VT);
|
|
VL = VPGN->getVectorLength();
|
|
// VP doesn't support extending loads.
|
|
LoadExtType = ISD::NON_EXTLOAD;
|
|
} else {
|
|
// Else it must be a MGATHER.
|
|
auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
|
|
Index = MGN->getIndex();
|
|
Mask = MGN->getMask();
|
|
PassThru = MGN->getPassThru();
|
|
LoadExtType = MGN->getExtensionType();
|
|
}
|
|
|
|
MVT IndexVT = Index.getSimpleValueType();
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
|
|
"Unexpected VTs!");
|
|
assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
|
|
// Targets have to explicitly opt-in for extending vector loads.
|
|
assert(LoadExtType == ISD::NON_EXTLOAD &&
|
|
"Unexpected extending MGATHER/VP_GATHER");
|
|
|
|
// If the mask is known to be all ones, optimize to an unmasked intrinsic;
|
|
// the selection of the masked intrinsics doesn't do this for us.
|
|
bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
|
|
|
|
MVT ContainerVT = VT;
|
|
if (VT.isFixedLengthVector()) {
|
|
ContainerVT = getContainerForFixedLengthVector(VT);
|
|
IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
|
|
ContainerVT.getVectorElementCount());
|
|
|
|
Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
|
|
|
|
if (!IsUnmasked) {
|
|
MVT MaskVT = getMaskTypeFor(ContainerVT);
|
|
Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
|
|
PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
|
|
}
|
|
}
|
|
|
|
if (!VL)
|
|
VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
|
|
|
|
if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
|
|
IndexVT = IndexVT.changeVectorElementType(XLenVT);
|
|
Index = DAG.getNode(ISD::TRUNCATE, DL, IndexVT, Index);
|
|
}
|
|
|
|
unsigned IntID =
|
|
IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask;
|
|
SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
|
|
if (IsUnmasked)
|
|
Ops.push_back(DAG.getUNDEF(ContainerVT));
|
|
else
|
|
Ops.push_back(PassThru);
|
|
Ops.push_back(BasePtr);
|
|
Ops.push_back(Index);
|
|
if (!IsUnmasked)
|
|
Ops.push_back(Mask);
|
|
Ops.push_back(VL);
|
|
if (!IsUnmasked)
|
|
Ops.push_back(DAG.getTargetConstant(RISCVVType::TAIL_AGNOSTIC, DL, XLenVT));
|
|
|
|
SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
|
|
SDValue Result =
|
|
DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
|
|
Chain = Result.getValue(1);
|
|
|
|
if (VT.isFixedLengthVector())
|
|
Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
|
|
|
|
return DAG.getMergeValues({Result, Chain}, DL);
|
|
}
|
|
|
|
// Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be
|
|
// matched to a RVV indexed store. The RVV indexed store instructions only
|
|
// support the "unsigned unscaled" addressing mode; indices are implicitly
|
|
// zero-extended or truncated to XLEN and are treated as byte offsets. Any
|
|
// signed or scaled indexing is extended to the XLEN value type and scaled
|
|
// accordingly.
|
|
SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
const auto *MemSD = cast<MemSDNode>(Op.getNode());
|
|
EVT MemVT = MemSD->getMemoryVT();
|
|
MachineMemOperand *MMO = MemSD->getMemOperand();
|
|
SDValue Chain = MemSD->getChain();
|
|
SDValue BasePtr = MemSD->getBasePtr();
|
|
|
|
[[maybe_unused]] bool IsTruncatingStore = false;
|
|
SDValue Index, Mask, Val, VL;
|
|
|
|
if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) {
|
|
Index = VPSN->getIndex();
|
|
Mask = VPSN->getMask();
|
|
Val = VPSN->getValue();
|
|
VL = VPSN->getVectorLength();
|
|
// VP doesn't support truncating stores.
|
|
IsTruncatingStore = false;
|
|
} else {
|
|
// Else it must be a MSCATTER.
|
|
auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
|
|
Index = MSN->getIndex();
|
|
Mask = MSN->getMask();
|
|
Val = MSN->getValue();
|
|
IsTruncatingStore = MSN->isTruncatingStore();
|
|
}
|
|
|
|
MVT VT = Val.getSimpleValueType();
|
|
MVT IndexVT = Index.getSimpleValueType();
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
|
|
"Unexpected VTs!");
|
|
assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
|
|
// Targets have to explicitly opt-in for extending vector loads and
|
|
// truncating vector stores.
|
|
assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER");
|
|
|
|
// If the mask is known to be all ones, optimize to an unmasked intrinsic;
|
|
// the selection of the masked intrinsics doesn't do this for us.
|
|
bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
|
|
|
|
MVT ContainerVT = VT;
|
|
if (VT.isFixedLengthVector()) {
|
|
ContainerVT = getContainerForFixedLengthVector(VT);
|
|
IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
|
|
ContainerVT.getVectorElementCount());
|
|
|
|
Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
|
|
Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
|
|
|
|
if (!IsUnmasked) {
|
|
MVT MaskVT = getMaskTypeFor(ContainerVT);
|
|
Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
|
|
}
|
|
}
|
|
|
|
if (!VL)
|
|
VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
|
|
|
|
if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
|
|
IndexVT = IndexVT.changeVectorElementType(XLenVT);
|
|
Index = DAG.getNode(ISD::TRUNCATE, DL, IndexVT, Index);
|
|
}
|
|
|
|
unsigned IntID =
|
|
IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
|
|
SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
|
|
Ops.push_back(Val);
|
|
Ops.push_back(BasePtr);
|
|
Ops.push_back(Index);
|
|
if (!IsUnmasked)
|
|
Ops.push_back(Mask);
|
|
Ops.push_back(VL);
|
|
|
|
return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
|
|
DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
const MVT XLenVT = Subtarget.getXLenVT();
|
|
SDLoc DL(Op);
|
|
SDValue Chain = Op->getOperand(0);
|
|
SDValue SysRegNo = DAG.getTargetConstant(RISCVSysReg::frm, DL, XLenVT);
|
|
SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
|
|
SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
|
|
|
|
// Encoding used for rounding mode in RISC-V differs from that used in
|
|
// FLT_ROUNDS. To convert it the RISC-V rounding mode is used as an index in a
|
|
// table, which consists of a sequence of 4-bit fields, each representing
|
|
// corresponding FLT_ROUNDS mode.
|
|
static const int Table =
|
|
(int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
|
|
(int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
|
|
(int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
|
|
(int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
|
|
(int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
|
|
|
|
SDValue Shift =
|
|
DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
|
|
SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
|
|
DAG.getConstant(Table, DL, XLenVT), Shift);
|
|
SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
|
|
DAG.getConstant(7, DL, XLenVT));
|
|
|
|
return DAG.getMergeValues({Masked, Chain}, DL);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
const MVT XLenVT = Subtarget.getXLenVT();
|
|
SDLoc DL(Op);
|
|
SDValue Chain = Op->getOperand(0);
|
|
SDValue RMValue = Op->getOperand(1);
|
|
SDValue SysRegNo = DAG.getTargetConstant(RISCVSysReg::frm, DL, XLenVT);
|
|
|
|
// Encoding used for rounding mode in RISC-V differs from that used in
|
|
// FLT_ROUNDS. To convert it the C rounding mode is used as an index in
|
|
// a table, which consists of a sequence of 4-bit fields, each representing
|
|
// corresponding RISC-V mode.
|
|
static const unsigned Table =
|
|
(RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
|
|
(RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
|
|
(RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
|
|
(RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
|
|
(RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
|
|
|
|
RMValue = DAG.getNode(ISD::ZERO_EXTEND, DL, XLenVT, RMValue);
|
|
|
|
SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
|
|
DAG.getConstant(2, DL, XLenVT));
|
|
SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
|
|
DAG.getConstant(Table, DL, XLenVT), Shift);
|
|
RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
|
|
DAG.getConstant(0x7, DL, XLenVT));
|
|
return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
|
|
RMValue);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerGET_FPENV(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
const MVT XLenVT = Subtarget.getXLenVT();
|
|
SDLoc DL(Op);
|
|
SDValue Chain = Op->getOperand(0);
|
|
SDValue SysRegNo = DAG.getTargetConstant(RISCVSysReg::fcsr, DL, XLenVT);
|
|
SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
|
|
return DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerSET_FPENV(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
const MVT XLenVT = Subtarget.getXLenVT();
|
|
SDLoc DL(Op);
|
|
SDValue Chain = Op->getOperand(0);
|
|
SDValue EnvValue = Op->getOperand(1);
|
|
SDValue SysRegNo = DAG.getTargetConstant(RISCVSysReg::fcsr, DL, XLenVT);
|
|
|
|
EnvValue = DAG.getNode(ISD::ZERO_EXTEND, DL, XLenVT, EnvValue);
|
|
return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
|
|
EnvValue);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerRESET_FPENV(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
const MVT XLenVT = Subtarget.getXLenVT();
|
|
SDLoc DL(Op);
|
|
SDValue Chain = Op->getOperand(0);
|
|
SDValue EnvValue = DAG.getRegister(RISCV::X0, XLenVT);
|
|
SDValue SysRegNo = DAG.getTargetConstant(RISCVSysReg::fcsr, DL, XLenVT);
|
|
|
|
return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
|
|
EnvValue);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerEH_DWARF_CFA(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
|
|
bool isRISCV64 = Subtarget.is64Bit();
|
|
EVT PtrVT = getPointerTy(DAG.getDataLayout());
|
|
|
|
int FI = MF.getFrameInfo().CreateFixedObject(isRISCV64 ? 8 : 4, 0, false);
|
|
return DAG.getFrameIndex(FI, PtrVT);
|
|
}
|
|
|
|
// Returns the opcode of the target-specific SDNode that implements the 32-bit
|
|
// form of the given Opcode.
|
|
static unsigned getRISCVWOpcode(unsigned Opcode) {
|
|
switch (Opcode) {
|
|
default:
|
|
llvm_unreachable("Unexpected opcode");
|
|
case ISD::SHL:
|
|
return RISCVISD::SLLW;
|
|
case ISD::SRA:
|
|
return RISCVISD::SRAW;
|
|
case ISD::SRL:
|
|
return RISCVISD::SRLW;
|
|
case ISD::SDIV:
|
|
return RISCVISD::DIVW;
|
|
case ISD::UDIV:
|
|
return RISCVISD::DIVUW;
|
|
case ISD::UREM:
|
|
return RISCVISD::REMUW;
|
|
case ISD::ROTL:
|
|
return RISCVISD::ROLW;
|
|
case ISD::ROTR:
|
|
return RISCVISD::RORW;
|
|
}
|
|
}
|
|
|
|
// Converts the given i8/i16/i32 operation to a target-specific SelectionDAG
|
|
// node. Because i8/i16/i32 isn't a legal type for RV64, these operations would
|
|
// otherwise be promoted to i64, making it difficult to select the
|
|
// SLLW/DIVUW/.../*W later one because the fact the operation was originally of
|
|
// type i8/i16/i32 is lost.
|
|
static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
|
|
unsigned ExtOpc = ISD::ANY_EXTEND) {
|
|
SDLoc DL(N);
|
|
unsigned WOpcode = getRISCVWOpcode(N->getOpcode());
|
|
SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
|
|
SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
|
|
SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
|
|
// ReplaceNodeResults requires we maintain the same type for the return value.
|
|
return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
|
|
}
|
|
|
|
// Converts the given 32-bit operation to a i64 operation with signed extension
|
|
// semantic to reduce the signed extension instructions.
|
|
static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
|
|
SDLoc DL(N);
|
|
SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
|
|
SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
|
|
SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
|
|
SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
|
|
DAG.getValueType(MVT::i32));
|
|
return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
|
|
}
|
|
|
|
void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
|
|
SmallVectorImpl<SDValue> &Results,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(N);
|
|
switch (N->getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Don't know how to custom type legalize this operation!");
|
|
case ISD::STRICT_FP_TO_SINT:
|
|
case ISD::STRICT_FP_TO_UINT:
|
|
case ISD::FP_TO_SINT:
|
|
case ISD::FP_TO_UINT: {
|
|
assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
|
|
"Unexpected custom legalisation");
|
|
bool IsStrict = N->isStrictFPOpcode();
|
|
bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
|
|
N->getOpcode() == ISD::STRICT_FP_TO_SINT;
|
|
SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
|
|
if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
|
|
TargetLowering::TypeSoftenFloat) {
|
|
if (!isTypeLegal(Op0.getValueType()))
|
|
return;
|
|
if (IsStrict) {
|
|
SDValue Chain = N->getOperand(0);
|
|
// In absence of Zfh, promote f16 to f32, then convert.
|
|
if (Op0.getValueType() == MVT::f16 &&
|
|
!Subtarget.hasStdExtZfhOrZhinx()) {
|
|
Op0 = DAG.getNode(ISD::STRICT_FP_EXTEND, DL, {MVT::f32, MVT::Other},
|
|
{Chain, Op0});
|
|
Chain = Op0.getValue(1);
|
|
}
|
|
unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64
|
|
: RISCVISD::STRICT_FCVT_WU_RV64;
|
|
SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
|
|
SDValue Res = DAG.getNode(
|
|
Opc, DL, VTs, Chain, Op0,
|
|
DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
|
|
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
|
|
Results.push_back(Res.getValue(1));
|
|
return;
|
|
}
|
|
// For bf16, or f16 in absence of Zfh, promote [b]f16 to f32 and then
|
|
// convert.
|
|
if ((Op0.getValueType() == MVT::f16 &&
|
|
!Subtarget.hasStdExtZfhOrZhinx()) ||
|
|
Op0.getValueType() == MVT::bf16)
|
|
Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op0);
|
|
|
|
unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
|
|
SDValue Res =
|
|
DAG.getNode(Opc, DL, MVT::i64, Op0,
|
|
DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
|
|
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
|
|
return;
|
|
}
|
|
// If the FP type needs to be softened, emit a library call using the 'si'
|
|
// version. If we left it to default legalization we'd end up with 'di'. If
|
|
// the FP type doesn't need to be softened just let generic type
|
|
// legalization promote the result type.
|
|
RTLIB::Libcall LC;
|
|
if (IsSigned)
|
|
LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
|
|
else
|
|
LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
|
|
MakeLibCallOptions CallOptions;
|
|
EVT OpVT = Op0.getValueType();
|
|
CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
|
|
SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
|
|
SDValue Result;
|
|
std::tie(Result, Chain) =
|
|
makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
|
|
Results.push_back(Result);
|
|
if (IsStrict)
|
|
Results.push_back(Chain);
|
|
break;
|
|
}
|
|
case ISD::LROUND: {
|
|
SDValue Op0 = N->getOperand(0);
|
|
EVT Op0VT = Op0.getValueType();
|
|
if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
|
|
TargetLowering::TypeSoftenFloat) {
|
|
if (!isTypeLegal(Op0VT))
|
|
return;
|
|
|
|
// In absence of Zfh, promote f16 to f32, then convert.
|
|
if (Op0.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfhOrZhinx())
|
|
Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op0);
|
|
|
|
SDValue Res =
|
|
DAG.getNode(RISCVISD::FCVT_W_RV64, DL, MVT::i64, Op0,
|
|
DAG.getTargetConstant(RISCVFPRndMode::RMM, DL, MVT::i64));
|
|
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
|
|
return;
|
|
}
|
|
// If the FP type needs to be softened, emit a library call to lround. We'll
|
|
// need to truncate the result. We assume any value that doesn't fit in i32
|
|
// is allowed to return an unspecified value.
|
|
RTLIB::Libcall LC =
|
|
Op0.getValueType() == MVT::f64 ? RTLIB::LROUND_F64 : RTLIB::LROUND_F32;
|
|
MakeLibCallOptions CallOptions;
|
|
EVT OpVT = Op0.getValueType();
|
|
CallOptions.setTypeListBeforeSoften(OpVT, MVT::i64, true);
|
|
SDValue Result = makeLibCall(DAG, LC, MVT::i64, Op0, CallOptions, DL).first;
|
|
Result = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Result);
|
|
Results.push_back(Result);
|
|
break;
|
|
}
|
|
case ISD::READCYCLECOUNTER:
|
|
case ISD::READSTEADYCOUNTER: {
|
|
assert(!Subtarget.is64Bit() && "READCYCLECOUNTER/READSTEADYCOUNTER only "
|
|
"has custom type legalization on riscv32");
|
|
|
|
SDValue LoCounter, HiCounter;
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
if (N->getOpcode() == ISD::READCYCLECOUNTER) {
|
|
LoCounter = DAG.getTargetConstant(RISCVSysReg::cycle, DL, XLenVT);
|
|
HiCounter = DAG.getTargetConstant(RISCVSysReg::cycleh, DL, XLenVT);
|
|
} else {
|
|
LoCounter = DAG.getTargetConstant(RISCVSysReg::time, DL, XLenVT);
|
|
HiCounter = DAG.getTargetConstant(RISCVSysReg::timeh, DL, XLenVT);
|
|
}
|
|
SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
|
|
SDValue RCW = DAG.getNode(RISCVISD::READ_COUNTER_WIDE, DL, VTs,
|
|
N->getOperand(0), LoCounter, HiCounter);
|
|
|
|
Results.push_back(
|
|
DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
|
|
Results.push_back(RCW.getValue(2));
|
|
break;
|
|
}
|
|
case ISD::LOAD: {
|
|
if (!ISD::isNON_EXTLoad(N))
|
|
return;
|
|
|
|
// Use a SEXTLOAD instead of the default EXTLOAD. Similar to the
|
|
// sext_inreg we emit for ADD/SUB/MUL/SLLI.
|
|
LoadSDNode *Ld = cast<LoadSDNode>(N);
|
|
|
|
if (N->getValueType(0) == MVT::i64) {
|
|
assert(Subtarget.hasStdExtZilsd() && !Subtarget.is64Bit() &&
|
|
"Unexpected custom legalisation");
|
|
|
|
if (!Subtarget.enableUnalignedScalarMem() && Ld->getAlign() < 8)
|
|
return;
|
|
|
|
SDLoc DL(N);
|
|
SDValue Result = DAG.getMemIntrinsicNode(
|
|
RISCVISD::LD_RV32, DL,
|
|
DAG.getVTList({MVT::i32, MVT::i32, MVT::Other}),
|
|
{Ld->getChain(), Ld->getBasePtr()}, MVT::i64, Ld->getMemOperand());
|
|
SDValue Lo = Result.getValue(0);
|
|
SDValue Hi = Result.getValue(1);
|
|
SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi);
|
|
Results.append({Pair, Result.getValue(2)});
|
|
return;
|
|
}
|
|
|
|
assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
|
|
"Unexpected custom legalisation");
|
|
|
|
SDLoc dl(N);
|
|
SDValue Res = DAG.getExtLoad(ISD::SEXTLOAD, dl, MVT::i64, Ld->getChain(),
|
|
Ld->getBasePtr(), Ld->getMemoryVT(),
|
|
Ld->getMemOperand());
|
|
Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Res));
|
|
Results.push_back(Res.getValue(1));
|
|
return;
|
|
}
|
|
case ISD::MUL: {
|
|
unsigned Size = N->getSimpleValueType(0).getSizeInBits();
|
|
unsigned XLen = Subtarget.getXLen();
|
|
// This multiply needs to be expanded, try to use MULHSU+MUL if possible.
|
|
if (Size > XLen) {
|
|
assert(Size == (XLen * 2) && "Unexpected custom legalisation");
|
|
SDValue LHS = N->getOperand(0);
|
|
SDValue RHS = N->getOperand(1);
|
|
APInt HighMask = APInt::getHighBitsSet(Size, XLen);
|
|
|
|
bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
|
|
bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
|
|
// We need exactly one side to be unsigned.
|
|
if (LHSIsU == RHSIsU)
|
|
return;
|
|
|
|
auto MakeMULPair = [&](SDValue S, SDValue U) {
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
|
|
U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
|
|
SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
|
|
SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
|
|
return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
|
|
};
|
|
|
|
bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
|
|
bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
|
|
|
|
// The other operand should be signed, but still prefer MULH when
|
|
// possible.
|
|
if (RHSIsU && LHSIsS && !RHSIsS)
|
|
Results.push_back(MakeMULPair(LHS, RHS));
|
|
else if (LHSIsU && RHSIsS && !LHSIsS)
|
|
Results.push_back(MakeMULPair(RHS, LHS));
|
|
|
|
return;
|
|
}
|
|
[[fallthrough]];
|
|
}
|
|
case ISD::ADD:
|
|
case ISD::SUB:
|
|
assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
|
|
"Unexpected custom legalisation");
|
|
Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
|
|
break;
|
|
case ISD::SHL:
|
|
case ISD::SRA:
|
|
case ISD::SRL:
|
|
assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
|
|
"Unexpected custom legalisation");
|
|
if (N->getOperand(1).getOpcode() != ISD::Constant) {
|
|
// If we can use a BSET instruction, allow default promotion to apply.
|
|
if (N->getOpcode() == ISD::SHL && Subtarget.hasStdExtZbs() &&
|
|
isOneConstant(N->getOperand(0)))
|
|
break;
|
|
Results.push_back(customLegalizeToWOp(N, DAG));
|
|
break;
|
|
}
|
|
|
|
// Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is
|
|
// similar to customLegalizeToWOpWithSExt, but we must zero_extend the
|
|
// shift amount.
|
|
if (N->getOpcode() == ISD::SHL) {
|
|
SDLoc DL(N);
|
|
SDValue NewOp0 =
|
|
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
|
|
SDValue NewOp1 =
|
|
DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1));
|
|
SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1);
|
|
SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
|
|
DAG.getValueType(MVT::i32));
|
|
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
|
|
}
|
|
|
|
break;
|
|
case ISD::ROTL:
|
|
case ISD::ROTR:
|
|
assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
|
|
"Unexpected custom legalisation");
|
|
assert((Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb() ||
|
|
Subtarget.hasVendorXTHeadBb()) &&
|
|
"Unexpected custom legalization");
|
|
if (!isa<ConstantSDNode>(N->getOperand(1)) &&
|
|
!(Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb()))
|
|
return;
|
|
Results.push_back(customLegalizeToWOp(N, DAG));
|
|
break;
|
|
case ISD::CTTZ:
|
|
case ISD::CTTZ_ZERO_UNDEF:
|
|
case ISD::CTLZ:
|
|
case ISD::CTLZ_ZERO_UNDEF: {
|
|
assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
|
|
"Unexpected custom legalisation");
|
|
|
|
SDValue NewOp0 =
|
|
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
|
|
bool IsCTZ =
|
|
N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
|
|
unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
|
|
SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
|
|
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
|
|
return;
|
|
}
|
|
case ISD::SDIV:
|
|
case ISD::UDIV:
|
|
case ISD::UREM: {
|
|
MVT VT = N->getSimpleValueType(0);
|
|
assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
|
|
Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
|
|
"Unexpected custom legalisation");
|
|
// Don't promote division/remainder by constant since we should expand those
|
|
// to multiply by magic constant.
|
|
AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
|
|
if (N->getOperand(1).getOpcode() == ISD::Constant &&
|
|
!isIntDivCheap(N->getValueType(0), Attr))
|
|
return;
|
|
|
|
// If the input is i32, use ANY_EXTEND since the W instructions don't read
|
|
// the upper 32 bits. For other types we need to sign or zero extend
|
|
// based on the opcode.
|
|
unsigned ExtOpc = ISD::ANY_EXTEND;
|
|
if (VT != MVT::i32)
|
|
ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
|
|
: ISD::ZERO_EXTEND;
|
|
|
|
Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
|
|
break;
|
|
}
|
|
case ISD::SADDO: {
|
|
assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
|
|
"Unexpected custom legalisation");
|
|
|
|
// If the RHS is a constant, we can simplify ConditionRHS below. Otherwise
|
|
// use the default legalization.
|
|
if (!isa<ConstantSDNode>(N->getOperand(1)))
|
|
return;
|
|
|
|
SDValue LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
|
|
SDValue RHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
|
|
SDValue Res = DAG.getNode(ISD::ADD, DL, MVT::i64, LHS, RHS);
|
|
Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
|
|
DAG.getValueType(MVT::i32));
|
|
|
|
SDValue Zero = DAG.getConstant(0, DL, MVT::i64);
|
|
|
|
// For an addition, the result should be less than one of the operands (LHS)
|
|
// if and only if the other operand (RHS) is negative, otherwise there will
|
|
// be overflow.
|
|
// For a subtraction, the result should be less than one of the operands
|
|
// (LHS) if and only if the other operand (RHS) is (non-zero) positive,
|
|
// otherwise there will be overflow.
|
|
EVT OType = N->getValueType(1);
|
|
SDValue ResultLowerThanLHS = DAG.getSetCC(DL, OType, Res, LHS, ISD::SETLT);
|
|
SDValue ConditionRHS = DAG.getSetCC(DL, OType, RHS, Zero, ISD::SETLT);
|
|
|
|
SDValue Overflow =
|
|
DAG.getNode(ISD::XOR, DL, OType, ConditionRHS, ResultLowerThanLHS);
|
|
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
|
|
Results.push_back(Overflow);
|
|
return;
|
|
}
|
|
case ISD::UADDO:
|
|
case ISD::USUBO: {
|
|
assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
|
|
"Unexpected custom legalisation");
|
|
bool IsAdd = N->getOpcode() == ISD::UADDO;
|
|
// Create an ADDW or SUBW.
|
|
SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
|
|
SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
|
|
SDValue Res =
|
|
DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
|
|
Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
|
|
DAG.getValueType(MVT::i32));
|
|
|
|
SDValue Overflow;
|
|
if (IsAdd && isOneConstant(RHS)) {
|
|
// Special case uaddo X, 1 overflowed if the addition result is 0.
|
|
// The general case (X + C) < C is not necessarily beneficial. Although we
|
|
// reduce the live range of X, we may introduce the materialization of
|
|
// constant C, especially when the setcc result is used by branch. We have
|
|
// no compare with constant and branch instructions.
|
|
Overflow = DAG.getSetCC(DL, N->getValueType(1), Res,
|
|
DAG.getConstant(0, DL, MVT::i64), ISD::SETEQ);
|
|
} else if (IsAdd && isAllOnesConstant(RHS)) {
|
|
// Special case uaddo X, -1 overflowed if X != 0.
|
|
Overflow = DAG.getSetCC(DL, N->getValueType(1), N->getOperand(0),
|
|
DAG.getConstant(0, DL, MVT::i32), ISD::SETNE);
|
|
} else {
|
|
// Sign extend the LHS and perform an unsigned compare with the ADDW
|
|
// result. Since the inputs are sign extended from i32, this is equivalent
|
|
// to comparing the lower 32 bits.
|
|
LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
|
|
Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
|
|
IsAdd ? ISD::SETULT : ISD::SETUGT);
|
|
}
|
|
|
|
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
|
|
Results.push_back(Overflow);
|
|
return;
|
|
}
|
|
case ISD::UADDSAT:
|
|
case ISD::USUBSAT: {
|
|
assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
|
|
!Subtarget.hasStdExtZbb() && "Unexpected custom legalisation");
|
|
// Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
|
|
// promotion for UADDO/USUBO.
|
|
Results.push_back(expandAddSubSat(N, DAG));
|
|
return;
|
|
}
|
|
case ISD::SADDSAT:
|
|
case ISD::SSUBSAT: {
|
|
assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
|
|
"Unexpected custom legalisation");
|
|
Results.push_back(expandAddSubSat(N, DAG));
|
|
return;
|
|
}
|
|
case ISD::ABS: {
|
|
assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
|
|
"Unexpected custom legalisation");
|
|
|
|
if (Subtarget.hasStdExtZbb()) {
|
|
// Emit a special ABSW node that will be expanded to NEGW+MAX at isel.
|
|
// This allows us to remember that the result is sign extended. Expanding
|
|
// to NEGW+MAX here requires a Freeze which breaks ComputeNumSignBits.
|
|
SDValue Src = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64,
|
|
N->getOperand(0));
|
|
SDValue Abs = DAG.getNode(RISCVISD::ABSW, DL, MVT::i64, Src);
|
|
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Abs));
|
|
return;
|
|
}
|
|
|
|
// Expand abs to Y = (sraiw X, 31); subw(xor(X, Y), Y)
|
|
SDValue Src = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
|
|
|
|
// Freeze the source so we can increase it's use count.
|
|
Src = DAG.getFreeze(Src);
|
|
|
|
// Copy sign bit to all bits using the sraiw pattern.
|
|
SDValue SignFill = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Src,
|
|
DAG.getValueType(MVT::i32));
|
|
SignFill = DAG.getNode(ISD::SRA, DL, MVT::i64, SignFill,
|
|
DAG.getConstant(31, DL, MVT::i64));
|
|
|
|
SDValue NewRes = DAG.getNode(ISD::XOR, DL, MVT::i64, Src, SignFill);
|
|
NewRes = DAG.getNode(ISD::SUB, DL, MVT::i64, NewRes, SignFill);
|
|
|
|
// NOTE: The result is only required to be anyextended, but sext is
|
|
// consistent with type legalization of sub.
|
|
NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewRes,
|
|
DAG.getValueType(MVT::i32));
|
|
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
|
|
return;
|
|
}
|
|
case ISD::BITCAST: {
|
|
EVT VT = N->getValueType(0);
|
|
assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
|
|
SDValue Op0 = N->getOperand(0);
|
|
EVT Op0VT = Op0.getValueType();
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
if (VT == MVT::i16 &&
|
|
((Op0VT == MVT::f16 && Subtarget.hasStdExtZfhminOrZhinxmin()) ||
|
|
(Op0VT == MVT::bf16 && Subtarget.hasStdExtZfbfmin()))) {
|
|
SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
|
|
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
|
|
} else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
|
|
Subtarget.hasStdExtFOrZfinx()) {
|
|
SDValue FPConv =
|
|
DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
|
|
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
|
|
} else if (VT == MVT::i64 && Op0VT == MVT::f64 && !Subtarget.is64Bit() &&
|
|
Subtarget.hasStdExtDOrZdinx()) {
|
|
SDValue NewReg = DAG.getNode(RISCVISD::SplitF64, DL,
|
|
DAG.getVTList(MVT::i32, MVT::i32), Op0);
|
|
SDValue RetReg = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64,
|
|
NewReg.getValue(0), NewReg.getValue(1));
|
|
Results.push_back(RetReg);
|
|
} else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
|
|
isTypeLegal(Op0VT)) {
|
|
// Custom-legalize bitcasts from fixed-length vector types to illegal
|
|
// scalar types in order to improve codegen. Bitcast the vector to a
|
|
// one-element vector type whose element type is the same as the result
|
|
// type, and extract the first element.
|
|
EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
|
|
if (isTypeLegal(BVT)) {
|
|
SDValue BVec = DAG.getBitcast(BVT, Op0);
|
|
Results.push_back(DAG.getExtractVectorElt(DL, VT, BVec, 0));
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case ISD::BITREVERSE: {
|
|
assert(N->getValueType(0) == MVT::i8 && Subtarget.hasStdExtZbkb() &&
|
|
"Unexpected custom legalisation");
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
SDValue NewOp = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
|
|
SDValue NewRes = DAG.getNode(RISCVISD::BREV8, DL, XLenVT, NewOp);
|
|
// ReplaceNodeResults requires we maintain the same type for the return
|
|
// value.
|
|
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, NewRes));
|
|
break;
|
|
}
|
|
case RISCVISD::BREV8:
|
|
case RISCVISD::ORC_B: {
|
|
MVT VT = N->getSimpleValueType(0);
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
assert((VT == MVT::i16 || (VT == MVT::i32 && Subtarget.is64Bit())) &&
|
|
"Unexpected custom legalisation");
|
|
assert(((N->getOpcode() == RISCVISD::BREV8 && Subtarget.hasStdExtZbkb()) ||
|
|
(N->getOpcode() == RISCVISD::ORC_B && Subtarget.hasStdExtZbb())) &&
|
|
"Unexpected extension");
|
|
SDValue NewOp = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
|
|
SDValue NewRes = DAG.getNode(N->getOpcode(), DL, XLenVT, NewOp);
|
|
// ReplaceNodeResults requires we maintain the same type for the return
|
|
// value.
|
|
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NewRes));
|
|
break;
|
|
}
|
|
case ISD::EXTRACT_VECTOR_ELT: {
|
|
// Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
|
|
// type is illegal (currently only vXi64 RV32).
|
|
// With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
|
|
// transferred to the destination register. We issue two of these from the
|
|
// upper- and lower- halves of the SEW-bit vector element, slid down to the
|
|
// first element.
|
|
SDValue Vec = N->getOperand(0);
|
|
SDValue Idx = N->getOperand(1);
|
|
|
|
// The vector type hasn't been legalized yet so we can't issue target
|
|
// specific nodes if it needs legalization.
|
|
// FIXME: We would manually legalize if it's important.
|
|
if (!isTypeLegal(Vec.getValueType()))
|
|
return;
|
|
|
|
MVT VecVT = Vec.getSimpleValueType();
|
|
|
|
assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
|
|
VecVT.getVectorElementType() == MVT::i64 &&
|
|
"Unexpected EXTRACT_VECTOR_ELT legalization");
|
|
|
|
// If this is a fixed vector, we need to convert it to a scalable vector.
|
|
MVT ContainerVT = VecVT;
|
|
if (VecVT.isFixedLengthVector()) {
|
|
ContainerVT = getContainerForFixedLengthVector(VecVT);
|
|
Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
|
|
}
|
|
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
// Use a VL of 1 to avoid processing more elements than we need.
|
|
auto [Mask, VL] = getDefaultVLOps(1, ContainerVT, DL, DAG, Subtarget);
|
|
|
|
// Unless the index is known to be 0, we must slide the vector down to get
|
|
// the desired element into index 0.
|
|
if (!isNullConstant(Idx)) {
|
|
Vec = getVSlidedown(DAG, Subtarget, DL, ContainerVT,
|
|
DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
|
|
}
|
|
|
|
// Extract the lower XLEN bits of the correct vector element.
|
|
SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
|
|
|
|
// To extract the upper XLEN bits of the vector element, shift the first
|
|
// element right by 32 bits and re-extract the lower XLEN bits.
|
|
SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
|
|
DAG.getUNDEF(ContainerVT),
|
|
DAG.getConstant(32, DL, XLenVT), VL);
|
|
SDValue LShr32 =
|
|
DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, ThirtyTwoV,
|
|
DAG.getUNDEF(ContainerVT), Mask, VL);
|
|
|
|
SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
|
|
|
|
Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
|
|
break;
|
|
}
|
|
case ISD::INTRINSIC_WO_CHAIN: {
|
|
unsigned IntNo = N->getConstantOperandVal(0);
|
|
switch (IntNo) {
|
|
default:
|
|
llvm_unreachable(
|
|
"Don't know how to custom type legalize this intrinsic!");
|
|
case Intrinsic::experimental_get_vector_length: {
|
|
SDValue Res = lowerGetVectorLength(N, DAG, Subtarget);
|
|
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
|
|
return;
|
|
}
|
|
case Intrinsic::experimental_cttz_elts: {
|
|
SDValue Res = lowerCttzElts(N, DAG, Subtarget);
|
|
Results.push_back(
|
|
DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), Res));
|
|
return;
|
|
}
|
|
case Intrinsic::riscv_orc_b:
|
|
case Intrinsic::riscv_brev8:
|
|
case Intrinsic::riscv_sha256sig0:
|
|
case Intrinsic::riscv_sha256sig1:
|
|
case Intrinsic::riscv_sha256sum0:
|
|
case Intrinsic::riscv_sha256sum1:
|
|
case Intrinsic::riscv_sm3p0:
|
|
case Intrinsic::riscv_sm3p1: {
|
|
if (!Subtarget.is64Bit() || N->getValueType(0) != MVT::i32)
|
|
return;
|
|
unsigned Opc;
|
|
switch (IntNo) {
|
|
case Intrinsic::riscv_orc_b: Opc = RISCVISD::ORC_B; break;
|
|
case Intrinsic::riscv_brev8: Opc = RISCVISD::BREV8; break;
|
|
case Intrinsic::riscv_sha256sig0: Opc = RISCVISD::SHA256SIG0; break;
|
|
case Intrinsic::riscv_sha256sig1: Opc = RISCVISD::SHA256SIG1; break;
|
|
case Intrinsic::riscv_sha256sum0: Opc = RISCVISD::SHA256SUM0; break;
|
|
case Intrinsic::riscv_sha256sum1: Opc = RISCVISD::SHA256SUM1; break;
|
|
case Intrinsic::riscv_sm3p0: Opc = RISCVISD::SM3P0; break;
|
|
case Intrinsic::riscv_sm3p1: Opc = RISCVISD::SM3P1; break;
|
|
}
|
|
|
|
SDValue NewOp =
|
|
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
|
|
SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp);
|
|
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
|
|
return;
|
|
}
|
|
case Intrinsic::riscv_sm4ks:
|
|
case Intrinsic::riscv_sm4ed: {
|
|
unsigned Opc =
|
|
IntNo == Intrinsic::riscv_sm4ks ? RISCVISD::SM4KS : RISCVISD::SM4ED;
|
|
SDValue NewOp0 =
|
|
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
|
|
SDValue NewOp1 =
|
|
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
|
|
SDValue Res =
|
|
DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, N->getOperand(3));
|
|
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
|
|
return;
|
|
}
|
|
case Intrinsic::riscv_mopr: {
|
|
if (!Subtarget.is64Bit() || N->getValueType(0) != MVT::i32)
|
|
return;
|
|
SDValue NewOp =
|
|
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
|
|
SDValue Res = DAG.getNode(
|
|
RISCVISD::MOPR, DL, MVT::i64, NewOp,
|
|
DAG.getTargetConstant(N->getConstantOperandVal(2), DL, MVT::i64));
|
|
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
|
|
return;
|
|
}
|
|
case Intrinsic::riscv_moprr: {
|
|
if (!Subtarget.is64Bit() || N->getValueType(0) != MVT::i32)
|
|
return;
|
|
SDValue NewOp0 =
|
|
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
|
|
SDValue NewOp1 =
|
|
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
|
|
SDValue Res = DAG.getNode(
|
|
RISCVISD::MOPRR, DL, MVT::i64, NewOp0, NewOp1,
|
|
DAG.getTargetConstant(N->getConstantOperandVal(3), DL, MVT::i64));
|
|
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
|
|
return;
|
|
}
|
|
case Intrinsic::riscv_clmul: {
|
|
if (!Subtarget.is64Bit() || N->getValueType(0) != MVT::i32)
|
|
return;
|
|
|
|
SDValue NewOp0 =
|
|
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
|
|
SDValue NewOp1 =
|
|
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
|
|
SDValue Res = DAG.getNode(RISCVISD::CLMUL, DL, MVT::i64, NewOp0, NewOp1);
|
|
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
|
|
return;
|
|
}
|
|
case Intrinsic::riscv_clmulh:
|
|
case Intrinsic::riscv_clmulr: {
|
|
if (!Subtarget.is64Bit() || N->getValueType(0) != MVT::i32)
|
|
return;
|
|
|
|
// Extend inputs to XLen, and shift by 32. This will add 64 trailing zeros
|
|
// to the full 128-bit clmul result of multiplying two xlen values.
|
|
// Perform clmulr or clmulh on the shifted values. Finally, extract the
|
|
// upper 32 bits.
|
|
//
|
|
// The alternative is to mask the inputs to 32 bits and use clmul, but
|
|
// that requires two shifts to mask each input without zext.w.
|
|
// FIXME: If the inputs are known zero extended or could be freely
|
|
// zero extended, the mask form would be better.
|
|
SDValue NewOp0 =
|
|
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
|
|
SDValue NewOp1 =
|
|
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
|
|
NewOp0 = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0,
|
|
DAG.getConstant(32, DL, MVT::i64));
|
|
NewOp1 = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp1,
|
|
DAG.getConstant(32, DL, MVT::i64));
|
|
unsigned Opc = IntNo == Intrinsic::riscv_clmulh ? RISCVISD::CLMULH
|
|
: RISCVISD::CLMULR;
|
|
SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1);
|
|
Res = DAG.getNode(ISD::SRL, DL, MVT::i64, Res,
|
|
DAG.getConstant(32, DL, MVT::i64));
|
|
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
|
|
return;
|
|
}
|
|
case Intrinsic::riscv_vmv_x_s: {
|
|
EVT VT = N->getValueType(0);
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
if (VT.bitsLT(XLenVT)) {
|
|
// Simple case just extract using vmv.x.s and truncate.
|
|
SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
|
|
Subtarget.getXLenVT(), N->getOperand(1));
|
|
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
|
|
return;
|
|
}
|
|
|
|
assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
|
|
"Unexpected custom legalization");
|
|
|
|
// We need to do the move in two steps.
|
|
SDValue Vec = N->getOperand(1);
|
|
MVT VecVT = Vec.getSimpleValueType();
|
|
|
|
// First extract the lower XLEN bits of the element.
|
|
SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
|
|
|
|
// To extract the upper XLEN bits of the vector element, shift the first
|
|
// element right by 32 bits and re-extract the lower XLEN bits.
|
|
auto [Mask, VL] = getDefaultVLOps(1, VecVT, DL, DAG, Subtarget);
|
|
|
|
SDValue ThirtyTwoV =
|
|
DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
|
|
DAG.getConstant(32, DL, XLenVT), VL);
|
|
SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV,
|
|
DAG.getUNDEF(VecVT), Mask, VL);
|
|
SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
|
|
|
|
Results.push_back(
|
|
DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case ISD::VECREDUCE_ADD:
|
|
case ISD::VECREDUCE_AND:
|
|
case ISD::VECREDUCE_OR:
|
|
case ISD::VECREDUCE_XOR:
|
|
case ISD::VECREDUCE_SMAX:
|
|
case ISD::VECREDUCE_UMAX:
|
|
case ISD::VECREDUCE_SMIN:
|
|
case ISD::VECREDUCE_UMIN:
|
|
if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
|
|
Results.push_back(V);
|
|
break;
|
|
case ISD::VP_REDUCE_ADD:
|
|
case ISD::VP_REDUCE_AND:
|
|
case ISD::VP_REDUCE_OR:
|
|
case ISD::VP_REDUCE_XOR:
|
|
case ISD::VP_REDUCE_SMAX:
|
|
case ISD::VP_REDUCE_UMAX:
|
|
case ISD::VP_REDUCE_SMIN:
|
|
case ISD::VP_REDUCE_UMIN:
|
|
if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG))
|
|
Results.push_back(V);
|
|
break;
|
|
case ISD::GET_ROUNDING: {
|
|
SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
|
|
SDValue Res = DAG.getNode(ISD::GET_ROUNDING, DL, VTs, N->getOperand(0));
|
|
Results.push_back(Res.getValue(0));
|
|
Results.push_back(Res.getValue(1));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Given a binary operator, return the *associative* generic ISD::VECREDUCE_OP
|
|
/// which corresponds to it.
|
|
static unsigned getVecReduceOpcode(unsigned Opc) {
|
|
switch (Opc) {
|
|
default:
|
|
llvm_unreachable("Unhandled binary to transform reduction");
|
|
case ISD::ADD:
|
|
return ISD::VECREDUCE_ADD;
|
|
case ISD::UMAX:
|
|
return ISD::VECREDUCE_UMAX;
|
|
case ISD::SMAX:
|
|
return ISD::VECREDUCE_SMAX;
|
|
case ISD::UMIN:
|
|
return ISD::VECREDUCE_UMIN;
|
|
case ISD::SMIN:
|
|
return ISD::VECREDUCE_SMIN;
|
|
case ISD::AND:
|
|
return ISD::VECREDUCE_AND;
|
|
case ISD::OR:
|
|
return ISD::VECREDUCE_OR;
|
|
case ISD::XOR:
|
|
return ISD::VECREDUCE_XOR;
|
|
case ISD::FADD:
|
|
// Note: This is the associative form of the generic reduction opcode.
|
|
return ISD::VECREDUCE_FADD;
|
|
}
|
|
}
|
|
|
|
/// Perform two related transforms whose purpose is to incrementally recognize
|
|
/// an explode_vector followed by scalar reduction as a vector reduction node.
|
|
/// This exists to recover from a deficiency in SLP which can't handle
|
|
/// forests with multiple roots sharing common nodes. In some cases, one
|
|
/// of the trees will be vectorized, and the other will remain (unprofitably)
|
|
/// scalarized.
|
|
static SDValue
|
|
combineBinOpOfExtractToReduceTree(SDNode *N, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
|
|
// This transforms need to run before all integer types have been legalized
|
|
// to i64 (so that the vector element type matches the add type), and while
|
|
// it's safe to introduce odd sized vector types.
|
|
if (DAG.NewNodesMustHaveLegalTypes)
|
|
return SDValue();
|
|
|
|
// Without V, this transform isn't useful. We could form the (illegal)
|
|
// operations and let them be scalarized again, but there's really no point.
|
|
if (!Subtarget.hasVInstructions())
|
|
return SDValue();
|
|
|
|
const SDLoc DL(N);
|
|
const EVT VT = N->getValueType(0);
|
|
const unsigned Opc = N->getOpcode();
|
|
|
|
// For FADD, we only handle the case with reassociation allowed. We
|
|
// could handle strict reduction order, but at the moment, there's no
|
|
// known reason to, and the complexity isn't worth it.
|
|
// TODO: Handle fminnum and fmaxnum here
|
|
if (!VT.isInteger() &&
|
|
(Opc != ISD::FADD || !N->getFlags().hasAllowReassociation()))
|
|
return SDValue();
|
|
|
|
const unsigned ReduceOpc = getVecReduceOpcode(Opc);
|
|
assert(Opc == ISD::getVecReduceBaseOpcode(ReduceOpc) &&
|
|
"Inconsistent mappings");
|
|
SDValue LHS = N->getOperand(0);
|
|
SDValue RHS = N->getOperand(1);
|
|
|
|
if (!LHS.hasOneUse() || !RHS.hasOneUse())
|
|
return SDValue();
|
|
|
|
if (RHS.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
|
|
std::swap(LHS, RHS);
|
|
|
|
if (RHS.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
|
|
!isa<ConstantSDNode>(RHS.getOperand(1)))
|
|
return SDValue();
|
|
|
|
uint64_t RHSIdx = cast<ConstantSDNode>(RHS.getOperand(1))->getLimitedValue();
|
|
SDValue SrcVec = RHS.getOperand(0);
|
|
EVT SrcVecVT = SrcVec.getValueType();
|
|
assert(SrcVecVT.getVectorElementType() == VT);
|
|
if (SrcVecVT.isScalableVector())
|
|
return SDValue();
|
|
|
|
if (SrcVecVT.getScalarSizeInBits() > Subtarget.getELen())
|
|
return SDValue();
|
|
|
|
// match binop (extract_vector_elt V, 0), (extract_vector_elt V, 1) to
|
|
// reduce_op (extract_subvector [2 x VT] from V). This will form the
|
|
// root of our reduction tree. TODO: We could extend this to any two
|
|
// adjacent aligned constant indices if desired.
|
|
if (LHS.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
|
|
LHS.getOperand(0) == SrcVec && isa<ConstantSDNode>(LHS.getOperand(1))) {
|
|
uint64_t LHSIdx =
|
|
cast<ConstantSDNode>(LHS.getOperand(1))->getLimitedValue();
|
|
if (0 == std::min(LHSIdx, RHSIdx) && 1 == std::max(LHSIdx, RHSIdx)) {
|
|
EVT ReduceVT = EVT::getVectorVT(*DAG.getContext(), VT, 2);
|
|
SDValue Vec = DAG.getExtractSubvector(DL, ReduceVT, SrcVec, 0);
|
|
return DAG.getNode(ReduceOpc, DL, VT, Vec, N->getFlags());
|
|
}
|
|
}
|
|
|
|
// Match (binop (reduce (extract_subvector V, 0),
|
|
// (extract_vector_elt V, sizeof(SubVec))))
|
|
// into a reduction of one more element from the original vector V.
|
|
if (LHS.getOpcode() != ReduceOpc)
|
|
return SDValue();
|
|
|
|
SDValue ReduceVec = LHS.getOperand(0);
|
|
if (ReduceVec.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
|
|
ReduceVec.hasOneUse() && ReduceVec.getOperand(0) == RHS.getOperand(0) &&
|
|
isNullConstant(ReduceVec.getOperand(1)) &&
|
|
ReduceVec.getValueType().getVectorNumElements() == RHSIdx) {
|
|
// For illegal types (e.g. 3xi32), most will be combined again into a
|
|
// wider (hopefully legal) type. If this is a terminal state, we are
|
|
// relying on type legalization here to produce something reasonable
|
|
// and this lowering quality could probably be improved. (TODO)
|
|
EVT ReduceVT = EVT::getVectorVT(*DAG.getContext(), VT, RHSIdx + 1);
|
|
SDValue Vec = DAG.getExtractSubvector(DL, ReduceVT, SrcVec, 0);
|
|
return DAG.getNode(ReduceOpc, DL, VT, Vec,
|
|
ReduceVec->getFlags() & N->getFlags());
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
|
|
// Try to fold (<bop> x, (reduction.<bop> vec, start))
|
|
static SDValue combineBinOpToReduce(SDNode *N, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
auto BinOpToRVVReduce = [](unsigned Opc) {
|
|
switch (Opc) {
|
|
default:
|
|
llvm_unreachable("Unhandled binary to transform reduction");
|
|
case ISD::ADD:
|
|
return RISCVISD::VECREDUCE_ADD_VL;
|
|
case ISD::UMAX:
|
|
return RISCVISD::VECREDUCE_UMAX_VL;
|
|
case ISD::SMAX:
|
|
return RISCVISD::VECREDUCE_SMAX_VL;
|
|
case ISD::UMIN:
|
|
return RISCVISD::VECREDUCE_UMIN_VL;
|
|
case ISD::SMIN:
|
|
return RISCVISD::VECREDUCE_SMIN_VL;
|
|
case ISD::AND:
|
|
return RISCVISD::VECREDUCE_AND_VL;
|
|
case ISD::OR:
|
|
return RISCVISD::VECREDUCE_OR_VL;
|
|
case ISD::XOR:
|
|
return RISCVISD::VECREDUCE_XOR_VL;
|
|
case ISD::FADD:
|
|
return RISCVISD::VECREDUCE_FADD_VL;
|
|
case ISD::FMAXNUM:
|
|
return RISCVISD::VECREDUCE_FMAX_VL;
|
|
case ISD::FMINNUM:
|
|
return RISCVISD::VECREDUCE_FMIN_VL;
|
|
}
|
|
};
|
|
|
|
auto IsReduction = [&BinOpToRVVReduce](SDValue V, unsigned Opc) {
|
|
return V.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
|
|
isNullConstant(V.getOperand(1)) &&
|
|
V.getOperand(0).getOpcode() == BinOpToRVVReduce(Opc);
|
|
};
|
|
|
|
unsigned Opc = N->getOpcode();
|
|
unsigned ReduceIdx;
|
|
if (IsReduction(N->getOperand(0), Opc))
|
|
ReduceIdx = 0;
|
|
else if (IsReduction(N->getOperand(1), Opc))
|
|
ReduceIdx = 1;
|
|
else
|
|
return SDValue();
|
|
|
|
// Skip if FADD disallows reassociation but the combiner needs.
|
|
if (Opc == ISD::FADD && !N->getFlags().hasAllowReassociation())
|
|
return SDValue();
|
|
|
|
SDValue Extract = N->getOperand(ReduceIdx);
|
|
SDValue Reduce = Extract.getOperand(0);
|
|
if (!Extract.hasOneUse() || !Reduce.hasOneUse())
|
|
return SDValue();
|
|
|
|
SDValue ScalarV = Reduce.getOperand(2);
|
|
EVT ScalarVT = ScalarV.getValueType();
|
|
if (ScalarV.getOpcode() == ISD::INSERT_SUBVECTOR &&
|
|
ScalarV.getOperand(0)->isUndef() &&
|
|
isNullConstant(ScalarV.getOperand(2)))
|
|
ScalarV = ScalarV.getOperand(1);
|
|
|
|
// Make sure that ScalarV is a splat with VL=1.
|
|
if (ScalarV.getOpcode() != RISCVISD::VFMV_S_F_VL &&
|
|
ScalarV.getOpcode() != RISCVISD::VMV_S_X_VL &&
|
|
ScalarV.getOpcode() != RISCVISD::VMV_V_X_VL)
|
|
return SDValue();
|
|
|
|
if (!isNonZeroAVL(ScalarV.getOperand(2)))
|
|
return SDValue();
|
|
|
|
// Check the scalar of ScalarV is neutral element
|
|
// TODO: Deal with value other than neutral element.
|
|
if (!isNeutralConstant(N->getOpcode(), N->getFlags(), ScalarV.getOperand(1),
|
|
0))
|
|
return SDValue();
|
|
|
|
// If the AVL is zero, operand 0 will be returned. So it's not safe to fold.
|
|
// FIXME: We might be able to improve this if operand 0 is undef.
|
|
if (!isNonZeroAVL(Reduce.getOperand(5)))
|
|
return SDValue();
|
|
|
|
SDValue NewStart = N->getOperand(1 - ReduceIdx);
|
|
|
|
SDLoc DL(N);
|
|
SDValue NewScalarV =
|
|
lowerScalarInsert(NewStart, ScalarV.getOperand(2),
|
|
ScalarV.getSimpleValueType(), DL, DAG, Subtarget);
|
|
|
|
// If we looked through an INSERT_SUBVECTOR we need to restore it.
|
|
if (ScalarVT != ScalarV.getValueType())
|
|
NewScalarV =
|
|
DAG.getInsertSubvector(DL, DAG.getUNDEF(ScalarVT), NewScalarV, 0);
|
|
|
|
SDValue Ops[] = {Reduce.getOperand(0), Reduce.getOperand(1),
|
|
NewScalarV, Reduce.getOperand(3),
|
|
Reduce.getOperand(4), Reduce.getOperand(5)};
|
|
SDValue NewReduce =
|
|
DAG.getNode(Reduce.getOpcode(), DL, Reduce.getValueType(), Ops);
|
|
return DAG.getNode(Extract.getOpcode(), DL, Extract.getValueType(), NewReduce,
|
|
Extract.getOperand(1));
|
|
}
|
|
|
|
// Optimize (add (shl x, c0), (shl y, c1)) ->
|
|
// (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3].
|
|
static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
// Perform this optimization only in the zba/xandesperf extension.
|
|
if (!Subtarget.hasStdExtZba() && !Subtarget.hasVendorXAndesPerf())
|
|
return SDValue();
|
|
|
|
// Skip for vector types and larger types.
|
|
EVT VT = N->getValueType(0);
|
|
if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
|
|
return SDValue();
|
|
|
|
// The two operand nodes must be SHL and have no other use.
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL ||
|
|
!N0->hasOneUse() || !N1->hasOneUse())
|
|
return SDValue();
|
|
|
|
// Check c0 and c1.
|
|
auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
|
|
auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1));
|
|
if (!N0C || !N1C)
|
|
return SDValue();
|
|
int64_t C0 = N0C->getSExtValue();
|
|
int64_t C1 = N1C->getSExtValue();
|
|
if (C0 <= 0 || C1 <= 0)
|
|
return SDValue();
|
|
|
|
// Skip if SH1ADD/SH2ADD/SH3ADD are not applicable.
|
|
int64_t Bits = std::min(C0, C1);
|
|
int64_t Diff = std::abs(C0 - C1);
|
|
if (Diff != 1 && Diff != 2 && Diff != 3)
|
|
return SDValue();
|
|
|
|
// Build nodes.
|
|
SDLoc DL(N);
|
|
SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0);
|
|
SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0);
|
|
SDValue SHADD = DAG.getNode(RISCVISD::SHL_ADD, DL, VT, NL,
|
|
DAG.getConstant(Diff, DL, VT), NS);
|
|
return DAG.getNode(ISD::SHL, DL, VT, SHADD, DAG.getConstant(Bits, DL, VT));
|
|
}
|
|
|
|
// Check if this SDValue is an add immediate that is fed by a shift of 1, 2,
|
|
// or 3.
|
|
static SDValue combineShlAddIAddImpl(SDNode *N, SDValue AddI, SDValue Other,
|
|
SelectionDAG &DAG) {
|
|
using namespace llvm::SDPatternMatch;
|
|
|
|
// Looking for a reg-reg add and not an addi.
|
|
if (isa<ConstantSDNode>(N->getOperand(1)))
|
|
return SDValue();
|
|
|
|
// Based on testing it seems that performance degrades if the ADDI has
|
|
// more than 2 uses.
|
|
if (AddI->use_size() > 2)
|
|
return SDValue();
|
|
|
|
APInt AddVal;
|
|
SDValue SHLVal;
|
|
if (!sd_match(AddI, m_Add(m_Value(SHLVal), m_ConstInt(AddVal))))
|
|
return SDValue();
|
|
|
|
APInt VShift;
|
|
if (!sd_match(SHLVal, m_OneUse(m_Shl(m_Value(), m_ConstInt(VShift)))))
|
|
return SDValue();
|
|
|
|
if (VShift.slt(1) || VShift.sgt(3))
|
|
return SDValue();
|
|
|
|
SDLoc DL(N);
|
|
EVT VT = N->getValueType(0);
|
|
// The shift must be positive but the add can be signed.
|
|
uint64_t ShlConst = VShift.getZExtValue();
|
|
int64_t AddConst = AddVal.getSExtValue();
|
|
|
|
SDValue SHADD = DAG.getNode(RISCVISD::SHL_ADD, DL, VT, SHLVal->getOperand(0),
|
|
DAG.getConstant(ShlConst, DL, VT), Other);
|
|
return DAG.getNode(ISD::ADD, DL, VT, SHADD,
|
|
DAG.getSignedConstant(AddConst, DL, VT));
|
|
}
|
|
|
|
// Optimize (add (add (shl x, c0), c1), y) ->
|
|
// (ADDI (SH*ADD y, x), c1), if c0 equals to [1|2|3].
|
|
static SDValue combineShlAddIAdd(SDNode *N, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
// Perform this optimization only in the zba extension.
|
|
if (!ReassocShlAddiAdd || !Subtarget.hasStdExtZba())
|
|
return SDValue();
|
|
|
|
// Skip for vector types and larger types.
|
|
EVT VT = N->getValueType(0);
|
|
if (VT != Subtarget.getXLenVT())
|
|
return SDValue();
|
|
|
|
SDValue AddI = N->getOperand(0);
|
|
SDValue Other = N->getOperand(1);
|
|
if (SDValue V = combineShlAddIAddImpl(N, AddI, Other, DAG))
|
|
return V;
|
|
if (SDValue V = combineShlAddIAddImpl(N, Other, AddI, DAG))
|
|
return V;
|
|
return SDValue();
|
|
}
|
|
|
|
// Combine a constant select operand into its use:
|
|
//
|
|
// (and (select cond, -1, c), x)
|
|
// -> (select cond, x, (and x, c)) [AllOnes=1]
|
|
// (or (select cond, 0, c), x)
|
|
// -> (select cond, x, (or x, c)) [AllOnes=0]
|
|
// (xor (select cond, 0, c), x)
|
|
// -> (select cond, x, (xor x, c)) [AllOnes=0]
|
|
// (add (select cond, 0, c), x)
|
|
// -> (select cond, x, (add x, c)) [AllOnes=0]
|
|
// (sub x, (select cond, 0, c))
|
|
// -> (select cond, x, (sub x, c)) [AllOnes=0]
|
|
static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
|
|
SelectionDAG &DAG, bool AllOnes,
|
|
const RISCVSubtarget &Subtarget) {
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// Skip vectors.
|
|
if (VT.isVector())
|
|
return SDValue();
|
|
|
|
if (!Subtarget.hasConditionalMoveFusion()) {
|
|
// (select cond, x, (and x, c)) has custom lowering with Zicond.
|
|
if ((!Subtarget.hasStdExtZicond() &&
|
|
!Subtarget.hasVendorXVentanaCondOps()) ||
|
|
N->getOpcode() != ISD::AND)
|
|
return SDValue();
|
|
|
|
// Maybe harmful when condition code has multiple use.
|
|
if (Slct.getOpcode() == ISD::SELECT && !Slct.getOperand(0).hasOneUse())
|
|
return SDValue();
|
|
|
|
// Maybe harmful when VT is wider than XLen.
|
|
if (VT.getSizeInBits() > Subtarget.getXLen())
|
|
return SDValue();
|
|
}
|
|
|
|
if ((Slct.getOpcode() != ISD::SELECT &&
|
|
Slct.getOpcode() != RISCVISD::SELECT_CC) ||
|
|
!Slct.hasOneUse())
|
|
return SDValue();
|
|
|
|
auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) {
|
|
return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
|
|
};
|
|
|
|
bool SwapSelectOps;
|
|
unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0;
|
|
SDValue TrueVal = Slct.getOperand(1 + OpOffset);
|
|
SDValue FalseVal = Slct.getOperand(2 + OpOffset);
|
|
SDValue NonConstantVal;
|
|
if (isZeroOrAllOnes(TrueVal, AllOnes)) {
|
|
SwapSelectOps = false;
|
|
NonConstantVal = FalseVal;
|
|
} else if (isZeroOrAllOnes(FalseVal, AllOnes)) {
|
|
SwapSelectOps = true;
|
|
NonConstantVal = TrueVal;
|
|
} else
|
|
return SDValue();
|
|
|
|
// Slct is now know to be the desired identity constant when CC is true.
|
|
TrueVal = OtherOp;
|
|
FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
|
|
// Unless SwapSelectOps says the condition should be false.
|
|
if (SwapSelectOps)
|
|
std::swap(TrueVal, FalseVal);
|
|
|
|
if (Slct.getOpcode() == RISCVISD::SELECT_CC)
|
|
return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT,
|
|
{Slct.getOperand(0), Slct.getOperand(1),
|
|
Slct.getOperand(2), TrueVal, FalseVal});
|
|
|
|
return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
|
|
{Slct.getOperand(0), TrueVal, FalseVal});
|
|
}
|
|
|
|
// Attempt combineSelectAndUse on each operand of a commutative operator N.
|
|
static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG,
|
|
bool AllOnes,
|
|
const RISCVSubtarget &Subtarget) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes, Subtarget))
|
|
return Result;
|
|
if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes, Subtarget))
|
|
return Result;
|
|
return SDValue();
|
|
}
|
|
|
|
// Transform (add (mul x, c0), c1) ->
|
|
// (add (mul (add x, c1/c0), c0), c1%c0).
|
|
// if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case
|
|
// that should be excluded is when c0*(c1/c0) is simm12, which will lead
|
|
// to an infinite loop in DAGCombine if transformed.
|
|
// Or transform (add (mul x, c0), c1) ->
|
|
// (add (mul (add x, c1/c0+1), c0), c1%c0-c0),
|
|
// if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner
|
|
// case that should be excluded is when c0*(c1/c0+1) is simm12, which will
|
|
// lead to an infinite loop in DAGCombine if transformed.
|
|
// Or transform (add (mul x, c0), c1) ->
|
|
// (add (mul (add x, c1/c0-1), c0), c1%c0+c0),
|
|
// if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner
|
|
// case that should be excluded is when c0*(c1/c0-1) is simm12, which will
|
|
// lead to an infinite loop in DAGCombine if transformed.
|
|
// Or transform (add (mul x, c0), c1) ->
|
|
// (mul (add x, c1/c0), c0).
|
|
// if c1%c0 is zero, and c1/c0 is simm12 while c1 is not.
|
|
static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
// Skip for vector types and larger types.
|
|
EVT VT = N->getValueType(0);
|
|
if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
|
|
return SDValue();
|
|
// The first operand node must be a MUL and has no other use.
|
|
SDValue N0 = N->getOperand(0);
|
|
if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL)
|
|
return SDValue();
|
|
// Check if c0 and c1 match above conditions.
|
|
auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
|
|
auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
|
|
if (!N0C || !N1C)
|
|
return SDValue();
|
|
// If N0C has multiple uses it's possible one of the cases in
|
|
// DAGCombiner::isMulAddWithConstProfitable will be true, which would result
|
|
// in an infinite loop.
|
|
if (!N0C->hasOneUse())
|
|
return SDValue();
|
|
int64_t C0 = N0C->getSExtValue();
|
|
int64_t C1 = N1C->getSExtValue();
|
|
int64_t CA, CB;
|
|
if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1))
|
|
return SDValue();
|
|
// Search for proper CA (non-zero) and CB that both are simm12.
|
|
if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) &&
|
|
!isInt<12>(C0 * (C1 / C0))) {
|
|
CA = C1 / C0;
|
|
CB = C1 % C0;
|
|
} else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) &&
|
|
isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) {
|
|
CA = C1 / C0 + 1;
|
|
CB = C1 % C0 - C0;
|
|
} else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) &&
|
|
isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) {
|
|
CA = C1 / C0 - 1;
|
|
CB = C1 % C0 + C0;
|
|
} else
|
|
return SDValue();
|
|
// Build new nodes (add (mul (add x, c1/c0), c0), c1%c0).
|
|
SDLoc DL(N);
|
|
SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0),
|
|
DAG.getSignedConstant(CA, DL, VT));
|
|
SDValue New1 =
|
|
DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getSignedConstant(C0, DL, VT));
|
|
return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getSignedConstant(CB, DL, VT));
|
|
}
|
|
|
|
// add (zext, zext) -> zext (add (zext, zext))
|
|
// sub (zext, zext) -> sext (sub (zext, zext))
|
|
// mul (zext, zext) -> zext (mul (zext, zext))
|
|
// sdiv (zext, zext) -> zext (sdiv (zext, zext))
|
|
// udiv (zext, zext) -> zext (udiv (zext, zext))
|
|
// srem (zext, zext) -> zext (srem (zext, zext))
|
|
// urem (zext, zext) -> zext (urem (zext, zext))
|
|
//
|
|
// where the sum of the extend widths match, and the the range of the bin op
|
|
// fits inside the width of the narrower bin op. (For profitability on rvv, we
|
|
// use a power of two for both inner and outer extend.)
|
|
static SDValue combineBinOpOfZExt(SDNode *N, SelectionDAG &DAG) {
|
|
|
|
EVT VT = N->getValueType(0);
|
|
if (!VT.isVector() || !DAG.getTargetLoweringInfo().isTypeLegal(VT))
|
|
return SDValue();
|
|
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
if (N0.getOpcode() != ISD::ZERO_EXTEND || N1.getOpcode() != ISD::ZERO_EXTEND)
|
|
return SDValue();
|
|
if (!N0.hasOneUse() || !N1.hasOneUse())
|
|
return SDValue();
|
|
|
|
SDValue Src0 = N0.getOperand(0);
|
|
SDValue Src1 = N1.getOperand(0);
|
|
EVT SrcVT = Src0.getValueType();
|
|
if (!DAG.getTargetLoweringInfo().isTypeLegal(SrcVT) ||
|
|
SrcVT != Src1.getValueType() || SrcVT.getScalarSizeInBits() < 8 ||
|
|
SrcVT.getScalarSizeInBits() >= VT.getScalarSizeInBits() / 2)
|
|
return SDValue();
|
|
|
|
LLVMContext &C = *DAG.getContext();
|
|
EVT ElemVT = VT.getVectorElementType().getHalfSizedIntegerVT(C);
|
|
EVT NarrowVT = EVT::getVectorVT(C, ElemVT, VT.getVectorElementCount());
|
|
|
|
Src0 = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(Src0), NarrowVT, Src0);
|
|
Src1 = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(Src1), NarrowVT, Src1);
|
|
|
|
// Src0 and Src1 are zero extended, so they're always positive if signed.
|
|
//
|
|
// sub can produce a negative from two positive operands, so it needs sign
|
|
// extended. Other nodes produce a positive from two positive operands, so
|
|
// zero extend instead.
|
|
unsigned OuterExtend =
|
|
N->getOpcode() == ISD::SUB ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
|
|
|
|
return DAG.getNode(
|
|
OuterExtend, SDLoc(N), VT,
|
|
DAG.getNode(N->getOpcode(), SDLoc(N), NarrowVT, Src0, Src1));
|
|
}
|
|
|
|
// Try to turn (add (xor bool, 1) -1) into (neg bool).
|
|
static SDValue combineAddOfBooleanXor(SDNode *N, SelectionDAG &DAG) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
EVT VT = N->getValueType(0);
|
|
SDLoc DL(N);
|
|
|
|
// RHS should be -1.
|
|
if (!isAllOnesConstant(N1))
|
|
return SDValue();
|
|
|
|
// Look for (xor X, 1).
|
|
if (N0.getOpcode() != ISD::XOR || !isOneConstant(N0.getOperand(1)))
|
|
return SDValue();
|
|
|
|
// First xor input should be 0 or 1.
|
|
APInt Mask = APInt::getBitsSetFrom(VT.getSizeInBits(), 1);
|
|
if (!DAG.MaskedValueIsZero(N0.getOperand(0), Mask))
|
|
return SDValue();
|
|
|
|
// Emit a negate of the setcc.
|
|
return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
|
|
N0.getOperand(0));
|
|
}
|
|
|
|
static SDValue performADDCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const RISCVSubtarget &Subtarget) {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
if (SDValue V = combineAddOfBooleanXor(N, DAG))
|
|
return V;
|
|
if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget))
|
|
return V;
|
|
if (!DCI.isBeforeLegalize() && !DCI.isCalledByLegalizer()) {
|
|
if (SDValue V = transformAddShlImm(N, DAG, Subtarget))
|
|
return V;
|
|
if (SDValue V = combineShlAddIAdd(N, DAG, Subtarget))
|
|
return V;
|
|
}
|
|
if (SDValue V = combineBinOpToReduce(N, DAG, Subtarget))
|
|
return V;
|
|
if (SDValue V = combineBinOpOfExtractToReduceTree(N, DAG, Subtarget))
|
|
return V;
|
|
if (SDValue V = combineBinOpOfZExt(N, DAG))
|
|
return V;
|
|
|
|
// fold (add (select lhs, rhs, cc, 0, y), x) ->
|
|
// (select lhs, rhs, cc, x, (add x, y))
|
|
return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false, Subtarget);
|
|
}
|
|
|
|
// Try to turn a sub boolean RHS and constant LHS into an addi.
|
|
static SDValue combineSubOfBoolean(SDNode *N, SelectionDAG &DAG) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
EVT VT = N->getValueType(0);
|
|
SDLoc DL(N);
|
|
|
|
// Require a constant LHS.
|
|
auto *N0C = dyn_cast<ConstantSDNode>(N0);
|
|
if (!N0C)
|
|
return SDValue();
|
|
|
|
// All our optimizations involve subtracting 1 from the immediate and forming
|
|
// an ADDI. Make sure the new immediate is valid for an ADDI.
|
|
APInt ImmValMinus1 = N0C->getAPIntValue() - 1;
|
|
if (!ImmValMinus1.isSignedIntN(12))
|
|
return SDValue();
|
|
|
|
SDValue NewLHS;
|
|
if (N1.getOpcode() == ISD::SETCC && N1.hasOneUse()) {
|
|
// (sub constant, (setcc x, y, eq/neq)) ->
|
|
// (add (setcc x, y, neq/eq), constant - 1)
|
|
ISD::CondCode CCVal = cast<CondCodeSDNode>(N1.getOperand(2))->get();
|
|
EVT SetCCOpVT = N1.getOperand(0).getValueType();
|
|
if (!isIntEqualitySetCC(CCVal) || !SetCCOpVT.isInteger())
|
|
return SDValue();
|
|
CCVal = ISD::getSetCCInverse(CCVal, SetCCOpVT);
|
|
NewLHS =
|
|
DAG.getSetCC(SDLoc(N1), VT, N1.getOperand(0), N1.getOperand(1), CCVal);
|
|
} else if (N1.getOpcode() == ISD::XOR && isOneConstant(N1.getOperand(1)) &&
|
|
N1.getOperand(0).getOpcode() == ISD::SETCC) {
|
|
// (sub C, (xor (setcc), 1)) -> (add (setcc), C-1).
|
|
// Since setcc returns a bool the xor is equivalent to 1-setcc.
|
|
NewLHS = N1.getOperand(0);
|
|
} else
|
|
return SDValue();
|
|
|
|
SDValue NewRHS = DAG.getConstant(ImmValMinus1, DL, VT);
|
|
return DAG.getNode(ISD::ADD, DL, VT, NewLHS, NewRHS);
|
|
}
|
|
|
|
// Looks for (sub (shl X, 8-Y), (shr X, Y)) where the Y-th bit in each byte is
|
|
// potentially set. It is fine for Y to be 0, meaning that (sub (shl X, 8), X)
|
|
// is also valid. Replace with (orc.b X). For example, 0b0000_1000_0000_1000 is
|
|
// valid with Y=3, while 0b0000_1000_0000_0100 is not.
|
|
static SDValue combineSubShiftToOrcB(SDNode *N, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
if (!Subtarget.hasStdExtZbb())
|
|
return SDValue();
|
|
|
|
EVT VT = N->getValueType(0);
|
|
|
|
if (VT != Subtarget.getXLenVT() && VT != MVT::i32 && VT != MVT::i16)
|
|
return SDValue();
|
|
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
|
|
if (N0->getOpcode() != ISD::SHL)
|
|
return SDValue();
|
|
|
|
auto *ShAmtCLeft = dyn_cast<ConstantSDNode>(N0.getOperand(1));
|
|
if (!ShAmtCLeft)
|
|
return SDValue();
|
|
unsigned ShiftedAmount = 8 - ShAmtCLeft->getZExtValue();
|
|
|
|
if (ShiftedAmount >= 8)
|
|
return SDValue();
|
|
|
|
SDValue LeftShiftOperand = N0->getOperand(0);
|
|
SDValue RightShiftOperand = N1;
|
|
|
|
if (ShiftedAmount != 0) { // Right operand must be a right shift.
|
|
if (N1->getOpcode() != ISD::SRL)
|
|
return SDValue();
|
|
auto *ShAmtCRight = dyn_cast<ConstantSDNode>(N1.getOperand(1));
|
|
if (!ShAmtCRight || ShAmtCRight->getZExtValue() != ShiftedAmount)
|
|
return SDValue();
|
|
RightShiftOperand = N1.getOperand(0);
|
|
}
|
|
|
|
// At least one shift should have a single use.
|
|
if (!N0.hasOneUse() && (ShiftedAmount == 0 || !N1.hasOneUse()))
|
|
return SDValue();
|
|
|
|
if (LeftShiftOperand != RightShiftOperand)
|
|
return SDValue();
|
|
|
|
APInt Mask = APInt::getSplat(VT.getSizeInBits(), APInt(8, 0x1));
|
|
Mask <<= ShiftedAmount;
|
|
// Check that X has indeed the right shape (only the Y-th bit can be set in
|
|
// every byte).
|
|
if (!DAG.MaskedValueIsZero(LeftShiftOperand, ~Mask))
|
|
return SDValue();
|
|
|
|
return DAG.getNode(RISCVISD::ORC_B, SDLoc(N), VT, LeftShiftOperand);
|
|
}
|
|
|
|
static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
if (SDValue V = combineSubOfBoolean(N, DAG))
|
|
return V;
|
|
|
|
EVT VT = N->getValueType(0);
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
// fold (sub 0, (setcc x, 0, setlt)) -> (sra x, xlen - 1)
|
|
if (isNullConstant(N0) && N1.getOpcode() == ISD::SETCC && N1.hasOneUse() &&
|
|
isNullConstant(N1.getOperand(1))) {
|
|
ISD::CondCode CCVal = cast<CondCodeSDNode>(N1.getOperand(2))->get();
|
|
if (CCVal == ISD::SETLT) {
|
|
SDLoc DL(N);
|
|
unsigned ShAmt = N0.getValueSizeInBits() - 1;
|
|
return DAG.getNode(ISD::SRA, DL, VT, N1.getOperand(0),
|
|
DAG.getConstant(ShAmt, DL, VT));
|
|
}
|
|
}
|
|
|
|
if (SDValue V = combineBinOpOfZExt(N, DAG))
|
|
return V;
|
|
if (SDValue V = combineSubShiftToOrcB(N, DAG, Subtarget))
|
|
return V;
|
|
|
|
// fold (sub x, (select lhs, rhs, cc, 0, y)) ->
|
|
// (select lhs, rhs, cc, x, (sub x, y))
|
|
return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false, Subtarget);
|
|
}
|
|
|
|
// Apply DeMorgan's law to (and/or (xor X, 1), (xor Y, 1)) if X and Y are 0/1.
|
|
// Legalizing setcc can introduce xors like this. Doing this transform reduces
|
|
// the number of xors and may allow the xor to fold into a branch condition.
|
|
static SDValue combineDeMorganOfBoolean(SDNode *N, SelectionDAG &DAG) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
bool IsAnd = N->getOpcode() == ISD::AND;
|
|
|
|
if (N0.getOpcode() != ISD::XOR || N1.getOpcode() != ISD::XOR)
|
|
return SDValue();
|
|
|
|
if (!N0.hasOneUse() || !N1.hasOneUse())
|
|
return SDValue();
|
|
|
|
SDValue N01 = N0.getOperand(1);
|
|
SDValue N11 = N1.getOperand(1);
|
|
|
|
// For AND, SimplifyDemandedBits may have turned one of the (xor X, 1) into
|
|
// (xor X, -1) based on the upper bits of the other operand being 0. If the
|
|
// operation is And, allow one of the Xors to use -1.
|
|
if (isOneConstant(N01)) {
|
|
if (!isOneConstant(N11) && !(IsAnd && isAllOnesConstant(N11)))
|
|
return SDValue();
|
|
} else if (isOneConstant(N11)) {
|
|
// N01 and N11 being 1 was already handled. Handle N11==1 and N01==-1.
|
|
if (!(IsAnd && isAllOnesConstant(N01)))
|
|
return SDValue();
|
|
} else
|
|
return SDValue();
|
|
|
|
EVT VT = N->getValueType(0);
|
|
|
|
SDValue N00 = N0.getOperand(0);
|
|
SDValue N10 = N1.getOperand(0);
|
|
|
|
// The LHS of the xors needs to be 0/1.
|
|
APInt Mask = APInt::getBitsSetFrom(VT.getSizeInBits(), 1);
|
|
if (!DAG.MaskedValueIsZero(N00, Mask) || !DAG.MaskedValueIsZero(N10, Mask))
|
|
return SDValue();
|
|
|
|
// Invert the opcode and insert a new xor.
|
|
SDLoc DL(N);
|
|
unsigned Opc = IsAnd ? ISD::OR : ISD::AND;
|
|
SDValue Logic = DAG.getNode(Opc, DL, VT, N00, N10);
|
|
return DAG.getNode(ISD::XOR, DL, VT, Logic, DAG.getConstant(1, DL, VT));
|
|
}
|
|
|
|
// Fold (vXi8 (trunc (vselect (setltu, X, 256), X, (sext (setgt X, 0))))) to
|
|
// (vXi8 (trunc (smin (smax X, 0), 255))). This represents saturating a signed
|
|
// value to an unsigned value. This will be lowered to vmax and series of
|
|
// vnclipu instructions later. This can be extended to other truncated types
|
|
// other than i8 by replacing 256 and 255 with the equivalent constants for the
|
|
// type.
|
|
static SDValue combineTruncSelectToSMaxUSat(SDNode *N, SelectionDAG &DAG) {
|
|
EVT VT = N->getValueType(0);
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT SrcVT = N0.getValueType();
|
|
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
if (!VT.isVector() || !TLI.isTypeLegal(VT) || !TLI.isTypeLegal(SrcVT))
|
|
return SDValue();
|
|
|
|
if (N0.getOpcode() != ISD::VSELECT || !N0.hasOneUse())
|
|
return SDValue();
|
|
|
|
SDValue Cond = N0.getOperand(0);
|
|
SDValue True = N0.getOperand(1);
|
|
SDValue False = N0.getOperand(2);
|
|
|
|
if (Cond.getOpcode() != ISD::SETCC)
|
|
return SDValue();
|
|
|
|
// FIXME: Support the version of this pattern with the select operands
|
|
// swapped.
|
|
ISD::CondCode CCVal = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
|
|
if (CCVal != ISD::SETULT)
|
|
return SDValue();
|
|
|
|
SDValue CondLHS = Cond.getOperand(0);
|
|
SDValue CondRHS = Cond.getOperand(1);
|
|
|
|
if (CondLHS != True)
|
|
return SDValue();
|
|
|
|
unsigned ScalarBits = VT.getScalarSizeInBits();
|
|
|
|
// FIXME: Support other constants.
|
|
ConstantSDNode *CondRHSC = isConstOrConstSplat(CondRHS);
|
|
if (!CondRHSC || CondRHSC->getAPIntValue() != (1ULL << ScalarBits))
|
|
return SDValue();
|
|
|
|
if (False.getOpcode() != ISD::SIGN_EXTEND)
|
|
return SDValue();
|
|
|
|
False = False.getOperand(0);
|
|
|
|
if (False.getOpcode() != ISD::SETCC || False.getOperand(0) != True)
|
|
return SDValue();
|
|
|
|
ConstantSDNode *FalseRHSC = isConstOrConstSplat(False.getOperand(1));
|
|
if (!FalseRHSC || !FalseRHSC->isZero())
|
|
return SDValue();
|
|
|
|
ISD::CondCode CCVal2 = cast<CondCodeSDNode>(False.getOperand(2))->get();
|
|
if (CCVal2 != ISD::SETGT)
|
|
return SDValue();
|
|
|
|
// Emit the signed to unsigned saturation pattern.
|
|
SDLoc DL(N);
|
|
SDValue Max =
|
|
DAG.getNode(ISD::SMAX, DL, SrcVT, True, DAG.getConstant(0, DL, SrcVT));
|
|
SDValue Min =
|
|
DAG.getNode(ISD::SMIN, DL, SrcVT, Max,
|
|
DAG.getConstant((1ULL << ScalarBits) - 1, DL, SrcVT));
|
|
return DAG.getNode(ISD::TRUNCATE, DL, VT, Min);
|
|
}
|
|
|
|
static SDValue performTRUNCATECombine(SDNode *N, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// Pre-promote (i1 (truncate (srl X, Y))) on RV64 with Zbs without zero
|
|
// extending X. This is safe since we only need the LSB after the shift and
|
|
// shift amounts larger than 31 would produce poison. If we wait until
|
|
// type legalization, we'll create RISCVISD::SRLW and we can't recover it
|
|
// to use a BEXT instruction.
|
|
if (Subtarget.is64Bit() && Subtarget.hasStdExtZbs() && VT == MVT::i1 &&
|
|
N0.getValueType() == MVT::i32 && N0.getOpcode() == ISD::SRL &&
|
|
!isa<ConstantSDNode>(N0.getOperand(1)) && N0.hasOneUse()) {
|
|
SDLoc DL(N0);
|
|
SDValue Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N0.getOperand(0));
|
|
SDValue Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N0.getOperand(1));
|
|
SDValue Srl = DAG.getNode(ISD::SRL, DL, MVT::i64, Op0, Op1);
|
|
return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Srl);
|
|
}
|
|
|
|
return combineTruncSelectToSMaxUSat(N, DAG);
|
|
}
|
|
|
|
// InstCombinerImpl::transformZExtICmp will narrow a zext of an icmp with a
|
|
// truncation. But RVV doesn't have truncation instructions for more than twice
|
|
// the bitwidth.
|
|
//
|
|
// E.g. trunc <vscale x 1 x i64> %x to <vscale x 1 x i8> will generate:
|
|
//
|
|
// vsetvli a0, zero, e32, m2, ta, ma
|
|
// vnsrl.wi v12, v8, 0
|
|
// vsetvli zero, zero, e16, m1, ta, ma
|
|
// vnsrl.wi v8, v12, 0
|
|
// vsetvli zero, zero, e8, mf2, ta, ma
|
|
// vnsrl.wi v8, v8, 0
|
|
//
|
|
// So reverse the combine so we generate an vmseq/vmsne again:
|
|
//
|
|
// and (lshr (trunc X), ShAmt), 1
|
|
// -->
|
|
// zext (icmp ne (and X, (1 << ShAmt)), 0)
|
|
//
|
|
// and (lshr (not (trunc X)), ShAmt), 1
|
|
// -->
|
|
// zext (icmp eq (and X, (1 << ShAmt)), 0)
|
|
static SDValue reverseZExtICmpCombine(SDNode *N, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
using namespace SDPatternMatch;
|
|
SDLoc DL(N);
|
|
|
|
if (!Subtarget.hasVInstructions())
|
|
return SDValue();
|
|
|
|
EVT VT = N->getValueType(0);
|
|
if (!VT.isVector())
|
|
return SDValue();
|
|
|
|
APInt ShAmt;
|
|
SDValue Inner;
|
|
if (!sd_match(N, m_And(m_OneUse(m_Srl(m_Value(Inner), m_ConstInt(ShAmt))),
|
|
m_One())))
|
|
return SDValue();
|
|
|
|
SDValue X;
|
|
bool IsNot;
|
|
if (sd_match(Inner, m_Not(m_Trunc(m_Value(X)))))
|
|
IsNot = true;
|
|
else if (sd_match(Inner, m_Trunc(m_Value(X))))
|
|
IsNot = false;
|
|
else
|
|
return SDValue();
|
|
|
|
EVT WideVT = X.getValueType();
|
|
if (VT.getScalarSizeInBits() >= WideVT.getScalarSizeInBits() / 2)
|
|
return SDValue();
|
|
|
|
SDValue Res =
|
|
DAG.getNode(ISD::AND, DL, WideVT, X,
|
|
DAG.getConstant(1ULL << ShAmt.getZExtValue(), DL, WideVT));
|
|
Res = DAG.getSetCC(DL,
|
|
EVT::getVectorVT(*DAG.getContext(), MVT::i1,
|
|
WideVT.getVectorElementCount()),
|
|
Res, DAG.getConstant(0, DL, WideVT),
|
|
IsNot ? ISD::SETEQ : ISD::SETNE);
|
|
return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Res);
|
|
}
|
|
|
|
static SDValue reduceANDOfAtomicLoad(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
if (N->getOpcode() != ISD::AND)
|
|
return SDValue();
|
|
|
|
SDValue N0 = N->getOperand(0);
|
|
if (N0.getOpcode() != ISD::ATOMIC_LOAD)
|
|
return SDValue();
|
|
if (!N0.hasOneUse())
|
|
return SDValue();
|
|
|
|
AtomicSDNode *ALoad = cast<AtomicSDNode>(N0.getNode());
|
|
if (isStrongerThanMonotonic(ALoad->getSuccessOrdering()))
|
|
return SDValue();
|
|
|
|
EVT LoadedVT = ALoad->getMemoryVT();
|
|
ConstantSDNode *MaskConst = dyn_cast<ConstantSDNode>(N->getOperand(1));
|
|
if (!MaskConst)
|
|
return SDValue();
|
|
uint64_t Mask = MaskConst->getZExtValue();
|
|
uint64_t ExpectedMask = maskTrailingOnes<uint64_t>(LoadedVT.getSizeInBits());
|
|
if (Mask != ExpectedMask)
|
|
return SDValue();
|
|
|
|
SDValue ZextLoad = DAG.getAtomicLoad(
|
|
ISD::ZEXTLOAD, SDLoc(N), ALoad->getMemoryVT(), N->getValueType(0),
|
|
ALoad->getChain(), ALoad->getBasePtr(), ALoad->getMemOperand());
|
|
DCI.CombineTo(N, ZextLoad);
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(N0.getNode(), 1), ZextLoad.getValue(1));
|
|
DCI.recursivelyDeleteUnusedNodes(N0.getNode());
|
|
return SDValue(N, 0);
|
|
}
|
|
|
|
// Combines two comparison operation and logic operation to one selection
|
|
// operation(min, max) and logic operation. Returns new constructed Node if
|
|
// conditions for optimization are satisfied.
|
|
static SDValue performANDCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const RISCVSubtarget &Subtarget) {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
|
|
SDValue N0 = N->getOperand(0);
|
|
// Pre-promote (i32 (and (srl X, Y), 1)) on RV64 with Zbs without zero
|
|
// extending X. This is safe since we only need the LSB after the shift and
|
|
// shift amounts larger than 31 would produce poison. If we wait until
|
|
// type legalization, we'll create RISCVISD::SRLW and we can't recover it
|
|
// to use a BEXT instruction.
|
|
if (Subtarget.is64Bit() && Subtarget.hasStdExtZbs() &&
|
|
N->getValueType(0) == MVT::i32 && isOneConstant(N->getOperand(1)) &&
|
|
N0.getOpcode() == ISD::SRL && !isa<ConstantSDNode>(N0.getOperand(1)) &&
|
|
N0.hasOneUse()) {
|
|
SDLoc DL(N);
|
|
SDValue Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N0.getOperand(0));
|
|
SDValue Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N0.getOperand(1));
|
|
SDValue Srl = DAG.getNode(ISD::SRL, DL, MVT::i64, Op0, Op1);
|
|
SDValue And = DAG.getNode(ISD::AND, DL, MVT::i64, Srl,
|
|
DAG.getConstant(1, DL, MVT::i64));
|
|
return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, And);
|
|
}
|
|
|
|
if (SDValue V = reverseZExtICmpCombine(N, DAG, Subtarget))
|
|
return V;
|
|
|
|
if (SDValue V = combineBinOpToReduce(N, DAG, Subtarget))
|
|
return V;
|
|
if (SDValue V = combineBinOpOfExtractToReduceTree(N, DAG, Subtarget))
|
|
return V;
|
|
if (SDValue V = reduceANDOfAtomicLoad(N, DCI))
|
|
return V;
|
|
|
|
if (DCI.isAfterLegalizeDAG())
|
|
if (SDValue V = combineDeMorganOfBoolean(N, DAG))
|
|
return V;
|
|
|
|
// fold (and (select lhs, rhs, cc, -1, y), x) ->
|
|
// (select lhs, rhs, cc, x, (and x, y))
|
|
return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true, Subtarget);
|
|
}
|
|
|
|
// Try to pull an xor with 1 through a select idiom that uses czero_eqz/nez.
|
|
// FIXME: Generalize to other binary operators with same operand.
|
|
static SDValue combineOrOfCZERO(SDNode *N, SDValue N0, SDValue N1,
|
|
SelectionDAG &DAG) {
|
|
assert(N->getOpcode() == ISD::OR && "Unexpected opcode");
|
|
|
|
if (N0.getOpcode() != RISCVISD::CZERO_EQZ ||
|
|
N1.getOpcode() != RISCVISD::CZERO_NEZ ||
|
|
!N0.hasOneUse() || !N1.hasOneUse())
|
|
return SDValue();
|
|
|
|
// Should have the same condition.
|
|
SDValue Cond = N0.getOperand(1);
|
|
if (Cond != N1.getOperand(1))
|
|
return SDValue();
|
|
|
|
SDValue TrueV = N0.getOperand(0);
|
|
SDValue FalseV = N1.getOperand(0);
|
|
|
|
if (TrueV.getOpcode() != ISD::XOR || FalseV.getOpcode() != ISD::XOR ||
|
|
TrueV.getOperand(1) != FalseV.getOperand(1) ||
|
|
!isOneConstant(TrueV.getOperand(1)) ||
|
|
!TrueV.hasOneUse() || !FalseV.hasOneUse())
|
|
return SDValue();
|
|
|
|
EVT VT = N->getValueType(0);
|
|
SDLoc DL(N);
|
|
|
|
SDValue NewN0 = DAG.getNode(RISCVISD::CZERO_EQZ, DL, VT, TrueV.getOperand(0),
|
|
Cond);
|
|
SDValue NewN1 = DAG.getNode(RISCVISD::CZERO_NEZ, DL, VT, FalseV.getOperand(0),
|
|
Cond);
|
|
SDValue NewOr = DAG.getNode(ISD::OR, DL, VT, NewN0, NewN1);
|
|
return DAG.getNode(ISD::XOR, DL, VT, NewOr, TrueV.getOperand(1));
|
|
}
|
|
|
|
static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
|
|
const RISCVSubtarget &Subtarget) {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
|
|
if (SDValue V = combineBinOpToReduce(N, DAG, Subtarget))
|
|
return V;
|
|
if (SDValue V = combineBinOpOfExtractToReduceTree(N, DAG, Subtarget))
|
|
return V;
|
|
|
|
if (DCI.isAfterLegalizeDAG())
|
|
if (SDValue V = combineDeMorganOfBoolean(N, DAG))
|
|
return V;
|
|
|
|
// Look for Or of CZERO_EQZ/NEZ with same condition which is the select idiom.
|
|
// We may be able to pull a common operation out of the true and false value.
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
if (SDValue V = combineOrOfCZERO(N, N0, N1, DAG))
|
|
return V;
|
|
if (SDValue V = combineOrOfCZERO(N, N1, N0, DAG))
|
|
return V;
|
|
|
|
// fold (or (select cond, 0, y), x) ->
|
|
// (select cond, x, (or x, y))
|
|
return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false, Subtarget);
|
|
}
|
|
|
|
static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
|
|
// Pre-promote (i32 (xor (shl -1, X), ~0)) on RV64 with Zbs so we can use
|
|
// (ADDI (BSET X0, X), -1). If we wait until/ type legalization, we'll create
|
|
// RISCVISD:::SLLW and we can't recover it to use a BSET instruction.
|
|
if (Subtarget.is64Bit() && Subtarget.hasStdExtZbs() &&
|
|
N->getValueType(0) == MVT::i32 && isAllOnesConstant(N1) &&
|
|
N0.getOpcode() == ISD::SHL && isAllOnesConstant(N0.getOperand(0)) &&
|
|
!isa<ConstantSDNode>(N0.getOperand(1)) && N0.hasOneUse()) {
|
|
SDLoc DL(N);
|
|
SDValue Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N0.getOperand(0));
|
|
SDValue Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N0.getOperand(1));
|
|
SDValue Shl = DAG.getNode(ISD::SHL, DL, MVT::i64, Op0, Op1);
|
|
SDValue And = DAG.getNOT(DL, Shl, MVT::i64);
|
|
return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, And);
|
|
}
|
|
|
|
// fold (xor (sllw 1, x), -1) -> (rolw ~1, x)
|
|
// NOTE: Assumes ROL being legal means ROLW is legal.
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
if (N0.getOpcode() == RISCVISD::SLLW &&
|
|
isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0)) &&
|
|
TLI.isOperationLegal(ISD::ROTL, MVT::i64)) {
|
|
SDLoc DL(N);
|
|
return DAG.getNode(RISCVISD::ROLW, DL, MVT::i64,
|
|
DAG.getConstant(~1, DL, MVT::i64), N0.getOperand(1));
|
|
}
|
|
|
|
// Fold (xor (setcc constant, y, setlt), 1) -> (setcc y, constant + 1, setlt)
|
|
if (N0.getOpcode() == ISD::SETCC && isOneConstant(N1) && N0.hasOneUse()) {
|
|
auto *ConstN00 = dyn_cast<ConstantSDNode>(N0.getOperand(0));
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
|
|
if (ConstN00 && CC == ISD::SETLT) {
|
|
EVT VT = N0.getValueType();
|
|
SDLoc DL(N0);
|
|
const APInt &Imm = ConstN00->getAPIntValue();
|
|
if ((Imm + 1).isSignedIntN(12))
|
|
return DAG.getSetCC(DL, VT, N0.getOperand(1),
|
|
DAG.getConstant(Imm + 1, DL, VT), CC);
|
|
}
|
|
}
|
|
|
|
if (SDValue V = combineBinOpToReduce(N, DAG, Subtarget))
|
|
return V;
|
|
if (SDValue V = combineBinOpOfExtractToReduceTree(N, DAG, Subtarget))
|
|
return V;
|
|
|
|
// fold (xor (select cond, 0, y), x) ->
|
|
// (select cond, x, (xor x, y))
|
|
return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false, Subtarget);
|
|
}
|
|
|
|
// Try to expand a multiply to a sequence of shifts and add/subs,
|
|
// for a machine without native mul instruction.
|
|
static SDValue expandMulToNAFSequence(SDNode *N, SelectionDAG &DAG,
|
|
uint64_t MulAmt) {
|
|
SDLoc DL(N);
|
|
EVT VT = N->getValueType(0);
|
|
const uint64_t BitWidth = VT.getFixedSizeInBits();
|
|
|
|
SDValue Result = DAG.getConstant(0, DL, N->getValueType(0));
|
|
SDValue N0 = N->getOperand(0);
|
|
|
|
// Find the Non-adjacent form of the multiplier.
|
|
for (uint64_t E = MulAmt, I = 0; E && I < BitWidth; ++I, E >>= 1) {
|
|
if (E & 1) {
|
|
bool IsAdd = (E & 3) == 1;
|
|
E -= IsAdd ? 1 : -1;
|
|
SDValue ShiftVal = DAG.getNode(ISD::SHL, DL, VT, N0,
|
|
DAG.getShiftAmountConstant(I, VT, DL));
|
|
ISD::NodeType AddSubOp = IsAdd ? ISD::ADD : ISD::SUB;
|
|
Result = DAG.getNode(AddSubOp, DL, VT, Result, ShiftVal);
|
|
}
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
// X * (2^N +/- 2^M) -> (add/sub (shl X, C1), (shl X, C2))
|
|
static SDValue expandMulToAddOrSubOfShl(SDNode *N, SelectionDAG &DAG,
|
|
uint64_t MulAmt) {
|
|
uint64_t MulAmtLowBit = MulAmt & (-MulAmt);
|
|
ISD::NodeType Op;
|
|
uint64_t ShiftAmt1;
|
|
if (isPowerOf2_64(MulAmt + MulAmtLowBit)) {
|
|
Op = ISD::SUB;
|
|
ShiftAmt1 = MulAmt + MulAmtLowBit;
|
|
} else if (isPowerOf2_64(MulAmt - MulAmtLowBit)) {
|
|
Op = ISD::ADD;
|
|
ShiftAmt1 = MulAmt - MulAmtLowBit;
|
|
} else {
|
|
return SDValue();
|
|
}
|
|
EVT VT = N->getValueType(0);
|
|
SDLoc DL(N);
|
|
SDValue Shift1 = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
|
|
DAG.getConstant(Log2_64(ShiftAmt1), DL, VT));
|
|
SDValue Shift2 = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
|
|
DAG.getConstant(Log2_64(MulAmtLowBit), DL, VT));
|
|
return DAG.getNode(Op, DL, VT, Shift1, Shift2);
|
|
}
|
|
|
|
// Try to expand a scalar multiply to a faster sequence.
|
|
static SDValue expandMul(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const RISCVSubtarget &Subtarget) {
|
|
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// LI + MUL is usually smaller than the alternative sequence.
|
|
if (DAG.getMachineFunction().getFunction().hasMinSize())
|
|
return SDValue();
|
|
|
|
if (VT != Subtarget.getXLenVT())
|
|
return SDValue();
|
|
|
|
bool ShouldExpandMul =
|
|
(!DCI.isBeforeLegalize() && !DCI.isCalledByLegalizer()) ||
|
|
!Subtarget.hasStdExtZmmul();
|
|
if (!ShouldExpandMul)
|
|
return SDValue();
|
|
|
|
ConstantSDNode *CNode = dyn_cast<ConstantSDNode>(N->getOperand(1));
|
|
if (!CNode)
|
|
return SDValue();
|
|
uint64_t MulAmt = CNode->getZExtValue();
|
|
|
|
const bool HasShlAdd = Subtarget.hasStdExtZba() ||
|
|
Subtarget.hasVendorXTHeadBa() ||
|
|
Subtarget.hasVendorXAndesPerf();
|
|
|
|
// WARNING: The code below is knowingly incorrect with regards to undef semantics.
|
|
// We're adding additional uses of X here, and in principle, we should be freezing
|
|
// X before doing so. However, adding freeze here causes real regressions, and no
|
|
// other target properly freezes X in these cases either.
|
|
SDValue X = N->getOperand(0);
|
|
|
|
if (HasShlAdd) {
|
|
for (uint64_t Divisor : {3, 5, 9}) {
|
|
if (MulAmt % Divisor != 0)
|
|
continue;
|
|
uint64_t MulAmt2 = MulAmt / Divisor;
|
|
// 3/5/9 * 2^N -> shl (shXadd X, X), N
|
|
if (isPowerOf2_64(MulAmt2)) {
|
|
SDLoc DL(N);
|
|
SDValue X = N->getOperand(0);
|
|
// Put the shift first if we can fold a zext into the
|
|
// shift forming a slli.uw.
|
|
if (X.getOpcode() == ISD::AND && isa<ConstantSDNode>(X.getOperand(1)) &&
|
|
X.getConstantOperandVal(1) == UINT64_C(0xffffffff)) {
|
|
SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, X,
|
|
DAG.getConstant(Log2_64(MulAmt2), DL, VT));
|
|
return DAG.getNode(RISCVISD::SHL_ADD, DL, VT, Shl,
|
|
DAG.getConstant(Log2_64(Divisor - 1), DL, VT),
|
|
Shl);
|
|
}
|
|
// Otherwise, put rhe shl second so that it can fold with following
|
|
// instructions (e.g. sext or add).
|
|
SDValue Mul359 =
|
|
DAG.getNode(RISCVISD::SHL_ADD, DL, VT, X,
|
|
DAG.getConstant(Log2_64(Divisor - 1), DL, VT), X);
|
|
return DAG.getNode(ISD::SHL, DL, VT, Mul359,
|
|
DAG.getConstant(Log2_64(MulAmt2), DL, VT));
|
|
}
|
|
|
|
// 3/5/9 * 3/5/9 -> shXadd (shYadd X, X), (shYadd X, X)
|
|
if (MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9) {
|
|
SDLoc DL(N);
|
|
SDValue Mul359 =
|
|
DAG.getNode(RISCVISD::SHL_ADD, DL, VT, X,
|
|
DAG.getConstant(Log2_64(Divisor - 1), DL, VT), X);
|
|
return DAG.getNode(RISCVISD::SHL_ADD, DL, VT, Mul359,
|
|
DAG.getConstant(Log2_64(MulAmt2 - 1), DL, VT),
|
|
Mul359);
|
|
}
|
|
}
|
|
|
|
// If this is a power 2 + 2/4/8, we can use a shift followed by a single
|
|
// shXadd. First check if this a sum of two power of 2s because that's
|
|
// easy. Then count how many zeros are up to the first bit.
|
|
if (isPowerOf2_64(MulAmt & (MulAmt - 1))) {
|
|
unsigned ScaleShift = llvm::countr_zero(MulAmt);
|
|
if (ScaleShift >= 1 && ScaleShift < 4) {
|
|
unsigned ShiftAmt = Log2_64((MulAmt & (MulAmt - 1)));
|
|
SDLoc DL(N);
|
|
SDValue Shift1 =
|
|
DAG.getNode(ISD::SHL, DL, VT, X, DAG.getConstant(ShiftAmt, DL, VT));
|
|
return DAG.getNode(RISCVISD::SHL_ADD, DL, VT, X,
|
|
DAG.getConstant(ScaleShift, DL, VT), Shift1);
|
|
}
|
|
}
|
|
|
|
// 2^(1,2,3) * 3,5,9 + 1 -> (shXadd (shYadd x, x), x)
|
|
// This is the two instruction form, there are also three instruction
|
|
// variants we could implement. e.g.
|
|
// (2^(1,2,3) * 3,5,9 + 1) << C2
|
|
// 2^(C1>3) * 3,5,9 +/- 1
|
|
for (uint64_t Divisor : {3, 5, 9}) {
|
|
uint64_t C = MulAmt - 1;
|
|
if (C <= Divisor)
|
|
continue;
|
|
unsigned TZ = llvm::countr_zero(C);
|
|
if ((C >> TZ) == Divisor && (TZ == 1 || TZ == 2 || TZ == 3)) {
|
|
SDLoc DL(N);
|
|
SDValue Mul359 =
|
|
DAG.getNode(RISCVISD::SHL_ADD, DL, VT, X,
|
|
DAG.getConstant(Log2_64(Divisor - 1), DL, VT), X);
|
|
return DAG.getNode(RISCVISD::SHL_ADD, DL, VT, Mul359,
|
|
DAG.getConstant(TZ, DL, VT), X);
|
|
}
|
|
}
|
|
|
|
// 2^n + 2/4/8 + 1 -> (add (shl X, C1), (shXadd X, X))
|
|
if (MulAmt > 2 && isPowerOf2_64((MulAmt - 1) & (MulAmt - 2))) {
|
|
unsigned ScaleShift = llvm::countr_zero(MulAmt - 1);
|
|
if (ScaleShift >= 1 && ScaleShift < 4) {
|
|
unsigned ShiftAmt = Log2_64(((MulAmt - 1) & (MulAmt - 2)));
|
|
SDLoc DL(N);
|
|
SDValue Shift1 =
|
|
DAG.getNode(ISD::SHL, DL, VT, X, DAG.getConstant(ShiftAmt, DL, VT));
|
|
return DAG.getNode(ISD::ADD, DL, VT, Shift1,
|
|
DAG.getNode(RISCVISD::SHL_ADD, DL, VT, X,
|
|
DAG.getConstant(ScaleShift, DL, VT), X));
|
|
}
|
|
}
|
|
|
|
// 2^N - 3/5/9 --> (sub (shl X, C1), (shXadd X, x))
|
|
for (uint64_t Offset : {3, 5, 9}) {
|
|
if (isPowerOf2_64(MulAmt + Offset)) {
|
|
SDLoc DL(N);
|
|
SDValue Shift1 =
|
|
DAG.getNode(ISD::SHL, DL, VT, X,
|
|
DAG.getConstant(Log2_64(MulAmt + Offset), DL, VT));
|
|
SDValue Mul359 =
|
|
DAG.getNode(RISCVISD::SHL_ADD, DL, VT, X,
|
|
DAG.getConstant(Log2_64(Offset - 1), DL, VT), X);
|
|
return DAG.getNode(ISD::SUB, DL, VT, Shift1, Mul359);
|
|
}
|
|
}
|
|
|
|
for (uint64_t Divisor : {3, 5, 9}) {
|
|
if (MulAmt % Divisor != 0)
|
|
continue;
|
|
uint64_t MulAmt2 = MulAmt / Divisor;
|
|
// 3/5/9 * 3/5/9 * 2^N - In particular, this covers multiples
|
|
// of 25 which happen to be quite common.
|
|
for (uint64_t Divisor2 : {3, 5, 9}) {
|
|
if (MulAmt2 % Divisor2 != 0)
|
|
continue;
|
|
uint64_t MulAmt3 = MulAmt2 / Divisor2;
|
|
if (isPowerOf2_64(MulAmt3)) {
|
|
SDLoc DL(N);
|
|
SDValue Mul359A =
|
|
DAG.getNode(RISCVISD::SHL_ADD, DL, VT, X,
|
|
DAG.getConstant(Log2_64(Divisor - 1), DL, VT), X);
|
|
SDValue Mul359B = DAG.getNode(
|
|
RISCVISD::SHL_ADD, DL, VT, Mul359A,
|
|
DAG.getConstant(Log2_64(Divisor2 - 1), DL, VT), Mul359A);
|
|
return DAG.getNode(ISD::SHL, DL, VT, Mul359B,
|
|
DAG.getConstant(Log2_64(MulAmt3), DL, VT));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (SDValue V = expandMulToAddOrSubOfShl(N, DAG, MulAmt))
|
|
return V;
|
|
|
|
if (!Subtarget.hasStdExtZmmul())
|
|
return expandMulToNAFSequence(N, DAG, MulAmt);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// Combine vXi32 (mul (and (lshr X, 15), 0x10001), 0xffff) ->
|
|
// (bitcast (sra (v2Xi16 (bitcast X)), 15))
|
|
// Same for other equivalent types with other equivalent constants.
|
|
static SDValue combineVectorMulToSraBitcast(SDNode *N, SelectionDAG &DAG) {
|
|
EVT VT = N->getValueType(0);
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
|
|
// Do this for legal vectors unless they are i1 or i8 vectors.
|
|
if (!VT.isVector() || !TLI.isTypeLegal(VT) || VT.getScalarSizeInBits() < 16)
|
|
return SDValue();
|
|
|
|
if (N->getOperand(0).getOpcode() != ISD::AND ||
|
|
N->getOperand(0).getOperand(0).getOpcode() != ISD::SRL)
|
|
return SDValue();
|
|
|
|
SDValue And = N->getOperand(0);
|
|
SDValue Srl = And.getOperand(0);
|
|
|
|
APInt V1, V2, V3;
|
|
if (!ISD::isConstantSplatVector(N->getOperand(1).getNode(), V1) ||
|
|
!ISD::isConstantSplatVector(And.getOperand(1).getNode(), V2) ||
|
|
!ISD::isConstantSplatVector(Srl.getOperand(1).getNode(), V3))
|
|
return SDValue();
|
|
|
|
unsigned HalfSize = VT.getScalarSizeInBits() / 2;
|
|
if (!V1.isMask(HalfSize) || V2 != (1ULL | 1ULL << HalfSize) ||
|
|
V3 != (HalfSize - 1))
|
|
return SDValue();
|
|
|
|
EVT HalfVT = EVT::getVectorVT(*DAG.getContext(),
|
|
EVT::getIntegerVT(*DAG.getContext(), HalfSize),
|
|
VT.getVectorElementCount() * 2);
|
|
SDLoc DL(N);
|
|
SDValue Cast = DAG.getNode(ISD::BITCAST, DL, HalfVT, Srl.getOperand(0));
|
|
SDValue Sra = DAG.getNode(ISD::SRA, DL, HalfVT, Cast,
|
|
DAG.getConstant(HalfSize - 1, DL, HalfVT));
|
|
return DAG.getNode(ISD::BITCAST, DL, VT, Sra);
|
|
}
|
|
|
|
static SDValue performMULCombine(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const RISCVSubtarget &Subtarget) {
|
|
EVT VT = N->getValueType(0);
|
|
if (!VT.isVector())
|
|
return expandMul(N, DAG, DCI, Subtarget);
|
|
|
|
SDLoc DL(N);
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
SDValue MulOper;
|
|
unsigned AddSubOpc;
|
|
|
|
// vmadd: (mul (add x, 1), y) -> (add (mul x, y), y)
|
|
// (mul x, add (y, 1)) -> (add x, (mul x, y))
|
|
// vnmsub: (mul (sub 1, x), y) -> (sub y, (mul x, y))
|
|
// (mul x, (sub 1, y)) -> (sub x, (mul x, y))
|
|
auto IsAddSubWith1 = [&](SDValue V) -> bool {
|
|
AddSubOpc = V->getOpcode();
|
|
if ((AddSubOpc == ISD::ADD || AddSubOpc == ISD::SUB) && V->hasOneUse()) {
|
|
SDValue Opnd = V->getOperand(1);
|
|
MulOper = V->getOperand(0);
|
|
if (AddSubOpc == ISD::SUB)
|
|
std::swap(Opnd, MulOper);
|
|
if (isOneOrOneSplat(Opnd))
|
|
return true;
|
|
}
|
|
return false;
|
|
};
|
|
|
|
if (IsAddSubWith1(N0)) {
|
|
SDValue MulVal = DAG.getNode(ISD::MUL, DL, VT, N1, MulOper);
|
|
return DAG.getNode(AddSubOpc, DL, VT, N1, MulVal);
|
|
}
|
|
|
|
if (IsAddSubWith1(N1)) {
|
|
SDValue MulVal = DAG.getNode(ISD::MUL, DL, VT, N0, MulOper);
|
|
return DAG.getNode(AddSubOpc, DL, VT, N0, MulVal);
|
|
}
|
|
|
|
if (SDValue V = combineBinOpOfZExt(N, DAG))
|
|
return V;
|
|
|
|
if (SDValue V = combineVectorMulToSraBitcast(N, DAG))
|
|
return V;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// According to the property that indexed load/store instructions zero-extend
|
|
/// their indices, try to narrow the type of index operand.
|
|
static bool narrowIndex(SDValue &N, ISD::MemIndexType IndexType, SelectionDAG &DAG) {
|
|
if (isIndexTypeSigned(IndexType))
|
|
return false;
|
|
|
|
if (!N->hasOneUse())
|
|
return false;
|
|
|
|
EVT VT = N.getValueType();
|
|
SDLoc DL(N);
|
|
|
|
// In general, what we're doing here is seeing if we can sink a truncate to
|
|
// a smaller element type into the expression tree building our index.
|
|
// TODO: We can generalize this and handle a bunch more cases if useful.
|
|
|
|
// Narrow a buildvector to the narrowest element type. This requires less
|
|
// work and less register pressure at high LMUL, and creates smaller constants
|
|
// which may be cheaper to materialize.
|
|
if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) {
|
|
KnownBits Known = DAG.computeKnownBits(N);
|
|
unsigned ActiveBits = std::max(8u, Known.countMaxActiveBits());
|
|
LLVMContext &C = *DAG.getContext();
|
|
EVT ResultVT = EVT::getIntegerVT(C, ActiveBits).getRoundIntegerType(C);
|
|
if (ResultVT.bitsLT(VT.getVectorElementType())) {
|
|
N = DAG.getNode(ISD::TRUNCATE, DL,
|
|
VT.changeVectorElementType(ResultVT), N);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Handle the pattern (shl (zext x to ty), C) and bits(x) + C < bits(ty).
|
|
if (N.getOpcode() != ISD::SHL)
|
|
return false;
|
|
|
|
SDValue N0 = N.getOperand(0);
|
|
if (N0.getOpcode() != ISD::ZERO_EXTEND &&
|
|
N0.getOpcode() != RISCVISD::VZEXT_VL)
|
|
return false;
|
|
if (!N0->hasOneUse())
|
|
return false;
|
|
|
|
APInt ShAmt;
|
|
SDValue N1 = N.getOperand(1);
|
|
if (!ISD::isConstantSplatVector(N1.getNode(), ShAmt))
|
|
return false;
|
|
|
|
SDValue Src = N0.getOperand(0);
|
|
EVT SrcVT = Src.getValueType();
|
|
unsigned SrcElen = SrcVT.getScalarSizeInBits();
|
|
unsigned ShAmtV = ShAmt.getZExtValue();
|
|
unsigned NewElen = PowerOf2Ceil(SrcElen + ShAmtV);
|
|
NewElen = std::max(NewElen, 8U);
|
|
|
|
// Skip if NewElen is not narrower than the original extended type.
|
|
if (NewElen >= N0.getValueType().getScalarSizeInBits())
|
|
return false;
|
|
|
|
EVT NewEltVT = EVT::getIntegerVT(*DAG.getContext(), NewElen);
|
|
EVT NewVT = SrcVT.changeVectorElementType(NewEltVT);
|
|
|
|
SDValue NewExt = DAG.getNode(N0->getOpcode(), DL, NewVT, N0->ops());
|
|
SDValue NewShAmtVec = DAG.getConstant(ShAmtV, DL, NewVT);
|
|
N = DAG.getNode(ISD::SHL, DL, NewVT, NewExt, NewShAmtVec);
|
|
return true;
|
|
}
|
|
|
|
/// Try to map an integer comparison with size > XLEN to vector instructions
|
|
/// before type legalization splits it up into chunks.
|
|
static SDValue
|
|
combineVectorSizedSetCCEquality(EVT VT, SDValue X, SDValue Y, ISD::CondCode CC,
|
|
const SDLoc &DL, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
assert(ISD::isIntEqualitySetCC(CC) && "Bad comparison predicate");
|
|
|
|
if (!Subtarget.hasVInstructions())
|
|
return SDValue();
|
|
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
EVT OpVT = X.getValueType();
|
|
// We're looking for an oversized integer equality comparison.
|
|
if (!OpVT.isScalarInteger())
|
|
return SDValue();
|
|
|
|
unsigned OpSize = OpVT.getSizeInBits();
|
|
// The size should be larger than XLen and smaller than the maximum vector
|
|
// size.
|
|
if (OpSize <= Subtarget.getXLen() ||
|
|
OpSize > Subtarget.getRealMinVLen() *
|
|
Subtarget.getMaxLMULForFixedLengthVectors())
|
|
return SDValue();
|
|
|
|
// Don't perform this combine if constructing the vector will be expensive.
|
|
auto IsVectorBitCastCheap = [](SDValue X) {
|
|
X = peekThroughBitcasts(X);
|
|
return isa<ConstantSDNode>(X) || X.getValueType().isVector() ||
|
|
X.getOpcode() == ISD::LOAD;
|
|
};
|
|
if (!IsVectorBitCastCheap(X) || !IsVectorBitCastCheap(Y))
|
|
return SDValue();
|
|
|
|
if (DAG.getMachineFunction().getFunction().hasFnAttribute(
|
|
Attribute::NoImplicitFloat))
|
|
return SDValue();
|
|
|
|
// Bail out for non-byte-sized types.
|
|
if (!OpVT.isByteSized())
|
|
return SDValue();
|
|
|
|
unsigned VecSize = OpSize / 8;
|
|
EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, VecSize);
|
|
EVT CmpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, VecSize);
|
|
|
|
SDValue VecX = DAG.getBitcast(VecVT, X);
|
|
SDValue VecY = DAG.getBitcast(VecVT, Y);
|
|
SDValue Mask = DAG.getAllOnesConstant(DL, CmpVT);
|
|
SDValue VL = DAG.getConstant(VecSize, DL, XLenVT);
|
|
|
|
SDValue Cmp = DAG.getNode(ISD::VP_SETCC, DL, CmpVT, VecX, VecY,
|
|
DAG.getCondCode(ISD::SETNE), Mask, VL);
|
|
return DAG.getSetCC(DL, VT,
|
|
DAG.getNode(ISD::VP_REDUCE_OR, DL, XLenVT,
|
|
DAG.getConstant(0, DL, XLenVT), Cmp, Mask,
|
|
VL),
|
|
DAG.getConstant(0, DL, XLenVT), CC);
|
|
}
|
|
|
|
// Replace (seteq (i64 (and X, 0xffffffff)), C1) with
|
|
// (seteq (i64 (sext_inreg (X, i32)), C1')) where C1' is C1 sign extended from
|
|
// bit 31. Same for setne. C1' may be cheaper to materialize and the sext_inreg
|
|
// can become a sext.w instead of a shift pair.
|
|
static SDValue performSETCCCombine(SDNode *N, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
SDLoc dl(N);
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
EVT VT = N->getValueType(0);
|
|
EVT OpVT = N0.getValueType();
|
|
|
|
ISD::CondCode Cond = cast<CondCodeSDNode>(N->getOperand(2))->get();
|
|
// Looking for an equality compare.
|
|
if (!isIntEqualitySetCC(Cond))
|
|
return SDValue();
|
|
|
|
if (SDValue V =
|
|
combineVectorSizedSetCCEquality(VT, N0, N1, Cond, dl, DAG, Subtarget))
|
|
return V;
|
|
|
|
if (OpVT != MVT::i64 || !Subtarget.is64Bit())
|
|
return SDValue();
|
|
|
|
// RHS needs to be a constant.
|
|
auto *N1C = dyn_cast<ConstantSDNode>(N1);
|
|
if (!N1C)
|
|
return SDValue();
|
|
|
|
// LHS needs to be (and X, 0xffffffff).
|
|
if (N0.getOpcode() != ISD::AND || !N0.hasOneUse() ||
|
|
!isa<ConstantSDNode>(N0.getOperand(1)) ||
|
|
N0.getConstantOperandVal(1) != UINT64_C(0xffffffff))
|
|
return SDValue();
|
|
|
|
// Don't do this if the sign bit is provably zero, it will be turned back into
|
|
// an AND.
|
|
APInt SignMask = APInt::getOneBitSet(64, 31);
|
|
if (DAG.MaskedValueIsZero(N0.getOperand(0), SignMask))
|
|
return SDValue();
|
|
|
|
const APInt &C1 = N1C->getAPIntValue();
|
|
|
|
// If the constant is larger than 2^32 - 1 it is impossible for both sides
|
|
// to be equal.
|
|
if (C1.getActiveBits() > 32)
|
|
return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
|
|
|
|
SDValue SExtOp = DAG.getNode(ISD::SIGN_EXTEND_INREG, N, OpVT,
|
|
N0.getOperand(0), DAG.getValueType(MVT::i32));
|
|
return DAG.getSetCC(dl, VT, SExtOp, DAG.getConstant(C1.trunc(32).sext(64),
|
|
dl, OpVT), Cond);
|
|
}
|
|
|
|
static SDValue
|
|
performSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
SDValue Src = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
EVT SrcVT = cast<VTSDNode>(N->getOperand(1))->getVT();
|
|
unsigned Opc = Src.getOpcode();
|
|
|
|
// Fold (sext_inreg (fmv_x_anyexth X), i16) -> (fmv_x_signexth X)
|
|
// Don't do this with Zhinx. We need to explicitly sign extend the GPR.
|
|
if (Opc == RISCVISD::FMV_X_ANYEXTH && SrcVT.bitsGE(MVT::i16) &&
|
|
Subtarget.hasStdExtZfhmin())
|
|
return DAG.getNode(RISCVISD::FMV_X_SIGNEXTH, SDLoc(N), VT,
|
|
Src.getOperand(0));
|
|
|
|
// Fold (sext_inreg (shl X, Y), i32) -> (sllw X, Y) iff Y u< 32
|
|
if (Opc == ISD::SHL && Subtarget.is64Bit() && SrcVT == MVT::i32 &&
|
|
VT == MVT::i64 && !isa<ConstantSDNode>(Src.getOperand(1)) &&
|
|
DAG.computeKnownBits(Src.getOperand(1)).countMaxActiveBits() <= 5)
|
|
return DAG.getNode(RISCVISD::SLLW, SDLoc(N), VT, Src.getOperand(0),
|
|
Src.getOperand(1));
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
namespace {
|
|
// Forward declaration of the structure holding the necessary information to
|
|
// apply a combine.
|
|
struct CombineResult;
|
|
|
|
enum ExtKind : uint8_t {
|
|
ZExt = 1 << 0,
|
|
SExt = 1 << 1,
|
|
FPExt = 1 << 2,
|
|
BF16Ext = 1 << 3
|
|
};
|
|
/// Helper class for folding sign/zero extensions.
|
|
/// In particular, this class is used for the following combines:
|
|
/// add | add_vl | or disjoint -> vwadd(u) | vwadd(u)_w
|
|
/// sub | sub_vl -> vwsub(u) | vwsub(u)_w
|
|
/// mul | mul_vl -> vwmul(u) | vwmul_su
|
|
/// shl | shl_vl -> vwsll
|
|
/// fadd -> vfwadd | vfwadd_w
|
|
/// fsub -> vfwsub | vfwsub_w
|
|
/// fmul -> vfwmul
|
|
/// An object of this class represents an operand of the operation we want to
|
|
/// combine.
|
|
/// E.g., when trying to combine `mul_vl a, b`, we will have one instance of
|
|
/// NodeExtensionHelper for `a` and one for `b`.
|
|
///
|
|
/// This class abstracts away how the extension is materialized and
|
|
/// how its number of users affect the combines.
|
|
///
|
|
/// In particular:
|
|
/// - VWADD_W is conceptually == add(op0, sext(op1))
|
|
/// - VWADDU_W == add(op0, zext(op1))
|
|
/// - VWSUB_W == sub(op0, sext(op1))
|
|
/// - VWSUBU_W == sub(op0, zext(op1))
|
|
/// - VFWADD_W == fadd(op0, fpext(op1))
|
|
/// - VFWSUB_W == fsub(op0, fpext(op1))
|
|
/// And VMV_V_X_VL, depending on the value, is conceptually equivalent to
|
|
/// zext|sext(smaller_value).
|
|
struct NodeExtensionHelper {
|
|
/// Records if this operand is like being zero extended.
|
|
bool SupportsZExt;
|
|
/// Records if this operand is like being sign extended.
|
|
/// Note: SupportsZExt and SupportsSExt are not mutually exclusive. For
|
|
/// instance, a splat constant (e.g., 3), would support being both sign and
|
|
/// zero extended.
|
|
bool SupportsSExt;
|
|
/// Records if this operand is like being floating point extended.
|
|
bool SupportsFPExt;
|
|
/// Records if this operand is extended from bf16.
|
|
bool SupportsBF16Ext;
|
|
/// This boolean captures whether we care if this operand would still be
|
|
/// around after the folding happens.
|
|
bool EnforceOneUse;
|
|
/// Original value that this NodeExtensionHelper represents.
|
|
SDValue OrigOperand;
|
|
|
|
/// Get the value feeding the extension or the value itself.
|
|
/// E.g., for zext(a), this would return a.
|
|
SDValue getSource() const {
|
|
switch (OrigOperand.getOpcode()) {
|
|
case ISD::ZERO_EXTEND:
|
|
case ISD::SIGN_EXTEND:
|
|
case RISCVISD::VSEXT_VL:
|
|
case RISCVISD::VZEXT_VL:
|
|
case RISCVISD::FP_EXTEND_VL:
|
|
return OrigOperand.getOperand(0);
|
|
default:
|
|
return OrigOperand;
|
|
}
|
|
}
|
|
|
|
/// Check if this instance represents a splat.
|
|
bool isSplat() const {
|
|
return OrigOperand.getOpcode() == RISCVISD::VMV_V_X_VL ||
|
|
OrigOperand.getOpcode() == ISD::SPLAT_VECTOR;
|
|
}
|
|
|
|
/// Get the extended opcode.
|
|
unsigned getExtOpc(ExtKind SupportsExt) const {
|
|
switch (SupportsExt) {
|
|
case ExtKind::SExt:
|
|
return RISCVISD::VSEXT_VL;
|
|
case ExtKind::ZExt:
|
|
return RISCVISD::VZEXT_VL;
|
|
case ExtKind::FPExt:
|
|
case ExtKind::BF16Ext:
|
|
return RISCVISD::FP_EXTEND_VL;
|
|
}
|
|
llvm_unreachable("Unknown ExtKind enum");
|
|
}
|
|
|
|
/// Get or create a value that can feed \p Root with the given extension \p
|
|
/// SupportsExt. If \p SExt is std::nullopt, this returns the source of this
|
|
/// operand. \see ::getSource().
|
|
SDValue getOrCreateExtendedOp(SDNode *Root, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget,
|
|
std::optional<ExtKind> SupportsExt) const {
|
|
if (!SupportsExt.has_value())
|
|
return OrigOperand;
|
|
|
|
MVT NarrowVT = getNarrowType(Root, *SupportsExt);
|
|
|
|
SDValue Source = getSource();
|
|
assert(Subtarget.getTargetLowering()->isTypeLegal(Source.getValueType()));
|
|
if (Source.getValueType() == NarrowVT)
|
|
return Source;
|
|
|
|
unsigned ExtOpc = getExtOpc(*SupportsExt);
|
|
|
|
// If we need an extension, we should be changing the type.
|
|
SDLoc DL(OrigOperand);
|
|
auto [Mask, VL] = getMaskAndVL(Root, DAG, Subtarget);
|
|
switch (OrigOperand.getOpcode()) {
|
|
case ISD::ZERO_EXTEND:
|
|
case ISD::SIGN_EXTEND:
|
|
case RISCVISD::VSEXT_VL:
|
|
case RISCVISD::VZEXT_VL:
|
|
case RISCVISD::FP_EXTEND_VL:
|
|
return DAG.getNode(ExtOpc, DL, NarrowVT, Source, Mask, VL);
|
|
case ISD::SPLAT_VECTOR:
|
|
return DAG.getSplat(NarrowVT, DL, Source.getOperand(0));
|
|
case RISCVISD::VMV_V_X_VL:
|
|
return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
|
|
DAG.getUNDEF(NarrowVT), Source.getOperand(1), VL);
|
|
case RISCVISD::VFMV_V_F_VL:
|
|
Source = Source.getOperand(1);
|
|
assert(Source.getOpcode() == ISD::FP_EXTEND && "Unexpected source");
|
|
Source = Source.getOperand(0);
|
|
assert(Source.getValueType() == NarrowVT.getVectorElementType());
|
|
return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, NarrowVT,
|
|
DAG.getUNDEF(NarrowVT), Source, VL);
|
|
default:
|
|
// Other opcodes can only come from the original LHS of VW(ADD|SUB)_W_VL
|
|
// and that operand should already have the right NarrowVT so no
|
|
// extension should be required at this point.
|
|
llvm_unreachable("Unsupported opcode");
|
|
}
|
|
}
|
|
|
|
/// Helper function to get the narrow type for \p Root.
|
|
/// The narrow type is the type of \p Root where we divided the size of each
|
|
/// element by 2. E.g., if Root's type <2xi16> -> narrow type <2xi8>.
|
|
/// \pre Both the narrow type and the original type should be legal.
|
|
static MVT getNarrowType(const SDNode *Root, ExtKind SupportsExt) {
|
|
MVT VT = Root->getSimpleValueType(0);
|
|
|
|
// Determine the narrow size.
|
|
unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
|
|
|
|
MVT EltVT = SupportsExt == ExtKind::BF16Ext ? MVT::bf16
|
|
: SupportsExt == ExtKind::FPExt
|
|
? MVT::getFloatingPointVT(NarrowSize)
|
|
: MVT::getIntegerVT(NarrowSize);
|
|
|
|
assert((int)NarrowSize >= (SupportsExt == ExtKind::FPExt ? 16 : 8) &&
|
|
"Trying to extend something we can't represent");
|
|
MVT NarrowVT = MVT::getVectorVT(EltVT, VT.getVectorElementCount());
|
|
return NarrowVT;
|
|
}
|
|
|
|
/// Get the opcode to materialize:
|
|
/// Opcode(sext(a), sext(b)) -> newOpcode(a, b)
|
|
static unsigned getSExtOpcode(unsigned Opcode) {
|
|
switch (Opcode) {
|
|
case ISD::ADD:
|
|
case RISCVISD::ADD_VL:
|
|
case RISCVISD::VWADD_W_VL:
|
|
case RISCVISD::VWADDU_W_VL:
|
|
case ISD::OR:
|
|
case RISCVISD::OR_VL:
|
|
return RISCVISD::VWADD_VL;
|
|
case ISD::SUB:
|
|
case RISCVISD::SUB_VL:
|
|
case RISCVISD::VWSUB_W_VL:
|
|
case RISCVISD::VWSUBU_W_VL:
|
|
return RISCVISD::VWSUB_VL;
|
|
case ISD::MUL:
|
|
case RISCVISD::MUL_VL:
|
|
return RISCVISD::VWMUL_VL;
|
|
default:
|
|
llvm_unreachable("Unexpected opcode");
|
|
}
|
|
}
|
|
|
|
/// Get the opcode to materialize:
|
|
/// Opcode(zext(a), zext(b)) -> newOpcode(a, b)
|
|
static unsigned getZExtOpcode(unsigned Opcode) {
|
|
switch (Opcode) {
|
|
case ISD::ADD:
|
|
case RISCVISD::ADD_VL:
|
|
case RISCVISD::VWADD_W_VL:
|
|
case RISCVISD::VWADDU_W_VL:
|
|
case ISD::OR:
|
|
case RISCVISD::OR_VL:
|
|
return RISCVISD::VWADDU_VL;
|
|
case ISD::SUB:
|
|
case RISCVISD::SUB_VL:
|
|
case RISCVISD::VWSUB_W_VL:
|
|
case RISCVISD::VWSUBU_W_VL:
|
|
return RISCVISD::VWSUBU_VL;
|
|
case ISD::MUL:
|
|
case RISCVISD::MUL_VL:
|
|
return RISCVISD::VWMULU_VL;
|
|
case ISD::SHL:
|
|
case RISCVISD::SHL_VL:
|
|
return RISCVISD::VWSLL_VL;
|
|
default:
|
|
llvm_unreachable("Unexpected opcode");
|
|
}
|
|
}
|
|
|
|
/// Get the opcode to materialize:
|
|
/// Opcode(fpext(a), fpext(b)) -> newOpcode(a, b)
|
|
static unsigned getFPExtOpcode(unsigned Opcode) {
|
|
switch (Opcode) {
|
|
case RISCVISD::FADD_VL:
|
|
case RISCVISD::VFWADD_W_VL:
|
|
return RISCVISD::VFWADD_VL;
|
|
case RISCVISD::FSUB_VL:
|
|
case RISCVISD::VFWSUB_W_VL:
|
|
return RISCVISD::VFWSUB_VL;
|
|
case RISCVISD::FMUL_VL:
|
|
return RISCVISD::VFWMUL_VL;
|
|
case RISCVISD::VFMADD_VL:
|
|
return RISCVISD::VFWMADD_VL;
|
|
case RISCVISD::VFMSUB_VL:
|
|
return RISCVISD::VFWMSUB_VL;
|
|
case RISCVISD::VFNMADD_VL:
|
|
return RISCVISD::VFWNMADD_VL;
|
|
case RISCVISD::VFNMSUB_VL:
|
|
return RISCVISD::VFWNMSUB_VL;
|
|
default:
|
|
llvm_unreachable("Unexpected opcode");
|
|
}
|
|
}
|
|
|
|
/// Get the opcode to materialize \p Opcode(sext(a), zext(b)) ->
|
|
/// newOpcode(a, b).
|
|
static unsigned getSUOpcode(unsigned Opcode) {
|
|
assert((Opcode == RISCVISD::MUL_VL || Opcode == ISD::MUL) &&
|
|
"SU is only supported for MUL");
|
|
return RISCVISD::VWMULSU_VL;
|
|
}
|
|
|
|
/// Get the opcode to materialize
|
|
/// \p Opcode(a, s|z|fpext(b)) -> newOpcode(a, b).
|
|
static unsigned getWOpcode(unsigned Opcode, ExtKind SupportsExt) {
|
|
switch (Opcode) {
|
|
case ISD::ADD:
|
|
case RISCVISD::ADD_VL:
|
|
case ISD::OR:
|
|
case RISCVISD::OR_VL:
|
|
return SupportsExt == ExtKind::SExt ? RISCVISD::VWADD_W_VL
|
|
: RISCVISD::VWADDU_W_VL;
|
|
case ISD::SUB:
|
|
case RISCVISD::SUB_VL:
|
|
return SupportsExt == ExtKind::SExt ? RISCVISD::VWSUB_W_VL
|
|
: RISCVISD::VWSUBU_W_VL;
|
|
case RISCVISD::FADD_VL:
|
|
return RISCVISD::VFWADD_W_VL;
|
|
case RISCVISD::FSUB_VL:
|
|
return RISCVISD::VFWSUB_W_VL;
|
|
default:
|
|
llvm_unreachable("Unexpected opcode");
|
|
}
|
|
}
|
|
|
|
using CombineToTry = std::function<std::optional<CombineResult>(
|
|
SDNode * /*Root*/, const NodeExtensionHelper & /*LHS*/,
|
|
const NodeExtensionHelper & /*RHS*/, SelectionDAG &,
|
|
const RISCVSubtarget &)>;
|
|
|
|
/// Check if this node needs to be fully folded or extended for all users.
|
|
bool needToPromoteOtherUsers() const { return EnforceOneUse; }
|
|
|
|
void fillUpExtensionSupportForSplat(SDNode *Root, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
unsigned Opc = OrigOperand.getOpcode();
|
|
MVT VT = OrigOperand.getSimpleValueType();
|
|
|
|
assert((Opc == ISD::SPLAT_VECTOR || Opc == RISCVISD::VMV_V_X_VL) &&
|
|
"Unexpected Opcode");
|
|
|
|
// The pasthru must be undef for tail agnostic.
|
|
if (Opc == RISCVISD::VMV_V_X_VL && !OrigOperand.getOperand(0).isUndef())
|
|
return;
|
|
|
|
// Get the scalar value.
|
|
SDValue Op = Opc == ISD::SPLAT_VECTOR ? OrigOperand.getOperand(0)
|
|
: OrigOperand.getOperand(1);
|
|
|
|
// See if we have enough sign bits or zero bits in the scalar to use a
|
|
// widening opcode by splatting to smaller element size.
|
|
unsigned EltBits = VT.getScalarSizeInBits();
|
|
unsigned ScalarBits = Op.getValueSizeInBits();
|
|
// If we're not getting all bits from the element, we need special handling.
|
|
if (ScalarBits < EltBits) {
|
|
// This should only occur on RV32.
|
|
assert(Opc == RISCVISD::VMV_V_X_VL && EltBits == 64 && ScalarBits == 32 &&
|
|
!Subtarget.is64Bit() && "Unexpected splat");
|
|
// vmv.v.x sign extends narrow inputs.
|
|
SupportsSExt = true;
|
|
|
|
// If the input is positive, then sign extend is also zero extend.
|
|
if (DAG.SignBitIsZero(Op))
|
|
SupportsZExt = true;
|
|
|
|
EnforceOneUse = false;
|
|
return;
|
|
}
|
|
|
|
unsigned NarrowSize = EltBits / 2;
|
|
// If the narrow type cannot be expressed with a legal VMV,
|
|
// this is not a valid candidate.
|
|
if (NarrowSize < 8)
|
|
return;
|
|
|
|
if (DAG.ComputeMaxSignificantBits(Op) <= NarrowSize)
|
|
SupportsSExt = true;
|
|
|
|
if (DAG.MaskedValueIsZero(Op,
|
|
APInt::getBitsSetFrom(ScalarBits, NarrowSize)))
|
|
SupportsZExt = true;
|
|
|
|
EnforceOneUse = false;
|
|
}
|
|
|
|
bool isSupportedFPExtend(MVT NarrowEltVT, const RISCVSubtarget &Subtarget) {
|
|
return (NarrowEltVT == MVT::f32 ||
|
|
(NarrowEltVT == MVT::f16 && Subtarget.hasVInstructionsF16()));
|
|
}
|
|
|
|
bool isSupportedBF16Extend(MVT NarrowEltVT, const RISCVSubtarget &Subtarget) {
|
|
return NarrowEltVT == MVT::bf16 && Subtarget.hasStdExtZvfbfwma();
|
|
}
|
|
|
|
/// Helper method to set the various fields of this struct based on the
|
|
/// type of \p Root.
|
|
void fillUpExtensionSupport(SDNode *Root, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
SupportsZExt = false;
|
|
SupportsSExt = false;
|
|
SupportsFPExt = false;
|
|
SupportsBF16Ext = false;
|
|
EnforceOneUse = true;
|
|
unsigned Opc = OrigOperand.getOpcode();
|
|
// For the nodes we handle below, we end up using their inputs directly: see
|
|
// getSource(). However since they either don't have a passthru or we check
|
|
// that their passthru is undef, we can safely ignore their mask and VL.
|
|
switch (Opc) {
|
|
case ISD::ZERO_EXTEND:
|
|
case ISD::SIGN_EXTEND: {
|
|
MVT VT = OrigOperand.getSimpleValueType();
|
|
if (!VT.isVector())
|
|
break;
|
|
|
|
SDValue NarrowElt = OrigOperand.getOperand(0);
|
|
MVT NarrowVT = NarrowElt.getSimpleValueType();
|
|
// i1 types are legal but we can't select V{S,Z}EXT_VLs with them.
|
|
if (NarrowVT.getVectorElementType() == MVT::i1)
|
|
break;
|
|
|
|
SupportsZExt = Opc == ISD::ZERO_EXTEND;
|
|
SupportsSExt = Opc == ISD::SIGN_EXTEND;
|
|
break;
|
|
}
|
|
case RISCVISD::VZEXT_VL:
|
|
SupportsZExt = true;
|
|
break;
|
|
case RISCVISD::VSEXT_VL:
|
|
SupportsSExt = true;
|
|
break;
|
|
case RISCVISD::FP_EXTEND_VL: {
|
|
MVT NarrowEltVT =
|
|
OrigOperand.getOperand(0).getSimpleValueType().getVectorElementType();
|
|
if (isSupportedFPExtend(NarrowEltVT, Subtarget))
|
|
SupportsFPExt = true;
|
|
if (isSupportedBF16Extend(NarrowEltVT, Subtarget))
|
|
SupportsBF16Ext = true;
|
|
|
|
break;
|
|
}
|
|
case ISD::SPLAT_VECTOR:
|
|
case RISCVISD::VMV_V_X_VL:
|
|
fillUpExtensionSupportForSplat(Root, DAG, Subtarget);
|
|
break;
|
|
case RISCVISD::VFMV_V_F_VL: {
|
|
MVT VT = OrigOperand.getSimpleValueType();
|
|
|
|
if (!OrigOperand.getOperand(0).isUndef())
|
|
break;
|
|
|
|
SDValue Op = OrigOperand.getOperand(1);
|
|
if (Op.getOpcode() != ISD::FP_EXTEND)
|
|
break;
|
|
|
|
unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
|
|
unsigned ScalarBits = Op.getOperand(0).getValueSizeInBits();
|
|
if (NarrowSize != ScalarBits)
|
|
break;
|
|
|
|
if (isSupportedFPExtend(Op.getOperand(0).getSimpleValueType(), Subtarget))
|
|
SupportsFPExt = true;
|
|
if (isSupportedBF16Extend(Op.getOperand(0).getSimpleValueType(),
|
|
Subtarget))
|
|
SupportsBF16Ext = true;
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// Check if \p Root supports any extension folding combines.
|
|
static bool isSupportedRoot(const SDNode *Root,
|
|
const RISCVSubtarget &Subtarget) {
|
|
switch (Root->getOpcode()) {
|
|
case ISD::ADD:
|
|
case ISD::SUB:
|
|
case ISD::MUL: {
|
|
return Root->getValueType(0).isScalableVector();
|
|
}
|
|
case ISD::OR: {
|
|
return Root->getValueType(0).isScalableVector() &&
|
|
Root->getFlags().hasDisjoint();
|
|
}
|
|
// Vector Widening Integer Add/Sub/Mul Instructions
|
|
case RISCVISD::ADD_VL:
|
|
case RISCVISD::MUL_VL:
|
|
case RISCVISD::VWADD_W_VL:
|
|
case RISCVISD::VWADDU_W_VL:
|
|
case RISCVISD::SUB_VL:
|
|
case RISCVISD::VWSUB_W_VL:
|
|
case RISCVISD::VWSUBU_W_VL:
|
|
// Vector Widening Floating-Point Add/Sub/Mul Instructions
|
|
case RISCVISD::FADD_VL:
|
|
case RISCVISD::FSUB_VL:
|
|
case RISCVISD::FMUL_VL:
|
|
case RISCVISD::VFWADD_W_VL:
|
|
case RISCVISD::VFWSUB_W_VL:
|
|
return true;
|
|
case RISCVISD::OR_VL:
|
|
return Root->getFlags().hasDisjoint();
|
|
case ISD::SHL:
|
|
return Root->getValueType(0).isScalableVector() &&
|
|
Subtarget.hasStdExtZvbb();
|
|
case RISCVISD::SHL_VL:
|
|
return Subtarget.hasStdExtZvbb();
|
|
case RISCVISD::VFMADD_VL:
|
|
case RISCVISD::VFNMSUB_VL:
|
|
case RISCVISD::VFNMADD_VL:
|
|
case RISCVISD::VFMSUB_VL:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// Build a NodeExtensionHelper for \p Root.getOperand(\p OperandIdx).
|
|
NodeExtensionHelper(SDNode *Root, unsigned OperandIdx, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
assert(isSupportedRoot(Root, Subtarget) &&
|
|
"Trying to build an helper with an "
|
|
"unsupported root");
|
|
assert(OperandIdx < 2 && "Requesting something else than LHS or RHS");
|
|
assert(DAG.getTargetLoweringInfo().isTypeLegal(Root->getValueType(0)));
|
|
OrigOperand = Root->getOperand(OperandIdx);
|
|
|
|
unsigned Opc = Root->getOpcode();
|
|
switch (Opc) {
|
|
// We consider
|
|
// VW<ADD|SUB>_W(LHS, RHS) -> <ADD|SUB>(LHS, SEXT(RHS))
|
|
// VW<ADD|SUB>U_W(LHS, RHS) -> <ADD|SUB>(LHS, ZEXT(RHS))
|
|
// VFW<ADD|SUB>_W(LHS, RHS) -> F<ADD|SUB>(LHS, FPEXT(RHS))
|
|
case RISCVISD::VWADD_W_VL:
|
|
case RISCVISD::VWADDU_W_VL:
|
|
case RISCVISD::VWSUB_W_VL:
|
|
case RISCVISD::VWSUBU_W_VL:
|
|
case RISCVISD::VFWADD_W_VL:
|
|
case RISCVISD::VFWSUB_W_VL:
|
|
if (OperandIdx == 1) {
|
|
SupportsZExt =
|
|
Opc == RISCVISD::VWADDU_W_VL || Opc == RISCVISD::VWSUBU_W_VL;
|
|
SupportsSExt =
|
|
Opc == RISCVISD::VWADD_W_VL || Opc == RISCVISD::VWSUB_W_VL;
|
|
SupportsFPExt =
|
|
Opc == RISCVISD::VFWADD_W_VL || Opc == RISCVISD::VFWSUB_W_VL;
|
|
// There's no existing extension here, so we don't have to worry about
|
|
// making sure it gets removed.
|
|
EnforceOneUse = false;
|
|
break;
|
|
}
|
|
[[fallthrough]];
|
|
default:
|
|
fillUpExtensionSupport(Root, DAG, Subtarget);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// Helper function to get the Mask and VL from \p Root.
|
|
static std::pair<SDValue, SDValue>
|
|
getMaskAndVL(const SDNode *Root, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
assert(isSupportedRoot(Root, Subtarget) && "Unexpected root");
|
|
switch (Root->getOpcode()) {
|
|
case ISD::ADD:
|
|
case ISD::SUB:
|
|
case ISD::MUL:
|
|
case ISD::OR:
|
|
case ISD::SHL: {
|
|
SDLoc DL(Root);
|
|
MVT VT = Root->getSimpleValueType(0);
|
|
return getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
|
|
}
|
|
default:
|
|
return std::make_pair(Root->getOperand(3), Root->getOperand(4));
|
|
}
|
|
}
|
|
|
|
/// Helper function to check if \p N is commutative with respect to the
|
|
/// foldings that are supported by this class.
|
|
static bool isCommutative(const SDNode *N) {
|
|
switch (N->getOpcode()) {
|
|
case ISD::ADD:
|
|
case ISD::MUL:
|
|
case ISD::OR:
|
|
case RISCVISD::ADD_VL:
|
|
case RISCVISD::MUL_VL:
|
|
case RISCVISD::OR_VL:
|
|
case RISCVISD::VWADD_W_VL:
|
|
case RISCVISD::VWADDU_W_VL:
|
|
case RISCVISD::FADD_VL:
|
|
case RISCVISD::FMUL_VL:
|
|
case RISCVISD::VFWADD_W_VL:
|
|
case RISCVISD::VFMADD_VL:
|
|
case RISCVISD::VFNMSUB_VL:
|
|
case RISCVISD::VFNMADD_VL:
|
|
case RISCVISD::VFMSUB_VL:
|
|
return true;
|
|
case ISD::SUB:
|
|
case RISCVISD::SUB_VL:
|
|
case RISCVISD::VWSUB_W_VL:
|
|
case RISCVISD::VWSUBU_W_VL:
|
|
case RISCVISD::FSUB_VL:
|
|
case RISCVISD::VFWSUB_W_VL:
|
|
case ISD::SHL:
|
|
case RISCVISD::SHL_VL:
|
|
return false;
|
|
default:
|
|
llvm_unreachable("Unexpected opcode");
|
|
}
|
|
}
|
|
|
|
/// Get a list of combine to try for folding extensions in \p Root.
|
|
/// Note that each returned CombineToTry function doesn't actually modify
|
|
/// anything. Instead they produce an optional CombineResult that if not None,
|
|
/// need to be materialized for the combine to be applied.
|
|
/// \see CombineResult::materialize.
|
|
/// If the related CombineToTry function returns std::nullopt, that means the
|
|
/// combine didn't match.
|
|
static SmallVector<CombineToTry> getSupportedFoldings(const SDNode *Root);
|
|
};
|
|
|
|
/// Helper structure that holds all the necessary information to materialize a
|
|
/// combine that does some extension folding.
|
|
struct CombineResult {
|
|
/// Opcode to be generated when materializing the combine.
|
|
unsigned TargetOpcode;
|
|
// No value means no extension is needed.
|
|
std::optional<ExtKind> LHSExt;
|
|
std::optional<ExtKind> RHSExt;
|
|
/// Root of the combine.
|
|
SDNode *Root;
|
|
/// LHS of the TargetOpcode.
|
|
NodeExtensionHelper LHS;
|
|
/// RHS of the TargetOpcode.
|
|
NodeExtensionHelper RHS;
|
|
|
|
CombineResult(unsigned TargetOpcode, SDNode *Root,
|
|
const NodeExtensionHelper &LHS, std::optional<ExtKind> LHSExt,
|
|
const NodeExtensionHelper &RHS, std::optional<ExtKind> RHSExt)
|
|
: TargetOpcode(TargetOpcode), LHSExt(LHSExt), RHSExt(RHSExt), Root(Root),
|
|
LHS(LHS), RHS(RHS) {}
|
|
|
|
/// Return a value that uses TargetOpcode and that can be used to replace
|
|
/// Root.
|
|
/// The actual replacement is *not* done in that method.
|
|
SDValue materialize(SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) const {
|
|
SDValue Mask, VL, Passthru;
|
|
std::tie(Mask, VL) =
|
|
NodeExtensionHelper::getMaskAndVL(Root, DAG, Subtarget);
|
|
switch (Root->getOpcode()) {
|
|
default:
|
|
Passthru = Root->getOperand(2);
|
|
break;
|
|
case ISD::ADD:
|
|
case ISD::SUB:
|
|
case ISD::MUL:
|
|
case ISD::OR:
|
|
case ISD::SHL:
|
|
Passthru = DAG.getUNDEF(Root->getValueType(0));
|
|
break;
|
|
}
|
|
return DAG.getNode(TargetOpcode, SDLoc(Root), Root->getValueType(0),
|
|
LHS.getOrCreateExtendedOp(Root, DAG, Subtarget, LHSExt),
|
|
RHS.getOrCreateExtendedOp(Root, DAG, Subtarget, RHSExt),
|
|
Passthru, Mask, VL);
|
|
}
|
|
};
|
|
|
|
/// Check if \p Root follows a pattern Root(ext(LHS), ext(RHS))
|
|
/// where `ext` is the same for both LHS and RHS (i.e., both are sext or both
|
|
/// are zext) and LHS and RHS can be folded into Root.
|
|
/// AllowExtMask define which form `ext` can take in this pattern.
|
|
///
|
|
/// \note If the pattern can match with both zext and sext, the returned
|
|
/// CombineResult will feature the zext result.
|
|
///
|
|
/// \returns std::nullopt if the pattern doesn't match or a CombineResult that
|
|
/// can be used to apply the pattern.
|
|
static std::optional<CombineResult>
|
|
canFoldToVWWithSameExtensionImpl(SDNode *Root, const NodeExtensionHelper &LHS,
|
|
const NodeExtensionHelper &RHS,
|
|
uint8_t AllowExtMask, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
if ((AllowExtMask & ExtKind::ZExt) && LHS.SupportsZExt && RHS.SupportsZExt)
|
|
return CombineResult(NodeExtensionHelper::getZExtOpcode(Root->getOpcode()),
|
|
Root, LHS, /*LHSExt=*/{ExtKind::ZExt}, RHS,
|
|
/*RHSExt=*/{ExtKind::ZExt});
|
|
if ((AllowExtMask & ExtKind::SExt) && LHS.SupportsSExt && RHS.SupportsSExt)
|
|
return CombineResult(NodeExtensionHelper::getSExtOpcode(Root->getOpcode()),
|
|
Root, LHS, /*LHSExt=*/{ExtKind::SExt}, RHS,
|
|
/*RHSExt=*/{ExtKind::SExt});
|
|
if ((AllowExtMask & ExtKind::FPExt) && LHS.SupportsFPExt && RHS.SupportsFPExt)
|
|
return CombineResult(NodeExtensionHelper::getFPExtOpcode(Root->getOpcode()),
|
|
Root, LHS, /*LHSExt=*/{ExtKind::FPExt}, RHS,
|
|
/*RHSExt=*/{ExtKind::FPExt});
|
|
if ((AllowExtMask & ExtKind::BF16Ext) && LHS.SupportsBF16Ext &&
|
|
RHS.SupportsBF16Ext)
|
|
return CombineResult(NodeExtensionHelper::getFPExtOpcode(Root->getOpcode()),
|
|
Root, LHS, /*LHSExt=*/{ExtKind::BF16Ext}, RHS,
|
|
/*RHSExt=*/{ExtKind::BF16Ext});
|
|
return std::nullopt;
|
|
}
|
|
|
|
/// Check if \p Root follows a pattern Root(ext(LHS), ext(RHS))
|
|
/// where `ext` is the same for both LHS and RHS (i.e., both are sext or both
|
|
/// are zext) and LHS and RHS can be folded into Root.
|
|
///
|
|
/// \returns std::nullopt if the pattern doesn't match or a CombineResult that
|
|
/// can be used to apply the pattern.
|
|
static std::optional<CombineResult>
|
|
canFoldToVWWithSameExtension(SDNode *Root, const NodeExtensionHelper &LHS,
|
|
const NodeExtensionHelper &RHS, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
return canFoldToVWWithSameExtensionImpl(
|
|
Root, LHS, RHS, ExtKind::ZExt | ExtKind::SExt | ExtKind::FPExt, DAG,
|
|
Subtarget);
|
|
}
|
|
|
|
/// Check if \p Root follows a pattern Root(LHS, ext(RHS))
|
|
///
|
|
/// \returns std::nullopt if the pattern doesn't match or a CombineResult that
|
|
/// can be used to apply the pattern.
|
|
static std::optional<CombineResult>
|
|
canFoldToVW_W(SDNode *Root, const NodeExtensionHelper &LHS,
|
|
const NodeExtensionHelper &RHS, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
if (RHS.SupportsFPExt)
|
|
return CombineResult(
|
|
NodeExtensionHelper::getWOpcode(Root->getOpcode(), ExtKind::FPExt),
|
|
Root, LHS, /*LHSExt=*/std::nullopt, RHS, /*RHSExt=*/{ExtKind::FPExt});
|
|
|
|
// FIXME: Is it useful to form a vwadd.wx or vwsub.wx if it removes a scalar
|
|
// sext/zext?
|
|
// Control this behavior behind an option (AllowSplatInVW_W) for testing
|
|
// purposes.
|
|
if (RHS.SupportsZExt && (!RHS.isSplat() || AllowSplatInVW_W))
|
|
return CombineResult(
|
|
NodeExtensionHelper::getWOpcode(Root->getOpcode(), ExtKind::ZExt), Root,
|
|
LHS, /*LHSExt=*/std::nullopt, RHS, /*RHSExt=*/{ExtKind::ZExt});
|
|
if (RHS.SupportsSExt && (!RHS.isSplat() || AllowSplatInVW_W))
|
|
return CombineResult(
|
|
NodeExtensionHelper::getWOpcode(Root->getOpcode(), ExtKind::SExt), Root,
|
|
LHS, /*LHSExt=*/std::nullopt, RHS, /*RHSExt=*/{ExtKind::SExt});
|
|
return std::nullopt;
|
|
}
|
|
|
|
/// Check if \p Root follows a pattern Root(sext(LHS), sext(RHS))
|
|
///
|
|
/// \returns std::nullopt if the pattern doesn't match or a CombineResult that
|
|
/// can be used to apply the pattern.
|
|
static std::optional<CombineResult>
|
|
canFoldToVWWithSEXT(SDNode *Root, const NodeExtensionHelper &LHS,
|
|
const NodeExtensionHelper &RHS, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
return canFoldToVWWithSameExtensionImpl(Root, LHS, RHS, ExtKind::SExt, DAG,
|
|
Subtarget);
|
|
}
|
|
|
|
/// Check if \p Root follows a pattern Root(zext(LHS), zext(RHS))
|
|
///
|
|
/// \returns std::nullopt if the pattern doesn't match or a CombineResult that
|
|
/// can be used to apply the pattern.
|
|
static std::optional<CombineResult>
|
|
canFoldToVWWithZEXT(SDNode *Root, const NodeExtensionHelper &LHS,
|
|
const NodeExtensionHelper &RHS, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
return canFoldToVWWithSameExtensionImpl(Root, LHS, RHS, ExtKind::ZExt, DAG,
|
|
Subtarget);
|
|
}
|
|
|
|
/// Check if \p Root follows a pattern Root(fpext(LHS), fpext(RHS))
|
|
///
|
|
/// \returns std::nullopt if the pattern doesn't match or a CombineResult that
|
|
/// can be used to apply the pattern.
|
|
static std::optional<CombineResult>
|
|
canFoldToVWWithFPEXT(SDNode *Root, const NodeExtensionHelper &LHS,
|
|
const NodeExtensionHelper &RHS, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
return canFoldToVWWithSameExtensionImpl(Root, LHS, RHS, ExtKind::FPExt, DAG,
|
|
Subtarget);
|
|
}
|
|
|
|
/// Check if \p Root follows a pattern Root(bf16ext(LHS), bf16ext(RHS))
|
|
///
|
|
/// \returns std::nullopt if the pattern doesn't match or a CombineResult that
|
|
/// can be used to apply the pattern.
|
|
static std::optional<CombineResult>
|
|
canFoldToVWWithBF16EXT(SDNode *Root, const NodeExtensionHelper &LHS,
|
|
const NodeExtensionHelper &RHS, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
return canFoldToVWWithSameExtensionImpl(Root, LHS, RHS, ExtKind::BF16Ext, DAG,
|
|
Subtarget);
|
|
}
|
|
|
|
/// Check if \p Root follows a pattern Root(sext(LHS), zext(RHS))
|
|
///
|
|
/// \returns std::nullopt if the pattern doesn't match or a CombineResult that
|
|
/// can be used to apply the pattern.
|
|
static std::optional<CombineResult>
|
|
canFoldToVW_SU(SDNode *Root, const NodeExtensionHelper &LHS,
|
|
const NodeExtensionHelper &RHS, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
|
|
if (!LHS.SupportsSExt || !RHS.SupportsZExt)
|
|
return std::nullopt;
|
|
return CombineResult(NodeExtensionHelper::getSUOpcode(Root->getOpcode()),
|
|
Root, LHS, /*LHSExt=*/{ExtKind::SExt}, RHS,
|
|
/*RHSExt=*/{ExtKind::ZExt});
|
|
}
|
|
|
|
SmallVector<NodeExtensionHelper::CombineToTry>
|
|
NodeExtensionHelper::getSupportedFoldings(const SDNode *Root) {
|
|
SmallVector<CombineToTry> Strategies;
|
|
switch (Root->getOpcode()) {
|
|
case ISD::ADD:
|
|
case ISD::SUB:
|
|
case ISD::OR:
|
|
case RISCVISD::ADD_VL:
|
|
case RISCVISD::SUB_VL:
|
|
case RISCVISD::OR_VL:
|
|
case RISCVISD::FADD_VL:
|
|
case RISCVISD::FSUB_VL:
|
|
// add|sub|fadd|fsub-> vwadd(u)|vwsub(u)|vfwadd|vfwsub
|
|
Strategies.push_back(canFoldToVWWithSameExtension);
|
|
// add|sub|fadd|fsub -> vwadd(u)_w|vwsub(u)_w}|vfwadd_w|vfwsub_w
|
|
Strategies.push_back(canFoldToVW_W);
|
|
break;
|
|
case RISCVISD::FMUL_VL:
|
|
case RISCVISD::VFMADD_VL:
|
|
case RISCVISD::VFMSUB_VL:
|
|
case RISCVISD::VFNMADD_VL:
|
|
case RISCVISD::VFNMSUB_VL:
|
|
Strategies.push_back(canFoldToVWWithSameExtension);
|
|
if (Root->getOpcode() == RISCVISD::VFMADD_VL)
|
|
Strategies.push_back(canFoldToVWWithBF16EXT);
|
|
break;
|
|
case ISD::MUL:
|
|
case RISCVISD::MUL_VL:
|
|
// mul -> vwmul(u)
|
|
Strategies.push_back(canFoldToVWWithSameExtension);
|
|
// mul -> vwmulsu
|
|
Strategies.push_back(canFoldToVW_SU);
|
|
break;
|
|
case ISD::SHL:
|
|
case RISCVISD::SHL_VL:
|
|
// shl -> vwsll
|
|
Strategies.push_back(canFoldToVWWithZEXT);
|
|
break;
|
|
case RISCVISD::VWADD_W_VL:
|
|
case RISCVISD::VWSUB_W_VL:
|
|
// vwadd_w|vwsub_w -> vwadd|vwsub
|
|
Strategies.push_back(canFoldToVWWithSEXT);
|
|
break;
|
|
case RISCVISD::VWADDU_W_VL:
|
|
case RISCVISD::VWSUBU_W_VL:
|
|
// vwaddu_w|vwsubu_w -> vwaddu|vwsubu
|
|
Strategies.push_back(canFoldToVWWithZEXT);
|
|
break;
|
|
case RISCVISD::VFWADD_W_VL:
|
|
case RISCVISD::VFWSUB_W_VL:
|
|
// vfwadd_w|vfwsub_w -> vfwadd|vfwsub
|
|
Strategies.push_back(canFoldToVWWithFPEXT);
|
|
break;
|
|
default:
|
|
llvm_unreachable("Unexpected opcode");
|
|
}
|
|
return Strategies;
|
|
}
|
|
} // End anonymous namespace.
|
|
|
|
static SDValue simplifyOp_VL(SDNode *N) {
|
|
// TODO: Extend this to other binops using generic identity logic
|
|
assert(N->getOpcode() == RISCVISD::ADD_VL);
|
|
SDValue A = N->getOperand(0);
|
|
SDValue B = N->getOperand(1);
|
|
SDValue Passthru = N->getOperand(2);
|
|
if (!Passthru.isUndef())
|
|
// TODO:This could be a vmerge instead
|
|
return SDValue();
|
|
;
|
|
if (ISD::isConstantSplatVectorAllZeros(B.getNode()))
|
|
return A;
|
|
// Peek through fixed to scalable
|
|
if (B.getOpcode() == ISD::INSERT_SUBVECTOR && B.getOperand(0).isUndef() &&
|
|
ISD::isConstantSplatVectorAllZeros(B.getOperand(1).getNode()))
|
|
return A;
|
|
return SDValue();
|
|
}
|
|
|
|
/// Combine a binary or FMA operation to its equivalent VW or VW_W form.
|
|
/// The supported combines are:
|
|
/// add | add_vl | or disjoint | or_vl disjoint -> vwadd(u) | vwadd(u)_w
|
|
/// sub | sub_vl -> vwsub(u) | vwsub(u)_w
|
|
/// mul | mul_vl -> vwmul(u) | vwmul_su
|
|
/// shl | shl_vl -> vwsll
|
|
/// fadd_vl -> vfwadd | vfwadd_w
|
|
/// fsub_vl -> vfwsub | vfwsub_w
|
|
/// fmul_vl -> vfwmul
|
|
/// vwadd_w(u) -> vwadd(u)
|
|
/// vwsub_w(u) -> vwsub(u)
|
|
/// vfwadd_w -> vfwadd
|
|
/// vfwsub_w -> vfwsub
|
|
static SDValue combineOp_VLToVWOp_VL(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const RISCVSubtarget &Subtarget) {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
if (DCI.isBeforeLegalize())
|
|
return SDValue();
|
|
|
|
if (!NodeExtensionHelper::isSupportedRoot(N, Subtarget))
|
|
return SDValue();
|
|
|
|
SmallVector<SDNode *> Worklist;
|
|
SmallSet<SDNode *, 8> Inserted;
|
|
Worklist.push_back(N);
|
|
Inserted.insert(N);
|
|
SmallVector<CombineResult> CombinesToApply;
|
|
|
|
while (!Worklist.empty()) {
|
|
SDNode *Root = Worklist.pop_back_val();
|
|
|
|
NodeExtensionHelper LHS(Root, 0, DAG, Subtarget);
|
|
NodeExtensionHelper RHS(Root, 1, DAG, Subtarget);
|
|
auto AppendUsersIfNeeded = [&Worklist, &Subtarget,
|
|
&Inserted](const NodeExtensionHelper &Op) {
|
|
if (Op.needToPromoteOtherUsers()) {
|
|
for (SDUse &Use : Op.OrigOperand->uses()) {
|
|
SDNode *TheUser = Use.getUser();
|
|
if (!NodeExtensionHelper::isSupportedRoot(TheUser, Subtarget))
|
|
return false;
|
|
// We only support the first 2 operands of FMA.
|
|
if (Use.getOperandNo() >= 2)
|
|
return false;
|
|
if (Inserted.insert(TheUser).second)
|
|
Worklist.push_back(TheUser);
|
|
}
|
|
}
|
|
return true;
|
|
};
|
|
|
|
// Control the compile time by limiting the number of node we look at in
|
|
// total.
|
|
if (Inserted.size() > ExtensionMaxWebSize)
|
|
return SDValue();
|
|
|
|
SmallVector<NodeExtensionHelper::CombineToTry> FoldingStrategies =
|
|
NodeExtensionHelper::getSupportedFoldings(Root);
|
|
|
|
assert(!FoldingStrategies.empty() && "Nothing to be folded");
|
|
bool Matched = false;
|
|
for (int Attempt = 0;
|
|
(Attempt != 1 + NodeExtensionHelper::isCommutative(Root)) && !Matched;
|
|
++Attempt) {
|
|
|
|
for (NodeExtensionHelper::CombineToTry FoldingStrategy :
|
|
FoldingStrategies) {
|
|
std::optional<CombineResult> Res =
|
|
FoldingStrategy(Root, LHS, RHS, DAG, Subtarget);
|
|
if (Res) {
|
|
Matched = true;
|
|
CombinesToApply.push_back(*Res);
|
|
// All the inputs that are extended need to be folded, otherwise
|
|
// we would be leaving the old input (since it is may still be used),
|
|
// and the new one.
|
|
if (Res->LHSExt.has_value())
|
|
if (!AppendUsersIfNeeded(LHS))
|
|
return SDValue();
|
|
if (Res->RHSExt.has_value())
|
|
if (!AppendUsersIfNeeded(RHS))
|
|
return SDValue();
|
|
break;
|
|
}
|
|
}
|
|
std::swap(LHS, RHS);
|
|
}
|
|
// Right now we do an all or nothing approach.
|
|
if (!Matched)
|
|
return SDValue();
|
|
}
|
|
// Store the value for the replacement of the input node separately.
|
|
SDValue InputRootReplacement;
|
|
// We do the RAUW after we materialize all the combines, because some replaced
|
|
// nodes may be feeding some of the yet-to-be-replaced nodes. Put differently,
|
|
// some of these nodes may appear in the NodeExtensionHelpers of some of the
|
|
// yet-to-be-visited CombinesToApply roots.
|
|
SmallVector<std::pair<SDValue, SDValue>> ValuesToReplace;
|
|
ValuesToReplace.reserve(CombinesToApply.size());
|
|
for (CombineResult Res : CombinesToApply) {
|
|
SDValue NewValue = Res.materialize(DAG, Subtarget);
|
|
if (!InputRootReplacement) {
|
|
assert(Res.Root == N &&
|
|
"First element is expected to be the current node");
|
|
InputRootReplacement = NewValue;
|
|
} else {
|
|
ValuesToReplace.emplace_back(SDValue(Res.Root, 0), NewValue);
|
|
}
|
|
}
|
|
for (std::pair<SDValue, SDValue> OldNewValues : ValuesToReplace) {
|
|
DAG.ReplaceAllUsesOfValueWith(OldNewValues.first, OldNewValues.second);
|
|
DCI.AddToWorklist(OldNewValues.second.getNode());
|
|
}
|
|
return InputRootReplacement;
|
|
}
|
|
|
|
// Fold (vwadd(u).wv y, (vmerge cond, x, 0)) -> vwadd(u).wv y, x, y, cond
|
|
// (vwsub(u).wv y, (vmerge cond, x, 0)) -> vwsub(u).wv y, x, y, cond
|
|
// y will be the Passthru and cond will be the Mask.
|
|
static SDValue combineVWADDSUBWSelect(SDNode *N, SelectionDAG &DAG) {
|
|
unsigned Opc = N->getOpcode();
|
|
assert(Opc == RISCVISD::VWADD_W_VL || Opc == RISCVISD::VWADDU_W_VL ||
|
|
Opc == RISCVISD::VWSUB_W_VL || Opc == RISCVISD::VWSUBU_W_VL);
|
|
|
|
SDValue Y = N->getOperand(0);
|
|
SDValue MergeOp = N->getOperand(1);
|
|
unsigned MergeOpc = MergeOp.getOpcode();
|
|
|
|
if (MergeOpc != RISCVISD::VMERGE_VL && MergeOpc != ISD::VSELECT)
|
|
return SDValue();
|
|
|
|
SDValue X = MergeOp->getOperand(1);
|
|
|
|
if (!MergeOp.hasOneUse())
|
|
return SDValue();
|
|
|
|
// Passthru should be undef
|
|
SDValue Passthru = N->getOperand(2);
|
|
if (!Passthru.isUndef())
|
|
return SDValue();
|
|
|
|
// Mask should be all ones
|
|
SDValue Mask = N->getOperand(3);
|
|
if (Mask.getOpcode() != RISCVISD::VMSET_VL)
|
|
return SDValue();
|
|
|
|
// False value of MergeOp should be all zeros
|
|
SDValue Z = MergeOp->getOperand(2);
|
|
|
|
if (Z.getOpcode() == ISD::INSERT_SUBVECTOR &&
|
|
(isNullOrNullSplat(Z.getOperand(0)) || Z.getOperand(0).isUndef()))
|
|
Z = Z.getOperand(1);
|
|
|
|
if (!ISD::isConstantSplatVectorAllZeros(Z.getNode()))
|
|
return SDValue();
|
|
|
|
return DAG.getNode(Opc, SDLoc(N), N->getValueType(0),
|
|
{Y, X, Y, MergeOp->getOperand(0), N->getOperand(4)},
|
|
N->getFlags());
|
|
}
|
|
|
|
static SDValue performVWADDSUBW_VLCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const RISCVSubtarget &Subtarget) {
|
|
[[maybe_unused]] unsigned Opc = N->getOpcode();
|
|
assert(Opc == RISCVISD::VWADD_W_VL || Opc == RISCVISD::VWADDU_W_VL ||
|
|
Opc == RISCVISD::VWSUB_W_VL || Opc == RISCVISD::VWSUBU_W_VL);
|
|
|
|
if (SDValue V = combineOp_VLToVWOp_VL(N, DCI, Subtarget))
|
|
return V;
|
|
|
|
return combineVWADDSUBWSelect(N, DCI.DAG);
|
|
}
|
|
|
|
// Helper function for performMemPairCombine.
|
|
// Try to combine the memory loads/stores LSNode1 and LSNode2
|
|
// into a single memory pair operation.
|
|
static SDValue tryMemPairCombine(SelectionDAG &DAG, LSBaseSDNode *LSNode1,
|
|
LSBaseSDNode *LSNode2, SDValue BasePtr,
|
|
uint64_t Imm) {
|
|
SmallPtrSet<const SDNode *, 32> Visited;
|
|
SmallVector<const SDNode *, 8> Worklist = {LSNode1, LSNode2};
|
|
|
|
if (SDNode::hasPredecessorHelper(LSNode1, Visited, Worklist) ||
|
|
SDNode::hasPredecessorHelper(LSNode2, Visited, Worklist))
|
|
return SDValue();
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
const RISCVSubtarget &Subtarget = MF.getSubtarget<RISCVSubtarget>();
|
|
|
|
// The new operation has twice the width.
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
EVT MemVT = LSNode1->getMemoryVT();
|
|
EVT NewMemVT = (MemVT == MVT::i32) ? MVT::i64 : MVT::i128;
|
|
MachineMemOperand *MMO = LSNode1->getMemOperand();
|
|
MachineMemOperand *NewMMO = MF.getMachineMemOperand(
|
|
MMO, MMO->getPointerInfo(), MemVT == MVT::i32 ? 8 : 16);
|
|
|
|
if (LSNode1->getOpcode() == ISD::LOAD) {
|
|
auto Ext = cast<LoadSDNode>(LSNode1)->getExtensionType();
|
|
unsigned Opcode;
|
|
if (MemVT == MVT::i32)
|
|
Opcode = (Ext == ISD::ZEXTLOAD) ? RISCVISD::TH_LWUD : RISCVISD::TH_LWD;
|
|
else
|
|
Opcode = RISCVISD::TH_LDD;
|
|
|
|
SDValue Res = DAG.getMemIntrinsicNode(
|
|
Opcode, SDLoc(LSNode1), DAG.getVTList({XLenVT, XLenVT, MVT::Other}),
|
|
{LSNode1->getChain(), BasePtr,
|
|
DAG.getConstant(Imm, SDLoc(LSNode1), XLenVT)},
|
|
NewMemVT, NewMMO);
|
|
|
|
SDValue Node1 =
|
|
DAG.getMergeValues({Res.getValue(0), Res.getValue(2)}, SDLoc(LSNode1));
|
|
SDValue Node2 =
|
|
DAG.getMergeValues({Res.getValue(1), Res.getValue(2)}, SDLoc(LSNode2));
|
|
|
|
DAG.ReplaceAllUsesWith(LSNode2, Node2.getNode());
|
|
return Node1;
|
|
} else {
|
|
unsigned Opcode = (MemVT == MVT::i32) ? RISCVISD::TH_SWD : RISCVISD::TH_SDD;
|
|
|
|
SDValue Res = DAG.getMemIntrinsicNode(
|
|
Opcode, SDLoc(LSNode1), DAG.getVTList(MVT::Other),
|
|
{LSNode1->getChain(), LSNode1->getOperand(1), LSNode2->getOperand(1),
|
|
BasePtr, DAG.getConstant(Imm, SDLoc(LSNode1), XLenVT)},
|
|
NewMemVT, NewMMO);
|
|
|
|
DAG.ReplaceAllUsesWith(LSNode2, Res.getNode());
|
|
return Res;
|
|
}
|
|
}
|
|
|
|
// Try to combine two adjacent loads/stores to a single pair instruction from
|
|
// the XTHeadMemPair vendor extension.
|
|
static SDValue performMemPairCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
const RISCVSubtarget &Subtarget = MF.getSubtarget<RISCVSubtarget>();
|
|
|
|
// Target does not support load/store pair.
|
|
if (!Subtarget.hasVendorXTHeadMemPair())
|
|
return SDValue();
|
|
|
|
LSBaseSDNode *LSNode1 = cast<LSBaseSDNode>(N);
|
|
EVT MemVT = LSNode1->getMemoryVT();
|
|
unsigned OpNum = LSNode1->getOpcode() == ISD::LOAD ? 1 : 2;
|
|
|
|
// No volatile, indexed or atomic loads/stores.
|
|
if (!LSNode1->isSimple() || LSNode1->isIndexed())
|
|
return SDValue();
|
|
|
|
// Function to get a base + constant representation from a memory value.
|
|
auto ExtractBaseAndOffset = [](SDValue Ptr) -> std::pair<SDValue, uint64_t> {
|
|
if (Ptr->getOpcode() == ISD::ADD)
|
|
if (auto *C1 = dyn_cast<ConstantSDNode>(Ptr->getOperand(1)))
|
|
return {Ptr->getOperand(0), C1->getZExtValue()};
|
|
return {Ptr, 0};
|
|
};
|
|
|
|
auto [Base1, Offset1] = ExtractBaseAndOffset(LSNode1->getOperand(OpNum));
|
|
|
|
SDValue Chain = N->getOperand(0);
|
|
for (SDUse &Use : Chain->uses()) {
|
|
if (Use.getUser() != N && Use.getResNo() == 0 &&
|
|
Use.getUser()->getOpcode() == N->getOpcode()) {
|
|
LSBaseSDNode *LSNode2 = cast<LSBaseSDNode>(Use.getUser());
|
|
|
|
// No volatile, indexed or atomic loads/stores.
|
|
if (!LSNode2->isSimple() || LSNode2->isIndexed())
|
|
continue;
|
|
|
|
// Check if LSNode1 and LSNode2 have the same type and extension.
|
|
if (LSNode1->getOpcode() == ISD::LOAD)
|
|
if (cast<LoadSDNode>(LSNode2)->getExtensionType() !=
|
|
cast<LoadSDNode>(LSNode1)->getExtensionType())
|
|
continue;
|
|
|
|
if (LSNode1->getMemoryVT() != LSNode2->getMemoryVT())
|
|
continue;
|
|
|
|
auto [Base2, Offset2] = ExtractBaseAndOffset(LSNode2->getOperand(OpNum));
|
|
|
|
// Check if the base pointer is the same for both instruction.
|
|
if (Base1 != Base2)
|
|
continue;
|
|
|
|
// Check if the offsets match the XTHeadMemPair encoding constraints.
|
|
bool Valid = false;
|
|
if (MemVT == MVT::i32) {
|
|
// Check for adjacent i32 values and a 2-bit index.
|
|
if ((Offset1 + 4 == Offset2) && isShiftedUInt<2, 3>(Offset1))
|
|
Valid = true;
|
|
} else if (MemVT == MVT::i64) {
|
|
// Check for adjacent i64 values and a 2-bit index.
|
|
if ((Offset1 + 8 == Offset2) && isShiftedUInt<2, 4>(Offset1))
|
|
Valid = true;
|
|
}
|
|
|
|
if (!Valid)
|
|
continue;
|
|
|
|
// Try to combine.
|
|
if (SDValue Res =
|
|
tryMemPairCombine(DAG, LSNode1, LSNode2, Base1, Offset1))
|
|
return Res;
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// Fold
|
|
// (fp_to_int (froundeven X)) -> fcvt X, rne
|
|
// (fp_to_int (ftrunc X)) -> fcvt X, rtz
|
|
// (fp_to_int (ffloor X)) -> fcvt X, rdn
|
|
// (fp_to_int (fceil X)) -> fcvt X, rup
|
|
// (fp_to_int (fround X)) -> fcvt X, rmm
|
|
// (fp_to_int (frint X)) -> fcvt X
|
|
static SDValue performFP_TO_INTCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const RISCVSubtarget &Subtarget) {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
SDValue Src = N->getOperand(0);
|
|
|
|
// Don't do this for strict-fp Src.
|
|
if (Src->isStrictFPOpcode())
|
|
return SDValue();
|
|
|
|
// Ensure the FP type is legal.
|
|
if (!TLI.isTypeLegal(Src.getValueType()))
|
|
return SDValue();
|
|
|
|
// Don't do this for f16 with Zfhmin and not Zfh.
|
|
if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
|
|
return SDValue();
|
|
|
|
RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src.getOpcode());
|
|
// If the result is invalid, we didn't find a foldable instruction.
|
|
if (FRM == RISCVFPRndMode::Invalid)
|
|
return SDValue();
|
|
|
|
SDLoc DL(N);
|
|
bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
|
|
EVT VT = N->getValueType(0);
|
|
|
|
if (VT.isVector() && TLI.isTypeLegal(VT)) {
|
|
MVT SrcVT = Src.getSimpleValueType();
|
|
MVT SrcContainerVT = SrcVT;
|
|
MVT ContainerVT = VT.getSimpleVT();
|
|
SDValue XVal = Src.getOperand(0);
|
|
|
|
// For widening and narrowing conversions we just combine it into a
|
|
// VFCVT_..._VL node, as there are no specific VFWCVT/VFNCVT VL nodes. They
|
|
// end up getting lowered to their appropriate pseudo instructions based on
|
|
// their operand types
|
|
if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits() * 2 ||
|
|
VT.getScalarSizeInBits() * 2 < SrcVT.getScalarSizeInBits())
|
|
return SDValue();
|
|
|
|
// Make fixed-length vectors scalable first
|
|
if (SrcVT.isFixedLengthVector()) {
|
|
SrcContainerVT = getContainerForFixedLengthVector(DAG, SrcVT, Subtarget);
|
|
XVal = convertToScalableVector(SrcContainerVT, XVal, DAG, Subtarget);
|
|
ContainerVT =
|
|
getContainerForFixedLengthVector(DAG, ContainerVT, Subtarget);
|
|
}
|
|
|
|
auto [Mask, VL] =
|
|
getDefaultVLOps(SrcVT, SrcContainerVT, DL, DAG, Subtarget);
|
|
|
|
SDValue FpToInt;
|
|
if (FRM == RISCVFPRndMode::RTZ) {
|
|
// Use the dedicated trunc static rounding mode if we're truncating so we
|
|
// don't need to generate calls to fsrmi/fsrm
|
|
unsigned Opc =
|
|
IsSigned ? RISCVISD::VFCVT_RTZ_X_F_VL : RISCVISD::VFCVT_RTZ_XU_F_VL;
|
|
FpToInt = DAG.getNode(Opc, DL, ContainerVT, XVal, Mask, VL);
|
|
} else {
|
|
unsigned Opc =
|
|
IsSigned ? RISCVISD::VFCVT_RM_X_F_VL : RISCVISD::VFCVT_RM_XU_F_VL;
|
|
FpToInt = DAG.getNode(Opc, DL, ContainerVT, XVal, Mask,
|
|
DAG.getTargetConstant(FRM, DL, XLenVT), VL);
|
|
}
|
|
|
|
// If converted from fixed-length to scalable, convert back
|
|
if (VT.isFixedLengthVector())
|
|
FpToInt = convertFromScalableVector(VT, FpToInt, DAG, Subtarget);
|
|
|
|
return FpToInt;
|
|
}
|
|
|
|
// Only handle XLen or i32 types. Other types narrower than XLen will
|
|
// eventually be legalized to XLenVT.
|
|
if (VT != MVT::i32 && VT != XLenVT)
|
|
return SDValue();
|
|
|
|
unsigned Opc;
|
|
if (VT == XLenVT)
|
|
Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
|
|
else
|
|
Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
|
|
|
|
SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0),
|
|
DAG.getTargetConstant(FRM, DL, XLenVT));
|
|
return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt);
|
|
}
|
|
|
|
// Fold
|
|
// (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne))
|
|
// (fp_to_int_sat (ftrunc X)) -> (select X == nan, 0, (fcvt X, rtz))
|
|
// (fp_to_int_sat (ffloor X)) -> (select X == nan, 0, (fcvt X, rdn))
|
|
// (fp_to_int_sat (fceil X)) -> (select X == nan, 0, (fcvt X, rup))
|
|
// (fp_to_int_sat (fround X)) -> (select X == nan, 0, (fcvt X, rmm))
|
|
// (fp_to_int_sat (frint X)) -> (select X == nan, 0, (fcvt X, dyn))
|
|
static SDValue performFP_TO_INT_SATCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const RISCVSubtarget &Subtarget) {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
// Only handle XLen types. Other types narrower than XLen will eventually be
|
|
// legalized to XLenVT.
|
|
EVT DstVT = N->getValueType(0);
|
|
if (DstVT != XLenVT)
|
|
return SDValue();
|
|
|
|
SDValue Src = N->getOperand(0);
|
|
|
|
// Don't do this for strict-fp Src.
|
|
if (Src->isStrictFPOpcode())
|
|
return SDValue();
|
|
|
|
// Ensure the FP type is also legal.
|
|
if (!TLI.isTypeLegal(Src.getValueType()))
|
|
return SDValue();
|
|
|
|
// Don't do this for f16 with Zfhmin and not Zfh.
|
|
if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
|
|
return SDValue();
|
|
|
|
EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT();
|
|
|
|
RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src.getOpcode());
|
|
if (FRM == RISCVFPRndMode::Invalid)
|
|
return SDValue();
|
|
|
|
bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT;
|
|
|
|
unsigned Opc;
|
|
if (SatVT == DstVT)
|
|
Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
|
|
else if (DstVT == MVT::i64 && SatVT == MVT::i32)
|
|
Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
|
|
else
|
|
return SDValue();
|
|
// FIXME: Support other SatVTs by clamping before or after the conversion.
|
|
|
|
Src = Src.getOperand(0);
|
|
|
|
SDLoc DL(N);
|
|
SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src,
|
|
DAG.getTargetConstant(FRM, DL, XLenVT));
|
|
|
|
// fcvt.wu.* sign extends bit 31 on RV64. FP_TO_UINT_SAT expects to zero
|
|
// extend.
|
|
if (Opc == RISCVISD::FCVT_WU_RV64)
|
|
FpToInt = DAG.getZeroExtendInReg(FpToInt, DL, MVT::i32);
|
|
|
|
// RISC-V FP-to-int conversions saturate to the destination register size, but
|
|
// don't produce 0 for nan.
|
|
SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
|
|
return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
|
|
}
|
|
|
|
// Combine (bitreverse (bswap X)) to the BREV8 GREVI encoding if the type is
|
|
// smaller than XLenVT.
|
|
static SDValue performBITREVERSECombine(SDNode *N, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
assert(Subtarget.hasStdExtZbkb() && "Unexpected extension");
|
|
|
|
SDValue Src = N->getOperand(0);
|
|
if (Src.getOpcode() != ISD::BSWAP)
|
|
return SDValue();
|
|
|
|
EVT VT = N->getValueType(0);
|
|
if (!VT.isScalarInteger() || VT.getSizeInBits() >= Subtarget.getXLen() ||
|
|
!llvm::has_single_bit<uint32_t>(VT.getSizeInBits()))
|
|
return SDValue();
|
|
|
|
SDLoc DL(N);
|
|
return DAG.getNode(RISCVISD::BREV8, DL, VT, Src.getOperand(0));
|
|
}
|
|
|
|
static SDValue performVP_REVERSECombine(SDNode *N, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
// Fold:
|
|
// vp.reverse(vp.load(ADDR, MASK)) -> vp.strided.load(ADDR, -1, MASK)
|
|
|
|
// Check if its first operand is a vp.load.
|
|
auto *VPLoad = dyn_cast<VPLoadSDNode>(N->getOperand(0));
|
|
if (!VPLoad)
|
|
return SDValue();
|
|
|
|
EVT LoadVT = VPLoad->getValueType(0);
|
|
// We do not have a strided_load version for masks, and the evl of vp.reverse
|
|
// and vp.load should always be the same.
|
|
if (!LoadVT.getVectorElementType().isByteSized() ||
|
|
N->getOperand(2) != VPLoad->getVectorLength() ||
|
|
!N->getOperand(0).hasOneUse())
|
|
return SDValue();
|
|
|
|
// Check if the mask of outer vp.reverse are all 1's.
|
|
if (!isOneOrOneSplat(N->getOperand(1)))
|
|
return SDValue();
|
|
|
|
SDValue LoadMask = VPLoad->getMask();
|
|
// If Mask is all ones, then load is unmasked and can be reversed.
|
|
if (!isOneOrOneSplat(LoadMask)) {
|
|
// If the mask is not all ones, we can reverse the load if the mask was also
|
|
// reversed by an unmasked vp.reverse with the same EVL.
|
|
if (LoadMask.getOpcode() != ISD::EXPERIMENTAL_VP_REVERSE ||
|
|
!isOneOrOneSplat(LoadMask.getOperand(1)) ||
|
|
LoadMask.getOperand(2) != VPLoad->getVectorLength())
|
|
return SDValue();
|
|
LoadMask = LoadMask.getOperand(0);
|
|
}
|
|
|
|
// Base = LoadAddr + (NumElem - 1) * ElemWidthByte
|
|
SDLoc DL(N);
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
SDValue NumElem = VPLoad->getVectorLength();
|
|
uint64_t ElemWidthByte = VPLoad->getValueType(0).getScalarSizeInBits() / 8;
|
|
|
|
SDValue Temp1 = DAG.getNode(ISD::SUB, DL, XLenVT, NumElem,
|
|
DAG.getConstant(1, DL, XLenVT));
|
|
SDValue Temp2 = DAG.getNode(ISD::MUL, DL, XLenVT, Temp1,
|
|
DAG.getConstant(ElemWidthByte, DL, XLenVT));
|
|
SDValue Base = DAG.getNode(ISD::ADD, DL, XLenVT, VPLoad->getBasePtr(), Temp2);
|
|
SDValue Stride = DAG.getSignedConstant(-ElemWidthByte, DL, XLenVT);
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachinePointerInfo PtrInfo(VPLoad->getAddressSpace());
|
|
MachineMemOperand *MMO = MF.getMachineMemOperand(
|
|
PtrInfo, VPLoad->getMemOperand()->getFlags(),
|
|
LocationSize::beforeOrAfterPointer(), VPLoad->getAlign());
|
|
|
|
SDValue Ret = DAG.getStridedLoadVP(
|
|
LoadVT, DL, VPLoad->getChain(), Base, Stride, LoadMask,
|
|
VPLoad->getVectorLength(), MMO, VPLoad->isExpandingLoad());
|
|
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(VPLoad, 1), Ret.getValue(1));
|
|
|
|
return Ret;
|
|
}
|
|
|
|
static SDValue performVP_STORECombine(SDNode *N, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
// Fold:
|
|
// vp.store(vp.reverse(VAL), ADDR, MASK) -> vp.strided.store(VAL, NEW_ADDR,
|
|
// -1, MASK)
|
|
auto *VPStore = cast<VPStoreSDNode>(N);
|
|
|
|
if (VPStore->getValue().getOpcode() != ISD::EXPERIMENTAL_VP_REVERSE)
|
|
return SDValue();
|
|
|
|
SDValue VPReverse = VPStore->getValue();
|
|
EVT ReverseVT = VPReverse->getValueType(0);
|
|
|
|
// We do not have a strided_store version for masks, and the evl of vp.reverse
|
|
// and vp.store should always be the same.
|
|
if (!ReverseVT.getVectorElementType().isByteSized() ||
|
|
VPStore->getVectorLength() != VPReverse.getOperand(2) ||
|
|
!VPReverse.hasOneUse())
|
|
return SDValue();
|
|
|
|
SDValue StoreMask = VPStore->getMask();
|
|
// If Mask is all ones, then load is unmasked and can be reversed.
|
|
if (!isOneOrOneSplat(StoreMask)) {
|
|
// If the mask is not all ones, we can reverse the store if the mask was
|
|
// also reversed by an unmasked vp.reverse with the same EVL.
|
|
if (StoreMask.getOpcode() != ISD::EXPERIMENTAL_VP_REVERSE ||
|
|
!isOneOrOneSplat(StoreMask.getOperand(1)) ||
|
|
StoreMask.getOperand(2) != VPStore->getVectorLength())
|
|
return SDValue();
|
|
StoreMask = StoreMask.getOperand(0);
|
|
}
|
|
|
|
// Base = StoreAddr + (NumElem - 1) * ElemWidthByte
|
|
SDLoc DL(N);
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
SDValue NumElem = VPStore->getVectorLength();
|
|
uint64_t ElemWidthByte = VPReverse.getValueType().getScalarSizeInBits() / 8;
|
|
|
|
SDValue Temp1 = DAG.getNode(ISD::SUB, DL, XLenVT, NumElem,
|
|
DAG.getConstant(1, DL, XLenVT));
|
|
SDValue Temp2 = DAG.getNode(ISD::MUL, DL, XLenVT, Temp1,
|
|
DAG.getConstant(ElemWidthByte, DL, XLenVT));
|
|
SDValue Base =
|
|
DAG.getNode(ISD::ADD, DL, XLenVT, VPStore->getBasePtr(), Temp2);
|
|
SDValue Stride = DAG.getSignedConstant(-ElemWidthByte, DL, XLenVT);
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachinePointerInfo PtrInfo(VPStore->getAddressSpace());
|
|
MachineMemOperand *MMO = MF.getMachineMemOperand(
|
|
PtrInfo, VPStore->getMemOperand()->getFlags(),
|
|
LocationSize::beforeOrAfterPointer(), VPStore->getAlign());
|
|
|
|
return DAG.getStridedStoreVP(
|
|
VPStore->getChain(), DL, VPReverse.getOperand(0), Base,
|
|
VPStore->getOffset(), Stride, StoreMask, VPStore->getVectorLength(),
|
|
VPStore->getMemoryVT(), MMO, VPStore->getAddressingMode(),
|
|
VPStore->isTruncatingStore(), VPStore->isCompressingStore());
|
|
}
|
|
|
|
// Peephole avgceil pattern.
|
|
// %1 = zext <N x i8> %a to <N x i32>
|
|
// %2 = zext <N x i8> %b to <N x i32>
|
|
// %3 = add nuw nsw <N x i32> %1, splat (i32 1)
|
|
// %4 = add nuw nsw <N x i32> %3, %2
|
|
// %5 = lshr <N x i32> %4, splat (i32 1)
|
|
// %6 = trunc <N x i32> %5 to <N x i8>
|
|
static SDValue performVP_TRUNCATECombine(SDNode *N, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// Ignore fixed vectors.
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
if (!VT.isScalableVector() || !TLI.isTypeLegal(VT))
|
|
return SDValue();
|
|
|
|
SDValue In = N->getOperand(0);
|
|
SDValue Mask = N->getOperand(1);
|
|
SDValue VL = N->getOperand(2);
|
|
|
|
// Input should be a vp_srl with same mask and VL.
|
|
if (In.getOpcode() != ISD::VP_SRL || In.getOperand(2) != Mask ||
|
|
In.getOperand(3) != VL)
|
|
return SDValue();
|
|
|
|
// Shift amount should be 1.
|
|
if (!isOneOrOneSplat(In.getOperand(1)))
|
|
return SDValue();
|
|
|
|
// Shifted value should be a vp_add with same mask and VL.
|
|
SDValue LHS = In.getOperand(0);
|
|
if (LHS.getOpcode() != ISD::VP_ADD || LHS.getOperand(2) != Mask ||
|
|
LHS.getOperand(3) != VL)
|
|
return SDValue();
|
|
|
|
SDValue Operands[3];
|
|
|
|
// Matches another VP_ADD with same VL and Mask.
|
|
auto FindAdd = [&](SDValue V, SDValue Other) {
|
|
if (V.getOpcode() != ISD::VP_ADD || V.getOperand(2) != Mask ||
|
|
V.getOperand(3) != VL)
|
|
return false;
|
|
|
|
Operands[0] = Other;
|
|
Operands[1] = V.getOperand(1);
|
|
Operands[2] = V.getOperand(0);
|
|
return true;
|
|
};
|
|
|
|
// We need to find another VP_ADD in one of the operands.
|
|
SDValue LHS0 = LHS.getOperand(0);
|
|
SDValue LHS1 = LHS.getOperand(1);
|
|
if (!FindAdd(LHS0, LHS1) && !FindAdd(LHS1, LHS0))
|
|
return SDValue();
|
|
|
|
// Now we have three operands of two additions. Check that one of them is a
|
|
// constant vector with ones.
|
|
auto I = llvm::find_if(Operands,
|
|
[](const SDValue &Op) { return isOneOrOneSplat(Op); });
|
|
if (I == std::end(Operands))
|
|
return SDValue();
|
|
// We found a vector with ones, move if it to the end of the Operands array.
|
|
std::swap(*I, Operands[2]);
|
|
|
|
// Make sure the other 2 operands can be promoted from the result type.
|
|
for (SDValue Op : drop_end(Operands)) {
|
|
if (Op.getOpcode() != ISD::VP_ZERO_EXTEND || Op.getOperand(1) != Mask ||
|
|
Op.getOperand(2) != VL)
|
|
return SDValue();
|
|
// Input must be the same size or smaller than our result.
|
|
if (Op.getOperand(0).getScalarValueSizeInBits() > VT.getScalarSizeInBits())
|
|
return SDValue();
|
|
}
|
|
|
|
// Pattern is detected.
|
|
// Rebuild the zero extends in case the inputs are smaller than our result.
|
|
SDValue NewOp0 = DAG.getNode(ISD::VP_ZERO_EXTEND, SDLoc(Operands[0]), VT,
|
|
Operands[0].getOperand(0), Mask, VL);
|
|
SDValue NewOp1 = DAG.getNode(ISD::VP_ZERO_EXTEND, SDLoc(Operands[1]), VT,
|
|
Operands[1].getOperand(0), Mask, VL);
|
|
// Build a AVGCEILU_VL which will be selected as a VAADDU with RNU rounding
|
|
// mode.
|
|
SDLoc DL(N);
|
|
return DAG.getNode(RISCVISD::AVGCEILU_VL, DL, VT,
|
|
{NewOp0, NewOp1, DAG.getUNDEF(VT), Mask, VL});
|
|
}
|
|
|
|
// Convert from one FMA opcode to another based on whether we are negating the
|
|
// multiply result and/or the accumulator.
|
|
// NOTE: Only supports RVV operations with VL.
|
|
static unsigned negateFMAOpcode(unsigned Opcode, bool NegMul, bool NegAcc) {
|
|
// Negating the multiply result changes ADD<->SUB and toggles 'N'.
|
|
if (NegMul) {
|
|
// clang-format off
|
|
switch (Opcode) {
|
|
default: llvm_unreachable("Unexpected opcode");
|
|
case RISCVISD::VFMADD_VL: Opcode = RISCVISD::VFNMSUB_VL; break;
|
|
case RISCVISD::VFNMSUB_VL: Opcode = RISCVISD::VFMADD_VL; break;
|
|
case RISCVISD::VFNMADD_VL: Opcode = RISCVISD::VFMSUB_VL; break;
|
|
case RISCVISD::VFMSUB_VL: Opcode = RISCVISD::VFNMADD_VL; break;
|
|
case RISCVISD::STRICT_VFMADD_VL: Opcode = RISCVISD::STRICT_VFNMSUB_VL; break;
|
|
case RISCVISD::STRICT_VFNMSUB_VL: Opcode = RISCVISD::STRICT_VFMADD_VL; break;
|
|
case RISCVISD::STRICT_VFNMADD_VL: Opcode = RISCVISD::STRICT_VFMSUB_VL; break;
|
|
case RISCVISD::STRICT_VFMSUB_VL: Opcode = RISCVISD::STRICT_VFNMADD_VL; break;
|
|
}
|
|
// clang-format on
|
|
}
|
|
|
|
// Negating the accumulator changes ADD<->SUB.
|
|
if (NegAcc) {
|
|
// clang-format off
|
|
switch (Opcode) {
|
|
default: llvm_unreachable("Unexpected opcode");
|
|
case RISCVISD::VFMADD_VL: Opcode = RISCVISD::VFMSUB_VL; break;
|
|
case RISCVISD::VFMSUB_VL: Opcode = RISCVISD::VFMADD_VL; break;
|
|
case RISCVISD::VFNMADD_VL: Opcode = RISCVISD::VFNMSUB_VL; break;
|
|
case RISCVISD::VFNMSUB_VL: Opcode = RISCVISD::VFNMADD_VL; break;
|
|
case RISCVISD::STRICT_VFMADD_VL: Opcode = RISCVISD::STRICT_VFMSUB_VL; break;
|
|
case RISCVISD::STRICT_VFMSUB_VL: Opcode = RISCVISD::STRICT_VFMADD_VL; break;
|
|
case RISCVISD::STRICT_VFNMADD_VL: Opcode = RISCVISD::STRICT_VFNMSUB_VL; break;
|
|
case RISCVISD::STRICT_VFNMSUB_VL: Opcode = RISCVISD::STRICT_VFNMADD_VL; break;
|
|
}
|
|
// clang-format on
|
|
}
|
|
|
|
return Opcode;
|
|
}
|
|
|
|
static SDValue combineVFMADD_VLWithVFNEG_VL(SDNode *N, SelectionDAG &DAG) {
|
|
// Fold FNEG_VL into FMA opcodes.
|
|
// The first operand of strict-fp is chain.
|
|
bool IsStrict =
|
|
DAG.getSelectionDAGInfo().isTargetStrictFPOpcode(N->getOpcode());
|
|
unsigned Offset = IsStrict ? 1 : 0;
|
|
SDValue A = N->getOperand(0 + Offset);
|
|
SDValue B = N->getOperand(1 + Offset);
|
|
SDValue C = N->getOperand(2 + Offset);
|
|
SDValue Mask = N->getOperand(3 + Offset);
|
|
SDValue VL = N->getOperand(4 + Offset);
|
|
|
|
auto invertIfNegative = [&Mask, &VL](SDValue &V) {
|
|
if (V.getOpcode() == RISCVISD::FNEG_VL && V.getOperand(1) == Mask &&
|
|
V.getOperand(2) == VL) {
|
|
// Return the negated input.
|
|
V = V.getOperand(0);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
};
|
|
|
|
bool NegA = invertIfNegative(A);
|
|
bool NegB = invertIfNegative(B);
|
|
bool NegC = invertIfNegative(C);
|
|
|
|
// If no operands are negated, we're done.
|
|
if (!NegA && !NegB && !NegC)
|
|
return SDValue();
|
|
|
|
unsigned NewOpcode = negateFMAOpcode(N->getOpcode(), NegA != NegB, NegC);
|
|
if (IsStrict)
|
|
return DAG.getNode(NewOpcode, SDLoc(N), N->getVTList(),
|
|
{N->getOperand(0), A, B, C, Mask, VL});
|
|
return DAG.getNode(NewOpcode, SDLoc(N), N->getValueType(0), A, B, C, Mask,
|
|
VL);
|
|
}
|
|
|
|
static SDValue performVFMADD_VLCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const RISCVSubtarget &Subtarget) {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
|
|
if (SDValue V = combineVFMADD_VLWithVFNEG_VL(N, DAG))
|
|
return V;
|
|
|
|
// FIXME: Ignore strict opcodes for now.
|
|
if (DAG.getSelectionDAGInfo().isTargetStrictFPOpcode(N->getOpcode()))
|
|
return SDValue();
|
|
|
|
return combineOp_VLToVWOp_VL(N, DCI, Subtarget);
|
|
}
|
|
|
|
static SDValue performSRACombine(SDNode *N, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
assert(N->getOpcode() == ISD::SRA && "Unexpected opcode");
|
|
|
|
EVT VT = N->getValueType(0);
|
|
|
|
if (VT != Subtarget.getXLenVT())
|
|
return SDValue();
|
|
|
|
if (!isa<ConstantSDNode>(N->getOperand(1)))
|
|
return SDValue();
|
|
uint64_t ShAmt = N->getConstantOperandVal(1);
|
|
|
|
SDValue N0 = N->getOperand(0);
|
|
|
|
// Combine (sra (sext_inreg (shl X, C1), iX), C2) ->
|
|
// (sra (shl X, C1+(XLen-iX)), C2+(XLen-iX)) so it gets selected as SLLI+SRAI.
|
|
if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && N0.hasOneUse()) {
|
|
unsigned ExtSize =
|
|
cast<VTSDNode>(N0.getOperand(1))->getVT().getSizeInBits();
|
|
if (ShAmt < ExtSize && N0.getOperand(0).getOpcode() == ISD::SHL &&
|
|
N0.getOperand(0).hasOneUse() &&
|
|
isa<ConstantSDNode>(N0.getOperand(0).getOperand(1))) {
|
|
uint64_t LShAmt = N0.getOperand(0).getConstantOperandVal(1);
|
|
if (LShAmt < ExtSize) {
|
|
unsigned Size = VT.getSizeInBits();
|
|
SDLoc ShlDL(N0.getOperand(0));
|
|
SDValue Shl =
|
|
DAG.getNode(ISD::SHL, ShlDL, VT, N0.getOperand(0).getOperand(0),
|
|
DAG.getConstant(LShAmt + (Size - ExtSize), ShlDL, VT));
|
|
SDLoc DL(N);
|
|
return DAG.getNode(ISD::SRA, DL, VT, Shl,
|
|
DAG.getConstant(ShAmt + (Size - ExtSize), DL, VT));
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ShAmt > 32 || VT != MVT::i64)
|
|
return SDValue();
|
|
|
|
// Combine (sra (shl X, 32), 32 - C) -> (shl (sext_inreg X, i32), C)
|
|
// FIXME: Should this be a generic combine? There's a similar combine on X86.
|
|
//
|
|
// Also try these folds where an add or sub is in the middle.
|
|
// (sra (add (shl X, 32), C1), 32 - C) -> (shl (sext_inreg (add X, C1), C)
|
|
// (sra (sub C1, (shl X, 32)), 32 - C) -> (shl (sext_inreg (sub C1, X), C)
|
|
SDValue Shl;
|
|
ConstantSDNode *AddC = nullptr;
|
|
|
|
// We might have an ADD or SUB between the SRA and SHL.
|
|
bool IsAdd = N0.getOpcode() == ISD::ADD;
|
|
if ((IsAdd || N0.getOpcode() == ISD::SUB)) {
|
|
// Other operand needs to be a constant we can modify.
|
|
AddC = dyn_cast<ConstantSDNode>(N0.getOperand(IsAdd ? 1 : 0));
|
|
if (!AddC)
|
|
return SDValue();
|
|
|
|
// AddC needs to have at least 32 trailing zeros.
|
|
if (llvm::countr_zero(AddC->getZExtValue()) < 32)
|
|
return SDValue();
|
|
|
|
// All users should be a shift by constant less than or equal to 32. This
|
|
// ensures we'll do this optimization for each of them to produce an
|
|
// add/sub+sext_inreg they can all share.
|
|
for (SDNode *U : N0->users()) {
|
|
if (U->getOpcode() != ISD::SRA ||
|
|
!isa<ConstantSDNode>(U->getOperand(1)) ||
|
|
U->getConstantOperandVal(1) > 32)
|
|
return SDValue();
|
|
}
|
|
|
|
Shl = N0.getOperand(IsAdd ? 0 : 1);
|
|
} else {
|
|
// Not an ADD or SUB.
|
|
Shl = N0;
|
|
}
|
|
|
|
// Look for a shift left by 32.
|
|
if (Shl.getOpcode() != ISD::SHL || !isa<ConstantSDNode>(Shl.getOperand(1)) ||
|
|
Shl.getConstantOperandVal(1) != 32)
|
|
return SDValue();
|
|
|
|
// We if we didn't look through an add/sub, then the shl should have one use.
|
|
// If we did look through an add/sub, the sext_inreg we create is free so
|
|
// we're only creating 2 new instructions. It's enough to only remove the
|
|
// original sra+add/sub.
|
|
if (!AddC && !Shl.hasOneUse())
|
|
return SDValue();
|
|
|
|
SDLoc DL(N);
|
|
SDValue In = Shl.getOperand(0);
|
|
|
|
// If we looked through an ADD or SUB, we need to rebuild it with the shifted
|
|
// constant.
|
|
if (AddC) {
|
|
SDValue ShiftedAddC =
|
|
DAG.getConstant(AddC->getZExtValue() >> 32, DL, MVT::i64);
|
|
if (IsAdd)
|
|
In = DAG.getNode(ISD::ADD, DL, MVT::i64, In, ShiftedAddC);
|
|
else
|
|
In = DAG.getNode(ISD::SUB, DL, MVT::i64, ShiftedAddC, In);
|
|
}
|
|
|
|
SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, In,
|
|
DAG.getValueType(MVT::i32));
|
|
if (ShAmt == 32)
|
|
return SExt;
|
|
|
|
return DAG.getNode(
|
|
ISD::SHL, DL, MVT::i64, SExt,
|
|
DAG.getConstant(32 - ShAmt, DL, MVT::i64));
|
|
}
|
|
|
|
// Invert (and/or (set cc X, Y), (xor Z, 1)) to (or/and (set !cc X, Y)), Z) if
|
|
// the result is used as the condition of a br_cc or select_cc we can invert,
|
|
// inverting the setcc is free, and Z is 0/1. Caller will invert the
|
|
// br_cc/select_cc.
|
|
static SDValue tryDemorganOfBooleanCondition(SDValue Cond, SelectionDAG &DAG) {
|
|
bool IsAnd = Cond.getOpcode() == ISD::AND;
|
|
if (!IsAnd && Cond.getOpcode() != ISD::OR)
|
|
return SDValue();
|
|
|
|
if (!Cond.hasOneUse())
|
|
return SDValue();
|
|
|
|
SDValue Setcc = Cond.getOperand(0);
|
|
SDValue Xor = Cond.getOperand(1);
|
|
// Canonicalize setcc to LHS.
|
|
if (Setcc.getOpcode() != ISD::SETCC)
|
|
std::swap(Setcc, Xor);
|
|
// LHS should be a setcc and RHS should be an xor.
|
|
if (Setcc.getOpcode() != ISD::SETCC || !Setcc.hasOneUse() ||
|
|
Xor.getOpcode() != ISD::XOR || !Xor.hasOneUse())
|
|
return SDValue();
|
|
|
|
// If the condition is an And, SimplifyDemandedBits may have changed
|
|
// (xor Z, 1) to (not Z).
|
|
SDValue Xor1 = Xor.getOperand(1);
|
|
if (!isOneConstant(Xor1) && !(IsAnd && isAllOnesConstant(Xor1)))
|
|
return SDValue();
|
|
|
|
EVT VT = Cond.getValueType();
|
|
SDValue Xor0 = Xor.getOperand(0);
|
|
|
|
// The LHS of the xor needs to be 0/1.
|
|
APInt Mask = APInt::getBitsSetFrom(VT.getSizeInBits(), 1);
|
|
if (!DAG.MaskedValueIsZero(Xor0, Mask))
|
|
return SDValue();
|
|
|
|
// We can only invert integer setccs.
|
|
EVT SetCCOpVT = Setcc.getOperand(0).getValueType();
|
|
if (!SetCCOpVT.isScalarInteger())
|
|
return SDValue();
|
|
|
|
ISD::CondCode CCVal = cast<CondCodeSDNode>(Setcc.getOperand(2))->get();
|
|
if (ISD::isIntEqualitySetCC(CCVal)) {
|
|
CCVal = ISD::getSetCCInverse(CCVal, SetCCOpVT);
|
|
Setcc = DAG.getSetCC(SDLoc(Setcc), VT, Setcc.getOperand(0),
|
|
Setcc.getOperand(1), CCVal);
|
|
} else if (CCVal == ISD::SETLT && isNullConstant(Setcc.getOperand(0))) {
|
|
// Invert (setlt 0, X) by converting to (setlt X, 1).
|
|
Setcc = DAG.getSetCC(SDLoc(Setcc), VT, Setcc.getOperand(1),
|
|
DAG.getConstant(1, SDLoc(Setcc), VT), CCVal);
|
|
} else if (CCVal == ISD::SETLT && isOneConstant(Setcc.getOperand(1))) {
|
|
// (setlt X, 1) by converting to (setlt 0, X).
|
|
Setcc = DAG.getSetCC(SDLoc(Setcc), VT,
|
|
DAG.getConstant(0, SDLoc(Setcc), VT),
|
|
Setcc.getOperand(0), CCVal);
|
|
} else
|
|
return SDValue();
|
|
|
|
unsigned Opc = IsAnd ? ISD::OR : ISD::AND;
|
|
return DAG.getNode(Opc, SDLoc(Cond), VT, Setcc, Xor.getOperand(0));
|
|
}
|
|
|
|
// Perform common combines for BR_CC and SELECT_CC conditions.
|
|
static bool combine_CC(SDValue &LHS, SDValue &RHS, SDValue &CC, const SDLoc &DL,
|
|
SelectionDAG &DAG, const RISCVSubtarget &Subtarget) {
|
|
ISD::CondCode CCVal = cast<CondCodeSDNode>(CC)->get();
|
|
|
|
// As far as arithmetic right shift always saves the sign,
|
|
// shift can be omitted.
|
|
// Fold setlt (sra X, N), 0 -> setlt X, 0 and
|
|
// setge (sra X, N), 0 -> setge X, 0
|
|
if (isNullConstant(RHS) && (CCVal == ISD::SETGE || CCVal == ISD::SETLT) &&
|
|
LHS.getOpcode() == ISD::SRA) {
|
|
LHS = LHS.getOperand(0);
|
|
return true;
|
|
}
|
|
|
|
if (!ISD::isIntEqualitySetCC(CCVal))
|
|
return false;
|
|
|
|
// Fold ((setlt X, Y), 0, ne) -> (X, Y, lt)
|
|
// Sometimes the setcc is introduced after br_cc/select_cc has been formed.
|
|
if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
|
|
LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
|
|
// If we're looking for eq 0 instead of ne 0, we need to invert the
|
|
// condition.
|
|
bool Invert = CCVal == ISD::SETEQ;
|
|
CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
|
|
if (Invert)
|
|
CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
|
|
|
|
RHS = LHS.getOperand(1);
|
|
LHS = LHS.getOperand(0);
|
|
translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
|
|
|
|
CC = DAG.getCondCode(CCVal);
|
|
return true;
|
|
}
|
|
|
|
// If XOR is reused and has an immediate that will fit in XORI,
|
|
// do not fold.
|
|
auto isXorImmediate = [](const SDValue &Op) -> bool {
|
|
if (const auto *XorCnst = dyn_cast<ConstantSDNode>(Op))
|
|
return isInt<12>(XorCnst->getSExtValue());
|
|
return false;
|
|
};
|
|
// Fold (X(i1) ^ 1) == 0 -> X != 0
|
|
auto singleBitOp = [&DAG](const SDValue &VarOp,
|
|
const SDValue &ConstOp) -> bool {
|
|
if (const auto *XorCnst = dyn_cast<ConstantSDNode>(ConstOp)) {
|
|
const APInt Mask = APInt::getBitsSetFrom(VarOp.getValueSizeInBits(), 1);
|
|
return (XorCnst->getSExtValue() == 1) &&
|
|
DAG.MaskedValueIsZero(VarOp, Mask);
|
|
}
|
|
return false;
|
|
};
|
|
auto onlyUsedBySelectOrBR = [](const SDValue &Op) -> bool {
|
|
for (const SDNode *UserNode : Op->users()) {
|
|
const unsigned Opcode = UserNode->getOpcode();
|
|
if (Opcode != RISCVISD::SELECT_CC && Opcode != RISCVISD::BR_CC)
|
|
return false;
|
|
}
|
|
return true;
|
|
};
|
|
auto isFoldableXorEq = [isXorImmediate, singleBitOp, onlyUsedBySelectOrBR](
|
|
const SDValue &LHS, const SDValue &RHS) -> bool {
|
|
return LHS.getOpcode() == ISD::XOR && isNullConstant(RHS) &&
|
|
(!isXorImmediate(LHS.getOperand(1)) ||
|
|
singleBitOp(LHS.getOperand(0), LHS.getOperand(1)) ||
|
|
onlyUsedBySelectOrBR(LHS));
|
|
};
|
|
// Fold ((xor X, Y), 0, eq/ne) -> (X, Y, eq/ne)
|
|
if (isFoldableXorEq(LHS, RHS)) {
|
|
RHS = LHS.getOperand(1);
|
|
LHS = LHS.getOperand(0);
|
|
return true;
|
|
}
|
|
// Fold ((sext (xor X, C)), 0, eq/ne) -> ((sext(X), C, eq/ne)
|
|
if (LHS.getOpcode() == ISD::SIGN_EXTEND_INREG) {
|
|
const SDValue LHS0 = LHS.getOperand(0);
|
|
if (isFoldableXorEq(LHS0, RHS) && isa<ConstantSDNode>(LHS0.getOperand(1))) {
|
|
// SEXT(XOR(X, Y)) -> XOR(SEXT(X), SEXT(Y)))
|
|
RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, LHS.getValueType(),
|
|
LHS0.getOperand(1), LHS.getOperand(1));
|
|
LHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, LHS.getValueType(),
|
|
LHS0.getOperand(0), LHS.getOperand(1));
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Fold ((srl (and X, 1<<C), C), 0, eq/ne) -> ((shl X, XLen-1-C), 0, ge/lt)
|
|
if (isNullConstant(RHS) && LHS.getOpcode() == ISD::SRL && LHS.hasOneUse() &&
|
|
LHS.getOperand(1).getOpcode() == ISD::Constant) {
|
|
SDValue LHS0 = LHS.getOperand(0);
|
|
if (LHS0.getOpcode() == ISD::AND &&
|
|
LHS0.getOperand(1).getOpcode() == ISD::Constant) {
|
|
uint64_t Mask = LHS0.getConstantOperandVal(1);
|
|
uint64_t ShAmt = LHS.getConstantOperandVal(1);
|
|
if (isPowerOf2_64(Mask) && Log2_64(Mask) == ShAmt) {
|
|
CCVal = CCVal == ISD::SETEQ ? ISD::SETGE : ISD::SETLT;
|
|
CC = DAG.getCondCode(CCVal);
|
|
|
|
ShAmt = LHS.getValueSizeInBits() - 1 - ShAmt;
|
|
LHS = LHS0.getOperand(0);
|
|
if (ShAmt != 0)
|
|
LHS =
|
|
DAG.getNode(ISD::SHL, DL, LHS.getValueType(), LHS0.getOperand(0),
|
|
DAG.getConstant(ShAmt, DL, LHS.getValueType()));
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// (X, 1, setne) -> // (X, 0, seteq) if we can prove X is 0/1.
|
|
// This can occur when legalizing some floating point comparisons.
|
|
APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
|
|
if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
|
|
CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
|
|
CC = DAG.getCondCode(CCVal);
|
|
RHS = DAG.getConstant(0, DL, LHS.getValueType());
|
|
return true;
|
|
}
|
|
|
|
if (isNullConstant(RHS)) {
|
|
if (SDValue NewCond = tryDemorganOfBooleanCondition(LHS, DAG)) {
|
|
CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
|
|
CC = DAG.getCondCode(CCVal);
|
|
LHS = NewCond;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Fold
|
|
// (select C, (add Y, X), Y) -> (add Y, (select C, X, 0)).
|
|
// (select C, (sub Y, X), Y) -> (sub Y, (select C, X, 0)).
|
|
// (select C, (or Y, X), Y) -> (or Y, (select C, X, 0)).
|
|
// (select C, (xor Y, X), Y) -> (xor Y, (select C, X, 0)).
|
|
static SDValue tryFoldSelectIntoOp(SDNode *N, SelectionDAG &DAG,
|
|
SDValue TrueVal, SDValue FalseVal,
|
|
bool Swapped) {
|
|
bool Commutative = true;
|
|
unsigned Opc = TrueVal.getOpcode();
|
|
switch (Opc) {
|
|
default:
|
|
return SDValue();
|
|
case ISD::SHL:
|
|
case ISD::SRA:
|
|
case ISD::SRL:
|
|
case ISD::SUB:
|
|
Commutative = false;
|
|
break;
|
|
case ISD::ADD:
|
|
case ISD::OR:
|
|
case ISD::XOR:
|
|
break;
|
|
}
|
|
|
|
if (!TrueVal.hasOneUse() || isa<ConstantSDNode>(FalseVal))
|
|
return SDValue();
|
|
|
|
unsigned OpToFold;
|
|
if (FalseVal == TrueVal.getOperand(0))
|
|
OpToFold = 0;
|
|
else if (Commutative && FalseVal == TrueVal.getOperand(1))
|
|
OpToFold = 1;
|
|
else
|
|
return SDValue();
|
|
|
|
EVT VT = N->getValueType(0);
|
|
SDLoc DL(N);
|
|
SDValue OtherOp = TrueVal.getOperand(1 - OpToFold);
|
|
EVT OtherOpVT = OtherOp.getValueType();
|
|
SDValue IdentityOperand =
|
|
DAG.getNeutralElement(Opc, DL, OtherOpVT, N->getFlags());
|
|
if (!Commutative)
|
|
IdentityOperand = DAG.getConstant(0, DL, OtherOpVT);
|
|
assert(IdentityOperand && "No identity operand!");
|
|
|
|
if (Swapped)
|
|
std::swap(OtherOp, IdentityOperand);
|
|
SDValue NewSel =
|
|
DAG.getSelect(DL, OtherOpVT, N->getOperand(0), OtherOp, IdentityOperand);
|
|
return DAG.getNode(TrueVal.getOpcode(), DL, VT, FalseVal, NewSel);
|
|
}
|
|
|
|
// This tries to get rid of `select` and `icmp` that are being used to handle
|
|
// `Targets` that do not support `cttz(0)`/`ctlz(0)`.
|
|
static SDValue foldSelectOfCTTZOrCTLZ(SDNode *N, SelectionDAG &DAG) {
|
|
SDValue Cond = N->getOperand(0);
|
|
|
|
// This represents either CTTZ or CTLZ instruction.
|
|
SDValue CountZeroes;
|
|
|
|
SDValue ValOnZero;
|
|
|
|
if (Cond.getOpcode() != ISD::SETCC)
|
|
return SDValue();
|
|
|
|
if (!isNullConstant(Cond->getOperand(1)))
|
|
return SDValue();
|
|
|
|
ISD::CondCode CCVal = cast<CondCodeSDNode>(Cond->getOperand(2))->get();
|
|
if (CCVal == ISD::CondCode::SETEQ) {
|
|
CountZeroes = N->getOperand(2);
|
|
ValOnZero = N->getOperand(1);
|
|
} else if (CCVal == ISD::CondCode::SETNE) {
|
|
CountZeroes = N->getOperand(1);
|
|
ValOnZero = N->getOperand(2);
|
|
} else {
|
|
return SDValue();
|
|
}
|
|
|
|
if (CountZeroes.getOpcode() == ISD::TRUNCATE ||
|
|
CountZeroes.getOpcode() == ISD::ZERO_EXTEND)
|
|
CountZeroes = CountZeroes.getOperand(0);
|
|
|
|
if (CountZeroes.getOpcode() != ISD::CTTZ &&
|
|
CountZeroes.getOpcode() != ISD::CTTZ_ZERO_UNDEF &&
|
|
CountZeroes.getOpcode() != ISD::CTLZ &&
|
|
CountZeroes.getOpcode() != ISD::CTLZ_ZERO_UNDEF)
|
|
return SDValue();
|
|
|
|
if (!isNullConstant(ValOnZero))
|
|
return SDValue();
|
|
|
|
SDValue CountZeroesArgument = CountZeroes->getOperand(0);
|
|
if (Cond->getOperand(0) != CountZeroesArgument)
|
|
return SDValue();
|
|
|
|
if (CountZeroes.getOpcode() == ISD::CTTZ_ZERO_UNDEF) {
|
|
CountZeroes = DAG.getNode(ISD::CTTZ, SDLoc(CountZeroes),
|
|
CountZeroes.getValueType(), CountZeroesArgument);
|
|
} else if (CountZeroes.getOpcode() == ISD::CTLZ_ZERO_UNDEF) {
|
|
CountZeroes = DAG.getNode(ISD::CTLZ, SDLoc(CountZeroes),
|
|
CountZeroes.getValueType(), CountZeroesArgument);
|
|
}
|
|
|
|
unsigned BitWidth = CountZeroes.getValueSizeInBits();
|
|
SDValue BitWidthMinusOne =
|
|
DAG.getConstant(BitWidth - 1, SDLoc(N), CountZeroes.getValueType());
|
|
|
|
auto AndNode = DAG.getNode(ISD::AND, SDLoc(N), CountZeroes.getValueType(),
|
|
CountZeroes, BitWidthMinusOne);
|
|
return DAG.getZExtOrTrunc(AndNode, SDLoc(N), N->getValueType(0));
|
|
}
|
|
|
|
static SDValue useInversedSetcc(SDNode *N, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
SDValue Cond = N->getOperand(0);
|
|
SDValue True = N->getOperand(1);
|
|
SDValue False = N->getOperand(2);
|
|
SDLoc DL(N);
|
|
EVT VT = N->getValueType(0);
|
|
EVT CondVT = Cond.getValueType();
|
|
|
|
if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse())
|
|
return SDValue();
|
|
|
|
// Replace (setcc eq (and x, C)) with (setcc ne (and x, C))) to generate
|
|
// BEXTI, where C is power of 2.
|
|
if (Subtarget.hasStdExtZbs() && VT.isScalarInteger() &&
|
|
(Subtarget.hasStdExtZicond() || Subtarget.hasVendorXVentanaCondOps())) {
|
|
SDValue LHS = Cond.getOperand(0);
|
|
SDValue RHS = Cond.getOperand(1);
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
|
|
if (CC == ISD::SETEQ && LHS.getOpcode() == ISD::AND &&
|
|
isa<ConstantSDNode>(LHS.getOperand(1)) && isNullConstant(RHS)) {
|
|
const APInt &MaskVal = LHS.getConstantOperandAPInt(1);
|
|
if (MaskVal.isPowerOf2() && !MaskVal.isSignedIntN(12))
|
|
return DAG.getSelect(DL, VT,
|
|
DAG.getSetCC(DL, CondVT, LHS, RHS, ISD::SETNE),
|
|
False, True);
|
|
}
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
static bool matchSelectAddSub(SDValue TrueVal, SDValue FalseVal, bool &SwapCC) {
|
|
if (!TrueVal.hasOneUse() || !FalseVal.hasOneUse())
|
|
return false;
|
|
|
|
SwapCC = false;
|
|
if (TrueVal.getOpcode() == ISD::SUB && FalseVal.getOpcode() == ISD::ADD) {
|
|
std::swap(TrueVal, FalseVal);
|
|
SwapCC = true;
|
|
}
|
|
|
|
if (TrueVal.getOpcode() != ISD::ADD || FalseVal.getOpcode() != ISD::SUB)
|
|
return false;
|
|
|
|
SDValue A = FalseVal.getOperand(0);
|
|
SDValue B = FalseVal.getOperand(1);
|
|
// Add is commutative, so check both orders
|
|
return ((TrueVal.getOperand(0) == A && TrueVal.getOperand(1) == B) ||
|
|
(TrueVal.getOperand(1) == A && TrueVal.getOperand(0) == B));
|
|
}
|
|
|
|
/// Convert vselect CC, (add a, b), (sub a, b) to add a, (vselect CC, -b, b).
|
|
/// This allows us match a vadd.vv fed by a masked vrsub, which reduces
|
|
/// register pressure over the add followed by masked vsub sequence.
|
|
static SDValue performVSELECTCombine(SDNode *N, SelectionDAG &DAG) {
|
|
SDLoc DL(N);
|
|
EVT VT = N->getValueType(0);
|
|
SDValue CC = N->getOperand(0);
|
|
SDValue TrueVal = N->getOperand(1);
|
|
SDValue FalseVal = N->getOperand(2);
|
|
|
|
bool SwapCC;
|
|
if (!matchSelectAddSub(TrueVal, FalseVal, SwapCC))
|
|
return SDValue();
|
|
|
|
SDValue Sub = SwapCC ? TrueVal : FalseVal;
|
|
SDValue A = Sub.getOperand(0);
|
|
SDValue B = Sub.getOperand(1);
|
|
|
|
// Arrange the select such that we can match a masked
|
|
// vrsub.vi to perform the conditional negate
|
|
SDValue NegB = DAG.getNegative(B, DL, VT);
|
|
if (!SwapCC)
|
|
CC = DAG.getLogicalNOT(DL, CC, CC->getValueType(0));
|
|
SDValue NewB = DAG.getNode(ISD::VSELECT, DL, VT, CC, NegB, B);
|
|
return DAG.getNode(ISD::ADD, DL, VT, A, NewB);
|
|
}
|
|
|
|
static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
if (SDValue Folded = foldSelectOfCTTZOrCTLZ(N, DAG))
|
|
return Folded;
|
|
|
|
if (SDValue V = useInversedSetcc(N, DAG, Subtarget))
|
|
return V;
|
|
|
|
if (Subtarget.hasConditionalMoveFusion())
|
|
return SDValue();
|
|
|
|
SDValue TrueVal = N->getOperand(1);
|
|
SDValue FalseVal = N->getOperand(2);
|
|
if (SDValue V = tryFoldSelectIntoOp(N, DAG, TrueVal, FalseVal, /*Swapped*/false))
|
|
return V;
|
|
return tryFoldSelectIntoOp(N, DAG, FalseVal, TrueVal, /*Swapped*/true);
|
|
}
|
|
|
|
/// If we have a build_vector where each lane is binop X, C, where C
|
|
/// is a constant (but not necessarily the same constant on all lanes),
|
|
/// form binop (build_vector x1, x2, ...), (build_vector c1, c2, c3, ..).
|
|
/// We assume that materializing a constant build vector will be no more
|
|
/// expensive that performing O(n) binops.
|
|
static SDValue performBUILD_VECTORCombine(SDNode *N, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget,
|
|
const RISCVTargetLowering &TLI) {
|
|
SDLoc DL(N);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
assert(!VT.isScalableVector() && "unexpected build vector");
|
|
|
|
if (VT.getVectorNumElements() == 1)
|
|
return SDValue();
|
|
|
|
const unsigned Opcode = N->op_begin()->getNode()->getOpcode();
|
|
if (!TLI.isBinOp(Opcode))
|
|
return SDValue();
|
|
|
|
if (!TLI.isOperationLegalOrCustom(Opcode, VT) || !TLI.isTypeLegal(VT))
|
|
return SDValue();
|
|
|
|
// This BUILD_VECTOR involves an implicit truncation, and sinking
|
|
// truncates through binops is non-trivial.
|
|
if (N->op_begin()->getValueType() != VT.getVectorElementType())
|
|
return SDValue();
|
|
|
|
SmallVector<SDValue> LHSOps;
|
|
SmallVector<SDValue> RHSOps;
|
|
for (SDValue Op : N->ops()) {
|
|
if (Op.isUndef()) {
|
|
// We can't form a divide or remainder from undef.
|
|
if (!DAG.isSafeToSpeculativelyExecute(Opcode))
|
|
return SDValue();
|
|
|
|
LHSOps.push_back(Op);
|
|
RHSOps.push_back(Op);
|
|
continue;
|
|
}
|
|
|
|
// TODO: We can handle operations which have an neutral rhs value
|
|
// (e.g. x + 0, a * 1 or a << 0), but we then have to keep track
|
|
// of profit in a more explicit manner.
|
|
if (Op.getOpcode() != Opcode || !Op.hasOneUse())
|
|
return SDValue();
|
|
|
|
LHSOps.push_back(Op.getOperand(0));
|
|
if (!isa<ConstantSDNode>(Op.getOperand(1)) &&
|
|
!isa<ConstantFPSDNode>(Op.getOperand(1)))
|
|
return SDValue();
|
|
// FIXME: Return failure if the RHS type doesn't match the LHS. Shifts may
|
|
// have different LHS and RHS types.
|
|
if (Op.getOperand(0).getValueType() != Op.getOperand(1).getValueType())
|
|
return SDValue();
|
|
|
|
RHSOps.push_back(Op.getOperand(1));
|
|
}
|
|
|
|
return DAG.getNode(Opcode, DL, VT, DAG.getBuildVector(VT, DL, LHSOps),
|
|
DAG.getBuildVector(VT, DL, RHSOps));
|
|
}
|
|
|
|
static MVT getQDOTXResultType(MVT OpVT) {
|
|
ElementCount OpEC = OpVT.getVectorElementCount();
|
|
assert(OpEC.isKnownMultipleOf(4) && OpVT.getVectorElementType() == MVT::i8);
|
|
return MVT::getVectorVT(MVT::i32, OpEC.divideCoefficientBy(4));
|
|
}
|
|
|
|
/// Given fixed length vectors A and B with equal element types, but possibly
|
|
/// different number of elements, return A + B where either A or B is zero
|
|
/// padded to the larger number of elements.
|
|
static SDValue getZeroPaddedAdd(const SDLoc &DL, SDValue A, SDValue B,
|
|
SelectionDAG &DAG) {
|
|
// NOTE: Manually doing the extract/add/insert scheme produces
|
|
// significantly better codegen than the naive pad with zeros
|
|
// and add scheme.
|
|
EVT AVT = A.getValueType();
|
|
EVT BVT = B.getValueType();
|
|
assert(AVT.getVectorElementType() == BVT.getVectorElementType());
|
|
if (AVT.getVectorMinNumElements() > BVT.getVectorMinNumElements()) {
|
|
std::swap(A, B);
|
|
std::swap(AVT, BVT);
|
|
}
|
|
|
|
SDValue BPart = DAG.getExtractSubvector(DL, AVT, B, 0);
|
|
SDValue Res = DAG.getNode(ISD::ADD, DL, AVT, A, BPart);
|
|
return DAG.getInsertSubvector(DL, B, Res, 0);
|
|
}
|
|
|
|
static SDValue foldReduceOperandViaVQDOT(SDValue InVec, const SDLoc &DL,
|
|
SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget,
|
|
const RISCVTargetLowering &TLI) {
|
|
// Note: We intentionally do not check the legality of the reduction type.
|
|
// We want to handle the m4/m8 *src* types, and thus need to let illegal
|
|
// intermediate types flow through here.
|
|
if (InVec.getValueType().getVectorElementType() != MVT::i32 ||
|
|
!InVec.getValueType().getVectorElementCount().isKnownMultipleOf(4))
|
|
return SDValue();
|
|
|
|
// Recurse through adds (since generic dag canonicalizes to that
|
|
// form). TODO: Handle disjoint or here.
|
|
if (InVec->getOpcode() == ISD::ADD) {
|
|
SDValue A = InVec.getOperand(0);
|
|
SDValue B = InVec.getOperand(1);
|
|
SDValue AOpt = foldReduceOperandViaVQDOT(A, DL, DAG, Subtarget, TLI);
|
|
SDValue BOpt = foldReduceOperandViaVQDOT(B, DL, DAG, Subtarget, TLI);
|
|
if (AOpt || BOpt) {
|
|
if (AOpt)
|
|
A = AOpt;
|
|
if (BOpt)
|
|
B = BOpt;
|
|
// From here, we're doing A + B with mixed types, implicitly zero
|
|
// padded to the wider type. Note that we *don't* need the result
|
|
// type to be the original VT, and in fact prefer narrower ones
|
|
// if possible.
|
|
return getZeroPaddedAdd(DL, A, B, DAG);
|
|
}
|
|
}
|
|
|
|
// zext a <--> partial_reduce_umla 0, a, 1
|
|
// sext a <--> partial_reduce_smla 0, a, 1
|
|
if (InVec.getOpcode() == ISD::ZERO_EXTEND ||
|
|
InVec.getOpcode() == ISD::SIGN_EXTEND) {
|
|
SDValue A = InVec.getOperand(0);
|
|
EVT OpVT = A.getValueType();
|
|
if (OpVT.getVectorElementType() != MVT::i8 || !TLI.isTypeLegal(OpVT))
|
|
return SDValue();
|
|
|
|
MVT ResVT = getQDOTXResultType(A.getSimpleValueType());
|
|
SDValue B = DAG.getConstant(0x1, DL, OpVT);
|
|
bool IsSigned = InVec.getOpcode() == ISD::SIGN_EXTEND;
|
|
unsigned Opc =
|
|
IsSigned ? ISD::PARTIAL_REDUCE_SMLA : ISD::PARTIAL_REDUCE_UMLA;
|
|
return DAG.getNode(Opc, DL, ResVT, {DAG.getConstant(0, DL, ResVT), A, B});
|
|
}
|
|
|
|
// mul (sext a, sext b) -> partial_reduce_smla 0, a, b
|
|
// mul (zext a, zext b) -> partial_reduce_umla 0, a, b
|
|
// mul (sext a, zext b) -> partial_reduce_ssmla 0, a, b
|
|
// mul (zext a, sext b) -> partial_reduce_smla 0, b, a (swapped)
|
|
if (InVec.getOpcode() != ISD::MUL)
|
|
return SDValue();
|
|
|
|
SDValue A = InVec.getOperand(0);
|
|
SDValue B = InVec.getOperand(1);
|
|
|
|
if (!ISD::isExtOpcode(A.getOpcode()))
|
|
return SDValue();
|
|
|
|
EVT OpVT = A.getOperand(0).getValueType();
|
|
if (OpVT.getVectorElementType() != MVT::i8 ||
|
|
OpVT != B.getOperand(0).getValueType() ||
|
|
!TLI.isTypeLegal(A.getValueType()))
|
|
return SDValue();
|
|
|
|
unsigned Opc;
|
|
if (A.getOpcode() == ISD::SIGN_EXTEND && B.getOpcode() == ISD::SIGN_EXTEND)
|
|
Opc = ISD::PARTIAL_REDUCE_SMLA;
|
|
else if (A.getOpcode() == ISD::ZERO_EXTEND &&
|
|
B.getOpcode() == ISD::ZERO_EXTEND)
|
|
Opc = ISD::PARTIAL_REDUCE_UMLA;
|
|
else if (A.getOpcode() == ISD::SIGN_EXTEND &&
|
|
B.getOpcode() == ISD::ZERO_EXTEND)
|
|
Opc = ISD::PARTIAL_REDUCE_SUMLA;
|
|
else if (A.getOpcode() == ISD::ZERO_EXTEND &&
|
|
B.getOpcode() == ISD::SIGN_EXTEND) {
|
|
Opc = ISD::PARTIAL_REDUCE_SUMLA;
|
|
std::swap(A, B);
|
|
} else
|
|
return SDValue();
|
|
|
|
MVT ResVT = getQDOTXResultType(OpVT.getSimpleVT());
|
|
return DAG.getNode(
|
|
Opc, DL, ResVT,
|
|
{DAG.getConstant(0, DL, ResVT), A.getOperand(0), B.getOperand(0)});
|
|
}
|
|
|
|
static SDValue performVECREDUCECombine(SDNode *N, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget,
|
|
const RISCVTargetLowering &TLI) {
|
|
if (!Subtarget.hasStdExtZvqdotq())
|
|
return SDValue();
|
|
|
|
SDLoc DL(N);
|
|
EVT VT = N->getValueType(0);
|
|
SDValue InVec = N->getOperand(0);
|
|
if (SDValue V = foldReduceOperandViaVQDOT(InVec, DL, DAG, Subtarget, TLI))
|
|
return DAG.getNode(ISD::VECREDUCE_ADD, DL, VT, V);
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue performINSERT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget,
|
|
const RISCVTargetLowering &TLI) {
|
|
SDValue InVec = N->getOperand(0);
|
|
SDValue InVal = N->getOperand(1);
|
|
SDValue EltNo = N->getOperand(2);
|
|
SDLoc DL(N);
|
|
|
|
EVT VT = InVec.getValueType();
|
|
if (VT.isScalableVector())
|
|
return SDValue();
|
|
|
|
if (!InVec.hasOneUse())
|
|
return SDValue();
|
|
|
|
// Given insert_vector_elt (binop a, VecC), (same_binop b, C2), Elt
|
|
// move the insert_vector_elts into the arms of the binop. Note that
|
|
// the new RHS must be a constant.
|
|
const unsigned InVecOpcode = InVec->getOpcode();
|
|
if (InVecOpcode == InVal->getOpcode() && TLI.isBinOp(InVecOpcode) &&
|
|
InVal.hasOneUse()) {
|
|
SDValue InVecLHS = InVec->getOperand(0);
|
|
SDValue InVecRHS = InVec->getOperand(1);
|
|
SDValue InValLHS = InVal->getOperand(0);
|
|
SDValue InValRHS = InVal->getOperand(1);
|
|
|
|
if (!ISD::isBuildVectorOfConstantSDNodes(InVecRHS.getNode()))
|
|
return SDValue();
|
|
if (!isa<ConstantSDNode>(InValRHS) && !isa<ConstantFPSDNode>(InValRHS))
|
|
return SDValue();
|
|
// FIXME: Return failure if the RHS type doesn't match the LHS. Shifts may
|
|
// have different LHS and RHS types.
|
|
if (InVec.getOperand(0).getValueType() != InVec.getOperand(1).getValueType())
|
|
return SDValue();
|
|
SDValue LHS = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT,
|
|
InVecLHS, InValLHS, EltNo);
|
|
SDValue RHS = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT,
|
|
InVecRHS, InValRHS, EltNo);
|
|
return DAG.getNode(InVecOpcode, DL, VT, LHS, RHS);
|
|
}
|
|
|
|
// Given insert_vector_elt (concat_vectors ...), InVal, Elt
|
|
// move the insert_vector_elt to the source operand of the concat_vector.
|
|
if (InVec.getOpcode() != ISD::CONCAT_VECTORS)
|
|
return SDValue();
|
|
|
|
auto *IndexC = dyn_cast<ConstantSDNode>(EltNo);
|
|
if (!IndexC)
|
|
return SDValue();
|
|
unsigned Elt = IndexC->getZExtValue();
|
|
|
|
EVT ConcatVT = InVec.getOperand(0).getValueType();
|
|
if (ConcatVT.getVectorElementType() != InVal.getValueType())
|
|
return SDValue();
|
|
unsigned ConcatNumElts = ConcatVT.getVectorNumElements();
|
|
unsigned NewIdx = Elt % ConcatNumElts;
|
|
|
|
unsigned ConcatOpIdx = Elt / ConcatNumElts;
|
|
SDValue ConcatOp = InVec.getOperand(ConcatOpIdx);
|
|
ConcatOp = DAG.getInsertVectorElt(DL, ConcatOp, InVal, NewIdx);
|
|
|
|
SmallVector<SDValue> ConcatOps(InVec->ops());
|
|
ConcatOps[ConcatOpIdx] = ConcatOp;
|
|
return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps);
|
|
}
|
|
|
|
// If we're concatenating a series of vector loads like
|
|
// concat_vectors (load v4i8, p+0), (load v4i8, p+n), (load v4i8, p+n*2) ...
|
|
// Then we can turn this into a strided load by widening the vector elements
|
|
// vlse32 p, stride=n
|
|
static SDValue performCONCAT_VECTORSCombine(SDNode *N, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget,
|
|
const RISCVTargetLowering &TLI) {
|
|
SDLoc DL(N);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// Only perform this combine on legal MVTs.
|
|
if (!TLI.isTypeLegal(VT))
|
|
return SDValue();
|
|
|
|
// TODO: Potentially extend this to scalable vectors
|
|
if (VT.isScalableVector())
|
|
return SDValue();
|
|
|
|
auto *BaseLd = dyn_cast<LoadSDNode>(N->getOperand(0));
|
|
if (!BaseLd || !BaseLd->isSimple() || !ISD::isNormalLoad(BaseLd) ||
|
|
!SDValue(BaseLd, 0).hasOneUse())
|
|
return SDValue();
|
|
|
|
EVT BaseLdVT = BaseLd->getValueType(0);
|
|
|
|
// Go through the loads and check that they're strided
|
|
SmallVector<LoadSDNode *> Lds;
|
|
Lds.push_back(BaseLd);
|
|
Align Align = BaseLd->getAlign();
|
|
for (SDValue Op : N->ops().drop_front()) {
|
|
auto *Ld = dyn_cast<LoadSDNode>(Op);
|
|
if (!Ld || !Ld->isSimple() || !Op.hasOneUse() ||
|
|
Ld->getChain() != BaseLd->getChain() || !ISD::isNormalLoad(Ld) ||
|
|
Ld->getValueType(0) != BaseLdVT)
|
|
return SDValue();
|
|
|
|
Lds.push_back(Ld);
|
|
|
|
// The common alignment is the most restrictive (smallest) of all the loads
|
|
Align = std::min(Align, Ld->getAlign());
|
|
}
|
|
|
|
using PtrDiff = std::pair<std::variant<int64_t, SDValue>, bool>;
|
|
auto GetPtrDiff = [&DAG](LoadSDNode *Ld1,
|
|
LoadSDNode *Ld2) -> std::optional<PtrDiff> {
|
|
// If the load ptrs can be decomposed into a common (Base + Index) with a
|
|
// common constant stride, then return the constant stride.
|
|
BaseIndexOffset BIO1 = BaseIndexOffset::match(Ld1, DAG);
|
|
BaseIndexOffset BIO2 = BaseIndexOffset::match(Ld2, DAG);
|
|
if (BIO1.equalBaseIndex(BIO2, DAG))
|
|
return {{BIO2.getOffset() - BIO1.getOffset(), false}};
|
|
|
|
// Otherwise try to match (add LastPtr, Stride) or (add NextPtr, Stride)
|
|
SDValue P1 = Ld1->getBasePtr();
|
|
SDValue P2 = Ld2->getBasePtr();
|
|
if (P2.getOpcode() == ISD::ADD && P2.getOperand(0) == P1)
|
|
return {{P2.getOperand(1), false}};
|
|
if (P1.getOpcode() == ISD::ADD && P1.getOperand(0) == P2)
|
|
return {{P1.getOperand(1), true}};
|
|
|
|
return std::nullopt;
|
|
};
|
|
|
|
// Get the distance between the first and second loads
|
|
auto BaseDiff = GetPtrDiff(Lds[0], Lds[1]);
|
|
if (!BaseDiff)
|
|
return SDValue();
|
|
|
|
// Check all the loads are the same distance apart
|
|
for (auto *It = Lds.begin() + 1; It != Lds.end() - 1; It++)
|
|
if (GetPtrDiff(*It, *std::next(It)) != BaseDiff)
|
|
return SDValue();
|
|
|
|
// TODO: At this point, we've successfully matched a generalized gather
|
|
// load. Maybe we should emit that, and then move the specialized
|
|
// matchers above and below into a DAG combine?
|
|
|
|
// Get the widened scalar type, e.g. v4i8 -> i64
|
|
unsigned WideScalarBitWidth =
|
|
BaseLdVT.getScalarSizeInBits() * BaseLdVT.getVectorNumElements();
|
|
MVT WideScalarVT = MVT::getIntegerVT(WideScalarBitWidth);
|
|
|
|
// Get the vector type for the strided load, e.g. 4 x v4i8 -> v4i64
|
|
MVT WideVecVT = MVT::getVectorVT(WideScalarVT, N->getNumOperands());
|
|
if (!TLI.isTypeLegal(WideVecVT))
|
|
return SDValue();
|
|
|
|
// Check that the operation is legal
|
|
if (!TLI.isLegalStridedLoadStore(WideVecVT, Align))
|
|
return SDValue();
|
|
|
|
auto [StrideVariant, MustNegateStride] = *BaseDiff;
|
|
SDValue Stride =
|
|
std::holds_alternative<SDValue>(StrideVariant)
|
|
? std::get<SDValue>(StrideVariant)
|
|
: DAG.getSignedConstant(std::get<int64_t>(StrideVariant), DL,
|
|
Lds[0]->getOffset().getValueType());
|
|
if (MustNegateStride)
|
|
Stride = DAG.getNegative(Stride, DL, Stride.getValueType());
|
|
|
|
SDValue AllOneMask =
|
|
DAG.getSplat(WideVecVT.changeVectorElementType(MVT::i1), DL,
|
|
DAG.getConstant(1, DL, MVT::i1));
|
|
|
|
uint64_t MemSize;
|
|
if (auto *ConstStride = dyn_cast<ConstantSDNode>(Stride);
|
|
ConstStride && ConstStride->getSExtValue() >= 0)
|
|
// total size = (elsize * n) + (stride - elsize) * (n-1)
|
|
// = elsize + stride * (n-1)
|
|
MemSize = WideScalarVT.getSizeInBits() +
|
|
ConstStride->getSExtValue() * (N->getNumOperands() - 1);
|
|
else
|
|
// If Stride isn't constant, then we can't know how much it will load
|
|
MemSize = MemoryLocation::UnknownSize;
|
|
|
|
MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
|
|
BaseLd->getPointerInfo(), BaseLd->getMemOperand()->getFlags(), MemSize,
|
|
Align);
|
|
|
|
SDValue StridedLoad = DAG.getStridedLoadVP(
|
|
WideVecVT, DL, BaseLd->getChain(), BaseLd->getBasePtr(), Stride,
|
|
AllOneMask,
|
|
DAG.getConstant(N->getNumOperands(), DL, Subtarget.getXLenVT()), MMO);
|
|
|
|
for (SDValue Ld : N->ops())
|
|
DAG.makeEquivalentMemoryOrdering(cast<LoadSDNode>(Ld), StridedLoad);
|
|
|
|
return DAG.getBitcast(VT.getSimpleVT(), StridedLoad);
|
|
}
|
|
|
|
static SDValue performVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget,
|
|
const RISCVTargetLowering &TLI) {
|
|
SDLoc DL(N);
|
|
EVT VT = N->getValueType(0);
|
|
const unsigned ElementSize = VT.getScalarSizeInBits();
|
|
const unsigned NumElts = VT.getVectorNumElements();
|
|
SDValue V1 = N->getOperand(0);
|
|
SDValue V2 = N->getOperand(1);
|
|
ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(N)->getMask();
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
// Recognized a disguised select of add/sub.
|
|
bool SwapCC;
|
|
if (ShuffleVectorInst::isSelectMask(Mask, NumElts) &&
|
|
matchSelectAddSub(V1, V2, SwapCC)) {
|
|
SDValue Sub = SwapCC ? V1 : V2;
|
|
SDValue A = Sub.getOperand(0);
|
|
SDValue B = Sub.getOperand(1);
|
|
|
|
SmallVector<SDValue> MaskVals;
|
|
for (int MaskIndex : Mask) {
|
|
bool SelectMaskVal = (MaskIndex < (int)NumElts);
|
|
MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
|
|
}
|
|
assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
|
|
EVT MaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, NumElts);
|
|
SDValue CC = DAG.getBuildVector(MaskVT, DL, MaskVals);
|
|
|
|
// Arrange the select such that we can match a masked
|
|
// vrsub.vi to perform the conditional negate
|
|
SDValue NegB = DAG.getNegative(B, DL, VT);
|
|
if (!SwapCC)
|
|
CC = DAG.getLogicalNOT(DL, CC, CC->getValueType(0));
|
|
SDValue NewB = DAG.getNode(ISD::VSELECT, DL, VT, CC, NegB, B);
|
|
return DAG.getNode(ISD::ADD, DL, VT, A, NewB);
|
|
}
|
|
|
|
// Custom legalize <N x i128> or <N x i256> to <M x ELEN>. This runs
|
|
// during the combine phase before type legalization, and relies on
|
|
// DAGCombine not undoing the transform if isShuffleMaskLegal returns false
|
|
// for the source mask.
|
|
if (TLI.isTypeLegal(VT) || ElementSize <= Subtarget.getELen() ||
|
|
!isPowerOf2_64(ElementSize) || VT.getVectorNumElements() % 2 != 0 ||
|
|
VT.isFloatingPoint() || TLI.isShuffleMaskLegal(Mask, VT))
|
|
return SDValue();
|
|
|
|
SmallVector<int, 8> NewMask;
|
|
narrowShuffleMaskElts(2, Mask, NewMask);
|
|
|
|
LLVMContext &C = *DAG.getContext();
|
|
EVT NewEltVT = EVT::getIntegerVT(C, ElementSize / 2);
|
|
EVT NewVT = EVT::getVectorVT(C, NewEltVT, VT.getVectorNumElements() * 2);
|
|
SDValue Res = DAG.getVectorShuffle(NewVT, DL, DAG.getBitcast(NewVT, V1),
|
|
DAG.getBitcast(NewVT, V2), NewMask);
|
|
return DAG.getBitcast(VT, Res);
|
|
}
|
|
|
|
static SDValue combineToVWMACC(SDNode *N, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
assert(N->getOpcode() == RISCVISD::ADD_VL || N->getOpcode() == ISD::ADD);
|
|
|
|
if (N->getValueType(0).isFixedLengthVector())
|
|
return SDValue();
|
|
|
|
SDValue Addend = N->getOperand(0);
|
|
SDValue MulOp = N->getOperand(1);
|
|
|
|
if (N->getOpcode() == RISCVISD::ADD_VL) {
|
|
SDValue AddPassthruOp = N->getOperand(2);
|
|
if (!AddPassthruOp.isUndef())
|
|
return SDValue();
|
|
}
|
|
|
|
auto IsVWMulOpc = [](unsigned Opc) {
|
|
switch (Opc) {
|
|
case RISCVISD::VWMUL_VL:
|
|
case RISCVISD::VWMULU_VL:
|
|
case RISCVISD::VWMULSU_VL:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
};
|
|
|
|
if (!IsVWMulOpc(MulOp.getOpcode()))
|
|
std::swap(Addend, MulOp);
|
|
|
|
if (!IsVWMulOpc(MulOp.getOpcode()))
|
|
return SDValue();
|
|
|
|
SDValue MulPassthruOp = MulOp.getOperand(2);
|
|
|
|
if (!MulPassthruOp.isUndef())
|
|
return SDValue();
|
|
|
|
auto [AddMask, AddVL] = [](SDNode *N, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
if (N->getOpcode() == ISD::ADD) {
|
|
SDLoc DL(N);
|
|
return getDefaultScalableVLOps(N->getSimpleValueType(0), DL, DAG,
|
|
Subtarget);
|
|
}
|
|
return std::make_pair(N->getOperand(3), N->getOperand(4));
|
|
}(N, DAG, Subtarget);
|
|
|
|
SDValue MulMask = MulOp.getOperand(3);
|
|
SDValue MulVL = MulOp.getOperand(4);
|
|
|
|
if (AddMask != MulMask || AddVL != MulVL)
|
|
return SDValue();
|
|
|
|
const auto &TSInfo =
|
|
static_cast<const RISCVSelectionDAGInfo &>(DAG.getSelectionDAGInfo());
|
|
unsigned Opc = TSInfo.getMAccOpcode(MulOp.getOpcode());
|
|
|
|
SDLoc DL(N);
|
|
EVT VT = N->getValueType(0);
|
|
SDValue Ops[] = {MulOp.getOperand(0), MulOp.getOperand(1), Addend, AddMask,
|
|
AddVL};
|
|
return DAG.getNode(Opc, DL, VT, Ops);
|
|
}
|
|
|
|
static SDValue combineVqdotAccum(SDNode *N, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
|
|
assert(N->getOpcode() == RISCVISD::ADD_VL || N->getOpcode() == ISD::ADD);
|
|
|
|
if (!N->getValueType(0).isVector())
|
|
return SDValue();
|
|
|
|
SDValue Addend = N->getOperand(0);
|
|
SDValue DotOp = N->getOperand(1);
|
|
|
|
if (N->getOpcode() == RISCVISD::ADD_VL) {
|
|
SDValue AddPassthruOp = N->getOperand(2);
|
|
if (!AddPassthruOp.isUndef())
|
|
return SDValue();
|
|
}
|
|
|
|
auto IsVqdotqOpc = [](unsigned Opc) {
|
|
switch (Opc) {
|
|
case RISCVISD::VQDOT_VL:
|
|
case RISCVISD::VQDOTU_VL:
|
|
case RISCVISD::VQDOTSU_VL:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
};
|
|
|
|
if (!IsVqdotqOpc(DotOp.getOpcode()))
|
|
std::swap(Addend, DotOp);
|
|
|
|
if (!IsVqdotqOpc(DotOp.getOpcode()))
|
|
return SDValue();
|
|
|
|
auto [AddMask, AddVL] = [](SDNode *N, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
if (N->getOpcode() == ISD::ADD) {
|
|
SDLoc DL(N);
|
|
return getDefaultScalableVLOps(N->getSimpleValueType(0), DL, DAG,
|
|
Subtarget);
|
|
}
|
|
return std::make_pair(N->getOperand(3), N->getOperand(4));
|
|
}(N, DAG, Subtarget);
|
|
|
|
SDValue MulVL = DotOp.getOperand(4);
|
|
if (AddVL != MulVL)
|
|
return SDValue();
|
|
|
|
if (AddMask.getOpcode() != RISCVISD::VMSET_VL ||
|
|
AddMask.getOperand(0) != MulVL)
|
|
return SDValue();
|
|
|
|
SDValue AccumOp = DotOp.getOperand(2);
|
|
SDLoc DL(N);
|
|
EVT VT = N->getValueType(0);
|
|
Addend = DAG.getNode(RISCVISD::ADD_VL, DL, VT, Addend, AccumOp,
|
|
DAG.getUNDEF(VT), AddMask, AddVL);
|
|
|
|
SDValue Ops[] = {DotOp.getOperand(0), DotOp.getOperand(1), Addend,
|
|
DotOp.getOperand(3), DotOp->getOperand(4)};
|
|
return DAG.getNode(DotOp->getOpcode(), DL, VT, Ops);
|
|
}
|
|
|
|
static bool
|
|
legalizeScatterGatherIndexType(SDLoc DL, SDValue &Index,
|
|
ISD::MemIndexType &IndexType,
|
|
RISCVTargetLowering::DAGCombinerInfo &DCI) {
|
|
if (!DCI.isBeforeLegalize())
|
|
return false;
|
|
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
const MVT XLenVT =
|
|
DAG.getMachineFunction().getSubtarget<RISCVSubtarget>().getXLenVT();
|
|
|
|
const EVT IndexVT = Index.getValueType();
|
|
|
|
// RISC-V indexed loads only support the "unsigned unscaled" addressing
|
|
// mode, so anything else must be manually legalized.
|
|
if (!isIndexTypeSigned(IndexType))
|
|
return false;
|
|
|
|
if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
|
|
// Any index legalization should first promote to XLenVT, so we don't lose
|
|
// bits when scaling. This may create an illegal index type so we let
|
|
// LLVM's legalization take care of the splitting.
|
|
// FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet.
|
|
Index = DAG.getNode(ISD::SIGN_EXTEND, DL,
|
|
IndexVT.changeVectorElementType(XLenVT), Index);
|
|
}
|
|
IndexType = ISD::UNSIGNED_SCALED;
|
|
return true;
|
|
}
|
|
|
|
/// Match the index vector of a scatter or gather node as the shuffle mask
|
|
/// which performs the rearrangement if possible. Will only match if
|
|
/// all lanes are touched, and thus replacing the scatter or gather with
|
|
/// a unit strided access and shuffle is legal.
|
|
static bool matchIndexAsShuffle(EVT VT, SDValue Index, SDValue Mask,
|
|
SmallVector<int> &ShuffleMask) {
|
|
if (!ISD::isConstantSplatVectorAllOnes(Mask.getNode()))
|
|
return false;
|
|
if (!ISD::isBuildVectorOfConstantSDNodes(Index.getNode()))
|
|
return false;
|
|
|
|
const unsigned ElementSize = VT.getScalarStoreSize();
|
|
const unsigned NumElems = VT.getVectorNumElements();
|
|
|
|
// Create the shuffle mask and check all bits active
|
|
assert(ShuffleMask.empty());
|
|
BitVector ActiveLanes(NumElems);
|
|
for (unsigned i = 0; i < Index->getNumOperands(); i++) {
|
|
// TODO: We've found an active bit of UB, and could be
|
|
// more aggressive here if desired.
|
|
if (Index->getOperand(i)->isUndef())
|
|
return false;
|
|
uint64_t C = Index->getConstantOperandVal(i);
|
|
if (C % ElementSize != 0)
|
|
return false;
|
|
C = C / ElementSize;
|
|
if (C >= NumElems)
|
|
return false;
|
|
ShuffleMask.push_back(C);
|
|
ActiveLanes.set(C);
|
|
}
|
|
return ActiveLanes.all();
|
|
}
|
|
|
|
/// Match the index of a gather or scatter operation as an operation
|
|
/// with twice the element width and half the number of elements. This is
|
|
/// generally profitable (if legal) because these operations are linear
|
|
/// in VL, so even if we cause some extract VTYPE/VL toggles, we still
|
|
/// come out ahead.
|
|
static bool matchIndexAsWiderOp(EVT VT, SDValue Index, SDValue Mask,
|
|
Align BaseAlign, const RISCVSubtarget &ST) {
|
|
if (!ISD::isConstantSplatVectorAllOnes(Mask.getNode()))
|
|
return false;
|
|
if (!ISD::isBuildVectorOfConstantSDNodes(Index.getNode()))
|
|
return false;
|
|
|
|
// Attempt a doubling. If we can use a element type 4x or 8x in
|
|
// size, this will happen via multiply iterations of the transform.
|
|
const unsigned NumElems = VT.getVectorNumElements();
|
|
if (NumElems % 2 != 0)
|
|
return false;
|
|
|
|
const unsigned ElementSize = VT.getScalarStoreSize();
|
|
const unsigned WiderElementSize = ElementSize * 2;
|
|
if (WiderElementSize > ST.getELen()/8)
|
|
return false;
|
|
|
|
if (!ST.enableUnalignedVectorMem() && BaseAlign < WiderElementSize)
|
|
return false;
|
|
|
|
for (unsigned i = 0; i < Index->getNumOperands(); i++) {
|
|
// TODO: We've found an active bit of UB, and could be
|
|
// more aggressive here if desired.
|
|
if (Index->getOperand(i)->isUndef())
|
|
return false;
|
|
// TODO: This offset check is too strict if we support fully
|
|
// misaligned memory operations.
|
|
uint64_t C = Index->getConstantOperandVal(i);
|
|
if (i % 2 == 0) {
|
|
if (C % WiderElementSize != 0)
|
|
return false;
|
|
continue;
|
|
}
|
|
uint64_t Last = Index->getConstantOperandVal(i-1);
|
|
if (C != Last + ElementSize)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// trunc (sra sext (X), zext (Y)) -> sra (X, smin (Y, scalarsize(Y) - 1))
|
|
// This would be benefit for the cases where X and Y are both the same value
|
|
// type of low precision vectors. Since the truncate would be lowered into
|
|
// n-levels TRUNCATE_VECTOR_VL to satisfy RVV's SEW*2->SEW truncate
|
|
// restriction, such pattern would be expanded into a series of "vsetvli"
|
|
// and "vnsrl" instructions later to reach this point.
|
|
static SDValue combineTruncOfSraSext(SDNode *N, SelectionDAG &DAG) {
|
|
SDValue Mask = N->getOperand(1);
|
|
SDValue VL = N->getOperand(2);
|
|
|
|
bool IsVLMAX = isAllOnesConstant(VL) ||
|
|
(isa<RegisterSDNode>(VL) &&
|
|
cast<RegisterSDNode>(VL)->getReg() == RISCV::X0);
|
|
if (!IsVLMAX || Mask.getOpcode() != RISCVISD::VMSET_VL ||
|
|
Mask.getOperand(0) != VL)
|
|
return SDValue();
|
|
|
|
auto IsTruncNode = [&](SDValue V) {
|
|
return V.getOpcode() == RISCVISD::TRUNCATE_VECTOR_VL &&
|
|
V.getOperand(1) == Mask && V.getOperand(2) == VL;
|
|
};
|
|
|
|
SDValue Op = N->getOperand(0);
|
|
|
|
// We need to first find the inner level of TRUNCATE_VECTOR_VL node
|
|
// to distinguish such pattern.
|
|
while (IsTruncNode(Op)) {
|
|
if (!Op.hasOneUse())
|
|
return SDValue();
|
|
Op = Op.getOperand(0);
|
|
}
|
|
|
|
if (Op.getOpcode() != ISD::SRA || !Op.hasOneUse())
|
|
return SDValue();
|
|
|
|
SDValue N0 = Op.getOperand(0);
|
|
SDValue N1 = Op.getOperand(1);
|
|
if (N0.getOpcode() != ISD::SIGN_EXTEND || !N0.hasOneUse() ||
|
|
N1.getOpcode() != ISD::ZERO_EXTEND || !N1.hasOneUse())
|
|
return SDValue();
|
|
|
|
SDValue N00 = N0.getOperand(0);
|
|
SDValue N10 = N1.getOperand(0);
|
|
if (!N00.getValueType().isVector() ||
|
|
N00.getValueType() != N10.getValueType() ||
|
|
N->getValueType(0) != N10.getValueType())
|
|
return SDValue();
|
|
|
|
unsigned MaxShAmt = N10.getValueType().getScalarSizeInBits() - 1;
|
|
SDValue SMin =
|
|
DAG.getNode(ISD::SMIN, SDLoc(N1), N->getValueType(0), N10,
|
|
DAG.getConstant(MaxShAmt, SDLoc(N1), N->getValueType(0)));
|
|
return DAG.getNode(ISD::SRA, SDLoc(N), N->getValueType(0), N00, SMin);
|
|
}
|
|
|
|
// Combine (truncate_vector_vl (umin X, C)) -> (vnclipu_vl X) if C is the
|
|
// maximum value for the truncated type.
|
|
// Combine (truncate_vector_vl (smin (smax X, C2), C1)) -> (vnclip_vl X) if C1
|
|
// is the signed maximum value for the truncated type and C2 is the signed
|
|
// minimum value.
|
|
static SDValue combineTruncToVnclip(SDNode *N, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
assert(N->getOpcode() == RISCVISD::TRUNCATE_VECTOR_VL);
|
|
|
|
MVT VT = N->getSimpleValueType(0);
|
|
|
|
SDValue Mask = N->getOperand(1);
|
|
SDValue VL = N->getOperand(2);
|
|
|
|
auto MatchMinMax = [&VL, &Mask](SDValue V, unsigned Opc, unsigned OpcVL,
|
|
APInt &SplatVal) {
|
|
if (V.getOpcode() != Opc &&
|
|
!(V.getOpcode() == OpcVL && V.getOperand(2).isUndef() &&
|
|
V.getOperand(3) == Mask && V.getOperand(4) == VL))
|
|
return SDValue();
|
|
|
|
SDValue Op = V.getOperand(1);
|
|
|
|
// Peek through conversion between fixed and scalable vectors.
|
|
if (Op.getOpcode() == ISD::INSERT_SUBVECTOR && Op.getOperand(0).isUndef() &&
|
|
isNullConstant(Op.getOperand(2)) &&
|
|
Op.getOperand(1).getValueType().isFixedLengthVector() &&
|
|
Op.getOperand(1).getOpcode() == ISD::EXTRACT_SUBVECTOR &&
|
|
Op.getOperand(1).getOperand(0).getValueType() == Op.getValueType() &&
|
|
isNullConstant(Op.getOperand(1).getOperand(1)))
|
|
Op = Op.getOperand(1).getOperand(0);
|
|
|
|
if (ISD::isConstantSplatVector(Op.getNode(), SplatVal))
|
|
return V.getOperand(0);
|
|
|
|
if (Op.getOpcode() == RISCVISD::VMV_V_X_VL && Op.getOperand(0).isUndef() &&
|
|
Op.getOperand(2) == VL) {
|
|
if (auto *Op1 = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
|
SplatVal =
|
|
Op1->getAPIntValue().sextOrTrunc(Op.getScalarValueSizeInBits());
|
|
return V.getOperand(0);
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
};
|
|
|
|
SDLoc DL(N);
|
|
|
|
auto DetectUSatPattern = [&](SDValue V) {
|
|
APInt LoC, HiC;
|
|
|
|
// Simple case, V is a UMIN.
|
|
if (SDValue UMinOp = MatchMinMax(V, ISD::UMIN, RISCVISD::UMIN_VL, HiC))
|
|
if (HiC.isMask(VT.getScalarSizeInBits()))
|
|
return UMinOp;
|
|
|
|
// If we have an SMAX that removes negative numbers first, then we can match
|
|
// SMIN instead of UMIN.
|
|
if (SDValue SMinOp = MatchMinMax(V, ISD::SMIN, RISCVISD::SMIN_VL, HiC))
|
|
if (SDValue SMaxOp =
|
|
MatchMinMax(SMinOp, ISD::SMAX, RISCVISD::SMAX_VL, LoC))
|
|
if (LoC.isNonNegative() && HiC.isMask(VT.getScalarSizeInBits()))
|
|
return SMinOp;
|
|
|
|
// If we have an SMIN before an SMAX and the SMAX constant is less than or
|
|
// equal to the SMIN constant, we can use vnclipu if we insert a new SMAX
|
|
// first.
|
|
if (SDValue SMaxOp = MatchMinMax(V, ISD::SMAX, RISCVISD::SMAX_VL, LoC))
|
|
if (SDValue SMinOp =
|
|
MatchMinMax(SMaxOp, ISD::SMIN, RISCVISD::SMIN_VL, HiC))
|
|
if (LoC.isNonNegative() && HiC.isMask(VT.getScalarSizeInBits()) &&
|
|
HiC.uge(LoC))
|
|
return DAG.getNode(RISCVISD::SMAX_VL, DL, V.getValueType(), SMinOp,
|
|
V.getOperand(1), DAG.getUNDEF(V.getValueType()),
|
|
Mask, VL);
|
|
|
|
return SDValue();
|
|
};
|
|
|
|
auto DetectSSatPattern = [&](SDValue V) {
|
|
unsigned NumDstBits = VT.getScalarSizeInBits();
|
|
unsigned NumSrcBits = V.getScalarValueSizeInBits();
|
|
APInt SignedMax = APInt::getSignedMaxValue(NumDstBits).sext(NumSrcBits);
|
|
APInt SignedMin = APInt::getSignedMinValue(NumDstBits).sext(NumSrcBits);
|
|
|
|
APInt HiC, LoC;
|
|
if (SDValue SMinOp = MatchMinMax(V, ISD::SMIN, RISCVISD::SMIN_VL, HiC))
|
|
if (SDValue SMaxOp =
|
|
MatchMinMax(SMinOp, ISD::SMAX, RISCVISD::SMAX_VL, LoC))
|
|
if (HiC == SignedMax && LoC == SignedMin)
|
|
return SMaxOp;
|
|
|
|
if (SDValue SMaxOp = MatchMinMax(V, ISD::SMAX, RISCVISD::SMAX_VL, LoC))
|
|
if (SDValue SMinOp =
|
|
MatchMinMax(SMaxOp, ISD::SMIN, RISCVISD::SMIN_VL, HiC))
|
|
if (HiC == SignedMax && LoC == SignedMin)
|
|
return SMinOp;
|
|
|
|
return SDValue();
|
|
};
|
|
|
|
SDValue Src = N->getOperand(0);
|
|
|
|
// Look through multiple layers of truncates.
|
|
while (Src.getOpcode() == RISCVISD::TRUNCATE_VECTOR_VL &&
|
|
Src.getOperand(1) == Mask && Src.getOperand(2) == VL &&
|
|
Src.hasOneUse())
|
|
Src = Src.getOperand(0);
|
|
|
|
SDValue Val;
|
|
unsigned ClipOpc;
|
|
if ((Val = DetectUSatPattern(Src)))
|
|
ClipOpc = RISCVISD::TRUNCATE_VECTOR_VL_USAT;
|
|
else if ((Val = DetectSSatPattern(Src)))
|
|
ClipOpc = RISCVISD::TRUNCATE_VECTOR_VL_SSAT;
|
|
else
|
|
return SDValue();
|
|
|
|
MVT ValVT = Val.getSimpleValueType();
|
|
|
|
do {
|
|
MVT ValEltVT = MVT::getIntegerVT(ValVT.getScalarSizeInBits() / 2);
|
|
ValVT = ValVT.changeVectorElementType(ValEltVT);
|
|
Val = DAG.getNode(ClipOpc, DL, ValVT, Val, Mask, VL);
|
|
} while (ValVT != VT);
|
|
|
|
return Val;
|
|
}
|
|
|
|
// Convert
|
|
// (iX ctpop (bitcast (vXi1 A)))
|
|
// ->
|
|
// (zext (vcpop.m (nxvYi1 (insert_subvec (vXi1 A)))))
|
|
// and
|
|
// (iN reduce.add (zext (vXi1 A to vXiN))
|
|
// ->
|
|
// (zext (vcpop.m (nxvYi1 (insert_subvec (vXi1 A)))))
|
|
// FIXME: It's complicated to match all the variations of this after type
|
|
// legalization so we only handle the pre-type legalization pattern, but that
|
|
// requires the fixed vector type to be legal.
|
|
static SDValue combineToVCPOP(SDNode *N, SelectionDAG &DAG,
|
|
const RISCVSubtarget &Subtarget) {
|
|
unsigned Opc = N->getOpcode();
|
|
assert((Opc == ISD::CTPOP || Opc == ISD::VECREDUCE_ADD) &&
|
|
"Unexpected opcode");
|
|
EVT VT = N->getValueType(0);
|
|
if (!VT.isScalarInteger())
|
|
return SDValue();
|
|
|
|
SDValue Src = N->getOperand(0);
|
|
|
|
if (Opc == ISD::CTPOP) {
|
|
// Peek through zero_extend. It doesn't change the count.
|
|
if (Src.getOpcode() == ISD::ZERO_EXTEND)
|
|
Src = Src.getOperand(0);
|
|
|
|
if (Src.getOpcode() != ISD::BITCAST)
|
|
return SDValue();
|
|
Src = Src.getOperand(0);
|
|
} else if (Opc == ISD::VECREDUCE_ADD) {
|
|
if (Src.getOpcode() != ISD::ZERO_EXTEND)
|
|
return SDValue();
|
|
Src = Src.getOperand(0);
|
|
}
|
|
|
|
EVT SrcEVT = Src.getValueType();
|
|
if (!SrcEVT.isSimple())
|
|
return SDValue();
|
|
|
|
MVT SrcMVT = SrcEVT.getSimpleVT();
|
|
// Make sure the input is an i1 vector.
|
|
if (!SrcMVT.isVector() || SrcMVT.getVectorElementType() != MVT::i1)
|
|
return SDValue();
|
|
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
if (!TLI.isTypeLegal(SrcMVT))
|
|
return SDValue();
|
|
|
|
// Check that destination type is large enough to hold result without
|
|
// overflow.
|
|
if (Opc == ISD::VECREDUCE_ADD) {
|
|
unsigned EltSize = SrcMVT.getScalarSizeInBits();
|
|
unsigned MinSize = SrcMVT.getSizeInBits().getKnownMinValue();
|
|
unsigned VectorBitsMax = Subtarget.getRealMaxVLen();
|
|
unsigned MaxVLMAX = SrcMVT.isFixedLengthVector()
|
|
? SrcMVT.getVectorNumElements()
|
|
: RISCVTargetLowering::computeVLMAX(
|
|
VectorBitsMax, EltSize, MinSize);
|
|
if (VT.getFixedSizeInBits() < Log2_32(MaxVLMAX) + 1)
|
|
return SDValue();
|
|
}
|
|
|
|
MVT ContainerVT = SrcMVT;
|
|
if (SrcMVT.isFixedLengthVector()) {
|
|
ContainerVT = getContainerForFixedLengthVector(DAG, SrcMVT, Subtarget);
|
|
Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
|
|
}
|
|
|
|
SDLoc DL(N);
|
|
auto [Mask, VL] = getDefaultVLOps(SrcMVT, ContainerVT, DL, DAG, Subtarget);
|
|
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
SDValue Pop = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Src, Mask, VL);
|
|
return DAG.getZExtOrTrunc(Pop, DL, VT);
|
|
}
|
|
|
|
static SDValue performSHLCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const RISCVSubtarget &Subtarget) {
|
|
// (shl (zext x), y) -> (vwsll x, y)
|
|
if (SDValue V = combineOp_VLToVWOp_VL(N, DCI, Subtarget))
|
|
return V;
|
|
|
|
// (shl (sext x), C) -> (vwmulsu x, 1u << C)
|
|
// (shl (zext x), C) -> (vwmulu x, 1u << C)
|
|
|
|
if (!DCI.isAfterLegalizeDAG())
|
|
return SDValue();
|
|
|
|
SDValue LHS = N->getOperand(0);
|
|
if (!LHS.hasOneUse())
|
|
return SDValue();
|
|
unsigned Opcode;
|
|
switch (LHS.getOpcode()) {
|
|
case ISD::SIGN_EXTEND:
|
|
case RISCVISD::VSEXT_VL:
|
|
Opcode = RISCVISD::VWMULSU_VL;
|
|
break;
|
|
case ISD::ZERO_EXTEND:
|
|
case RISCVISD::VZEXT_VL:
|
|
Opcode = RISCVISD::VWMULU_VL;
|
|
break;
|
|
default:
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue RHS = N->getOperand(1);
|
|
APInt ShAmt;
|
|
uint64_t ShAmtInt;
|
|
if (ISD::isConstantSplatVector(RHS.getNode(), ShAmt))
|
|
ShAmtInt = ShAmt.getZExtValue();
|
|
else if (RHS.getOpcode() == RISCVISD::VMV_V_X_VL &&
|
|
RHS.getOperand(1).getOpcode() == ISD::Constant)
|
|
ShAmtInt = RHS.getConstantOperandVal(1);
|
|
else
|
|
return SDValue();
|
|
|
|
// Better foldings:
|
|
// (shl (sext x), 1) -> (vwadd x, x)
|
|
// (shl (zext x), 1) -> (vwaddu x, x)
|
|
if (ShAmtInt <= 1)
|
|
return SDValue();
|
|
|
|
SDValue NarrowOp = LHS.getOperand(0);
|
|
MVT NarrowVT = NarrowOp.getSimpleValueType();
|
|
uint64_t NarrowBits = NarrowVT.getScalarSizeInBits();
|
|
if (ShAmtInt >= NarrowBits)
|
|
return SDValue();
|
|
MVT VT = N->getSimpleValueType(0);
|
|
if (NarrowBits * 2 != VT.getScalarSizeInBits())
|
|
return SDValue();
|
|
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDLoc DL(N);
|
|
SDValue Passthru, Mask, VL;
|
|
switch (N->getOpcode()) {
|
|
case ISD::SHL:
|
|
Passthru = DAG.getUNDEF(VT);
|
|
std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
|
|
break;
|
|
case RISCVISD::SHL_VL:
|
|
Passthru = N->getOperand(2);
|
|
Mask = N->getOperand(3);
|
|
VL = N->getOperand(4);
|
|
break;
|
|
default:
|
|
llvm_unreachable("Expected SHL");
|
|
}
|
|
return DAG.getNode(Opcode, DL, VT, NarrowOp,
|
|
DAG.getConstant(1ULL << ShAmtInt, SDLoc(RHS), NarrowVT),
|
|
Passthru, Mask, VL);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
|
|
DAGCombinerInfo &DCI) const {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
const MVT XLenVT = Subtarget.getXLenVT();
|
|
SDLoc DL(N);
|
|
|
|
// Helper to call SimplifyDemandedBits on an operand of N where only some low
|
|
// bits are demanded. N will be added to the Worklist if it was not deleted.
|
|
// Caller should return SDValue(N, 0) if this returns true.
|
|
auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) {
|
|
SDValue Op = N->getOperand(OpNo);
|
|
APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits);
|
|
if (!SimplifyDemandedBits(Op, Mask, DCI))
|
|
return false;
|
|
|
|
if (N->getOpcode() != ISD::DELETED_NODE)
|
|
DCI.AddToWorklist(N);
|
|
return true;
|
|
};
|
|
|
|
switch (N->getOpcode()) {
|
|
default:
|
|
break;
|
|
case RISCVISD::SplitF64: {
|
|
SDValue Op0 = N->getOperand(0);
|
|
// If the input to SplitF64 is just BuildPairF64 then the operation is
|
|
// redundant. Instead, use BuildPairF64's operands directly.
|
|
if (Op0->getOpcode() == RISCVISD::BuildPairF64)
|
|
return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
|
|
|
|
if (Op0->isUndef()) {
|
|
SDValue Lo = DAG.getUNDEF(MVT::i32);
|
|
SDValue Hi = DAG.getUNDEF(MVT::i32);
|
|
return DCI.CombineTo(N, Lo, Hi);
|
|
}
|
|
|
|
// It's cheaper to materialise two 32-bit integers than to load a double
|
|
// from the constant pool and transfer it to integer registers through the
|
|
// stack.
|
|
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
|
|
APInt V = C->getValueAPF().bitcastToAPInt();
|
|
SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
|
|
SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
|
|
return DCI.CombineTo(N, Lo, Hi);
|
|
}
|
|
|
|
// This is a target-specific version of a DAGCombine performed in
|
|
// DAGCombiner::visitBITCAST. It performs the equivalent of:
|
|
// fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
|
|
// fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
|
|
if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
|
|
!Op0.getNode()->hasOneUse() || Subtarget.hasStdExtZdinx())
|
|
break;
|
|
SDValue NewSplitF64 =
|
|
DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
|
|
Op0.getOperand(0));
|
|
SDValue Lo = NewSplitF64.getValue(0);
|
|
SDValue Hi = NewSplitF64.getValue(1);
|
|
APInt SignBit = APInt::getSignMask(32);
|
|
if (Op0.getOpcode() == ISD::FNEG) {
|
|
SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
|
|
DAG.getConstant(SignBit, DL, MVT::i32));
|
|
return DCI.CombineTo(N, Lo, NewHi);
|
|
}
|
|
assert(Op0.getOpcode() == ISD::FABS);
|
|
SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
|
|
DAG.getConstant(~SignBit, DL, MVT::i32));
|
|
return DCI.CombineTo(N, Lo, NewHi);
|
|
}
|
|
case RISCVISD::SLLW:
|
|
case RISCVISD::SRAW:
|
|
case RISCVISD::SRLW:
|
|
case RISCVISD::RORW:
|
|
case RISCVISD::ROLW: {
|
|
// Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
|
|
if (SimplifyDemandedLowBitsHelper(0, 32) ||
|
|
SimplifyDemandedLowBitsHelper(1, 5))
|
|
return SDValue(N, 0);
|
|
|
|
break;
|
|
}
|
|
case RISCVISD::CLZW:
|
|
case RISCVISD::CTZW: {
|
|
// Only the lower 32 bits of the first operand are read
|
|
if (SimplifyDemandedLowBitsHelper(0, 32))
|
|
return SDValue(N, 0);
|
|
break;
|
|
}
|
|
case RISCVISD::FMV_W_X_RV64: {
|
|
// If the input to FMV_W_X_RV64 is just FMV_X_ANYEXTW_RV64 the the
|
|
// conversion is unnecessary and can be replaced with the
|
|
// FMV_X_ANYEXTW_RV64 operand.
|
|
SDValue Op0 = N->getOperand(0);
|
|
if (Op0.getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64)
|
|
return Op0.getOperand(0);
|
|
break;
|
|
}
|
|
case RISCVISD::FMV_X_ANYEXTH:
|
|
case RISCVISD::FMV_X_ANYEXTW_RV64: {
|
|
SDLoc DL(N);
|
|
SDValue Op0 = N->getOperand(0);
|
|
MVT VT = N->getSimpleValueType(0);
|
|
|
|
// Constant fold.
|
|
if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op0)) {
|
|
APInt Val = CFP->getValueAPF().bitcastToAPInt().sext(VT.getSizeInBits());
|
|
return DAG.getConstant(Val, DL, VT);
|
|
}
|
|
|
|
// If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
|
|
// conversion is unnecessary and can be replaced with the FMV_W_X_RV64
|
|
// operand. Similar for FMV_X_ANYEXTH and FMV_H_X.
|
|
if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 &&
|
|
Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) ||
|
|
(N->getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
|
|
Op0->getOpcode() == RISCVISD::FMV_H_X)) {
|
|
assert(Op0.getOperand(0).getValueType() == VT &&
|
|
"Unexpected value type!");
|
|
return Op0.getOperand(0);
|
|
}
|
|
|
|
if (ISD::isNormalLoad(Op0.getNode()) && Op0.hasOneUse() &&
|
|
cast<LoadSDNode>(Op0)->isSimple()) {
|
|
MVT IVT = MVT::getIntegerVT(Op0.getValueSizeInBits());
|
|
auto *LN0 = cast<LoadSDNode>(Op0);
|
|
SDValue Load =
|
|
DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, LN0->getChain(),
|
|
LN0->getBasePtr(), IVT, LN0->getMemOperand());
|
|
DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), Load.getValue(1));
|
|
return Load;
|
|
}
|
|
|
|
// This is a target-specific version of a DAGCombine performed in
|
|
// DAGCombiner::visitBITCAST. It performs the equivalent of:
|
|
// fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
|
|
// fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
|
|
if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
|
|
!Op0.getNode()->hasOneUse())
|
|
break;
|
|
SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0));
|
|
unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16;
|
|
APInt SignBit = APInt::getSignMask(FPBits).sext(VT.getSizeInBits());
|
|
if (Op0.getOpcode() == ISD::FNEG)
|
|
return DAG.getNode(ISD::XOR, DL, VT, NewFMV,
|
|
DAG.getConstant(SignBit, DL, VT));
|
|
|
|
assert(Op0.getOpcode() == ISD::FABS);
|
|
return DAG.getNode(ISD::AND, DL, VT, NewFMV,
|
|
DAG.getConstant(~SignBit, DL, VT));
|
|
}
|
|
case ISD::ABS: {
|
|
EVT VT = N->getValueType(0);
|
|
SDValue N0 = N->getOperand(0);
|
|
// abs (sext) -> zext (abs)
|
|
// abs (zext) -> zext (handled elsewhere)
|
|
if (VT.isVector() && N0.hasOneUse() && N0.getOpcode() == ISD::SIGN_EXTEND) {
|
|
SDValue Src = N0.getOperand(0);
|
|
SDLoc DL(N);
|
|
return DAG.getNode(ISD::ZERO_EXTEND, DL, VT,
|
|
DAG.getNode(ISD::ABS, DL, Src.getValueType(), Src));
|
|
}
|
|
break;
|
|
}
|
|
case ISD::ADD: {
|
|
if (SDValue V = combineOp_VLToVWOp_VL(N, DCI, Subtarget))
|
|
return V;
|
|
if (SDValue V = combineToVWMACC(N, DAG, Subtarget))
|
|
return V;
|
|
if (SDValue V = combineVqdotAccum(N, DAG, Subtarget))
|
|
return V;
|
|
return performADDCombine(N, DCI, Subtarget);
|
|
}
|
|
case ISD::SUB: {
|
|
if (SDValue V = combineOp_VLToVWOp_VL(N, DCI, Subtarget))
|
|
return V;
|
|
return performSUBCombine(N, DAG, Subtarget);
|
|
}
|
|
case ISD::AND:
|
|
return performANDCombine(N, DCI, Subtarget);
|
|
case ISD::OR: {
|
|
if (SDValue V = combineOp_VLToVWOp_VL(N, DCI, Subtarget))
|
|
return V;
|
|
return performORCombine(N, DCI, Subtarget);
|
|
}
|
|
case ISD::XOR:
|
|
return performXORCombine(N, DAG, Subtarget);
|
|
case ISD::MUL:
|
|
if (SDValue V = combineOp_VLToVWOp_VL(N, DCI, Subtarget))
|
|
return V;
|
|
return performMULCombine(N, DAG, DCI, Subtarget);
|
|
case ISD::SDIV:
|
|
case ISD::UDIV:
|
|
case ISD::SREM:
|
|
case ISD::UREM:
|
|
if (SDValue V = combineBinOpOfZExt(N, DAG))
|
|
return V;
|
|
break;
|
|
case ISD::FMUL: {
|
|
// fmul X, (copysign 1.0, Y) -> fsgnjx X, Y
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
if (N0->getOpcode() != ISD::FCOPYSIGN)
|
|
std::swap(N0, N1);
|
|
if (N0->getOpcode() != ISD::FCOPYSIGN)
|
|
return SDValue();
|
|
ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N0->getOperand(0));
|
|
if (!C || !C->getValueAPF().isExactlyValue(+1.0))
|
|
return SDValue();
|
|
EVT VT = N->getValueType(0);
|
|
if (VT.isVector() || !isOperationLegal(ISD::FCOPYSIGN, VT))
|
|
return SDValue();
|
|
SDValue Sign = N0->getOperand(1);
|
|
if (Sign.getValueType() != VT)
|
|
return SDValue();
|
|
return DAG.getNode(RISCVISD::FSGNJX, SDLoc(N), VT, N1, N0->getOperand(1));
|
|
}
|
|
case ISD::FADD:
|
|
case ISD::UMAX:
|
|
case ISD::UMIN:
|
|
case ISD::SMAX:
|
|
case ISD::SMIN:
|
|
case ISD::FMAXNUM:
|
|
case ISD::FMINNUM: {
|
|
if (SDValue V = combineBinOpToReduce(N, DAG, Subtarget))
|
|
return V;
|
|
if (SDValue V = combineBinOpOfExtractToReduceTree(N, DAG, Subtarget))
|
|
return V;
|
|
return SDValue();
|
|
}
|
|
case ISD::SETCC:
|
|
return performSETCCCombine(N, DAG, Subtarget);
|
|
case ISD::SIGN_EXTEND_INREG:
|
|
return performSIGN_EXTEND_INREGCombine(N, DAG, Subtarget);
|
|
case ISD::ZERO_EXTEND:
|
|
// Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during
|
|
// type legalization. This is safe because fp_to_uint produces poison if
|
|
// it overflows.
|
|
if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) {
|
|
SDValue Src = N->getOperand(0);
|
|
if (Src.getOpcode() == ISD::FP_TO_UINT &&
|
|
isTypeLegal(Src.getOperand(0).getValueType()))
|
|
return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64,
|
|
Src.getOperand(0));
|
|
if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() &&
|
|
isTypeLegal(Src.getOperand(1).getValueType())) {
|
|
SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
|
|
SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs,
|
|
Src.getOperand(0), Src.getOperand(1));
|
|
DCI.CombineTo(N, Res);
|
|
DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1));
|
|
DCI.recursivelyDeleteUnusedNodes(Src.getNode());
|
|
return SDValue(N, 0); // Return N so it doesn't get rechecked.
|
|
}
|
|
}
|
|
return SDValue();
|
|
case RISCVISD::TRUNCATE_VECTOR_VL:
|
|
if (SDValue V = combineTruncOfSraSext(N, DAG))
|
|
return V;
|
|
return combineTruncToVnclip(N, DAG, Subtarget);
|
|
case ISD::VP_TRUNCATE:
|
|
return performVP_TRUNCATECombine(N, DAG, Subtarget);
|
|
case ISD::TRUNCATE:
|
|
return performTRUNCATECombine(N, DAG, Subtarget);
|
|
case ISD::SELECT:
|
|
return performSELECTCombine(N, DAG, Subtarget);
|
|
case ISD::VSELECT:
|
|
return performVSELECTCombine(N, DAG);
|
|
case RISCVISD::CZERO_EQZ:
|
|
case RISCVISD::CZERO_NEZ: {
|
|
SDValue Val = N->getOperand(0);
|
|
SDValue Cond = N->getOperand(1);
|
|
|
|
unsigned Opc = N->getOpcode();
|
|
|
|
// czero_eqz x, x -> x
|
|
if (Opc == RISCVISD::CZERO_EQZ && Val == Cond)
|
|
return Val;
|
|
|
|
unsigned InvOpc =
|
|
Opc == RISCVISD::CZERO_EQZ ? RISCVISD::CZERO_NEZ : RISCVISD::CZERO_EQZ;
|
|
|
|
// czero_eqz X, (xor Y, 1) -> czero_nez X, Y if Y is 0 or 1.
|
|
// czero_nez X, (xor Y, 1) -> czero_eqz X, Y if Y is 0 or 1.
|
|
if (Cond.getOpcode() == ISD::XOR && isOneConstant(Cond.getOperand(1))) {
|
|
SDValue NewCond = Cond.getOperand(0);
|
|
APInt Mask = APInt::getBitsSetFrom(NewCond.getValueSizeInBits(), 1);
|
|
if (DAG.MaskedValueIsZero(NewCond, Mask))
|
|
return DAG.getNode(InvOpc, SDLoc(N), N->getValueType(0), Val, NewCond);
|
|
}
|
|
// czero_eqz x, (setcc y, 0, ne) -> czero_eqz x, y
|
|
// czero_nez x, (setcc y, 0, ne) -> czero_nez x, y
|
|
// czero_eqz x, (setcc y, 0, eq) -> czero_nez x, y
|
|
// czero_nez x, (setcc y, 0, eq) -> czero_eqz x, y
|
|
if (Cond.getOpcode() == ISD::SETCC && isNullConstant(Cond.getOperand(1))) {
|
|
ISD::CondCode CCVal = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
|
|
if (ISD::isIntEqualitySetCC(CCVal))
|
|
return DAG.getNode(CCVal == ISD::SETNE ? Opc : InvOpc, SDLoc(N),
|
|
N->getValueType(0), Val, Cond.getOperand(0));
|
|
}
|
|
return SDValue();
|
|
}
|
|
case RISCVISD::SELECT_CC: {
|
|
// Transform
|
|
SDValue LHS = N->getOperand(0);
|
|
SDValue RHS = N->getOperand(1);
|
|
SDValue CC = N->getOperand(2);
|
|
ISD::CondCode CCVal = cast<CondCodeSDNode>(CC)->get();
|
|
SDValue TrueV = N->getOperand(3);
|
|
SDValue FalseV = N->getOperand(4);
|
|
SDLoc DL(N);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// If the True and False values are the same, we don't need a select_cc.
|
|
if (TrueV == FalseV)
|
|
return TrueV;
|
|
|
|
// (select (x < 0), y, z) -> x >> (XLEN - 1) & (y - z) + z
|
|
// (select (x >= 0), y, z) -> x >> (XLEN - 1) & (z - y) + y
|
|
if (!Subtarget.hasShortForwardBranchOpt() && isa<ConstantSDNode>(TrueV) &&
|
|
isa<ConstantSDNode>(FalseV) && isNullConstant(RHS) &&
|
|
(CCVal == ISD::CondCode::SETLT || CCVal == ISD::CondCode::SETGE)) {
|
|
if (CCVal == ISD::CondCode::SETGE)
|
|
std::swap(TrueV, FalseV);
|
|
|
|
int64_t TrueSImm = cast<ConstantSDNode>(TrueV)->getSExtValue();
|
|
int64_t FalseSImm = cast<ConstantSDNode>(FalseV)->getSExtValue();
|
|
// Only handle simm12, if it is not in this range, it can be considered as
|
|
// register.
|
|
if (isInt<12>(TrueSImm) && isInt<12>(FalseSImm) &&
|
|
isInt<12>(TrueSImm - FalseSImm)) {
|
|
SDValue SRA =
|
|
DAG.getNode(ISD::SRA, DL, VT, LHS,
|
|
DAG.getConstant(Subtarget.getXLen() - 1, DL, VT));
|
|
SDValue AND =
|
|
DAG.getNode(ISD::AND, DL, VT, SRA,
|
|
DAG.getSignedConstant(TrueSImm - FalseSImm, DL, VT));
|
|
return DAG.getNode(ISD::ADD, DL, VT, AND, FalseV);
|
|
}
|
|
|
|
if (CCVal == ISD::CondCode::SETGE)
|
|
std::swap(TrueV, FalseV);
|
|
}
|
|
|
|
if (combine_CC(LHS, RHS, CC, DL, DAG, Subtarget))
|
|
return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
|
|
{LHS, RHS, CC, TrueV, FalseV});
|
|
|
|
if (!Subtarget.hasConditionalMoveFusion()) {
|
|
// (select c, -1, y) -> -c | y
|
|
if (isAllOnesConstant(TrueV)) {
|
|
SDValue C = DAG.getSetCC(DL, VT, LHS, RHS, CCVal);
|
|
SDValue Neg = DAG.getNegative(C, DL, VT);
|
|
return DAG.getNode(ISD::OR, DL, VT, Neg, FalseV);
|
|
}
|
|
// (select c, y, -1) -> -!c | y
|
|
if (isAllOnesConstant(FalseV)) {
|
|
SDValue C =
|
|
DAG.getSetCC(DL, VT, LHS, RHS, ISD::getSetCCInverse(CCVal, VT));
|
|
SDValue Neg = DAG.getNegative(C, DL, VT);
|
|
return DAG.getNode(ISD::OR, DL, VT, Neg, TrueV);
|
|
}
|
|
|
|
// (select c, 0, y) -> -!c & y
|
|
if (isNullConstant(TrueV)) {
|
|
SDValue C =
|
|
DAG.getSetCC(DL, VT, LHS, RHS, ISD::getSetCCInverse(CCVal, VT));
|
|
SDValue Neg = DAG.getNegative(C, DL, VT);
|
|
return DAG.getNode(ISD::AND, DL, VT, Neg, FalseV);
|
|
}
|
|
// (select c, y, 0) -> -c & y
|
|
if (isNullConstant(FalseV)) {
|
|
SDValue C = DAG.getSetCC(DL, VT, LHS, RHS, CCVal);
|
|
SDValue Neg = DAG.getNegative(C, DL, VT);
|
|
return DAG.getNode(ISD::AND, DL, VT, Neg, TrueV);
|
|
}
|
|
// (riscvisd::select_cc x, 0, ne, x, 1) -> (add x, (setcc x, 0, eq))
|
|
// (riscvisd::select_cc x, 0, eq, 1, x) -> (add x, (setcc x, 0, eq))
|
|
if (((isOneConstant(FalseV) && LHS == TrueV &&
|
|
CCVal == ISD::CondCode::SETNE) ||
|
|
(isOneConstant(TrueV) && LHS == FalseV &&
|
|
CCVal == ISD::CondCode::SETEQ)) &&
|
|
isNullConstant(RHS)) {
|
|
// freeze it to be safe.
|
|
LHS = DAG.getFreeze(LHS);
|
|
SDValue C = DAG.getSetCC(DL, VT, LHS, RHS, ISD::CondCode::SETEQ);
|
|
return DAG.getNode(ISD::ADD, DL, VT, LHS, C);
|
|
}
|
|
}
|
|
|
|
// If both true/false are an xor with 1, pull through the select.
|
|
// This can occur after op legalization if both operands are setccs that
|
|
// require an xor to invert.
|
|
// FIXME: Generalize to other binary ops with identical operand?
|
|
if (TrueV.getOpcode() == ISD::XOR && FalseV.getOpcode() == ISD::XOR &&
|
|
TrueV.getOperand(1) == FalseV.getOperand(1) &&
|
|
isOneConstant(TrueV.getOperand(1)) &&
|
|
TrueV.hasOneUse() && FalseV.hasOneUse()) {
|
|
SDValue NewSel = DAG.getNode(RISCVISD::SELECT_CC, DL, VT, LHS, RHS, CC,
|
|
TrueV.getOperand(0), FalseV.getOperand(0));
|
|
return DAG.getNode(ISD::XOR, DL, VT, NewSel, TrueV.getOperand(1));
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
case RISCVISD::BR_CC: {
|
|
SDValue LHS = N->getOperand(1);
|
|
SDValue RHS = N->getOperand(2);
|
|
SDValue CC = N->getOperand(3);
|
|
SDLoc DL(N);
|
|
|
|
if (combine_CC(LHS, RHS, CC, DL, DAG, Subtarget))
|
|
return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
|
|
N->getOperand(0), LHS, RHS, CC, N->getOperand(4));
|
|
|
|
return SDValue();
|
|
}
|
|
case ISD::BITREVERSE:
|
|
return performBITREVERSECombine(N, DAG, Subtarget);
|
|
case ISD::FP_TO_SINT:
|
|
case ISD::FP_TO_UINT:
|
|
return performFP_TO_INTCombine(N, DCI, Subtarget);
|
|
case ISD::FP_TO_SINT_SAT:
|
|
case ISD::FP_TO_UINT_SAT:
|
|
return performFP_TO_INT_SATCombine(N, DCI, Subtarget);
|
|
case ISD::FCOPYSIGN: {
|
|
EVT VT = N->getValueType(0);
|
|
if (!VT.isVector())
|
|
break;
|
|
// There is a form of VFSGNJ which injects the negated sign of its second
|
|
// operand. Try and bubble any FNEG up after the extend/round to produce
|
|
// this optimized pattern. Avoid modifying cases where FP_ROUND and
|
|
// TRUNC=1.
|
|
SDValue In2 = N->getOperand(1);
|
|
// Avoid cases where the extend/round has multiple uses, as duplicating
|
|
// those is typically more expensive than removing a fneg.
|
|
if (!In2.hasOneUse())
|
|
break;
|
|
if (In2.getOpcode() != ISD::FP_EXTEND &&
|
|
(In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
|
|
break;
|
|
In2 = In2.getOperand(0);
|
|
if (In2.getOpcode() != ISD::FNEG)
|
|
break;
|
|
SDLoc DL(N);
|
|
SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
|
|
return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
|
|
DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
|
|
}
|
|
case ISD::MGATHER: {
|
|
const auto *MGN = cast<MaskedGatherSDNode>(N);
|
|
const EVT VT = N->getValueType(0);
|
|
SDValue Index = MGN->getIndex();
|
|
SDValue ScaleOp = MGN->getScale();
|
|
ISD::MemIndexType IndexType = MGN->getIndexType();
|
|
assert(!MGN->isIndexScaled() &&
|
|
"Scaled gather/scatter should not be formed");
|
|
|
|
SDLoc DL(N);
|
|
if (legalizeScatterGatherIndexType(DL, Index, IndexType, DCI))
|
|
return DAG.getMaskedGather(
|
|
N->getVTList(), MGN->getMemoryVT(), DL,
|
|
{MGN->getChain(), MGN->getPassThru(), MGN->getMask(),
|
|
MGN->getBasePtr(), Index, ScaleOp},
|
|
MGN->getMemOperand(), IndexType, MGN->getExtensionType());
|
|
|
|
if (narrowIndex(Index, IndexType, DAG))
|
|
return DAG.getMaskedGather(
|
|
N->getVTList(), MGN->getMemoryVT(), DL,
|
|
{MGN->getChain(), MGN->getPassThru(), MGN->getMask(),
|
|
MGN->getBasePtr(), Index, ScaleOp},
|
|
MGN->getMemOperand(), IndexType, MGN->getExtensionType());
|
|
|
|
if (Index.getOpcode() == ISD::BUILD_VECTOR &&
|
|
MGN->getExtensionType() == ISD::NON_EXTLOAD && isTypeLegal(VT)) {
|
|
// The sequence will be XLenVT, not the type of Index. Tell
|
|
// isSimpleVIDSequence this so we avoid overflow.
|
|
if (std::optional<VIDSequence> SimpleVID =
|
|
isSimpleVIDSequence(Index, Subtarget.getXLen());
|
|
SimpleVID && SimpleVID->StepDenominator == 1) {
|
|
const int64_t StepNumerator = SimpleVID->StepNumerator;
|
|
const int64_t Addend = SimpleVID->Addend;
|
|
|
|
// Note: We don't need to check alignment here since (by assumption
|
|
// from the existence of the gather), our offsets must be sufficiently
|
|
// aligned.
|
|
|
|
const EVT PtrVT = getPointerTy(DAG.getDataLayout());
|
|
assert(MGN->getBasePtr()->getValueType(0) == PtrVT);
|
|
assert(IndexType == ISD::UNSIGNED_SCALED);
|
|
SDValue BasePtr = DAG.getNode(ISD::ADD, DL, PtrVT, MGN->getBasePtr(),
|
|
DAG.getSignedConstant(Addend, DL, PtrVT));
|
|
|
|
SDValue EVL = DAG.getElementCount(DL, Subtarget.getXLenVT(),
|
|
VT.getVectorElementCount());
|
|
SDValue StridedLoad = DAG.getStridedLoadVP(
|
|
VT, DL, MGN->getChain(), BasePtr,
|
|
DAG.getSignedConstant(StepNumerator, DL, XLenVT), MGN->getMask(),
|
|
EVL, MGN->getMemOperand());
|
|
SDValue VPSelect = DAG.getNode(ISD::VP_SELECT, DL, VT, MGN->getMask(),
|
|
StridedLoad, MGN->getPassThru(), EVL);
|
|
return DAG.getMergeValues({VPSelect, SDValue(StridedLoad.getNode(), 1)},
|
|
DL);
|
|
}
|
|
}
|
|
|
|
SmallVector<int> ShuffleMask;
|
|
if (MGN->getExtensionType() == ISD::NON_EXTLOAD &&
|
|
matchIndexAsShuffle(VT, Index, MGN->getMask(), ShuffleMask)) {
|
|
SDValue Load = DAG.getMaskedLoad(VT, DL, MGN->getChain(),
|
|
MGN->getBasePtr(), DAG.getUNDEF(XLenVT),
|
|
MGN->getMask(), DAG.getUNDEF(VT),
|
|
MGN->getMemoryVT(), MGN->getMemOperand(),
|
|
ISD::UNINDEXED, ISD::NON_EXTLOAD);
|
|
SDValue Shuffle =
|
|
DAG.getVectorShuffle(VT, DL, Load, DAG.getUNDEF(VT), ShuffleMask);
|
|
return DAG.getMergeValues({Shuffle, Load.getValue(1)}, DL);
|
|
}
|
|
|
|
if (MGN->getExtensionType() == ISD::NON_EXTLOAD &&
|
|
matchIndexAsWiderOp(VT, Index, MGN->getMask(),
|
|
MGN->getMemOperand()->getBaseAlign(), Subtarget)) {
|
|
SmallVector<SDValue> NewIndices;
|
|
for (unsigned i = 0; i < Index->getNumOperands(); i += 2)
|
|
NewIndices.push_back(Index.getOperand(i));
|
|
EVT IndexVT = Index.getValueType()
|
|
.getHalfNumVectorElementsVT(*DAG.getContext());
|
|
Index = DAG.getBuildVector(IndexVT, DL, NewIndices);
|
|
|
|
unsigned ElementSize = VT.getScalarStoreSize();
|
|
EVT WideScalarVT = MVT::getIntegerVT(ElementSize * 8 * 2);
|
|
auto EltCnt = VT.getVectorElementCount();
|
|
assert(EltCnt.isKnownEven() && "Splitting vector, but not in half!");
|
|
EVT WideVT = EVT::getVectorVT(*DAG.getContext(), WideScalarVT,
|
|
EltCnt.divideCoefficientBy(2));
|
|
SDValue Passthru = DAG.getBitcast(WideVT, MGN->getPassThru());
|
|
EVT MaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
|
|
EltCnt.divideCoefficientBy(2));
|
|
SDValue Mask = DAG.getSplat(MaskVT, DL, DAG.getConstant(1, DL, MVT::i1));
|
|
|
|
SDValue Gather =
|
|
DAG.getMaskedGather(DAG.getVTList(WideVT, MVT::Other), WideVT, DL,
|
|
{MGN->getChain(), Passthru, Mask, MGN->getBasePtr(),
|
|
Index, ScaleOp},
|
|
MGN->getMemOperand(), IndexType, ISD::NON_EXTLOAD);
|
|
SDValue Result = DAG.getBitcast(VT, Gather.getValue(0));
|
|
return DAG.getMergeValues({Result, Gather.getValue(1)}, DL);
|
|
}
|
|
break;
|
|
}
|
|
case ISD::MSCATTER:{
|
|
const auto *MSN = cast<MaskedScatterSDNode>(N);
|
|
SDValue Index = MSN->getIndex();
|
|
SDValue ScaleOp = MSN->getScale();
|
|
ISD::MemIndexType IndexType = MSN->getIndexType();
|
|
assert(!MSN->isIndexScaled() &&
|
|
"Scaled gather/scatter should not be formed");
|
|
|
|
SDLoc DL(N);
|
|
if (legalizeScatterGatherIndexType(DL, Index, IndexType, DCI))
|
|
return DAG.getMaskedScatter(
|
|
N->getVTList(), MSN->getMemoryVT(), DL,
|
|
{MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(),
|
|
Index, ScaleOp},
|
|
MSN->getMemOperand(), IndexType, MSN->isTruncatingStore());
|
|
|
|
if (narrowIndex(Index, IndexType, DAG))
|
|
return DAG.getMaskedScatter(
|
|
N->getVTList(), MSN->getMemoryVT(), DL,
|
|
{MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(),
|
|
Index, ScaleOp},
|
|
MSN->getMemOperand(), IndexType, MSN->isTruncatingStore());
|
|
|
|
EVT VT = MSN->getValue()->getValueType(0);
|
|
SmallVector<int> ShuffleMask;
|
|
if (!MSN->isTruncatingStore() &&
|
|
matchIndexAsShuffle(VT, Index, MSN->getMask(), ShuffleMask)) {
|
|
SDValue Shuffle = DAG.getVectorShuffle(VT, DL, MSN->getValue(),
|
|
DAG.getUNDEF(VT), ShuffleMask);
|
|
return DAG.getMaskedStore(MSN->getChain(), DL, Shuffle, MSN->getBasePtr(),
|
|
DAG.getUNDEF(XLenVT), MSN->getMask(),
|
|
MSN->getMemoryVT(), MSN->getMemOperand(),
|
|
ISD::UNINDEXED, false);
|
|
}
|
|
break;
|
|
}
|
|
case ISD::VP_GATHER: {
|
|
const auto *VPGN = cast<VPGatherSDNode>(N);
|
|
SDValue Index = VPGN->getIndex();
|
|
SDValue ScaleOp = VPGN->getScale();
|
|
ISD::MemIndexType IndexType = VPGN->getIndexType();
|
|
assert(!VPGN->isIndexScaled() &&
|
|
"Scaled gather/scatter should not be formed");
|
|
|
|
SDLoc DL(N);
|
|
if (legalizeScatterGatherIndexType(DL, Index, IndexType, DCI))
|
|
return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL,
|
|
{VPGN->getChain(), VPGN->getBasePtr(), Index,
|
|
ScaleOp, VPGN->getMask(),
|
|
VPGN->getVectorLength()},
|
|
VPGN->getMemOperand(), IndexType);
|
|
|
|
if (narrowIndex(Index, IndexType, DAG))
|
|
return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL,
|
|
{VPGN->getChain(), VPGN->getBasePtr(), Index,
|
|
ScaleOp, VPGN->getMask(),
|
|
VPGN->getVectorLength()},
|
|
VPGN->getMemOperand(), IndexType);
|
|
|
|
break;
|
|
}
|
|
case ISD::VP_SCATTER: {
|
|
const auto *VPSN = cast<VPScatterSDNode>(N);
|
|
SDValue Index = VPSN->getIndex();
|
|
SDValue ScaleOp = VPSN->getScale();
|
|
ISD::MemIndexType IndexType = VPSN->getIndexType();
|
|
assert(!VPSN->isIndexScaled() &&
|
|
"Scaled gather/scatter should not be formed");
|
|
|
|
SDLoc DL(N);
|
|
if (legalizeScatterGatherIndexType(DL, Index, IndexType, DCI))
|
|
return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL,
|
|
{VPSN->getChain(), VPSN->getValue(),
|
|
VPSN->getBasePtr(), Index, ScaleOp,
|
|
VPSN->getMask(), VPSN->getVectorLength()},
|
|
VPSN->getMemOperand(), IndexType);
|
|
|
|
if (narrowIndex(Index, IndexType, DAG))
|
|
return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL,
|
|
{VPSN->getChain(), VPSN->getValue(),
|
|
VPSN->getBasePtr(), Index, ScaleOp,
|
|
VPSN->getMask(), VPSN->getVectorLength()},
|
|
VPSN->getMemOperand(), IndexType);
|
|
break;
|
|
}
|
|
case RISCVISD::SHL_VL:
|
|
if (SDValue V = performSHLCombine(N, DCI, Subtarget))
|
|
return V;
|
|
[[fallthrough]];
|
|
case RISCVISD::SRA_VL:
|
|
case RISCVISD::SRL_VL: {
|
|
SDValue ShAmt = N->getOperand(1);
|
|
if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
|
|
// We don't need the upper 32 bits of a 64-bit element for a shift amount.
|
|
SDLoc DL(N);
|
|
SDValue VL = N->getOperand(4);
|
|
EVT VT = N->getValueType(0);
|
|
ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
|
|
ShAmt.getOperand(1), VL);
|
|
return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt,
|
|
N->getOperand(2), N->getOperand(3), N->getOperand(4));
|
|
}
|
|
break;
|
|
}
|
|
case ISD::SRA:
|
|
if (SDValue V = performSRACombine(N, DAG, Subtarget))
|
|
return V;
|
|
[[fallthrough]];
|
|
case ISD::SRL:
|
|
case ISD::SHL: {
|
|
if (N->getOpcode() == ISD::SHL) {
|
|
if (SDValue V = performSHLCombine(N, DCI, Subtarget))
|
|
return V;
|
|
}
|
|
SDValue ShAmt = N->getOperand(1);
|
|
if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
|
|
// We don't need the upper 32 bits of a 64-bit element for a shift amount.
|
|
SDLoc DL(N);
|
|
EVT VT = N->getValueType(0);
|
|
ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
|
|
ShAmt.getOperand(1),
|
|
DAG.getRegister(RISCV::X0, Subtarget.getXLenVT()));
|
|
return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt);
|
|
}
|
|
break;
|
|
}
|
|
case RISCVISD::ADD_VL:
|
|
if (SDValue V = simplifyOp_VL(N))
|
|
return V;
|
|
if (SDValue V = combineOp_VLToVWOp_VL(N, DCI, Subtarget))
|
|
return V;
|
|
if (SDValue V = combineVqdotAccum(N, DAG, Subtarget))
|
|
return V;
|
|
return combineToVWMACC(N, DAG, Subtarget);
|
|
case RISCVISD::VWADD_W_VL:
|
|
case RISCVISD::VWADDU_W_VL:
|
|
case RISCVISD::VWSUB_W_VL:
|
|
case RISCVISD::VWSUBU_W_VL:
|
|
return performVWADDSUBW_VLCombine(N, DCI, Subtarget);
|
|
case RISCVISD::OR_VL:
|
|
case RISCVISD::SUB_VL:
|
|
case RISCVISD::MUL_VL:
|
|
return combineOp_VLToVWOp_VL(N, DCI, Subtarget);
|
|
case RISCVISD::VFMADD_VL:
|
|
case RISCVISD::VFNMADD_VL:
|
|
case RISCVISD::VFMSUB_VL:
|
|
case RISCVISD::VFNMSUB_VL:
|
|
case RISCVISD::STRICT_VFMADD_VL:
|
|
case RISCVISD::STRICT_VFNMADD_VL:
|
|
case RISCVISD::STRICT_VFMSUB_VL:
|
|
case RISCVISD::STRICT_VFNMSUB_VL:
|
|
return performVFMADD_VLCombine(N, DCI, Subtarget);
|
|
case RISCVISD::FADD_VL:
|
|
case RISCVISD::FSUB_VL:
|
|
case RISCVISD::FMUL_VL:
|
|
case RISCVISD::VFWADD_W_VL:
|
|
case RISCVISD::VFWSUB_W_VL:
|
|
return combineOp_VLToVWOp_VL(N, DCI, Subtarget);
|
|
case ISD::LOAD:
|
|
case ISD::STORE: {
|
|
if (DCI.isAfterLegalizeDAG())
|
|
if (SDValue V = performMemPairCombine(N, DCI))
|
|
return V;
|
|
|
|
if (N->getOpcode() != ISD::STORE)
|
|
break;
|
|
|
|
auto *Store = cast<StoreSDNode>(N);
|
|
SDValue Chain = Store->getChain();
|
|
EVT MemVT = Store->getMemoryVT();
|
|
SDValue Val = Store->getValue();
|
|
SDLoc DL(N);
|
|
|
|
bool IsScalarizable =
|
|
MemVT.isFixedLengthVector() && ISD::isNormalStore(Store) &&
|
|
Store->isSimple() &&
|
|
MemVT.getVectorElementType().bitsLE(Subtarget.getXLenVT()) &&
|
|
isPowerOf2_64(MemVT.getSizeInBits()) &&
|
|
MemVT.getSizeInBits() <= Subtarget.getXLen();
|
|
|
|
// If sufficiently aligned we can scalarize stores of constant vectors of
|
|
// any power-of-two size up to XLen bits, provided that they aren't too
|
|
// expensive to materialize.
|
|
// vsetivli zero, 2, e8, m1, ta, ma
|
|
// vmv.v.i v8, 4
|
|
// vse64.v v8, (a0)
|
|
// ->
|
|
// li a1, 1028
|
|
// sh a1, 0(a0)
|
|
if (DCI.isBeforeLegalize() && IsScalarizable &&
|
|
ISD::isBuildVectorOfConstantSDNodes(Val.getNode())) {
|
|
// Get the constant vector bits
|
|
APInt NewC(Val.getValueSizeInBits(), 0);
|
|
uint64_t EltSize = Val.getScalarValueSizeInBits();
|
|
for (unsigned i = 0; i < Val.getNumOperands(); i++) {
|
|
if (Val.getOperand(i).isUndef())
|
|
continue;
|
|
NewC.insertBits(Val.getConstantOperandAPInt(i).trunc(EltSize),
|
|
i * EltSize);
|
|
}
|
|
MVT NewVT = MVT::getIntegerVT(MemVT.getSizeInBits());
|
|
|
|
if (RISCVMatInt::getIntMatCost(NewC, Subtarget.getXLen(), Subtarget,
|
|
true) <= 2 &&
|
|
allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
|
|
NewVT, *Store->getMemOperand())) {
|
|
SDValue NewV = DAG.getConstant(NewC, DL, NewVT);
|
|
return DAG.getStore(Chain, DL, NewV, Store->getBasePtr(),
|
|
Store->getPointerInfo(), Store->getBaseAlign(),
|
|
Store->getMemOperand()->getFlags());
|
|
}
|
|
}
|
|
|
|
// Similarly, if sufficiently aligned we can scalarize vector copies, e.g.
|
|
// vsetivli zero, 2, e16, m1, ta, ma
|
|
// vle16.v v8, (a0)
|
|
// vse16.v v8, (a1)
|
|
if (auto *L = dyn_cast<LoadSDNode>(Val);
|
|
L && DCI.isBeforeLegalize() && IsScalarizable && L->isSimple() &&
|
|
L->hasNUsesOfValue(1, 0) && L->hasNUsesOfValue(1, 1) &&
|
|
Store->getChain() == SDValue(L, 1) && ISD::isNormalLoad(L) &&
|
|
L->getMemoryVT() == MemVT) {
|
|
MVT NewVT = MVT::getIntegerVT(MemVT.getSizeInBits());
|
|
if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
|
|
NewVT, *Store->getMemOperand()) &&
|
|
allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
|
|
NewVT, *L->getMemOperand())) {
|
|
SDValue NewL = DAG.getLoad(NewVT, DL, L->getChain(), L->getBasePtr(),
|
|
L->getPointerInfo(), L->getBaseAlign(),
|
|
L->getMemOperand()->getFlags());
|
|
return DAG.getStore(Chain, DL, NewL, Store->getBasePtr(),
|
|
Store->getPointerInfo(), Store->getBaseAlign(),
|
|
Store->getMemOperand()->getFlags());
|
|
}
|
|
}
|
|
|
|
// Combine store of vmv.x.s/vfmv.f.s to vse with VL of 1.
|
|
// vfmv.f.s is represented as extract element from 0. Match it late to avoid
|
|
// any illegal types.
|
|
if (Val.getOpcode() == RISCVISD::VMV_X_S ||
|
|
(DCI.isAfterLegalizeDAG() &&
|
|
Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
|
|
isNullConstant(Val.getOperand(1)))) {
|
|
SDValue Src = Val.getOperand(0);
|
|
MVT VecVT = Src.getSimpleValueType();
|
|
// VecVT should be scalable and memory VT should match the element type.
|
|
if (!Store->isIndexed() && VecVT.isScalableVector() &&
|
|
MemVT == VecVT.getVectorElementType()) {
|
|
SDLoc DL(N);
|
|
MVT MaskVT = getMaskTypeFor(VecVT);
|
|
return DAG.getStoreVP(
|
|
Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(),
|
|
DAG.getConstant(1, DL, MaskVT),
|
|
DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT,
|
|
Store->getMemOperand(), Store->getAddressingMode(),
|
|
Store->isTruncatingStore(), /*IsCompress*/ false);
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
case ISD::SPLAT_VECTOR: {
|
|
EVT VT = N->getValueType(0);
|
|
// Only perform this combine on legal MVT types.
|
|
if (!isTypeLegal(VT))
|
|
break;
|
|
if (auto Gather = matchSplatAsGather(N->getOperand(0), VT.getSimpleVT(), N,
|
|
DAG, Subtarget))
|
|
return Gather;
|
|
break;
|
|
}
|
|
case ISD::BUILD_VECTOR:
|
|
if (SDValue V = performBUILD_VECTORCombine(N, DAG, Subtarget, *this))
|
|
return V;
|
|
break;
|
|
case ISD::CONCAT_VECTORS:
|
|
if (SDValue V = performCONCAT_VECTORSCombine(N, DAG, Subtarget, *this))
|
|
return V;
|
|
break;
|
|
case ISD::VECTOR_SHUFFLE:
|
|
if (SDValue V = performVECTOR_SHUFFLECombine(N, DAG, Subtarget, *this))
|
|
return V;
|
|
break;
|
|
case ISD::INSERT_VECTOR_ELT:
|
|
if (SDValue V = performINSERT_VECTOR_ELTCombine(N, DAG, Subtarget, *this))
|
|
return V;
|
|
break;
|
|
case RISCVISD::VFMV_V_F_VL: {
|
|
const MVT VT = N->getSimpleValueType(0);
|
|
SDValue Passthru = N->getOperand(0);
|
|
SDValue Scalar = N->getOperand(1);
|
|
SDValue VL = N->getOperand(2);
|
|
|
|
// If VL is 1, we can use vfmv.s.f.
|
|
if (isOneConstant(VL))
|
|
return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, Passthru, Scalar, VL);
|
|
break;
|
|
}
|
|
case RISCVISD::VMV_V_X_VL: {
|
|
const MVT VT = N->getSimpleValueType(0);
|
|
SDValue Passthru = N->getOperand(0);
|
|
SDValue Scalar = N->getOperand(1);
|
|
SDValue VL = N->getOperand(2);
|
|
|
|
// Tail agnostic VMV.V.X only demands the vector element bitwidth from the
|
|
// scalar input.
|
|
unsigned ScalarSize = Scalar.getValueSizeInBits();
|
|
unsigned EltWidth = VT.getScalarSizeInBits();
|
|
if (ScalarSize > EltWidth && Passthru.isUndef())
|
|
if (SimplifyDemandedLowBitsHelper(1, EltWidth))
|
|
return SDValue(N, 0);
|
|
|
|
// If VL is 1 and the scalar value won't benefit from immediate, we can
|
|
// use vmv.s.x.
|
|
ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar);
|
|
if (isOneConstant(VL) &&
|
|
(!Const || Const->isZero() ||
|
|
!Const->getAPIntValue().sextOrTrunc(EltWidth).isSignedIntN(5)))
|
|
return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, Scalar, VL);
|
|
|
|
break;
|
|
}
|
|
case RISCVISD::VFMV_S_F_VL: {
|
|
SDValue Src = N->getOperand(1);
|
|
// Try to remove vector->scalar->vector if the scalar->vector is inserting
|
|
// into an undef vector.
|
|
// TODO: Could use a vslide or vmv.v.v for non-undef.
|
|
if (N->getOperand(0).isUndef() &&
|
|
Src.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
|
|
isNullConstant(Src.getOperand(1)) &&
|
|
Src.getOperand(0).getValueType().isScalableVector()) {
|
|
EVT VT = N->getValueType(0);
|
|
EVT SrcVT = Src.getOperand(0).getValueType();
|
|
assert(SrcVT.getVectorElementType() == VT.getVectorElementType());
|
|
// Widths match, just return the original vector.
|
|
if (SrcVT == VT)
|
|
return Src.getOperand(0);
|
|
// TODO: Use insert_subvector/extract_subvector to change widen/narrow?
|
|
}
|
|
[[fallthrough]];
|
|
}
|
|
case RISCVISD::VMV_S_X_VL: {
|
|
const MVT VT = N->getSimpleValueType(0);
|
|
SDValue Passthru = N->getOperand(0);
|
|
SDValue Scalar = N->getOperand(1);
|
|
SDValue VL = N->getOperand(2);
|
|
|
|
// The vmv.s.x instruction copies the scalar integer register to element 0
|
|
// of the destination vector register. If SEW < XLEN, the least-significant
|
|
// bits are copied and the upper XLEN-SEW bits are ignored.
|
|
unsigned ScalarSize = Scalar.getValueSizeInBits();
|
|
unsigned EltWidth = VT.getScalarSizeInBits();
|
|
if (ScalarSize > EltWidth && SimplifyDemandedLowBitsHelper(1, EltWidth))
|
|
return SDValue(N, 0);
|
|
|
|
if (Scalar.getOpcode() == RISCVISD::VMV_X_S && Passthru.isUndef() &&
|
|
Scalar.getOperand(0).getValueType() == N->getValueType(0))
|
|
return Scalar.getOperand(0);
|
|
|
|
// Use M1 or smaller to avoid over constraining register allocation
|
|
const MVT M1VT = RISCVTargetLowering::getM1VT(VT);
|
|
if (M1VT.bitsLT(VT)) {
|
|
SDValue M1Passthru = DAG.getExtractSubvector(DL, M1VT, Passthru, 0);
|
|
SDValue Result =
|
|
DAG.getNode(N->getOpcode(), DL, M1VT, M1Passthru, Scalar, VL);
|
|
Result = DAG.getInsertSubvector(DL, Passthru, Result, 0);
|
|
return Result;
|
|
}
|
|
|
|
// We use a vmv.v.i if possible. We limit this to LMUL1. LMUL2 or
|
|
// higher would involve overly constraining the register allocator for
|
|
// no purpose.
|
|
if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar);
|
|
Const && !Const->isZero() && isInt<5>(Const->getSExtValue()) &&
|
|
VT.bitsLE(RISCVTargetLowering::getM1VT(VT)) && Passthru.isUndef())
|
|
return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL);
|
|
|
|
break;
|
|
}
|
|
case RISCVISD::VMV_X_S: {
|
|
SDValue Vec = N->getOperand(0);
|
|
MVT VecVT = N->getOperand(0).getSimpleValueType();
|
|
const MVT M1VT = RISCVTargetLowering::getM1VT(VecVT);
|
|
if (M1VT.bitsLT(VecVT)) {
|
|
Vec = DAG.getExtractSubvector(DL, M1VT, Vec, 0);
|
|
return DAG.getNode(RISCVISD::VMV_X_S, DL, N->getSimpleValueType(0), Vec);
|
|
}
|
|
break;
|
|
}
|
|
case ISD::INTRINSIC_VOID:
|
|
case ISD::INTRINSIC_W_CHAIN:
|
|
case ISD::INTRINSIC_WO_CHAIN: {
|
|
unsigned IntOpNo = N->getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
|
|
unsigned IntNo = N->getConstantOperandVal(IntOpNo);
|
|
switch (IntNo) {
|
|
// By default we do not combine any intrinsic.
|
|
default:
|
|
return SDValue();
|
|
case Intrinsic::riscv_vcpop:
|
|
case Intrinsic::riscv_vcpop_mask:
|
|
case Intrinsic::riscv_vfirst:
|
|
case Intrinsic::riscv_vfirst_mask: {
|
|
SDValue VL = N->getOperand(2);
|
|
if (IntNo == Intrinsic::riscv_vcpop_mask ||
|
|
IntNo == Intrinsic::riscv_vfirst_mask)
|
|
VL = N->getOperand(3);
|
|
if (!isNullConstant(VL))
|
|
return SDValue();
|
|
// If VL is 0, vcpop -> li 0, vfirst -> li -1.
|
|
SDLoc DL(N);
|
|
EVT VT = N->getValueType(0);
|
|
if (IntNo == Intrinsic::riscv_vfirst ||
|
|
IntNo == Intrinsic::riscv_vfirst_mask)
|
|
return DAG.getAllOnesConstant(DL, VT);
|
|
return DAG.getConstant(0, DL, VT);
|
|
}
|
|
}
|
|
}
|
|
case ISD::EXPERIMENTAL_VP_REVERSE:
|
|
return performVP_REVERSECombine(N, DAG, Subtarget);
|
|
case ISD::VP_STORE:
|
|
return performVP_STORECombine(N, DAG, Subtarget);
|
|
case ISD::BITCAST: {
|
|
assert(Subtarget.useRVVForFixedLengthVectors());
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
EVT SrcVT = N0.getValueType();
|
|
if (VT.isRISCVVectorTuple() && N0->getOpcode() == ISD::SPLAT_VECTOR) {
|
|
unsigned NF = VT.getRISCVVectorTupleNumFields();
|
|
unsigned NumScalElts = VT.getSizeInBits().getKnownMinValue() / (NF * 8);
|
|
SDValue EltVal = DAG.getConstant(0, DL, Subtarget.getXLenVT());
|
|
MVT ScalTy = MVT::getScalableVectorVT(MVT::getIntegerVT(8), NumScalElts);
|
|
|
|
SDValue Splat = DAG.getNode(ISD::SPLAT_VECTOR, DL, ScalTy, EltVal);
|
|
|
|
SDValue Result = DAG.getUNDEF(VT);
|
|
for (unsigned i = 0; i < NF; ++i)
|
|
Result = DAG.getNode(RISCVISD::TUPLE_INSERT, DL, VT, Result, Splat,
|
|
DAG.getVectorIdxConstant(i, DL));
|
|
return Result;
|
|
}
|
|
// If this is a bitcast between a MVT::v4i1/v2i1/v1i1 and an illegal integer
|
|
// type, widen both sides to avoid a trip through memory.
|
|
if ((SrcVT == MVT::v1i1 || SrcVT == MVT::v2i1 || SrcVT == MVT::v4i1) &&
|
|
VT.isScalarInteger()) {
|
|
unsigned NumConcats = 8 / SrcVT.getVectorNumElements();
|
|
SmallVector<SDValue, 4> Ops(NumConcats, DAG.getUNDEF(SrcVT));
|
|
Ops[0] = N0;
|
|
SDLoc DL(N);
|
|
N0 = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i1, Ops);
|
|
N0 = DAG.getBitcast(MVT::i8, N0);
|
|
return DAG.getNode(ISD::TRUNCATE, DL, VT, N0);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
case ISD::VECREDUCE_ADD:
|
|
if (SDValue V = performVECREDUCECombine(N, DAG, Subtarget, *this))
|
|
return V;
|
|
[[fallthrough]];
|
|
case ISD::CTPOP:
|
|
if (SDValue V = combineToVCPOP(N, DAG, Subtarget))
|
|
return V;
|
|
break;
|
|
case RISCVISD::VRGATHER_VX_VL: {
|
|
// Note this assumes that out of bounds indices produce poison
|
|
// and can thus be replaced without having to prove them inbounds..
|
|
EVT VT = N->getValueType(0);
|
|
SDValue Src = N->getOperand(0);
|
|
SDValue Idx = N->getOperand(1);
|
|
SDValue Passthru = N->getOperand(2);
|
|
SDValue VL = N->getOperand(4);
|
|
|
|
// Warning: Unlike most cases we strip an insert_subvector, this one
|
|
// does not require the first operand to be undef.
|
|
if (Src.getOpcode() == ISD::INSERT_SUBVECTOR &&
|
|
isNullConstant(Src.getOperand(2)))
|
|
Src = Src.getOperand(1);
|
|
|
|
switch (Src.getOpcode()) {
|
|
default:
|
|
break;
|
|
case RISCVISD::VMV_V_X_VL:
|
|
case RISCVISD::VFMV_V_F_VL:
|
|
// Drop a redundant vrgather_vx.
|
|
// TODO: Remove the type restriction if we find a motivating
|
|
// test case?
|
|
if (Passthru.isUndef() && VL == Src.getOperand(2) &&
|
|
Src.getValueType() == VT)
|
|
return Src;
|
|
break;
|
|
case RISCVISD::VMV_S_X_VL:
|
|
case RISCVISD::VFMV_S_F_VL:
|
|
// If this use only demands lane zero from the source vmv.s.x, and
|
|
// doesn't have a passthru, then this vrgather.vi/vx is equivalent to
|
|
// a vmv.v.x. Note that there can be other uses of the original
|
|
// vmv.s.x and thus we can't eliminate it. (vfmv.s.f is analogous)
|
|
if (isNullConstant(Idx) && Passthru.isUndef() &&
|
|
VL == Src.getOperand(2)) {
|
|
unsigned Opc =
|
|
VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
|
|
return DAG.getNode(Opc, DL, VT, DAG.getUNDEF(VT), Src.getOperand(1),
|
|
VL);
|
|
}
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
bool RISCVTargetLowering::shouldTransformSignedTruncationCheck(
|
|
EVT XVT, unsigned KeptBits) const {
|
|
// For vectors, we don't have a preference..
|
|
if (XVT.isVector())
|
|
return false;
|
|
|
|
if (XVT != MVT::i32 && XVT != MVT::i64)
|
|
return false;
|
|
|
|
// We can use sext.w for RV64 or an srai 31 on RV32.
|
|
if (KeptBits == 32 || KeptBits == 64)
|
|
return true;
|
|
|
|
// With Zbb we can use sext.h/sext.b.
|
|
return Subtarget.hasStdExtZbb() &&
|
|
((KeptBits == 8 && XVT == MVT::i64 && !Subtarget.is64Bit()) ||
|
|
KeptBits == 16);
|
|
}
|
|
|
|
bool RISCVTargetLowering::isDesirableToCommuteWithShift(
|
|
const SDNode *N, CombineLevel Level) const {
|
|
assert((N->getOpcode() == ISD::SHL || N->getOpcode() == ISD::SRA ||
|
|
N->getOpcode() == ISD::SRL) &&
|
|
"Expected shift op");
|
|
|
|
// The following folds are only desirable if `(OP _, c1 << c2)` can be
|
|
// materialised in fewer instructions than `(OP _, c1)`:
|
|
//
|
|
// (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
|
|
// (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT Ty = N0.getValueType();
|
|
|
|
// LD/ST will optimize constant Offset extraction, so when AddNode is used by
|
|
// LD/ST, it can still complete the folding optimization operation performed
|
|
// above.
|
|
auto isUsedByLdSt = [](const SDNode *X, const SDNode *User) {
|
|
for (SDNode *Use : X->users()) {
|
|
// This use is the one we're on right now. Skip it
|
|
if (Use == User || Use->getOpcode() == ISD::SELECT)
|
|
continue;
|
|
if (!isa<StoreSDNode>(Use) && !isa<LoadSDNode>(Use))
|
|
return false;
|
|
}
|
|
return true;
|
|
};
|
|
|
|
if (Ty.isScalarInteger() &&
|
|
(N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
|
|
if (N0.getOpcode() == ISD::ADD && !N0->hasOneUse())
|
|
return isUsedByLdSt(N0.getNode(), N);
|
|
|
|
auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
|
|
auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
|
|
|
|
// Bail if we might break a sh{1,2,3}add pattern.
|
|
if ((Subtarget.hasStdExtZba() || Subtarget.hasVendorXAndesPerf()) && C2 &&
|
|
C2->getZExtValue() >= 1 && C2->getZExtValue() <= 3 && N->hasOneUse() &&
|
|
N->user_begin()->getOpcode() == ISD::ADD &&
|
|
!isUsedByLdSt(*N->user_begin(), nullptr) &&
|
|
!isa<ConstantSDNode>(N->user_begin()->getOperand(1)))
|
|
return false;
|
|
|
|
if (C1 && C2) {
|
|
const APInt &C1Int = C1->getAPIntValue();
|
|
APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
|
|
|
|
// We can materialise `c1 << c2` into an add immediate, so it's "free",
|
|
// and the combine should happen, to potentially allow further combines
|
|
// later.
|
|
if (ShiftedC1Int.getSignificantBits() <= 64 &&
|
|
isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
|
|
return true;
|
|
|
|
// We can materialise `c1` in an add immediate, so it's "free", and the
|
|
// combine should be prevented.
|
|
if (C1Int.getSignificantBits() <= 64 &&
|
|
isLegalAddImmediate(C1Int.getSExtValue()))
|
|
return false;
|
|
|
|
// Neither constant will fit into an immediate, so find materialisation
|
|
// costs.
|
|
int C1Cost =
|
|
RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), Subtarget,
|
|
/*CompressionCost*/ true);
|
|
int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
|
|
ShiftedC1Int, Ty.getSizeInBits(), Subtarget,
|
|
/*CompressionCost*/ true);
|
|
|
|
// Materialising `c1` is cheaper than materialising `c1 << c2`, so the
|
|
// combine should be prevented.
|
|
if (C1Cost < ShiftedC1Cost)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (!N0->hasOneUse())
|
|
return false;
|
|
|
|
if (N0->getOpcode() == ISD::SIGN_EXTEND &&
|
|
N0->getOperand(0)->getOpcode() == ISD::ADD &&
|
|
!N0->getOperand(0)->hasOneUse())
|
|
return isUsedByLdSt(N0->getOperand(0).getNode(), N0.getNode());
|
|
|
|
return true;
|
|
}
|
|
|
|
bool RISCVTargetLowering::targetShrinkDemandedConstant(
|
|
SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
|
|
TargetLoweringOpt &TLO) const {
|
|
// Delay this optimization as late as possible.
|
|
if (!TLO.LegalOps)
|
|
return false;
|
|
|
|
EVT VT = Op.getValueType();
|
|
if (VT.isVector())
|
|
return false;
|
|
|
|
unsigned Opcode = Op.getOpcode();
|
|
if (Opcode != ISD::AND && Opcode != ISD::OR && Opcode != ISD::XOR)
|
|
return false;
|
|
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
|
|
if (!C)
|
|
return false;
|
|
|
|
const APInt &Mask = C->getAPIntValue();
|
|
|
|
// Clear all non-demanded bits initially.
|
|
APInt ShrunkMask = Mask & DemandedBits;
|
|
|
|
// Try to make a smaller immediate by setting undemanded bits.
|
|
|
|
APInt ExpandedMask = Mask | ~DemandedBits;
|
|
|
|
auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
|
|
return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
|
|
};
|
|
auto UseMask = [Mask, Op, &TLO](const APInt &NewMask) -> bool {
|
|
if (NewMask == Mask)
|
|
return true;
|
|
SDLoc DL(Op);
|
|
SDValue NewC = TLO.DAG.getConstant(NewMask, DL, Op.getValueType());
|
|
SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), DL, Op.getValueType(),
|
|
Op.getOperand(0), NewC);
|
|
return TLO.CombineTo(Op, NewOp);
|
|
};
|
|
|
|
// If the shrunk mask fits in sign extended 12 bits, let the target
|
|
// independent code apply it.
|
|
if (ShrunkMask.isSignedIntN(12))
|
|
return false;
|
|
|
|
// And has a few special cases for zext.
|
|
if (Opcode == ISD::AND) {
|
|
// Preserve (and X, 0xffff), if zext.h exists use zext.h,
|
|
// otherwise use SLLI + SRLI.
|
|
APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
|
|
if (IsLegalMask(NewMask))
|
|
return UseMask(NewMask);
|
|
|
|
// Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
|
|
if (VT == MVT::i64) {
|
|
APInt NewMask = APInt(64, 0xffffffff);
|
|
if (IsLegalMask(NewMask))
|
|
return UseMask(NewMask);
|
|
}
|
|
}
|
|
|
|
// For the remaining optimizations, we need to be able to make a negative
|
|
// number through a combination of mask and undemanded bits.
|
|
if (!ExpandedMask.isNegative())
|
|
return false;
|
|
|
|
// What is the fewest number of bits we need to represent the negative number.
|
|
unsigned MinSignedBits = ExpandedMask.getSignificantBits();
|
|
|
|
// Try to make a 12 bit negative immediate. If that fails try to make a 32
|
|
// bit negative immediate unless the shrunk immediate already fits in 32 bits.
|
|
// If we can't create a simm12, we shouldn't change opaque constants.
|
|
APInt NewMask = ShrunkMask;
|
|
if (MinSignedBits <= 12)
|
|
NewMask.setBitsFrom(11);
|
|
else if (!C->isOpaque() && MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
|
|
NewMask.setBitsFrom(31);
|
|
else
|
|
return false;
|
|
|
|
// Check that our new mask is a subset of the demanded mask.
|
|
assert(IsLegalMask(NewMask));
|
|
return UseMask(NewMask);
|
|
}
|
|
|
|
static uint64_t computeGREVOrGORC(uint64_t x, unsigned ShAmt, bool IsGORC) {
|
|
static const uint64_t GREVMasks[] = {
|
|
0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
|
|
0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
|
|
|
|
for (unsigned Stage = 0; Stage != 6; ++Stage) {
|
|
unsigned Shift = 1 << Stage;
|
|
if (ShAmt & Shift) {
|
|
uint64_t Mask = GREVMasks[Stage];
|
|
uint64_t Res = ((x & Mask) << Shift) | ((x >> Shift) & Mask);
|
|
if (IsGORC)
|
|
Res |= x;
|
|
x = Res;
|
|
}
|
|
}
|
|
|
|
return x;
|
|
}
|
|
|
|
void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
|
|
KnownBits &Known,
|
|
const APInt &DemandedElts,
|
|
const SelectionDAG &DAG,
|
|
unsigned Depth) const {
|
|
unsigned BitWidth = Known.getBitWidth();
|
|
unsigned Opc = Op.getOpcode();
|
|
assert((Opc >= ISD::BUILTIN_OP_END ||
|
|
Opc == ISD::INTRINSIC_WO_CHAIN ||
|
|
Opc == ISD::INTRINSIC_W_CHAIN ||
|
|
Opc == ISD::INTRINSIC_VOID) &&
|
|
"Should use MaskedValueIsZero if you don't know whether Op"
|
|
" is a target node!");
|
|
|
|
Known.resetAll();
|
|
switch (Opc) {
|
|
default: break;
|
|
case RISCVISD::SELECT_CC: {
|
|
Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
|
|
// If we don't know any bits, early out.
|
|
if (Known.isUnknown())
|
|
break;
|
|
KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
|
|
|
|
// Only known if known in both the LHS and RHS.
|
|
Known = Known.intersectWith(Known2);
|
|
break;
|
|
}
|
|
case RISCVISD::VCPOP_VL: {
|
|
KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(2), Depth + 1);
|
|
Known.Zero.setBitsFrom(Known2.countMaxActiveBits());
|
|
break;
|
|
}
|
|
case RISCVISD::CZERO_EQZ:
|
|
case RISCVISD::CZERO_NEZ:
|
|
Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
|
|
// Result is either all zero or operand 0. We can propagate zeros, but not
|
|
// ones.
|
|
Known.One.clearAllBits();
|
|
break;
|
|
case RISCVISD::REMUW: {
|
|
KnownBits Known2;
|
|
Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
|
|
Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
|
|
// We only care about the lower 32 bits.
|
|
Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
|
|
// Restore the original width by sign extending.
|
|
Known = Known.sext(BitWidth);
|
|
break;
|
|
}
|
|
case RISCVISD::DIVUW: {
|
|
KnownBits Known2;
|
|
Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
|
|
Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
|
|
// We only care about the lower 32 bits.
|
|
Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
|
|
// Restore the original width by sign extending.
|
|
Known = Known.sext(BitWidth);
|
|
break;
|
|
}
|
|
case RISCVISD::SLLW: {
|
|
KnownBits Known2;
|
|
Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
|
|
Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
|
|
Known = KnownBits::shl(Known.trunc(32), Known2.trunc(5).zext(32));
|
|
// Restore the original width by sign extending.
|
|
Known = Known.sext(BitWidth);
|
|
break;
|
|
}
|
|
case RISCVISD::CTZW: {
|
|
KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
|
|
unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
|
|
unsigned LowBits = llvm::bit_width(PossibleTZ);
|
|
Known.Zero.setBitsFrom(LowBits);
|
|
break;
|
|
}
|
|
case RISCVISD::CLZW: {
|
|
KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
|
|
unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
|
|
unsigned LowBits = llvm::bit_width(PossibleLZ);
|
|
Known.Zero.setBitsFrom(LowBits);
|
|
break;
|
|
}
|
|
case RISCVISD::BREV8:
|
|
case RISCVISD::ORC_B: {
|
|
// FIXME: This is based on the non-ratified Zbp GREV and GORC where a
|
|
// control value of 7 is equivalent to brev8 and orc.b.
|
|
Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
|
|
bool IsGORC = Op.getOpcode() == RISCVISD::ORC_B;
|
|
// To compute zeros for ORC_B, we need to invert the value and invert it
|
|
// back after. This inverting is harmless for BREV8.
|
|
Known.Zero =
|
|
~computeGREVOrGORC(~Known.Zero.getZExtValue(), 7, IsGORC);
|
|
Known.One = computeGREVOrGORC(Known.One.getZExtValue(), 7, IsGORC);
|
|
break;
|
|
}
|
|
case RISCVISD::READ_VLENB: {
|
|
// We can use the minimum and maximum VLEN values to bound VLENB. We
|
|
// know VLEN must be a power of two.
|
|
const unsigned MinVLenB = Subtarget.getRealMinVLen() / 8;
|
|
const unsigned MaxVLenB = Subtarget.getRealMaxVLen() / 8;
|
|
assert(MinVLenB > 0 && "READ_VLENB without vector extension enabled?");
|
|
Known.Zero.setLowBits(Log2_32(MinVLenB));
|
|
Known.Zero.setBitsFrom(Log2_32(MaxVLenB)+1);
|
|
if (MaxVLenB == MinVLenB)
|
|
Known.One.setBit(Log2_32(MinVLenB));
|
|
break;
|
|
}
|
|
case RISCVISD::FCLASS: {
|
|
// fclass will only set one of the low 10 bits.
|
|
Known.Zero.setBitsFrom(10);
|
|
break;
|
|
}
|
|
case ISD::INTRINSIC_W_CHAIN:
|
|
case ISD::INTRINSIC_WO_CHAIN: {
|
|
unsigned IntNo =
|
|
Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1);
|
|
switch (IntNo) {
|
|
default:
|
|
// We can't do anything for most intrinsics.
|
|
break;
|
|
case Intrinsic::riscv_vsetvli:
|
|
case Intrinsic::riscv_vsetvlimax: {
|
|
bool HasAVL = IntNo == Intrinsic::riscv_vsetvli;
|
|
unsigned VSEW = Op.getConstantOperandVal(HasAVL + 1);
|
|
RISCVVType::VLMUL VLMUL =
|
|
static_cast<RISCVVType::VLMUL>(Op.getConstantOperandVal(HasAVL + 2));
|
|
unsigned SEW = RISCVVType::decodeVSEW(VSEW);
|
|
auto [LMul, Fractional] = RISCVVType::decodeVLMUL(VLMUL);
|
|
uint64_t MaxVL = Subtarget.getRealMaxVLen() / SEW;
|
|
MaxVL = (Fractional) ? MaxVL / LMul : MaxVL * LMul;
|
|
|
|
// Result of vsetvli must be not larger than AVL.
|
|
if (HasAVL && isa<ConstantSDNode>(Op.getOperand(1)))
|
|
MaxVL = std::min(MaxVL, Op.getConstantOperandVal(1));
|
|
|
|
unsigned KnownZeroFirstBit = Log2_32(MaxVL) + 1;
|
|
if (BitWidth > KnownZeroFirstBit)
|
|
Known.Zero.setBitsFrom(KnownZeroFirstBit);
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
|
|
SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
|
|
unsigned Depth) const {
|
|
switch (Op.getOpcode()) {
|
|
default:
|
|
break;
|
|
case RISCVISD::SELECT_CC: {
|
|
unsigned Tmp =
|
|
DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1);
|
|
if (Tmp == 1) return 1; // Early out.
|
|
unsigned Tmp2 =
|
|
DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1);
|
|
return std::min(Tmp, Tmp2);
|
|
}
|
|
case RISCVISD::CZERO_EQZ:
|
|
case RISCVISD::CZERO_NEZ:
|
|
// Output is either all zero or operand 0. We can propagate sign bit count
|
|
// from operand 0.
|
|
return DAG.ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
|
|
case RISCVISD::ABSW: {
|
|
// We expand this at isel to negw+max. The result will have 33 sign bits
|
|
// if the input has at least 33 sign bits.
|
|
unsigned Tmp =
|
|
DAG.ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
|
|
if (Tmp < 33) return 1;
|
|
return 33;
|
|
}
|
|
case RISCVISD::SLLW:
|
|
case RISCVISD::SRAW:
|
|
case RISCVISD::SRLW:
|
|
case RISCVISD::DIVW:
|
|
case RISCVISD::DIVUW:
|
|
case RISCVISD::REMUW:
|
|
case RISCVISD::ROLW:
|
|
case RISCVISD::RORW:
|
|
case RISCVISD::FCVT_W_RV64:
|
|
case RISCVISD::FCVT_WU_RV64:
|
|
case RISCVISD::STRICT_FCVT_W_RV64:
|
|
case RISCVISD::STRICT_FCVT_WU_RV64:
|
|
// TODO: As the result is sign-extended, this is conservatively correct. A
|
|
// more precise answer could be calculated for SRAW depending on known
|
|
// bits in the shift amount.
|
|
return 33;
|
|
case RISCVISD::VMV_X_S: {
|
|
// The number of sign bits of the scalar result is computed by obtaining the
|
|
// element type of the input vector operand, subtracting its width from the
|
|
// XLEN, and then adding one (sign bit within the element type). If the
|
|
// element type is wider than XLen, the least-significant XLEN bits are
|
|
// taken.
|
|
unsigned XLen = Subtarget.getXLen();
|
|
unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits();
|
|
if (EltBits <= XLen)
|
|
return XLen - EltBits + 1;
|
|
break;
|
|
}
|
|
case ISD::INTRINSIC_W_CHAIN: {
|
|
unsigned IntNo = Op.getConstantOperandVal(1);
|
|
switch (IntNo) {
|
|
default:
|
|
break;
|
|
case Intrinsic::riscv_masked_atomicrmw_xchg_i64:
|
|
case Intrinsic::riscv_masked_atomicrmw_add_i64:
|
|
case Intrinsic::riscv_masked_atomicrmw_sub_i64:
|
|
case Intrinsic::riscv_masked_atomicrmw_nand_i64:
|
|
case Intrinsic::riscv_masked_atomicrmw_max_i64:
|
|
case Intrinsic::riscv_masked_atomicrmw_min_i64:
|
|
case Intrinsic::riscv_masked_atomicrmw_umax_i64:
|
|
case Intrinsic::riscv_masked_atomicrmw_umin_i64:
|
|
case Intrinsic::riscv_masked_cmpxchg_i64:
|
|
// riscv_masked_{atomicrmw_*,cmpxchg} intrinsics represent an emulated
|
|
// narrow atomic operation. These are implemented using atomic
|
|
// operations at the minimum supported atomicrmw/cmpxchg width whose
|
|
// result is then sign extended to XLEN. With +A, the minimum width is
|
|
// 32 for both 64 and 32.
|
|
assert(Subtarget.getXLen() == 64);
|
|
assert(getMinCmpXchgSizeInBits() == 32);
|
|
assert(Subtarget.hasStdExtA());
|
|
return 33;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
bool RISCVTargetLowering::SimplifyDemandedBitsForTargetNode(
|
|
SDValue Op, const APInt &OriginalDemandedBits,
|
|
const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
|
|
unsigned Depth) const {
|
|
unsigned BitWidth = OriginalDemandedBits.getBitWidth();
|
|
|
|
switch (Op.getOpcode()) {
|
|
case RISCVISD::BREV8:
|
|
case RISCVISD::ORC_B: {
|
|
KnownBits Known2;
|
|
bool IsGORC = Op.getOpcode() == RISCVISD::ORC_B;
|
|
// For BREV8, we need to do BREV8 on the demanded bits.
|
|
// For ORC_B, any bit in the output demandeds all bits from the same byte.
|
|
// So we need to do ORC_B on the demanded bits.
|
|
APInt DemandedBits =
|
|
APInt(BitWidth, computeGREVOrGORC(OriginalDemandedBits.getZExtValue(),
|
|
7, IsGORC));
|
|
if (SimplifyDemandedBits(Op.getOperand(0), DemandedBits,
|
|
OriginalDemandedElts, Known2, TLO, Depth + 1))
|
|
return true;
|
|
|
|
// To compute zeros for ORC_B, we need to invert the value and invert it
|
|
// back after. This inverting is harmless for BREV8.
|
|
Known.Zero = ~computeGREVOrGORC(~Known2.Zero.getZExtValue(), 7, IsGORC);
|
|
Known.One = computeGREVOrGORC(Known2.One.getZExtValue(), 7, IsGORC);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return TargetLowering::SimplifyDemandedBitsForTargetNode(
|
|
Op, OriginalDemandedBits, OriginalDemandedElts, Known, TLO, Depth);
|
|
}
|
|
|
|
bool RISCVTargetLowering::canCreateUndefOrPoisonForTargetNode(
|
|
SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
|
|
bool PoisonOnly, bool ConsiderFlags, unsigned Depth) const {
|
|
|
|
// TODO: Add more target nodes.
|
|
switch (Op.getOpcode()) {
|
|
case RISCVISD::SELECT_CC:
|
|
// Integer select_cc cannot create poison.
|
|
// TODO: What are the FP poison semantics?
|
|
// TODO: This instruction blocks poison from the unselected operand, can
|
|
// we do anything with that?
|
|
return !Op.getValueType().isInteger();
|
|
}
|
|
return TargetLowering::canCreateUndefOrPoisonForTargetNode(
|
|
Op, DemandedElts, DAG, PoisonOnly, ConsiderFlags, Depth);
|
|
}
|
|
|
|
const Constant *
|
|
RISCVTargetLowering::getTargetConstantFromLoad(LoadSDNode *Ld) const {
|
|
assert(Ld && "Unexpected null LoadSDNode");
|
|
if (!ISD::isNormalLoad(Ld))
|
|
return nullptr;
|
|
|
|
SDValue Ptr = Ld->getBasePtr();
|
|
|
|
// Only constant pools with no offset are supported.
|
|
auto GetSupportedConstantPool = [](SDValue Ptr) -> ConstantPoolSDNode * {
|
|
auto *CNode = dyn_cast<ConstantPoolSDNode>(Ptr);
|
|
if (!CNode || CNode->isMachineConstantPoolEntry() ||
|
|
CNode->getOffset() != 0)
|
|
return nullptr;
|
|
|
|
return CNode;
|
|
};
|
|
|
|
// Simple case, LLA.
|
|
if (Ptr.getOpcode() == RISCVISD::LLA) {
|
|
auto *CNode = GetSupportedConstantPool(Ptr.getOperand(0));
|
|
if (!CNode || CNode->getTargetFlags() != 0)
|
|
return nullptr;
|
|
|
|
return CNode->getConstVal();
|
|
}
|
|
|
|
// Look for a HI and ADD_LO pair.
|
|
if (Ptr.getOpcode() != RISCVISD::ADD_LO ||
|
|
Ptr.getOperand(0).getOpcode() != RISCVISD::HI)
|
|
return nullptr;
|
|
|
|
auto *CNodeLo = GetSupportedConstantPool(Ptr.getOperand(1));
|
|
auto *CNodeHi = GetSupportedConstantPool(Ptr.getOperand(0).getOperand(0));
|
|
|
|
if (!CNodeLo || CNodeLo->getTargetFlags() != RISCVII::MO_LO ||
|
|
!CNodeHi || CNodeHi->getTargetFlags() != RISCVII::MO_HI)
|
|
return nullptr;
|
|
|
|
if (CNodeLo->getConstVal() != CNodeHi->getConstVal())
|
|
return nullptr;
|
|
|
|
return CNodeLo->getConstVal();
|
|
}
|
|
|
|
static MachineBasicBlock *emitReadCounterWidePseudo(MachineInstr &MI,
|
|
MachineBasicBlock *BB) {
|
|
assert(MI.getOpcode() == RISCV::ReadCounterWide && "Unexpected instruction");
|
|
|
|
// To read a 64-bit counter CSR on a 32-bit target, we read the two halves.
|
|
// Should the count have wrapped while it was being read, we need to try
|
|
// again.
|
|
// For example:
|
|
// ```
|
|
// read:
|
|
// csrrs x3, counterh # load high word of counter
|
|
// csrrs x2, counter # load low word of counter
|
|
// csrrs x4, counterh # load high word of counter
|
|
// bne x3, x4, read # check if high word reads match, otherwise try again
|
|
// ```
|
|
|
|
MachineFunction &MF = *BB->getParent();
|
|
const BasicBlock *LLVMBB = BB->getBasicBlock();
|
|
MachineFunction::iterator It = ++BB->getIterator();
|
|
|
|
MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVMBB);
|
|
MF.insert(It, LoopMBB);
|
|
|
|
MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVMBB);
|
|
MF.insert(It, DoneMBB);
|
|
|
|
// Transfer the remainder of BB and its successor edges to DoneMBB.
|
|
DoneMBB->splice(DoneMBB->begin(), BB,
|
|
std::next(MachineBasicBlock::iterator(MI)), BB->end());
|
|
DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
|
|
|
|
BB->addSuccessor(LoopMBB);
|
|
|
|
MachineRegisterInfo &RegInfo = MF.getRegInfo();
|
|
Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
|
|
Register LoReg = MI.getOperand(0).getReg();
|
|
Register HiReg = MI.getOperand(1).getReg();
|
|
int64_t LoCounter = MI.getOperand(2).getImm();
|
|
int64_t HiCounter = MI.getOperand(3).getImm();
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
|
|
const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
|
|
BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
|
|
.addImm(HiCounter)
|
|
.addReg(RISCV::X0);
|
|
BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
|
|
.addImm(LoCounter)
|
|
.addReg(RISCV::X0);
|
|
BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
|
|
.addImm(HiCounter)
|
|
.addReg(RISCV::X0);
|
|
|
|
BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
|
|
.addReg(HiReg)
|
|
.addReg(ReadAgainReg)
|
|
.addMBB(LoopMBB);
|
|
|
|
LoopMBB->addSuccessor(LoopMBB);
|
|
LoopMBB->addSuccessor(DoneMBB);
|
|
|
|
MI.eraseFromParent();
|
|
|
|
return DoneMBB;
|
|
}
|
|
|
|
static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
|
|
MachineBasicBlock *BB,
|
|
const RISCVSubtarget &Subtarget) {
|
|
assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
|
|
|
|
MachineFunction &MF = *BB->getParent();
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
|
|
const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
|
|
Register LoReg = MI.getOperand(0).getReg();
|
|
Register HiReg = MI.getOperand(1).getReg();
|
|
Register SrcReg = MI.getOperand(2).getReg();
|
|
|
|
const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
|
|
int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
|
|
|
|
TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
|
|
RI, Register());
|
|
MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
|
|
MachineMemOperand *MMOLo =
|
|
MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
|
|
MachineMemOperand *MMOHi = MF.getMachineMemOperand(
|
|
MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
|
|
BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
|
|
.addFrameIndex(FI)
|
|
.addImm(0)
|
|
.addMemOperand(MMOLo);
|
|
BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
|
|
.addFrameIndex(FI)
|
|
.addImm(4)
|
|
.addMemOperand(MMOHi);
|
|
MI.eraseFromParent(); // The pseudo instruction is gone now.
|
|
return BB;
|
|
}
|
|
|
|
static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
|
|
MachineBasicBlock *BB,
|
|
const RISCVSubtarget &Subtarget) {
|
|
assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
|
|
"Unexpected instruction");
|
|
|
|
MachineFunction &MF = *BB->getParent();
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
|
|
const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
|
|
Register DstReg = MI.getOperand(0).getReg();
|
|
Register LoReg = MI.getOperand(1).getReg();
|
|
Register HiReg = MI.getOperand(2).getReg();
|
|
|
|
const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
|
|
int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
|
|
|
|
MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
|
|
MachineMemOperand *MMOLo =
|
|
MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
|
|
MachineMemOperand *MMOHi = MF.getMachineMemOperand(
|
|
MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
|
|
BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
|
|
.addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
|
|
.addFrameIndex(FI)
|
|
.addImm(0)
|
|
.addMemOperand(MMOLo);
|
|
BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
|
|
.addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
|
|
.addFrameIndex(FI)
|
|
.addImm(4)
|
|
.addMemOperand(MMOHi);
|
|
TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI, Register());
|
|
MI.eraseFromParent(); // The pseudo instruction is gone now.
|
|
return BB;
|
|
}
|
|
|
|
static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB,
|
|
unsigned RelOpcode, unsigned EqOpcode,
|
|
const RISCVSubtarget &Subtarget) {
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
Register DstReg = MI.getOperand(0).getReg();
|
|
Register Src1Reg = MI.getOperand(1).getReg();
|
|
Register Src2Reg = MI.getOperand(2).getReg();
|
|
MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
|
|
Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass);
|
|
const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
|
|
|
|
// Save the current FFLAGS.
|
|
BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags);
|
|
|
|
auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg)
|
|
.addReg(Src1Reg)
|
|
.addReg(Src2Reg);
|
|
if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
|
|
MIB->setFlag(MachineInstr::MIFlag::NoFPExcept);
|
|
|
|
// Restore the FFLAGS.
|
|
BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS))
|
|
.addReg(SavedFFlags, RegState::Kill);
|
|
|
|
// Issue a dummy FEQ opcode to raise exception for signaling NaNs.
|
|
auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0)
|
|
.addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill()))
|
|
.addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill()));
|
|
if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
|
|
MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept);
|
|
|
|
// Erase the pseudoinstruction.
|
|
MI.eraseFromParent();
|
|
return BB;
|
|
}
|
|
|
|
static MachineBasicBlock *
|
|
EmitLoweredCascadedSelect(MachineInstr &First, MachineInstr &Second,
|
|
MachineBasicBlock *ThisMBB,
|
|
const RISCVSubtarget &Subtarget) {
|
|
// Select_FPRX_ (rs1, rs2, imm, rs4, (Select_FPRX_ rs1, rs2, imm, rs4, rs5)
|
|
// Without this, custom-inserter would have generated:
|
|
//
|
|
// A
|
|
// | \
|
|
// | B
|
|
// | /
|
|
// C
|
|
// | \
|
|
// | D
|
|
// | /
|
|
// E
|
|
//
|
|
// A: X = ...; Y = ...
|
|
// B: empty
|
|
// C: Z = PHI [X, A], [Y, B]
|
|
// D: empty
|
|
// E: PHI [X, C], [Z, D]
|
|
//
|
|
// If we lower both Select_FPRX_ in a single step, we can instead generate:
|
|
//
|
|
// A
|
|
// | \
|
|
// | C
|
|
// | /|
|
|
// |/ |
|
|
// | |
|
|
// | D
|
|
// | /
|
|
// E
|
|
//
|
|
// A: X = ...; Y = ...
|
|
// D: empty
|
|
// E: PHI [X, A], [X, C], [Y, D]
|
|
|
|
const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
|
|
const DebugLoc &DL = First.getDebugLoc();
|
|
const BasicBlock *LLVM_BB = ThisMBB->getBasicBlock();
|
|
MachineFunction *F = ThisMBB->getParent();
|
|
MachineBasicBlock *FirstMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *SecondMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineFunction::iterator It = ++ThisMBB->getIterator();
|
|
F->insert(It, FirstMBB);
|
|
F->insert(It, SecondMBB);
|
|
F->insert(It, SinkMBB);
|
|
|
|
// Transfer the remainder of ThisMBB and its successor edges to SinkMBB.
|
|
SinkMBB->splice(SinkMBB->begin(), ThisMBB,
|
|
std::next(MachineBasicBlock::iterator(First)),
|
|
ThisMBB->end());
|
|
SinkMBB->transferSuccessorsAndUpdatePHIs(ThisMBB);
|
|
|
|
// Fallthrough block for ThisMBB.
|
|
ThisMBB->addSuccessor(FirstMBB);
|
|
// Fallthrough block for FirstMBB.
|
|
FirstMBB->addSuccessor(SecondMBB);
|
|
ThisMBB->addSuccessor(SinkMBB);
|
|
FirstMBB->addSuccessor(SinkMBB);
|
|
// This is fallthrough.
|
|
SecondMBB->addSuccessor(SinkMBB);
|
|
|
|
auto FirstCC = static_cast<RISCVCC::CondCode>(First.getOperand(3).getImm());
|
|
Register FLHS = First.getOperand(1).getReg();
|
|
Register FRHS = First.getOperand(2).getReg();
|
|
// Insert appropriate branch.
|
|
BuildMI(FirstMBB, DL, TII.get(RISCVCC::getBrCond(FirstCC, First.getOpcode())))
|
|
.addReg(FLHS)
|
|
.addReg(FRHS)
|
|
.addMBB(SinkMBB);
|
|
|
|
Register SLHS = Second.getOperand(1).getReg();
|
|
Register SRHS = Second.getOperand(2).getReg();
|
|
Register Op1Reg4 = First.getOperand(4).getReg();
|
|
Register Op1Reg5 = First.getOperand(5).getReg();
|
|
|
|
auto SecondCC = static_cast<RISCVCC::CondCode>(Second.getOperand(3).getImm());
|
|
// Insert appropriate branch.
|
|
BuildMI(ThisMBB, DL,
|
|
TII.get(RISCVCC::getBrCond(SecondCC, Second.getOpcode())))
|
|
.addReg(SLHS)
|
|
.addReg(SRHS)
|
|
.addMBB(SinkMBB);
|
|
|
|
Register DestReg = Second.getOperand(0).getReg();
|
|
Register Op2Reg4 = Second.getOperand(4).getReg();
|
|
BuildMI(*SinkMBB, SinkMBB->begin(), DL, TII.get(RISCV::PHI), DestReg)
|
|
.addReg(Op2Reg4)
|
|
.addMBB(ThisMBB)
|
|
.addReg(Op1Reg4)
|
|
.addMBB(FirstMBB)
|
|
.addReg(Op1Reg5)
|
|
.addMBB(SecondMBB);
|
|
|
|
// Now remove the Select_FPRX_s.
|
|
First.eraseFromParent();
|
|
Second.eraseFromParent();
|
|
return SinkMBB;
|
|
}
|
|
|
|
static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
|
|
MachineBasicBlock *BB,
|
|
const RISCVSubtarget &Subtarget) {
|
|
// To "insert" Select_* instructions, we actually have to insert the triangle
|
|
// control-flow pattern. The incoming instructions know the destination vreg
|
|
// to set, the condition code register to branch on, the true/false values to
|
|
// select between, and the condcode to use to select the appropriate branch.
|
|
//
|
|
// We produce the following control flow:
|
|
// HeadMBB
|
|
// | \
|
|
// | IfFalseMBB
|
|
// | /
|
|
// TailMBB
|
|
//
|
|
// When we find a sequence of selects we attempt to optimize their emission
|
|
// by sharing the control flow. Currently we only handle cases where we have
|
|
// multiple selects with the exact same condition (same LHS, RHS and CC).
|
|
// The selects may be interleaved with other instructions if the other
|
|
// instructions meet some requirements we deem safe:
|
|
// - They are not pseudo instructions.
|
|
// - They are debug instructions. Otherwise,
|
|
// - They do not have side-effects, do not access memory and their inputs do
|
|
// not depend on the results of the select pseudo-instructions.
|
|
// The TrueV/FalseV operands of the selects cannot depend on the result of
|
|
// previous selects in the sequence.
|
|
// These conditions could be further relaxed. See the X86 target for a
|
|
// related approach and more information.
|
|
//
|
|
// Select_FPRX_ (rs1, rs2, imm, rs4, (Select_FPRX_ rs1, rs2, imm, rs4, rs5))
|
|
// is checked here and handled by a separate function -
|
|
// EmitLoweredCascadedSelect.
|
|
|
|
auto Next = next_nodbg(MI.getIterator(), BB->instr_end());
|
|
if (MI.getOpcode() != RISCV::Select_GPR_Using_CC_GPR &&
|
|
MI.getOperand(1).isReg() && MI.getOperand(2).isReg() &&
|
|
Next != BB->end() && Next->getOpcode() == MI.getOpcode() &&
|
|
Next->getOperand(5).getReg() == MI.getOperand(0).getReg() &&
|
|
Next->getOperand(5).isKill())
|
|
return EmitLoweredCascadedSelect(MI, *Next, BB, Subtarget);
|
|
|
|
Register LHS = MI.getOperand(1).getReg();
|
|
Register RHS;
|
|
if (MI.getOperand(2).isReg())
|
|
RHS = MI.getOperand(2).getReg();
|
|
auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
|
|
|
|
SmallVector<MachineInstr *, 4> SelectDebugValues;
|
|
SmallSet<Register, 4> SelectDests;
|
|
SelectDests.insert(MI.getOperand(0).getReg());
|
|
|
|
MachineInstr *LastSelectPseudo = &MI;
|
|
for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
|
|
SequenceMBBI != E; ++SequenceMBBI) {
|
|
if (SequenceMBBI->isDebugInstr())
|
|
continue;
|
|
if (RISCVInstrInfo::isSelectPseudo(*SequenceMBBI)) {
|
|
if (SequenceMBBI->getOperand(1).getReg() != LHS ||
|
|
!SequenceMBBI->getOperand(2).isReg() ||
|
|
SequenceMBBI->getOperand(2).getReg() != RHS ||
|
|
SequenceMBBI->getOperand(3).getImm() != CC ||
|
|
SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
|
|
SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
|
|
break;
|
|
LastSelectPseudo = &*SequenceMBBI;
|
|
SequenceMBBI->collectDebugValues(SelectDebugValues);
|
|
SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
|
|
continue;
|
|
}
|
|
if (SequenceMBBI->hasUnmodeledSideEffects() ||
|
|
SequenceMBBI->mayLoadOrStore() ||
|
|
SequenceMBBI->usesCustomInsertionHook())
|
|
break;
|
|
if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
|
|
return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
|
|
}))
|
|
break;
|
|
}
|
|
|
|
const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
MachineFunction::iterator I = ++BB->getIterator();
|
|
|
|
MachineBasicBlock *HeadMBB = BB;
|
|
MachineFunction *F = BB->getParent();
|
|
MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
|
|
F->insert(I, IfFalseMBB);
|
|
F->insert(I, TailMBB);
|
|
|
|
// Set the call frame size on entry to the new basic blocks.
|
|
unsigned CallFrameSize = TII.getCallFrameSizeAt(*LastSelectPseudo);
|
|
IfFalseMBB->setCallFrameSize(CallFrameSize);
|
|
TailMBB->setCallFrameSize(CallFrameSize);
|
|
|
|
// Transfer debug instructions associated with the selects to TailMBB.
|
|
for (MachineInstr *DebugInstr : SelectDebugValues) {
|
|
TailMBB->push_back(DebugInstr->removeFromParent());
|
|
}
|
|
|
|
// Move all instructions after the sequence to TailMBB.
|
|
TailMBB->splice(TailMBB->end(), HeadMBB,
|
|
std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
|
|
// Update machine-CFG edges by transferring all successors of the current
|
|
// block to the new block which will contain the Phi nodes for the selects.
|
|
TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
|
|
// Set the successors for HeadMBB.
|
|
HeadMBB->addSuccessor(IfFalseMBB);
|
|
HeadMBB->addSuccessor(TailMBB);
|
|
|
|
// Insert appropriate branch.
|
|
if (MI.getOperand(2).isImm())
|
|
BuildMI(HeadMBB, DL, TII.get(RISCVCC::getBrCond(CC, MI.getOpcode())))
|
|
.addReg(LHS)
|
|
.addImm(MI.getOperand(2).getImm())
|
|
.addMBB(TailMBB);
|
|
else
|
|
BuildMI(HeadMBB, DL, TII.get(RISCVCC::getBrCond(CC, MI.getOpcode())))
|
|
.addReg(LHS)
|
|
.addReg(RHS)
|
|
.addMBB(TailMBB);
|
|
|
|
// IfFalseMBB just falls through to TailMBB.
|
|
IfFalseMBB->addSuccessor(TailMBB);
|
|
|
|
// Create PHIs for all of the select pseudo-instructions.
|
|
auto SelectMBBI = MI.getIterator();
|
|
auto SelectEnd = std::next(LastSelectPseudo->getIterator());
|
|
auto InsertionPoint = TailMBB->begin();
|
|
while (SelectMBBI != SelectEnd) {
|
|
auto Next = std::next(SelectMBBI);
|
|
if (RISCVInstrInfo::isSelectPseudo(*SelectMBBI)) {
|
|
// %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
|
|
BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
|
|
TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
|
|
.addReg(SelectMBBI->getOperand(4).getReg())
|
|
.addMBB(HeadMBB)
|
|
.addReg(SelectMBBI->getOperand(5).getReg())
|
|
.addMBB(IfFalseMBB);
|
|
SelectMBBI->eraseFromParent();
|
|
}
|
|
SelectMBBI = Next;
|
|
}
|
|
|
|
F->getProperties().resetNoPHIs();
|
|
return TailMBB;
|
|
}
|
|
|
|
// Helper to find Masked Pseudo instruction from MC instruction, LMUL and SEW.
|
|
static const RISCV::RISCVMaskedPseudoInfo *
|
|
lookupMaskedIntrinsic(uint16_t MCOpcode, RISCVVType::VLMUL LMul, unsigned SEW) {
|
|
const RISCVVInversePseudosTable::PseudoInfo *Inverse =
|
|
RISCVVInversePseudosTable::getBaseInfo(MCOpcode, LMul, SEW);
|
|
assert(Inverse && "Unexpected LMUL and SEW pair for instruction");
|
|
const RISCV::RISCVMaskedPseudoInfo *Masked =
|
|
RISCV::lookupMaskedIntrinsicByUnmasked(Inverse->Pseudo);
|
|
assert(Masked && "Could not find masked instruction for LMUL and SEW pair");
|
|
return Masked;
|
|
}
|
|
|
|
static MachineBasicBlock *emitVFROUND_NOEXCEPT_MASK(MachineInstr &MI,
|
|
MachineBasicBlock *BB,
|
|
unsigned CVTXOpc) {
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
|
|
const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
|
|
|
|
MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
|
|
Register SavedFFLAGS = MRI.createVirtualRegister(&RISCV::GPRRegClass);
|
|
|
|
// Save the old value of FFLAGS.
|
|
BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFLAGS);
|
|
|
|
assert(MI.getNumOperands() == 7);
|
|
|
|
// Emit a VFCVT_X_F
|
|
const TargetRegisterInfo *TRI =
|
|
BB->getParent()->getSubtarget().getRegisterInfo();
|
|
const TargetRegisterClass *RC = MI.getRegClassConstraint(0, &TII, TRI);
|
|
Register Tmp = MRI.createVirtualRegister(RC);
|
|
BuildMI(*BB, MI, DL, TII.get(CVTXOpc), Tmp)
|
|
.add(MI.getOperand(1))
|
|
.add(MI.getOperand(2))
|
|
.add(MI.getOperand(3))
|
|
.add(MachineOperand::CreateImm(7)) // frm = DYN
|
|
.add(MI.getOperand(4))
|
|
.add(MI.getOperand(5))
|
|
.add(MI.getOperand(6))
|
|
.add(MachineOperand::CreateReg(RISCV::FRM,
|
|
/*IsDef*/ false,
|
|
/*IsImp*/ true));
|
|
|
|
// Emit a VFCVT_F_X
|
|
RISCVVType::VLMUL LMul = RISCVII::getLMul(MI.getDesc().TSFlags);
|
|
unsigned Log2SEW = MI.getOperand(RISCVII::getSEWOpNum(MI.getDesc())).getImm();
|
|
// There is no E8 variant for VFCVT_F_X.
|
|
assert(Log2SEW >= 4);
|
|
unsigned CVTFOpc =
|
|
lookupMaskedIntrinsic(RISCV::VFCVT_F_X_V, LMul, 1 << Log2SEW)
|
|
->MaskedPseudo;
|
|
|
|
BuildMI(*BB, MI, DL, TII.get(CVTFOpc))
|
|
.add(MI.getOperand(0))
|
|
.add(MI.getOperand(1))
|
|
.addReg(Tmp)
|
|
.add(MI.getOperand(3))
|
|
.add(MachineOperand::CreateImm(7)) // frm = DYN
|
|
.add(MI.getOperand(4))
|
|
.add(MI.getOperand(5))
|
|
.add(MI.getOperand(6))
|
|
.add(MachineOperand::CreateReg(RISCV::FRM,
|
|
/*IsDef*/ false,
|
|
/*IsImp*/ true));
|
|
|
|
// Restore FFLAGS.
|
|
BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS))
|
|
.addReg(SavedFFLAGS, RegState::Kill);
|
|
|
|
// Erase the pseudoinstruction.
|
|
MI.eraseFromParent();
|
|
return BB;
|
|
}
|
|
|
|
static MachineBasicBlock *emitFROUND(MachineInstr &MI, MachineBasicBlock *MBB,
|
|
const RISCVSubtarget &Subtarget) {
|
|
unsigned CmpOpc, F2IOpc, I2FOpc, FSGNJOpc, FSGNJXOpc;
|
|
const TargetRegisterClass *RC;
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Unexpected opcode");
|
|
case RISCV::PseudoFROUND_H:
|
|
CmpOpc = RISCV::FLT_H;
|
|
F2IOpc = RISCV::FCVT_W_H;
|
|
I2FOpc = RISCV::FCVT_H_W;
|
|
FSGNJOpc = RISCV::FSGNJ_H;
|
|
FSGNJXOpc = RISCV::FSGNJX_H;
|
|
RC = &RISCV::FPR16RegClass;
|
|
break;
|
|
case RISCV::PseudoFROUND_H_INX:
|
|
CmpOpc = RISCV::FLT_H_INX;
|
|
F2IOpc = RISCV::FCVT_W_H_INX;
|
|
I2FOpc = RISCV::FCVT_H_W_INX;
|
|
FSGNJOpc = RISCV::FSGNJ_H_INX;
|
|
FSGNJXOpc = RISCV::FSGNJX_H_INX;
|
|
RC = &RISCV::GPRF16RegClass;
|
|
break;
|
|
case RISCV::PseudoFROUND_S:
|
|
CmpOpc = RISCV::FLT_S;
|
|
F2IOpc = RISCV::FCVT_W_S;
|
|
I2FOpc = RISCV::FCVT_S_W;
|
|
FSGNJOpc = RISCV::FSGNJ_S;
|
|
FSGNJXOpc = RISCV::FSGNJX_S;
|
|
RC = &RISCV::FPR32RegClass;
|
|
break;
|
|
case RISCV::PseudoFROUND_S_INX:
|
|
CmpOpc = RISCV::FLT_S_INX;
|
|
F2IOpc = RISCV::FCVT_W_S_INX;
|
|
I2FOpc = RISCV::FCVT_S_W_INX;
|
|
FSGNJOpc = RISCV::FSGNJ_S_INX;
|
|
FSGNJXOpc = RISCV::FSGNJX_S_INX;
|
|
RC = &RISCV::GPRF32RegClass;
|
|
break;
|
|
case RISCV::PseudoFROUND_D:
|
|
assert(Subtarget.is64Bit() && "Expected 64-bit GPR.");
|
|
CmpOpc = RISCV::FLT_D;
|
|
F2IOpc = RISCV::FCVT_L_D;
|
|
I2FOpc = RISCV::FCVT_D_L;
|
|
FSGNJOpc = RISCV::FSGNJ_D;
|
|
FSGNJXOpc = RISCV::FSGNJX_D;
|
|
RC = &RISCV::FPR64RegClass;
|
|
break;
|
|
case RISCV::PseudoFROUND_D_INX:
|
|
assert(Subtarget.is64Bit() && "Expected 64-bit GPR.");
|
|
CmpOpc = RISCV::FLT_D_INX;
|
|
F2IOpc = RISCV::FCVT_L_D_INX;
|
|
I2FOpc = RISCV::FCVT_D_L_INX;
|
|
FSGNJOpc = RISCV::FSGNJ_D_INX;
|
|
FSGNJXOpc = RISCV::FSGNJX_D_INX;
|
|
RC = &RISCV::GPRRegClass;
|
|
break;
|
|
}
|
|
|
|
const BasicBlock *BB = MBB->getBasicBlock();
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
MachineFunction::iterator I = ++MBB->getIterator();
|
|
|
|
MachineFunction *F = MBB->getParent();
|
|
MachineBasicBlock *CvtMBB = F->CreateMachineBasicBlock(BB);
|
|
MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(BB);
|
|
|
|
F->insert(I, CvtMBB);
|
|
F->insert(I, DoneMBB);
|
|
// Move all instructions after the sequence to DoneMBB.
|
|
DoneMBB->splice(DoneMBB->end(), MBB, MachineBasicBlock::iterator(MI),
|
|
MBB->end());
|
|
// Update machine-CFG edges by transferring all successors of the current
|
|
// block to the new block which will contain the Phi nodes for the selects.
|
|
DoneMBB->transferSuccessorsAndUpdatePHIs(MBB);
|
|
// Set the successors for MBB.
|
|
MBB->addSuccessor(CvtMBB);
|
|
MBB->addSuccessor(DoneMBB);
|
|
|
|
Register DstReg = MI.getOperand(0).getReg();
|
|
Register SrcReg = MI.getOperand(1).getReg();
|
|
Register MaxReg = MI.getOperand(2).getReg();
|
|
int64_t FRM = MI.getOperand(3).getImm();
|
|
|
|
const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
|
|
MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
|
|
|
|
Register FabsReg = MRI.createVirtualRegister(RC);
|
|
BuildMI(MBB, DL, TII.get(FSGNJXOpc), FabsReg).addReg(SrcReg).addReg(SrcReg);
|
|
|
|
// Compare the FP value to the max value.
|
|
Register CmpReg = MRI.createVirtualRegister(&RISCV::GPRRegClass);
|
|
auto MIB =
|
|
BuildMI(MBB, DL, TII.get(CmpOpc), CmpReg).addReg(FabsReg).addReg(MaxReg);
|
|
if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
|
|
MIB->setFlag(MachineInstr::MIFlag::NoFPExcept);
|
|
|
|
// Insert branch.
|
|
BuildMI(MBB, DL, TII.get(RISCV::BEQ))
|
|
.addReg(CmpReg)
|
|
.addReg(RISCV::X0)
|
|
.addMBB(DoneMBB);
|
|
|
|
CvtMBB->addSuccessor(DoneMBB);
|
|
|
|
// Convert to integer.
|
|
Register F2IReg = MRI.createVirtualRegister(&RISCV::GPRRegClass);
|
|
MIB = BuildMI(CvtMBB, DL, TII.get(F2IOpc), F2IReg).addReg(SrcReg).addImm(FRM);
|
|
if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
|
|
MIB->setFlag(MachineInstr::MIFlag::NoFPExcept);
|
|
|
|
// Convert back to FP.
|
|
Register I2FReg = MRI.createVirtualRegister(RC);
|
|
MIB = BuildMI(CvtMBB, DL, TII.get(I2FOpc), I2FReg).addReg(F2IReg).addImm(FRM);
|
|
if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
|
|
MIB->setFlag(MachineInstr::MIFlag::NoFPExcept);
|
|
|
|
// Restore the sign bit.
|
|
Register CvtReg = MRI.createVirtualRegister(RC);
|
|
BuildMI(CvtMBB, DL, TII.get(FSGNJOpc), CvtReg).addReg(I2FReg).addReg(SrcReg);
|
|
|
|
// Merge the results.
|
|
BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(RISCV::PHI), DstReg)
|
|
.addReg(SrcReg)
|
|
.addMBB(MBB)
|
|
.addReg(CvtReg)
|
|
.addMBB(CvtMBB);
|
|
|
|
MI.eraseFromParent();
|
|
return DoneMBB;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
|
|
MachineBasicBlock *BB) const {
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Unexpected instr type to insert");
|
|
case RISCV::ReadCounterWide:
|
|
assert(!Subtarget.is64Bit() &&
|
|
"ReadCounterWide is only to be used on riscv32");
|
|
return emitReadCounterWidePseudo(MI, BB);
|
|
case RISCV::Select_GPR_Using_CC_GPR:
|
|
case RISCV::Select_GPR_Using_CC_SImm5_CV:
|
|
case RISCV::Select_GPRNoX0_Using_CC_SImm5NonZero_QC:
|
|
case RISCV::Select_GPRNoX0_Using_CC_UImm5NonZero_QC:
|
|
case RISCV::Select_GPRNoX0_Using_CC_SImm16NonZero_QC:
|
|
case RISCV::Select_GPRNoX0_Using_CC_UImm16NonZero_QC:
|
|
case RISCV::Select_FPR16_Using_CC_GPR:
|
|
case RISCV::Select_FPR16INX_Using_CC_GPR:
|
|
case RISCV::Select_FPR32_Using_CC_GPR:
|
|
case RISCV::Select_FPR32INX_Using_CC_GPR:
|
|
case RISCV::Select_FPR64_Using_CC_GPR:
|
|
case RISCV::Select_FPR64INX_Using_CC_GPR:
|
|
case RISCV::Select_FPR64IN32X_Using_CC_GPR:
|
|
return emitSelectPseudo(MI, BB, Subtarget);
|
|
case RISCV::BuildPairF64Pseudo:
|
|
return emitBuildPairF64Pseudo(MI, BB, Subtarget);
|
|
case RISCV::SplitF64Pseudo:
|
|
return emitSplitF64Pseudo(MI, BB, Subtarget);
|
|
case RISCV::PseudoQuietFLE_H:
|
|
return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget);
|
|
case RISCV::PseudoQuietFLE_H_INX:
|
|
return emitQuietFCMP(MI, BB, RISCV::FLE_H_INX, RISCV::FEQ_H_INX, Subtarget);
|
|
case RISCV::PseudoQuietFLT_H:
|
|
return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget);
|
|
case RISCV::PseudoQuietFLT_H_INX:
|
|
return emitQuietFCMP(MI, BB, RISCV::FLT_H_INX, RISCV::FEQ_H_INX, Subtarget);
|
|
case RISCV::PseudoQuietFLE_S:
|
|
return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget);
|
|
case RISCV::PseudoQuietFLE_S_INX:
|
|
return emitQuietFCMP(MI, BB, RISCV::FLE_S_INX, RISCV::FEQ_S_INX, Subtarget);
|
|
case RISCV::PseudoQuietFLT_S:
|
|
return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget);
|
|
case RISCV::PseudoQuietFLT_S_INX:
|
|
return emitQuietFCMP(MI, BB, RISCV::FLT_S_INX, RISCV::FEQ_S_INX, Subtarget);
|
|
case RISCV::PseudoQuietFLE_D:
|
|
return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget);
|
|
case RISCV::PseudoQuietFLE_D_INX:
|
|
return emitQuietFCMP(MI, BB, RISCV::FLE_D_INX, RISCV::FEQ_D_INX, Subtarget);
|
|
case RISCV::PseudoQuietFLE_D_IN32X:
|
|
return emitQuietFCMP(MI, BB, RISCV::FLE_D_IN32X, RISCV::FEQ_D_IN32X,
|
|
Subtarget);
|
|
case RISCV::PseudoQuietFLT_D:
|
|
return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget);
|
|
case RISCV::PseudoQuietFLT_D_INX:
|
|
return emitQuietFCMP(MI, BB, RISCV::FLT_D_INX, RISCV::FEQ_D_INX, Subtarget);
|
|
case RISCV::PseudoQuietFLT_D_IN32X:
|
|
return emitQuietFCMP(MI, BB, RISCV::FLT_D_IN32X, RISCV::FEQ_D_IN32X,
|
|
Subtarget);
|
|
|
|
case RISCV::PseudoVFROUND_NOEXCEPT_V_M1_MASK:
|
|
return emitVFROUND_NOEXCEPT_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_M1_MASK);
|
|
case RISCV::PseudoVFROUND_NOEXCEPT_V_M2_MASK:
|
|
return emitVFROUND_NOEXCEPT_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_M2_MASK);
|
|
case RISCV::PseudoVFROUND_NOEXCEPT_V_M4_MASK:
|
|
return emitVFROUND_NOEXCEPT_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_M4_MASK);
|
|
case RISCV::PseudoVFROUND_NOEXCEPT_V_M8_MASK:
|
|
return emitVFROUND_NOEXCEPT_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_M8_MASK);
|
|
case RISCV::PseudoVFROUND_NOEXCEPT_V_MF2_MASK:
|
|
return emitVFROUND_NOEXCEPT_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_MF2_MASK);
|
|
case RISCV::PseudoVFROUND_NOEXCEPT_V_MF4_MASK:
|
|
return emitVFROUND_NOEXCEPT_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_MF4_MASK);
|
|
case RISCV::PseudoFROUND_H:
|
|
case RISCV::PseudoFROUND_H_INX:
|
|
case RISCV::PseudoFROUND_S:
|
|
case RISCV::PseudoFROUND_S_INX:
|
|
case RISCV::PseudoFROUND_D:
|
|
case RISCV::PseudoFROUND_D_INX:
|
|
case RISCV::PseudoFROUND_D_IN32X:
|
|
return emitFROUND(MI, BB, Subtarget);
|
|
case RISCV::PROBED_STACKALLOC_DYN:
|
|
return emitDynamicProbedAlloc(MI, BB);
|
|
case TargetOpcode::STATEPOINT:
|
|
// STATEPOINT is a pseudo instruction which has no implicit defs/uses
|
|
// while jal call instruction (where statepoint will be lowered at the end)
|
|
// has implicit def. This def is early-clobber as it will be set at
|
|
// the moment of the call and earlier than any use is read.
|
|
// Add this implicit dead def here as a workaround.
|
|
MI.addOperand(*MI.getMF(),
|
|
MachineOperand::CreateReg(
|
|
RISCV::X1, /*isDef*/ true,
|
|
/*isImp*/ true, /*isKill*/ false, /*isDead*/ true,
|
|
/*isUndef*/ false, /*isEarlyClobber*/ true));
|
|
[[fallthrough]];
|
|
case TargetOpcode::STACKMAP:
|
|
case TargetOpcode::PATCHPOINT:
|
|
if (!Subtarget.is64Bit())
|
|
report_fatal_error("STACKMAP, PATCHPOINT and STATEPOINT are only "
|
|
"supported on 64-bit targets");
|
|
return emitPatchPoint(MI, BB);
|
|
}
|
|
}
|
|
|
|
void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
|
|
SDNode *Node) const {
|
|
// If instruction defines FRM operand, conservatively set it as non-dead to
|
|
// express data dependency with FRM users and prevent incorrect instruction
|
|
// reordering.
|
|
if (auto *FRMDef = MI.findRegisterDefOperand(RISCV::FRM, /*TRI=*/nullptr)) {
|
|
FRMDef->setIsDead(false);
|
|
return;
|
|
}
|
|
// Add FRM dependency to any instructions with dynamic rounding mode.
|
|
int Idx = RISCV::getNamedOperandIdx(MI.getOpcode(), RISCV::OpName::frm);
|
|
if (Idx < 0) {
|
|
// Vector pseudos have FRM index indicated by TSFlags.
|
|
Idx = RISCVII::getFRMOpNum(MI.getDesc());
|
|
if (Idx < 0)
|
|
return;
|
|
}
|
|
if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN)
|
|
return;
|
|
// If the instruction already reads FRM, don't add another read.
|
|
if (MI.readsRegister(RISCV::FRM, /*TRI=*/nullptr))
|
|
return;
|
|
MI.addOperand(
|
|
MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true));
|
|
}
|
|
|
|
void RISCVTargetLowering::analyzeInputArgs(
|
|
MachineFunction &MF, CCState &CCInfo,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
|
|
RISCVCCAssignFn Fn) const {
|
|
unsigned NumArgs = Ins.size();
|
|
FunctionType *FType = MF.getFunction().getFunctionType();
|
|
|
|
for (unsigned i = 0; i != NumArgs; ++i) {
|
|
MVT ArgVT = Ins[i].VT;
|
|
ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
|
|
|
|
Type *ArgTy = nullptr;
|
|
if (IsRet)
|
|
ArgTy = FType->getReturnType();
|
|
else if (Ins[i].isOrigArg())
|
|
ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
|
|
|
|
if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo,
|
|
/*IsFixed=*/true, IsRet, ArgTy)) {
|
|
LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
|
|
<< ArgVT << '\n');
|
|
llvm_unreachable(nullptr);
|
|
}
|
|
}
|
|
}
|
|
|
|
void RISCVTargetLowering::analyzeOutputArgs(
|
|
MachineFunction &MF, CCState &CCInfo,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
|
|
CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const {
|
|
unsigned NumArgs = Outs.size();
|
|
|
|
for (unsigned i = 0; i != NumArgs; i++) {
|
|
MVT ArgVT = Outs[i].VT;
|
|
ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
|
|
Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
|
|
|
|
if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo,
|
|
Outs[i].IsFixed, IsRet, OrigTy)) {
|
|
LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
|
|
<< ArgVT << "\n");
|
|
llvm_unreachable(nullptr);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
|
|
// values.
|
|
static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
|
|
const CCValAssign &VA, const SDLoc &DL,
|
|
const RISCVSubtarget &Subtarget) {
|
|
if (VA.needsCustom()) {
|
|
if (VA.getLocVT().isInteger() &&
|
|
(VA.getValVT() == MVT::f16 || VA.getValVT() == MVT::bf16))
|
|
return DAG.getNode(RISCVISD::FMV_H_X, DL, VA.getValVT(), Val);
|
|
if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
|
|
return DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
|
|
if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
|
|
return convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
|
|
llvm_unreachable("Unexpected Custom handling.");
|
|
}
|
|
|
|
switch (VA.getLocInfo()) {
|
|
default:
|
|
llvm_unreachable("Unexpected CCValAssign::LocInfo");
|
|
case CCValAssign::Full:
|
|
break;
|
|
case CCValAssign::BCvt:
|
|
Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
|
|
break;
|
|
}
|
|
return Val;
|
|
}
|
|
|
|
// The caller is responsible for loading the full value if the argument is
|
|
// passed with CCValAssign::Indirect.
|
|
static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
|
|
const CCValAssign &VA, const SDLoc &DL,
|
|
const ISD::InputArg &In,
|
|
const RISCVTargetLowering &TLI) {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineRegisterInfo &RegInfo = MF.getRegInfo();
|
|
EVT LocVT = VA.getLocVT();
|
|
SDValue Val;
|
|
const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
|
|
Register VReg = RegInfo.createVirtualRegister(RC);
|
|
RegInfo.addLiveIn(VA.getLocReg(), VReg);
|
|
Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
|
|
|
|
// If input is sign extended from 32 bits, note it for the SExtWRemoval pass.
|
|
if (In.isOrigArg()) {
|
|
Argument *OrigArg = MF.getFunction().getArg(In.getOrigArgIndex());
|
|
if (OrigArg->getType()->isIntegerTy()) {
|
|
unsigned BitWidth = OrigArg->getType()->getIntegerBitWidth();
|
|
// An input zero extended from i31 can also be considered sign extended.
|
|
if ((BitWidth <= 32 && In.Flags.isSExt()) ||
|
|
(BitWidth < 32 && In.Flags.isZExt())) {
|
|
RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
|
|
RVFI->addSExt32Register(VReg);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (VA.getLocInfo() == CCValAssign::Indirect)
|
|
return Val;
|
|
|
|
return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
|
|
}
|
|
|
|
static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
|
|
const CCValAssign &VA, const SDLoc &DL,
|
|
const RISCVSubtarget &Subtarget) {
|
|
EVT LocVT = VA.getLocVT();
|
|
|
|
if (VA.needsCustom()) {
|
|
if (LocVT.isInteger() &&
|
|
(VA.getValVT() == MVT::f16 || VA.getValVT() == MVT::bf16))
|
|
return DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, LocVT, Val);
|
|
if (LocVT == MVT::i64 && VA.getValVT() == MVT::f32)
|
|
return DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
|
|
if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
|
|
return convertToScalableVector(LocVT, Val, DAG, Subtarget);
|
|
llvm_unreachable("Unexpected Custom handling.");
|
|
}
|
|
|
|
switch (VA.getLocInfo()) {
|
|
default:
|
|
llvm_unreachable("Unexpected CCValAssign::LocInfo");
|
|
case CCValAssign::Full:
|
|
break;
|
|
case CCValAssign::BCvt:
|
|
Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
|
|
break;
|
|
}
|
|
return Val;
|
|
}
|
|
|
|
// The caller is responsible for loading the full value if the argument is
|
|
// passed with CCValAssign::Indirect.
|
|
static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
|
|
const CCValAssign &VA, const SDLoc &DL) {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
EVT LocVT = VA.getLocVT();
|
|
EVT ValVT = VA.getValVT();
|
|
EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
|
|
if (VA.getLocInfo() == CCValAssign::Indirect) {
|
|
// When the value is a scalable vector, we save the pointer which points to
|
|
// the scalable vector value in the stack. The ValVT will be the pointer
|
|
// type, instead of the scalable vector type.
|
|
ValVT = LocVT;
|
|
}
|
|
int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
|
|
/*IsImmutable=*/true);
|
|
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
|
|
SDValue Val;
|
|
|
|
ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
|
|
switch (VA.getLocInfo()) {
|
|
default:
|
|
llvm_unreachable("Unexpected CCValAssign::LocInfo");
|
|
case CCValAssign::Full:
|
|
case CCValAssign::Indirect:
|
|
case CCValAssign::BCvt:
|
|
break;
|
|
}
|
|
Val = DAG.getExtLoad(
|
|
ExtType, DL, LocVT, Chain, FIN,
|
|
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
|
|
return Val;
|
|
}
|
|
|
|
static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
|
|
const CCValAssign &VA,
|
|
const CCValAssign &HiVA,
|
|
const SDLoc &DL) {
|
|
assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
|
|
"Unexpected VA");
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
MachineRegisterInfo &RegInfo = MF.getRegInfo();
|
|
|
|
assert(VA.isRegLoc() && "Expected register VA assignment");
|
|
|
|
Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
|
|
RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
|
|
SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
|
|
SDValue Hi;
|
|
if (HiVA.isMemLoc()) {
|
|
// Second half of f64 is passed on the stack.
|
|
int FI = MFI.CreateFixedObject(4, HiVA.getLocMemOffset(),
|
|
/*IsImmutable=*/true);
|
|
SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
|
|
Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
|
|
MachinePointerInfo::getFixedStack(MF, FI));
|
|
} else {
|
|
// Second half of f64 is passed in another GPR.
|
|
Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
|
|
RegInfo.addLiveIn(HiVA.getLocReg(), HiVReg);
|
|
Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
|
|
}
|
|
return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
|
|
}
|
|
|
|
// Transform physical registers into virtual registers.
|
|
SDValue RISCVTargetLowering::LowerFormalArguments(
|
|
SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
|
|
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
|
|
switch (CallConv) {
|
|
default:
|
|
report_fatal_error("Unsupported calling convention");
|
|
case CallingConv::C:
|
|
case CallingConv::Fast:
|
|
case CallingConv::SPIR_KERNEL:
|
|
case CallingConv::GRAAL:
|
|
case CallingConv::RISCV_VectorCall:
|
|
#define CC_VLS_CASE(ABI_VLEN) case CallingConv::RISCV_VLSCall_##ABI_VLEN:
|
|
CC_VLS_CASE(32)
|
|
CC_VLS_CASE(64)
|
|
CC_VLS_CASE(128)
|
|
CC_VLS_CASE(256)
|
|
CC_VLS_CASE(512)
|
|
CC_VLS_CASE(1024)
|
|
CC_VLS_CASE(2048)
|
|
CC_VLS_CASE(4096)
|
|
CC_VLS_CASE(8192)
|
|
CC_VLS_CASE(16384)
|
|
CC_VLS_CASE(32768)
|
|
CC_VLS_CASE(65536)
|
|
#undef CC_VLS_CASE
|
|
break;
|
|
case CallingConv::GHC:
|
|
if (Subtarget.hasStdExtE())
|
|
report_fatal_error("GHC calling convention is not supported on RVE!");
|
|
if (!Subtarget.hasStdExtFOrZfinx() || !Subtarget.hasStdExtDOrZdinx())
|
|
report_fatal_error("GHC calling convention requires the (Zfinx/F) and "
|
|
"(Zdinx/D) instruction set extensions");
|
|
}
|
|
|
|
const Function &Func = MF.getFunction();
|
|
if (Func.hasFnAttribute("interrupt")) {
|
|
if (!Func.arg_empty())
|
|
report_fatal_error(
|
|
"Functions with the interrupt attribute cannot have arguments!");
|
|
|
|
StringRef Kind =
|
|
MF.getFunction().getFnAttribute("interrupt").getValueAsString();
|
|
|
|
constexpr StringLiteral SupportedInterruptKinds[] = {
|
|
"machine",
|
|
"supervisor",
|
|
"qci-nest",
|
|
"qci-nonest",
|
|
"SiFive-CLIC-preemptible",
|
|
"SiFive-CLIC-stack-swap",
|
|
"SiFive-CLIC-preemptible-stack-swap",
|
|
};
|
|
if (!llvm::is_contained(SupportedInterruptKinds, Kind))
|
|
report_fatal_error(
|
|
"Function interrupt attribute argument not supported!");
|
|
|
|
if (Kind.starts_with("qci-") && !Subtarget.hasVendorXqciint())
|
|
report_fatal_error("'qci-*' interrupt kinds require Xqciint extension");
|
|
|
|
if (Kind.starts_with("SiFive-CLIC-") && !Subtarget.hasVendorXSfmclic())
|
|
reportFatalUsageError(
|
|
"'SiFive-CLIC-*' interrupt kinds require XSfmclic extension");
|
|
|
|
const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
|
|
if (Kind.starts_with("SiFive-CLIC-preemptible") && TFI->hasFP(MF))
|
|
reportFatalUsageError("'SiFive-CLIC-preemptible' interrupt kinds cannot "
|
|
"have a frame pointer");
|
|
}
|
|
|
|
EVT PtrVT = getPointerTy(DAG.getDataLayout());
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
unsigned XLenInBytes = Subtarget.getXLen() / 8;
|
|
// Used with vargs to accumulate store chains.
|
|
std::vector<SDValue> OutChains;
|
|
|
|
// Assign locations to all of the incoming arguments.
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
|
|
|
|
if (CallConv == CallingConv::GHC)
|
|
CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
|
|
else
|
|
analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false,
|
|
CallConv == CallingConv::Fast ? CC_RISCV_FastCC
|
|
: CC_RISCV);
|
|
|
|
for (unsigned i = 0, e = ArgLocs.size(), InsIdx = 0; i != e; ++i, ++InsIdx) {
|
|
CCValAssign &VA = ArgLocs[i];
|
|
SDValue ArgValue;
|
|
// Passing f64 on RV32D with a soft float ABI must be handled as a special
|
|
// case.
|
|
if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
|
|
assert(VA.needsCustom());
|
|
ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, ArgLocs[++i], DL);
|
|
} else if (VA.isRegLoc())
|
|
ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, Ins[InsIdx], *this);
|
|
else
|
|
ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
|
|
|
|
if (VA.getLocInfo() == CCValAssign::Indirect) {
|
|
// If the original argument was split and passed by reference (e.g. i128
|
|
// on RV32), we need to load all parts of it here (using the same
|
|
// address). Vectors may be partly split to registers and partly to the
|
|
// stack, in which case the base address is partly offset and subsequent
|
|
// stores are relative to that.
|
|
InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
|
|
MachinePointerInfo()));
|
|
unsigned ArgIndex = Ins[InsIdx].OrigArgIndex;
|
|
unsigned ArgPartOffset = Ins[InsIdx].PartOffset;
|
|
assert(VA.getValVT().isVector() || ArgPartOffset == 0);
|
|
while (i + 1 != e && Ins[InsIdx + 1].OrigArgIndex == ArgIndex) {
|
|
CCValAssign &PartVA = ArgLocs[i + 1];
|
|
unsigned PartOffset = Ins[InsIdx + 1].PartOffset - ArgPartOffset;
|
|
SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
|
|
if (PartVA.getValVT().isScalableVector())
|
|
Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
|
|
SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset);
|
|
InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
|
|
MachinePointerInfo()));
|
|
++i;
|
|
++InsIdx;
|
|
}
|
|
continue;
|
|
}
|
|
InVals.push_back(ArgValue);
|
|
}
|
|
|
|
if (any_of(ArgLocs,
|
|
[](CCValAssign &VA) { return VA.getLocVT().isScalableVector(); }))
|
|
MF.getInfo<RISCVMachineFunctionInfo>()->setIsVectorCall();
|
|
|
|
if (IsVarArg) {
|
|
ArrayRef<MCPhysReg> ArgRegs = RISCV::getArgGPRs(Subtarget.getTargetABI());
|
|
unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
|
|
const TargetRegisterClass *RC = &RISCV::GPRRegClass;
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
MachineRegisterInfo &RegInfo = MF.getRegInfo();
|
|
RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
|
|
|
|
// Size of the vararg save area. For now, the varargs save area is either
|
|
// zero or large enough to hold a0-a7.
|
|
int VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
|
|
int FI;
|
|
|
|
// If all registers are allocated, then all varargs must be passed on the
|
|
// stack and we don't need to save any argregs.
|
|
if (VarArgsSaveSize == 0) {
|
|
int VaArgOffset = CCInfo.getStackSize();
|
|
FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
|
|
} else {
|
|
int VaArgOffset = -VarArgsSaveSize;
|
|
FI = MFI.CreateFixedObject(VarArgsSaveSize, VaArgOffset, true);
|
|
|
|
// If saving an odd number of registers then create an extra stack slot to
|
|
// ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
|
|
// offsets to even-numbered registered remain 2*XLEN-aligned.
|
|
if (Idx % 2) {
|
|
MFI.CreateFixedObject(
|
|
XLenInBytes, VaArgOffset - static_cast<int>(XLenInBytes), true);
|
|
VarArgsSaveSize += XLenInBytes;
|
|
}
|
|
|
|
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
|
|
|
|
// Copy the integer registers that may have been used for passing varargs
|
|
// to the vararg save area.
|
|
for (unsigned I = Idx; I < ArgRegs.size(); ++I) {
|
|
const Register Reg = RegInfo.createVirtualRegister(RC);
|
|
RegInfo.addLiveIn(ArgRegs[I], Reg);
|
|
SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
|
|
SDValue Store = DAG.getStore(
|
|
Chain, DL, ArgValue, FIN,
|
|
MachinePointerInfo::getFixedStack(MF, FI, (I - Idx) * XLenInBytes));
|
|
OutChains.push_back(Store);
|
|
FIN =
|
|
DAG.getMemBasePlusOffset(FIN, TypeSize::getFixed(XLenInBytes), DL);
|
|
}
|
|
}
|
|
|
|
// Record the frame index of the first variable argument
|
|
// which is a value necessary to VASTART.
|
|
RVFI->setVarArgsFrameIndex(FI);
|
|
RVFI->setVarArgsSaveSize(VarArgsSaveSize);
|
|
}
|
|
|
|
// All stores are grouped in one node to allow the matching between
|
|
// the size of Ins and InVals. This only happens for vararg functions.
|
|
if (!OutChains.empty()) {
|
|
OutChains.push_back(Chain);
|
|
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
|
|
}
|
|
|
|
return Chain;
|
|
}
|
|
|
|
/// isEligibleForTailCallOptimization - Check whether the call is eligible
|
|
/// for tail call optimization.
|
|
/// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
|
|
bool RISCVTargetLowering::isEligibleForTailCallOptimization(
|
|
CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
|
|
const SmallVector<CCValAssign, 16> &ArgLocs) const {
|
|
|
|
auto CalleeCC = CLI.CallConv;
|
|
auto &Outs = CLI.Outs;
|
|
auto &Caller = MF.getFunction();
|
|
auto CallerCC = Caller.getCallingConv();
|
|
|
|
// Exception-handling functions need a special set of instructions to
|
|
// indicate a return to the hardware. Tail-calling another function would
|
|
// probably break this.
|
|
// TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
|
|
// should be expanded as new function attributes are introduced.
|
|
if (Caller.hasFnAttribute("interrupt"))
|
|
return false;
|
|
|
|
// Do not tail call opt if the stack is used to pass parameters.
|
|
if (CCInfo.getStackSize() != 0)
|
|
return false;
|
|
|
|
// Do not tail call opt if any parameters need to be passed indirectly.
|
|
// Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
|
|
// passed indirectly. So the address of the value will be passed in a
|
|
// register, or if not available, then the address is put on the stack. In
|
|
// order to pass indirectly, space on the stack often needs to be allocated
|
|
// in order to store the value. In this case the CCInfo.getNextStackOffset()
|
|
// != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
|
|
// are passed CCValAssign::Indirect.
|
|
for (auto &VA : ArgLocs)
|
|
if (VA.getLocInfo() == CCValAssign::Indirect)
|
|
return false;
|
|
|
|
// Do not tail call opt if either caller or callee uses struct return
|
|
// semantics.
|
|
auto IsCallerStructRet = Caller.hasStructRetAttr();
|
|
auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
|
|
if (IsCallerStructRet || IsCalleeStructRet)
|
|
return false;
|
|
|
|
// The callee has to preserve all registers the caller needs to preserve.
|
|
const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
|
|
const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
|
|
if (CalleeCC != CallerCC) {
|
|
const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
|
|
if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
|
|
return false;
|
|
}
|
|
|
|
// Byval parameters hand the function a pointer directly into the stack area
|
|
// we want to reuse during a tail call. Working around this *is* possible
|
|
// but less efficient and uglier in LowerCall.
|
|
for (auto &Arg : Outs)
|
|
if (Arg.Flags.isByVal())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
|
|
return DAG.getDataLayout().getPrefTypeAlign(
|
|
VT.getTypeForEVT(*DAG.getContext()));
|
|
}
|
|
|
|
// Lower a call to a callseq_start + CALL + callseq_end chain, and add input
|
|
// and output parameter nodes.
|
|
SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
|
|
SmallVectorImpl<SDValue> &InVals) const {
|
|
SelectionDAG &DAG = CLI.DAG;
|
|
SDLoc &DL = CLI.DL;
|
|
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
|
|
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
|
|
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
|
|
SDValue Chain = CLI.Chain;
|
|
SDValue Callee = CLI.Callee;
|
|
bool &IsTailCall = CLI.IsTailCall;
|
|
CallingConv::ID CallConv = CLI.CallConv;
|
|
bool IsVarArg = CLI.IsVarArg;
|
|
EVT PtrVT = getPointerTy(DAG.getDataLayout());
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
|
|
// Analyze the operands of the call, assigning locations to each operand.
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
|
|
|
|
if (CallConv == CallingConv::GHC) {
|
|
if (Subtarget.hasStdExtE())
|
|
report_fatal_error("GHC calling convention is not supported on RVE!");
|
|
ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
|
|
} else
|
|
analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI,
|
|
CallConv == CallingConv::Fast ? CC_RISCV_FastCC
|
|
: CC_RISCV);
|
|
|
|
// Check if it's really possible to do a tail call.
|
|
if (IsTailCall)
|
|
IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
|
|
|
|
if (IsTailCall)
|
|
++NumTailCalls;
|
|
else if (CLI.CB && CLI.CB->isMustTailCall())
|
|
report_fatal_error("failed to perform tail call elimination on a call "
|
|
"site marked musttail");
|
|
|
|
// Get a count of how many bytes are to be pushed on the stack.
|
|
unsigned NumBytes = ArgCCInfo.getStackSize();
|
|
|
|
// Create local copies for byval args
|
|
SmallVector<SDValue, 8> ByValArgs;
|
|
for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
|
|
ISD::ArgFlagsTy Flags = Outs[i].Flags;
|
|
if (!Flags.isByVal())
|
|
continue;
|
|
|
|
SDValue Arg = OutVals[i];
|
|
unsigned Size = Flags.getByValSize();
|
|
Align Alignment = Flags.getNonZeroByValAlign();
|
|
|
|
int FI =
|
|
MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
|
|
SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
|
|
SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
|
|
|
|
Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
|
|
/*IsVolatile=*/false,
|
|
/*AlwaysInline=*/false, /*CI*/ nullptr, IsTailCall,
|
|
MachinePointerInfo(), MachinePointerInfo());
|
|
ByValArgs.push_back(FIPtr);
|
|
}
|
|
|
|
if (!IsTailCall)
|
|
Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
|
|
|
|
// Copy argument values to their designated locations.
|
|
SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
|
|
SmallVector<SDValue, 8> MemOpChains;
|
|
SDValue StackPtr;
|
|
for (unsigned i = 0, j = 0, e = ArgLocs.size(), OutIdx = 0; i != e;
|
|
++i, ++OutIdx) {
|
|
CCValAssign &VA = ArgLocs[i];
|
|
SDValue ArgValue = OutVals[OutIdx];
|
|
ISD::ArgFlagsTy Flags = Outs[OutIdx].Flags;
|
|
|
|
// Handle passing f64 on RV32D with a soft float ABI as a special case.
|
|
if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
|
|
assert(VA.isRegLoc() && "Expected register VA assignment");
|
|
assert(VA.needsCustom());
|
|
SDValue SplitF64 = DAG.getNode(
|
|
RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
|
|
SDValue Lo = SplitF64.getValue(0);
|
|
SDValue Hi = SplitF64.getValue(1);
|
|
|
|
Register RegLo = VA.getLocReg();
|
|
RegsToPass.push_back(std::make_pair(RegLo, Lo));
|
|
|
|
// Get the CCValAssign for the Hi part.
|
|
CCValAssign &HiVA = ArgLocs[++i];
|
|
|
|
if (HiVA.isMemLoc()) {
|
|
// Second half of f64 is passed on the stack.
|
|
if (!StackPtr.getNode())
|
|
StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
|
|
SDValue Address =
|
|
DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
|
|
DAG.getIntPtrConstant(HiVA.getLocMemOffset(), DL));
|
|
// Emit the store.
|
|
MemOpChains.push_back(DAG.getStore(
|
|
Chain, DL, Hi, Address,
|
|
MachinePointerInfo::getStack(MF, HiVA.getLocMemOffset())));
|
|
} else {
|
|
// Second half of f64 is passed in another GPR.
|
|
Register RegHigh = HiVA.getLocReg();
|
|
RegsToPass.push_back(std::make_pair(RegHigh, Hi));
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Promote the value if needed.
|
|
// For now, only handle fully promoted and indirect arguments.
|
|
if (VA.getLocInfo() == CCValAssign::Indirect) {
|
|
// Store the argument in a stack slot and pass its address.
|
|
Align StackAlign =
|
|
std::max(getPrefTypeAlign(Outs[OutIdx].ArgVT, DAG),
|
|
getPrefTypeAlign(ArgValue.getValueType(), DAG));
|
|
TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
|
|
// If the original argument was split (e.g. i128), we need
|
|
// to store the required parts of it here (and pass just one address).
|
|
// Vectors may be partly split to registers and partly to the stack, in
|
|
// which case the base address is partly offset and subsequent stores are
|
|
// relative to that.
|
|
unsigned ArgIndex = Outs[OutIdx].OrigArgIndex;
|
|
unsigned ArgPartOffset = Outs[OutIdx].PartOffset;
|
|
assert(VA.getValVT().isVector() || ArgPartOffset == 0);
|
|
// Calculate the total size to store. We don't have access to what we're
|
|
// actually storing other than performing the loop and collecting the
|
|
// info.
|
|
SmallVector<std::pair<SDValue, SDValue>> Parts;
|
|
while (i + 1 != e && Outs[OutIdx + 1].OrigArgIndex == ArgIndex) {
|
|
SDValue PartValue = OutVals[OutIdx + 1];
|
|
unsigned PartOffset = Outs[OutIdx + 1].PartOffset - ArgPartOffset;
|
|
SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
|
|
EVT PartVT = PartValue.getValueType();
|
|
if (PartVT.isScalableVector())
|
|
Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
|
|
StoredSize += PartVT.getStoreSize();
|
|
StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
|
|
Parts.push_back(std::make_pair(PartValue, Offset));
|
|
++i;
|
|
++OutIdx;
|
|
}
|
|
SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
|
|
int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
|
|
MemOpChains.push_back(
|
|
DAG.getStore(Chain, DL, ArgValue, SpillSlot,
|
|
MachinePointerInfo::getFixedStack(MF, FI)));
|
|
for (const auto &Part : Parts) {
|
|
SDValue PartValue = Part.first;
|
|
SDValue PartOffset = Part.second;
|
|
SDValue Address =
|
|
DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset);
|
|
MemOpChains.push_back(
|
|
DAG.getStore(Chain, DL, PartValue, Address,
|
|
MachinePointerInfo::getFixedStack(MF, FI)));
|
|
}
|
|
ArgValue = SpillSlot;
|
|
} else {
|
|
ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
|
|
}
|
|
|
|
// Use local copy if it is a byval arg.
|
|
if (Flags.isByVal())
|
|
ArgValue = ByValArgs[j++];
|
|
|
|
if (VA.isRegLoc()) {
|
|
// Queue up the argument copies and emit them at the end.
|
|
RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
|
|
} else {
|
|
assert(VA.isMemLoc() && "Argument not register or memory");
|
|
assert(!IsTailCall && "Tail call not allowed if stack is used "
|
|
"for passing parameters");
|
|
|
|
// Work out the address of the stack slot.
|
|
if (!StackPtr.getNode())
|
|
StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
|
|
SDValue Address =
|
|
DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
|
|
DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
|
|
|
|
// Emit the store.
|
|
MemOpChains.push_back(
|
|
DAG.getStore(Chain, DL, ArgValue, Address,
|
|
MachinePointerInfo::getStack(MF, VA.getLocMemOffset())));
|
|
}
|
|
}
|
|
|
|
// Join the stores, which are independent of one another.
|
|
if (!MemOpChains.empty())
|
|
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
|
|
|
|
SDValue Glue;
|
|
|
|
// Build a sequence of copy-to-reg nodes, chained and glued together.
|
|
for (auto &Reg : RegsToPass) {
|
|
Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
|
|
Glue = Chain.getValue(1);
|
|
}
|
|
|
|
// Validate that none of the argument registers have been marked as
|
|
// reserved, if so report an error. Do the same for the return address if this
|
|
// is not a tailcall.
|
|
validateCCReservedRegs(RegsToPass, MF);
|
|
if (!IsTailCall && MF.getSubtarget().isRegisterReservedByUser(RISCV::X1))
|
|
MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
|
|
MF.getFunction(),
|
|
"Return address register required, but has been reserved."});
|
|
|
|
// If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
|
|
// TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
|
|
// split it and then direct call can be matched by PseudoCALL.
|
|
bool CalleeIsLargeExternalSymbol = false;
|
|
if (getTargetMachine().getCodeModel() == CodeModel::Large) {
|
|
if (auto *S = dyn_cast<GlobalAddressSDNode>(Callee))
|
|
Callee = getLargeGlobalAddress(S, DL, PtrVT, DAG);
|
|
else if (auto *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
|
|
Callee = getLargeExternalSymbol(S, DL, PtrVT, DAG);
|
|
CalleeIsLargeExternalSymbol = true;
|
|
}
|
|
} else if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
|
|
const GlobalValue *GV = S->getGlobal();
|
|
Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, RISCVII::MO_CALL);
|
|
} else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
|
|
Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, RISCVII::MO_CALL);
|
|
}
|
|
|
|
// The first call operand is the chain and the second is the target address.
|
|
SmallVector<SDValue, 8> Ops;
|
|
Ops.push_back(Chain);
|
|
Ops.push_back(Callee);
|
|
|
|
// Add argument registers to the end of the list so that they are
|
|
// known live into the call.
|
|
for (auto &Reg : RegsToPass)
|
|
Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
|
|
|
|
// Add a register mask operand representing the call-preserved registers.
|
|
const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
|
|
const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
|
|
assert(Mask && "Missing call preserved mask for calling convention");
|
|
Ops.push_back(DAG.getRegisterMask(Mask));
|
|
|
|
// Glue the call to the argument copies, if any.
|
|
if (Glue.getNode())
|
|
Ops.push_back(Glue);
|
|
|
|
assert((!CLI.CFIType || CLI.CB->isIndirectCall()) &&
|
|
"Unexpected CFI type for a direct call");
|
|
|
|
// Emit the call.
|
|
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
|
|
// Use software guarded branch for large code model non-indirect calls
|
|
// Tail call to external symbol will have a null CLI.CB and we need another
|
|
// way to determine the callsite type
|
|
bool NeedSWGuarded = false;
|
|
if (getTargetMachine().getCodeModel() == CodeModel::Large &&
|
|
Subtarget.hasStdExtZicfilp() &&
|
|
((CLI.CB && !CLI.CB->isIndirectCall()) || CalleeIsLargeExternalSymbol))
|
|
NeedSWGuarded = true;
|
|
|
|
if (IsTailCall) {
|
|
MF.getFrameInfo().setHasTailCall();
|
|
unsigned CallOpc =
|
|
NeedSWGuarded ? RISCVISD::SW_GUARDED_TAIL : RISCVISD::TAIL;
|
|
SDValue Ret = DAG.getNode(CallOpc, DL, NodeTys, Ops);
|
|
if (CLI.CFIType)
|
|
Ret.getNode()->setCFIType(CLI.CFIType->getZExtValue());
|
|
DAG.addNoMergeSiteInfo(Ret.getNode(), CLI.NoMerge);
|
|
return Ret;
|
|
}
|
|
|
|
unsigned CallOpc = NeedSWGuarded ? RISCVISD::SW_GUARDED_CALL : RISCVISD::CALL;
|
|
Chain = DAG.getNode(CallOpc, DL, NodeTys, Ops);
|
|
if (CLI.CFIType)
|
|
Chain.getNode()->setCFIType(CLI.CFIType->getZExtValue());
|
|
DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
|
|
Glue = Chain.getValue(1);
|
|
|
|
// Mark the end of the call, which is glued to the call itself.
|
|
Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, Glue, DL);
|
|
Glue = Chain.getValue(1);
|
|
|
|
// Assign locations to each value returned by this call.
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
|
|
analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV);
|
|
|
|
// Copy all of the result registers out of their specified physreg.
|
|
for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
|
|
auto &VA = RVLocs[i];
|
|
// Copy the value out
|
|
SDValue RetValue =
|
|
DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
|
|
// Glue the RetValue to the end of the call sequence
|
|
Chain = RetValue.getValue(1);
|
|
Glue = RetValue.getValue(2);
|
|
|
|
if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
|
|
assert(VA.needsCustom());
|
|
SDValue RetValue2 = DAG.getCopyFromReg(Chain, DL, RVLocs[++i].getLocReg(),
|
|
MVT::i32, Glue);
|
|
Chain = RetValue2.getValue(1);
|
|
Glue = RetValue2.getValue(2);
|
|
RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
|
|
RetValue2);
|
|
} else
|
|
RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
|
|
|
|
InVals.push_back(RetValue);
|
|
}
|
|
|
|
return Chain;
|
|
}
|
|
|
|
bool RISCVTargetLowering::CanLowerReturn(
|
|
CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context,
|
|
const Type *RetTy) const {
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
|
|
|
|
for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
|
|
MVT VT = Outs[i].VT;
|
|
ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
|
|
if (CC_RISCV(i, VT, VT, CCValAssign::Full, ArgFlags, CCInfo,
|
|
/*IsFixed=*/true, /*IsRet=*/true, nullptr))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
SDValue
|
|
RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
|
|
bool IsVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
const SDLoc &DL, SelectionDAG &DAG) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
|
|
|
|
// Stores the assignment of the return value to a location.
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
|
|
// Info about the registers and stack slot.
|
|
CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
|
|
*DAG.getContext());
|
|
|
|
analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
|
|
nullptr, CC_RISCV);
|
|
|
|
if (CallConv == CallingConv::GHC && !RVLocs.empty())
|
|
report_fatal_error("GHC functions return void only");
|
|
|
|
SDValue Glue;
|
|
SmallVector<SDValue, 4> RetOps(1, Chain);
|
|
|
|
// Copy the result values into the output registers.
|
|
for (unsigned i = 0, e = RVLocs.size(), OutIdx = 0; i < e; ++i, ++OutIdx) {
|
|
SDValue Val = OutVals[OutIdx];
|
|
CCValAssign &VA = RVLocs[i];
|
|
assert(VA.isRegLoc() && "Can only return in registers!");
|
|
|
|
if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
|
|
// Handle returning f64 on RV32D with a soft float ABI.
|
|
assert(VA.isRegLoc() && "Expected return via registers");
|
|
assert(VA.needsCustom());
|
|
SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
|
|
DAG.getVTList(MVT::i32, MVT::i32), Val);
|
|
SDValue Lo = SplitF64.getValue(0);
|
|
SDValue Hi = SplitF64.getValue(1);
|
|
Register RegLo = VA.getLocReg();
|
|
Register RegHi = RVLocs[++i].getLocReg();
|
|
|
|
if (STI.isRegisterReservedByUser(RegLo) ||
|
|
STI.isRegisterReservedByUser(RegHi))
|
|
MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
|
|
MF.getFunction(),
|
|
"Return value register required, but has been reserved."});
|
|
|
|
Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
|
|
Glue = Chain.getValue(1);
|
|
RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
|
|
Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
|
|
Glue = Chain.getValue(1);
|
|
RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
|
|
} else {
|
|
// Handle a 'normal' return.
|
|
Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
|
|
Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
|
|
|
|
if (STI.isRegisterReservedByUser(VA.getLocReg()))
|
|
MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
|
|
MF.getFunction(),
|
|
"Return value register required, but has been reserved."});
|
|
|
|
// Guarantee that all emitted copies are stuck together.
|
|
Glue = Chain.getValue(1);
|
|
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
|
|
}
|
|
}
|
|
|
|
RetOps[0] = Chain; // Update chain.
|
|
|
|
// Add the glue node if we have it.
|
|
if (Glue.getNode()) {
|
|
RetOps.push_back(Glue);
|
|
}
|
|
|
|
if (any_of(RVLocs,
|
|
[](CCValAssign &VA) { return VA.getLocVT().isScalableVector(); }))
|
|
MF.getInfo<RISCVMachineFunctionInfo>()->setIsVectorCall();
|
|
|
|
unsigned RetOpc = RISCVISD::RET_GLUE;
|
|
// Interrupt service routines use different return instructions.
|
|
const Function &Func = DAG.getMachineFunction().getFunction();
|
|
if (Func.hasFnAttribute("interrupt")) {
|
|
if (!Func.getReturnType()->isVoidTy())
|
|
report_fatal_error(
|
|
"Functions with the interrupt attribute must have void return type!");
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
StringRef Kind =
|
|
MF.getFunction().getFnAttribute("interrupt").getValueAsString();
|
|
|
|
if (Kind == "supervisor")
|
|
RetOpc = RISCVISD::SRET_GLUE;
|
|
else if (Kind == "qci-nest" || Kind == "qci-nonest") {
|
|
assert(STI.hasFeature(RISCV::FeatureVendorXqciint) &&
|
|
"Need Xqciint for qci-(no)nest");
|
|
RetOpc = RISCVISD::QC_C_MILEAVERET_GLUE;
|
|
} else
|
|
RetOpc = RISCVISD::MRET_GLUE;
|
|
}
|
|
|
|
return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
|
|
}
|
|
|
|
void RISCVTargetLowering::validateCCReservedRegs(
|
|
const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
|
|
MachineFunction &MF) const {
|
|
const Function &F = MF.getFunction();
|
|
const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
|
|
|
|
if (llvm::any_of(Regs, [&STI](auto Reg) {
|
|
return STI.isRegisterReservedByUser(Reg.first);
|
|
}))
|
|
F.getContext().diagnose(DiagnosticInfoUnsupported{
|
|
F, "Argument register required, but has been reserved."});
|
|
}
|
|
|
|
// Check if the result of the node is only used as a return value, as
|
|
// otherwise we can't perform a tail-call.
|
|
bool RISCVTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
|
|
if (N->getNumValues() != 1)
|
|
return false;
|
|
if (!N->hasNUsesOfValue(1, 0))
|
|
return false;
|
|
|
|
SDNode *Copy = *N->user_begin();
|
|
|
|
if (Copy->getOpcode() == ISD::BITCAST) {
|
|
return isUsedByReturnOnly(Copy, Chain);
|
|
}
|
|
|
|
// TODO: Handle additional opcodes in order to support tail-calling libcalls
|
|
// with soft float ABIs.
|
|
if (Copy->getOpcode() != ISD::CopyToReg) {
|
|
return false;
|
|
}
|
|
|
|
// If the ISD::CopyToReg has a glue operand, we conservatively assume it
|
|
// isn't safe to perform a tail call.
|
|
if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() == MVT::Glue)
|
|
return false;
|
|
|
|
// The copy must be used by a RISCVISD::RET_GLUE, and nothing else.
|
|
bool HasRet = false;
|
|
for (SDNode *Node : Copy->users()) {
|
|
if (Node->getOpcode() != RISCVISD::RET_GLUE)
|
|
return false;
|
|
HasRet = true;
|
|
}
|
|
if (!HasRet)
|
|
return false;
|
|
|
|
Chain = Copy->getOperand(0);
|
|
return true;
|
|
}
|
|
|
|
bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
|
|
return CI->isTailCall();
|
|
}
|
|
|
|
/// getConstraintType - Given a constraint letter, return the type of
|
|
/// constraint it is for this target.
|
|
RISCVTargetLowering::ConstraintType
|
|
RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
|
|
if (Constraint.size() == 1) {
|
|
switch (Constraint[0]) {
|
|
default:
|
|
break;
|
|
case 'f':
|
|
case 'R':
|
|
return C_RegisterClass;
|
|
case 'I':
|
|
case 'J':
|
|
case 'K':
|
|
return C_Immediate;
|
|
case 'A':
|
|
return C_Memory;
|
|
case 's':
|
|
case 'S': // A symbolic address
|
|
return C_Other;
|
|
}
|
|
} else {
|
|
if (Constraint == "vr" || Constraint == "vd" || Constraint == "vm")
|
|
return C_RegisterClass;
|
|
if (Constraint == "cr" || Constraint == "cR" || Constraint == "cf")
|
|
return C_RegisterClass;
|
|
}
|
|
return TargetLowering::getConstraintType(Constraint);
|
|
}
|
|
|
|
std::pair<unsigned, const TargetRegisterClass *>
|
|
RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
|
|
StringRef Constraint,
|
|
MVT VT) const {
|
|
// First, see if this is a constraint that directly corresponds to a RISC-V
|
|
// register class.
|
|
if (Constraint.size() == 1) {
|
|
switch (Constraint[0]) {
|
|
case 'r':
|
|
// TODO: Support fixed vectors up to XLen for P extension?
|
|
if (VT.isVector())
|
|
break;
|
|
if (VT == MVT::f16 && Subtarget.hasStdExtZhinxmin())
|
|
return std::make_pair(0U, &RISCV::GPRF16NoX0RegClass);
|
|
if (VT == MVT::f32 && Subtarget.hasStdExtZfinx())
|
|
return std::make_pair(0U, &RISCV::GPRF32NoX0RegClass);
|
|
if (VT == MVT::f64 && Subtarget.hasStdExtZdinx() && !Subtarget.is64Bit())
|
|
return std::make_pair(0U, &RISCV::GPRPairNoX0RegClass);
|
|
return std::make_pair(0U, &RISCV::GPRNoX0RegClass);
|
|
case 'f':
|
|
if (VT == MVT::f16) {
|
|
if (Subtarget.hasStdExtZfhmin())
|
|
return std::make_pair(0U, &RISCV::FPR16RegClass);
|
|
if (Subtarget.hasStdExtZhinxmin())
|
|
return std::make_pair(0U, &RISCV::GPRF16NoX0RegClass);
|
|
} else if (VT == MVT::f32) {
|
|
if (Subtarget.hasStdExtF())
|
|
return std::make_pair(0U, &RISCV::FPR32RegClass);
|
|
if (Subtarget.hasStdExtZfinx())
|
|
return std::make_pair(0U, &RISCV::GPRF32NoX0RegClass);
|
|
} else if (VT == MVT::f64) {
|
|
if (Subtarget.hasStdExtD())
|
|
return std::make_pair(0U, &RISCV::FPR64RegClass);
|
|
if (Subtarget.hasStdExtZdinx() && !Subtarget.is64Bit())
|
|
return std::make_pair(0U, &RISCV::GPRPairNoX0RegClass);
|
|
if (Subtarget.hasStdExtZdinx() && Subtarget.is64Bit())
|
|
return std::make_pair(0U, &RISCV::GPRNoX0RegClass);
|
|
}
|
|
break;
|
|
case 'R':
|
|
if (((VT == MVT::i64 || VT == MVT::f64) && !Subtarget.is64Bit()) ||
|
|
(VT == MVT::i128 && Subtarget.is64Bit()))
|
|
return std::make_pair(0U, &RISCV::GPRPairNoX0RegClass);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
} else if (Constraint == "vr") {
|
|
for (const auto *RC :
|
|
{&RISCV::VRRegClass, &RISCV::VRM2RegClass, &RISCV::VRM4RegClass,
|
|
&RISCV::VRM8RegClass, &RISCV::VRN2M1RegClass, &RISCV::VRN3M1RegClass,
|
|
&RISCV::VRN4M1RegClass, &RISCV::VRN5M1RegClass,
|
|
&RISCV::VRN6M1RegClass, &RISCV::VRN7M1RegClass,
|
|
&RISCV::VRN8M1RegClass, &RISCV::VRN2M2RegClass,
|
|
&RISCV::VRN3M2RegClass, &RISCV::VRN4M2RegClass,
|
|
&RISCV::VRN2M4RegClass}) {
|
|
if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
|
|
return std::make_pair(0U, RC);
|
|
}
|
|
} else if (Constraint == "vd") {
|
|
for (const auto *RC :
|
|
{&RISCV::VRNoV0RegClass, &RISCV::VRM2NoV0RegClass,
|
|
&RISCV::VRM4NoV0RegClass, &RISCV::VRM8NoV0RegClass,
|
|
&RISCV::VRN2M1NoV0RegClass, &RISCV::VRN3M1NoV0RegClass,
|
|
&RISCV::VRN4M1NoV0RegClass, &RISCV::VRN5M1NoV0RegClass,
|
|
&RISCV::VRN6M1NoV0RegClass, &RISCV::VRN7M1NoV0RegClass,
|
|
&RISCV::VRN8M1NoV0RegClass, &RISCV::VRN2M2NoV0RegClass,
|
|
&RISCV::VRN3M2NoV0RegClass, &RISCV::VRN4M2NoV0RegClass,
|
|
&RISCV::VRN2M4NoV0RegClass}) {
|
|
if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
|
|
return std::make_pair(0U, RC);
|
|
}
|
|
} else if (Constraint == "vm") {
|
|
if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy))
|
|
return std::make_pair(0U, &RISCV::VMV0RegClass);
|
|
} else if (Constraint == "cr") {
|
|
if (VT == MVT::f16 && Subtarget.hasStdExtZhinxmin())
|
|
return std::make_pair(0U, &RISCV::GPRF16CRegClass);
|
|
if (VT == MVT::f32 && Subtarget.hasStdExtZfinx())
|
|
return std::make_pair(0U, &RISCV::GPRF32CRegClass);
|
|
if (VT == MVT::f64 && Subtarget.hasStdExtZdinx() && !Subtarget.is64Bit())
|
|
return std::make_pair(0U, &RISCV::GPRPairCRegClass);
|
|
if (!VT.isVector())
|
|
return std::make_pair(0U, &RISCV::GPRCRegClass);
|
|
} else if (Constraint == "cR") {
|
|
if (((VT == MVT::i64 || VT == MVT::f64) && !Subtarget.is64Bit()) ||
|
|
(VT == MVT::i128 && Subtarget.is64Bit()))
|
|
return std::make_pair(0U, &RISCV::GPRPairCRegClass);
|
|
} else if (Constraint == "cf") {
|
|
if (VT == MVT::f16) {
|
|
if (Subtarget.hasStdExtZfhmin())
|
|
return std::make_pair(0U, &RISCV::FPR16CRegClass);
|
|
if (Subtarget.hasStdExtZhinxmin())
|
|
return std::make_pair(0U, &RISCV::GPRF16CRegClass);
|
|
} else if (VT == MVT::f32) {
|
|
if (Subtarget.hasStdExtF())
|
|
return std::make_pair(0U, &RISCV::FPR32CRegClass);
|
|
if (Subtarget.hasStdExtZfinx())
|
|
return std::make_pair(0U, &RISCV::GPRF32CRegClass);
|
|
} else if (VT == MVT::f64) {
|
|
if (Subtarget.hasStdExtD())
|
|
return std::make_pair(0U, &RISCV::FPR64CRegClass);
|
|
if (Subtarget.hasStdExtZdinx() && !Subtarget.is64Bit())
|
|
return std::make_pair(0U, &RISCV::GPRPairCRegClass);
|
|
if (Subtarget.hasStdExtZdinx() && Subtarget.is64Bit())
|
|
return std::make_pair(0U, &RISCV::GPRCRegClass);
|
|
}
|
|
}
|
|
|
|
// Clang will correctly decode the usage of register name aliases into their
|
|
// official names. However, other frontends like `rustc` do not. This allows
|
|
// users of these frontends to use the ABI names for registers in LLVM-style
|
|
// register constraints.
|
|
unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
|
|
.Case("{zero}", RISCV::X0)
|
|
.Case("{ra}", RISCV::X1)
|
|
.Case("{sp}", RISCV::X2)
|
|
.Case("{gp}", RISCV::X3)
|
|
.Case("{tp}", RISCV::X4)
|
|
.Case("{t0}", RISCV::X5)
|
|
.Case("{t1}", RISCV::X6)
|
|
.Case("{t2}", RISCV::X7)
|
|
.Cases("{s0}", "{fp}", RISCV::X8)
|
|
.Case("{s1}", RISCV::X9)
|
|
.Case("{a0}", RISCV::X10)
|
|
.Case("{a1}", RISCV::X11)
|
|
.Case("{a2}", RISCV::X12)
|
|
.Case("{a3}", RISCV::X13)
|
|
.Case("{a4}", RISCV::X14)
|
|
.Case("{a5}", RISCV::X15)
|
|
.Case("{a6}", RISCV::X16)
|
|
.Case("{a7}", RISCV::X17)
|
|
.Case("{s2}", RISCV::X18)
|
|
.Case("{s3}", RISCV::X19)
|
|
.Case("{s4}", RISCV::X20)
|
|
.Case("{s5}", RISCV::X21)
|
|
.Case("{s6}", RISCV::X22)
|
|
.Case("{s7}", RISCV::X23)
|
|
.Case("{s8}", RISCV::X24)
|
|
.Case("{s9}", RISCV::X25)
|
|
.Case("{s10}", RISCV::X26)
|
|
.Case("{s11}", RISCV::X27)
|
|
.Case("{t3}", RISCV::X28)
|
|
.Case("{t4}", RISCV::X29)
|
|
.Case("{t5}", RISCV::X30)
|
|
.Case("{t6}", RISCV::X31)
|
|
.Default(RISCV::NoRegister);
|
|
if (XRegFromAlias != RISCV::NoRegister)
|
|
return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
|
|
|
|
// Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
|
|
// TableGen record rather than the AsmName to choose registers for InlineAsm
|
|
// constraints, plus we want to match those names to the widest floating point
|
|
// register type available, manually select floating point registers here.
|
|
//
|
|
// The second case is the ABI name of the register, so that frontends can also
|
|
// use the ABI names in register constraint lists.
|
|
if (Subtarget.hasStdExtF()) {
|
|
unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
|
|
.Cases("{f0}", "{ft0}", RISCV::F0_F)
|
|
.Cases("{f1}", "{ft1}", RISCV::F1_F)
|
|
.Cases("{f2}", "{ft2}", RISCV::F2_F)
|
|
.Cases("{f3}", "{ft3}", RISCV::F3_F)
|
|
.Cases("{f4}", "{ft4}", RISCV::F4_F)
|
|
.Cases("{f5}", "{ft5}", RISCV::F5_F)
|
|
.Cases("{f6}", "{ft6}", RISCV::F6_F)
|
|
.Cases("{f7}", "{ft7}", RISCV::F7_F)
|
|
.Cases("{f8}", "{fs0}", RISCV::F8_F)
|
|
.Cases("{f9}", "{fs1}", RISCV::F9_F)
|
|
.Cases("{f10}", "{fa0}", RISCV::F10_F)
|
|
.Cases("{f11}", "{fa1}", RISCV::F11_F)
|
|
.Cases("{f12}", "{fa2}", RISCV::F12_F)
|
|
.Cases("{f13}", "{fa3}", RISCV::F13_F)
|
|
.Cases("{f14}", "{fa4}", RISCV::F14_F)
|
|
.Cases("{f15}", "{fa5}", RISCV::F15_F)
|
|
.Cases("{f16}", "{fa6}", RISCV::F16_F)
|
|
.Cases("{f17}", "{fa7}", RISCV::F17_F)
|
|
.Cases("{f18}", "{fs2}", RISCV::F18_F)
|
|
.Cases("{f19}", "{fs3}", RISCV::F19_F)
|
|
.Cases("{f20}", "{fs4}", RISCV::F20_F)
|
|
.Cases("{f21}", "{fs5}", RISCV::F21_F)
|
|
.Cases("{f22}", "{fs6}", RISCV::F22_F)
|
|
.Cases("{f23}", "{fs7}", RISCV::F23_F)
|
|
.Cases("{f24}", "{fs8}", RISCV::F24_F)
|
|
.Cases("{f25}", "{fs9}", RISCV::F25_F)
|
|
.Cases("{f26}", "{fs10}", RISCV::F26_F)
|
|
.Cases("{f27}", "{fs11}", RISCV::F27_F)
|
|
.Cases("{f28}", "{ft8}", RISCV::F28_F)
|
|
.Cases("{f29}", "{ft9}", RISCV::F29_F)
|
|
.Cases("{f30}", "{ft10}", RISCV::F30_F)
|
|
.Cases("{f31}", "{ft11}", RISCV::F31_F)
|
|
.Default(RISCV::NoRegister);
|
|
if (FReg != RISCV::NoRegister) {
|
|
assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
|
|
if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) {
|
|
unsigned RegNo = FReg - RISCV::F0_F;
|
|
unsigned DReg = RISCV::F0_D + RegNo;
|
|
return std::make_pair(DReg, &RISCV::FPR64RegClass);
|
|
}
|
|
if (VT == MVT::f32 || VT == MVT::Other)
|
|
return std::make_pair(FReg, &RISCV::FPR32RegClass);
|
|
if (Subtarget.hasStdExtZfhmin() && VT == MVT::f16) {
|
|
unsigned RegNo = FReg - RISCV::F0_F;
|
|
unsigned HReg = RISCV::F0_H + RegNo;
|
|
return std::make_pair(HReg, &RISCV::FPR16RegClass);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Subtarget.hasVInstructions()) {
|
|
Register VReg = StringSwitch<Register>(Constraint.lower())
|
|
.Case("{v0}", RISCV::V0)
|
|
.Case("{v1}", RISCV::V1)
|
|
.Case("{v2}", RISCV::V2)
|
|
.Case("{v3}", RISCV::V3)
|
|
.Case("{v4}", RISCV::V4)
|
|
.Case("{v5}", RISCV::V5)
|
|
.Case("{v6}", RISCV::V6)
|
|
.Case("{v7}", RISCV::V7)
|
|
.Case("{v8}", RISCV::V8)
|
|
.Case("{v9}", RISCV::V9)
|
|
.Case("{v10}", RISCV::V10)
|
|
.Case("{v11}", RISCV::V11)
|
|
.Case("{v12}", RISCV::V12)
|
|
.Case("{v13}", RISCV::V13)
|
|
.Case("{v14}", RISCV::V14)
|
|
.Case("{v15}", RISCV::V15)
|
|
.Case("{v16}", RISCV::V16)
|
|
.Case("{v17}", RISCV::V17)
|
|
.Case("{v18}", RISCV::V18)
|
|
.Case("{v19}", RISCV::V19)
|
|
.Case("{v20}", RISCV::V20)
|
|
.Case("{v21}", RISCV::V21)
|
|
.Case("{v22}", RISCV::V22)
|
|
.Case("{v23}", RISCV::V23)
|
|
.Case("{v24}", RISCV::V24)
|
|
.Case("{v25}", RISCV::V25)
|
|
.Case("{v26}", RISCV::V26)
|
|
.Case("{v27}", RISCV::V27)
|
|
.Case("{v28}", RISCV::V28)
|
|
.Case("{v29}", RISCV::V29)
|
|
.Case("{v30}", RISCV::V30)
|
|
.Case("{v31}", RISCV::V31)
|
|
.Default(RISCV::NoRegister);
|
|
if (VReg != RISCV::NoRegister) {
|
|
if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
|
|
return std::make_pair(VReg, &RISCV::VMRegClass);
|
|
if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
|
|
return std::make_pair(VReg, &RISCV::VRRegClass);
|
|
for (const auto *RC :
|
|
{&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
|
|
if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
|
|
VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
|
|
return std::make_pair(VReg, RC);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
std::pair<Register, const TargetRegisterClass *> Res =
|
|
TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
|
|
|
|
// If we picked one of the Zfinx register classes, remap it to the GPR class.
|
|
// FIXME: When Zfinx is supported in CodeGen this will need to take the
|
|
// Subtarget into account.
|
|
if (Res.second == &RISCV::GPRF16RegClass ||
|
|
Res.second == &RISCV::GPRF32RegClass ||
|
|
Res.second == &RISCV::GPRPairRegClass)
|
|
return std::make_pair(Res.first, &RISCV::GPRRegClass);
|
|
|
|
return Res;
|
|
}
|
|
|
|
InlineAsm::ConstraintCode
|
|
RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
|
|
// Currently only support length 1 constraints.
|
|
if (ConstraintCode.size() == 1) {
|
|
switch (ConstraintCode[0]) {
|
|
case 'A':
|
|
return InlineAsm::ConstraintCode::A;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
|
|
}
|
|
|
|
void RISCVTargetLowering::LowerAsmOperandForConstraint(
|
|
SDValue Op, StringRef Constraint, std::vector<SDValue> &Ops,
|
|
SelectionDAG &DAG) const {
|
|
// Currently only support length 1 constraints.
|
|
if (Constraint.size() == 1) {
|
|
switch (Constraint[0]) {
|
|
case 'I':
|
|
// Validate & create a 12-bit signed immediate operand.
|
|
if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
|
|
uint64_t CVal = C->getSExtValue();
|
|
if (isInt<12>(CVal))
|
|
Ops.push_back(DAG.getSignedTargetConstant(CVal, SDLoc(Op),
|
|
Subtarget.getXLenVT()));
|
|
}
|
|
return;
|
|
case 'J':
|
|
// Validate & create an integer zero operand.
|
|
if (isNullConstant(Op))
|
|
Ops.push_back(
|
|
DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
|
|
return;
|
|
case 'K':
|
|
// Validate & create a 5-bit unsigned immediate operand.
|
|
if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
|
|
uint64_t CVal = C->getZExtValue();
|
|
if (isUInt<5>(CVal))
|
|
Ops.push_back(
|
|
DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
|
|
}
|
|
return;
|
|
case 'S':
|
|
TargetLowering::LowerAsmOperandForConstraint(Op, "s", Ops, DAG);
|
|
return;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
|
|
}
|
|
|
|
Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
|
|
Instruction *Inst,
|
|
AtomicOrdering Ord) const {
|
|
if (Subtarget.hasStdExtZtso()) {
|
|
if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
|
|
return Builder.CreateFence(Ord);
|
|
return nullptr;
|
|
}
|
|
|
|
if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
|
|
return Builder.CreateFence(Ord);
|
|
if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
|
|
return Builder.CreateFence(AtomicOrdering::Release);
|
|
return nullptr;
|
|
}
|
|
|
|
Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
|
|
Instruction *Inst,
|
|
AtomicOrdering Ord) const {
|
|
if (Subtarget.hasStdExtZtso()) {
|
|
if (isa<StoreInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
|
|
return Builder.CreateFence(Ord);
|
|
return nullptr;
|
|
}
|
|
|
|
if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
|
|
return Builder.CreateFence(AtomicOrdering::Acquire);
|
|
if (Subtarget.enableTrailingSeqCstFence() && isa<StoreInst>(Inst) &&
|
|
Ord == AtomicOrdering::SequentiallyConsistent)
|
|
return Builder.CreateFence(AtomicOrdering::SequentiallyConsistent);
|
|
return nullptr;
|
|
}
|
|
|
|
TargetLowering::AtomicExpansionKind
|
|
RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
|
|
// atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
|
|
// point operations can't be used in an lr/sc sequence without breaking the
|
|
// forward-progress guarantee.
|
|
if (AI->isFloatingPointOperation() ||
|
|
AI->getOperation() == AtomicRMWInst::UIncWrap ||
|
|
AI->getOperation() == AtomicRMWInst::UDecWrap ||
|
|
AI->getOperation() == AtomicRMWInst::USubCond ||
|
|
AI->getOperation() == AtomicRMWInst::USubSat)
|
|
return AtomicExpansionKind::CmpXChg;
|
|
|
|
// Don't expand forced atomics, we want to have __sync libcalls instead.
|
|
if (Subtarget.hasForcedAtomics())
|
|
return AtomicExpansionKind::None;
|
|
|
|
unsigned Size = AI->getType()->getPrimitiveSizeInBits();
|
|
if (AI->getOperation() == AtomicRMWInst::Nand) {
|
|
if (Subtarget.hasStdExtZacas() &&
|
|
(Size >= 32 || Subtarget.hasStdExtZabha()))
|
|
return AtomicExpansionKind::CmpXChg;
|
|
if (Size < 32)
|
|
return AtomicExpansionKind::MaskedIntrinsic;
|
|
}
|
|
|
|
if (Size < 32 && !Subtarget.hasStdExtZabha())
|
|
return AtomicExpansionKind::MaskedIntrinsic;
|
|
|
|
return AtomicExpansionKind::None;
|
|
}
|
|
|
|
static Intrinsic::ID
|
|
getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
|
|
if (XLen == 32) {
|
|
switch (BinOp) {
|
|
default:
|
|
llvm_unreachable("Unexpected AtomicRMW BinOp");
|
|
case AtomicRMWInst::Xchg:
|
|
return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
|
|
case AtomicRMWInst::Add:
|
|
return Intrinsic::riscv_masked_atomicrmw_add_i32;
|
|
case AtomicRMWInst::Sub:
|
|
return Intrinsic::riscv_masked_atomicrmw_sub_i32;
|
|
case AtomicRMWInst::Nand:
|
|
return Intrinsic::riscv_masked_atomicrmw_nand_i32;
|
|
case AtomicRMWInst::Max:
|
|
return Intrinsic::riscv_masked_atomicrmw_max_i32;
|
|
case AtomicRMWInst::Min:
|
|
return Intrinsic::riscv_masked_atomicrmw_min_i32;
|
|
case AtomicRMWInst::UMax:
|
|
return Intrinsic::riscv_masked_atomicrmw_umax_i32;
|
|
case AtomicRMWInst::UMin:
|
|
return Intrinsic::riscv_masked_atomicrmw_umin_i32;
|
|
}
|
|
}
|
|
|
|
if (XLen == 64) {
|
|
switch (BinOp) {
|
|
default:
|
|
llvm_unreachable("Unexpected AtomicRMW BinOp");
|
|
case AtomicRMWInst::Xchg:
|
|
return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
|
|
case AtomicRMWInst::Add:
|
|
return Intrinsic::riscv_masked_atomicrmw_add_i64;
|
|
case AtomicRMWInst::Sub:
|
|
return Intrinsic::riscv_masked_atomicrmw_sub_i64;
|
|
case AtomicRMWInst::Nand:
|
|
return Intrinsic::riscv_masked_atomicrmw_nand_i64;
|
|
case AtomicRMWInst::Max:
|
|
return Intrinsic::riscv_masked_atomicrmw_max_i64;
|
|
case AtomicRMWInst::Min:
|
|
return Intrinsic::riscv_masked_atomicrmw_min_i64;
|
|
case AtomicRMWInst::UMax:
|
|
return Intrinsic::riscv_masked_atomicrmw_umax_i64;
|
|
case AtomicRMWInst::UMin:
|
|
return Intrinsic::riscv_masked_atomicrmw_umin_i64;
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("Unexpected XLen\n");
|
|
}
|
|
|
|
Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
|
|
IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
|
|
Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
|
|
// In the case of an atomicrmw xchg with a constant 0/-1 operand, replace
|
|
// the atomic instruction with an AtomicRMWInst::And/Or with appropriate
|
|
// mask, as this produces better code than the LR/SC loop emitted by
|
|
// int_riscv_masked_atomicrmw_xchg.
|
|
if (AI->getOperation() == AtomicRMWInst::Xchg &&
|
|
isa<ConstantInt>(AI->getValOperand())) {
|
|
ConstantInt *CVal = cast<ConstantInt>(AI->getValOperand());
|
|
if (CVal->isZero())
|
|
return Builder.CreateAtomicRMW(AtomicRMWInst::And, AlignedAddr,
|
|
Builder.CreateNot(Mask, "Inv_Mask"),
|
|
AI->getAlign(), Ord);
|
|
if (CVal->isMinusOne())
|
|
return Builder.CreateAtomicRMW(AtomicRMWInst::Or, AlignedAddr, Mask,
|
|
AI->getAlign(), Ord);
|
|
}
|
|
|
|
unsigned XLen = Subtarget.getXLen();
|
|
Value *Ordering =
|
|
Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
|
|
Type *Tys[] = {AlignedAddr->getType()};
|
|
Function *LrwOpScwLoop = Intrinsic::getOrInsertDeclaration(
|
|
AI->getModule(),
|
|
getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
|
|
|
|
if (XLen == 64) {
|
|
Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
|
|
Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
|
|
ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
|
|
}
|
|
|
|
Value *Result;
|
|
|
|
// Must pass the shift amount needed to sign extend the loaded value prior
|
|
// to performing a signed comparison for min/max. ShiftAmt is the number of
|
|
// bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
|
|
// is the number of bits to left+right shift the value in order to
|
|
// sign-extend.
|
|
if (AI->getOperation() == AtomicRMWInst::Min ||
|
|
AI->getOperation() == AtomicRMWInst::Max) {
|
|
const DataLayout &DL = AI->getDataLayout();
|
|
unsigned ValWidth =
|
|
DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
|
|
Value *SextShamt =
|
|
Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
|
|
Result = Builder.CreateCall(LrwOpScwLoop,
|
|
{AlignedAddr, Incr, Mask, SextShamt, Ordering});
|
|
} else {
|
|
Result =
|
|
Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
|
|
}
|
|
|
|
if (XLen == 64)
|
|
Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
|
|
return Result;
|
|
}
|
|
|
|
TargetLowering::AtomicExpansionKind
|
|
RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
|
|
AtomicCmpXchgInst *CI) const {
|
|
// Don't expand forced atomics, we want to have __sync libcalls instead.
|
|
if (Subtarget.hasForcedAtomics())
|
|
return AtomicExpansionKind::None;
|
|
|
|
unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
|
|
if (!(Subtarget.hasStdExtZabha() && Subtarget.hasStdExtZacas()) &&
|
|
(Size == 8 || Size == 16))
|
|
return AtomicExpansionKind::MaskedIntrinsic;
|
|
return AtomicExpansionKind::None;
|
|
}
|
|
|
|
Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
|
|
IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
|
|
Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
|
|
unsigned XLen = Subtarget.getXLen();
|
|
Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
|
|
Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
|
|
if (XLen == 64) {
|
|
CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
|
|
NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
|
|
Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
|
|
CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
|
|
}
|
|
Type *Tys[] = {AlignedAddr->getType()};
|
|
Value *Result = Builder.CreateIntrinsic(
|
|
CmpXchgIntrID, Tys, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
|
|
if (XLen == 64)
|
|
Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
|
|
return Result;
|
|
}
|
|
|
|
bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(SDValue Extend,
|
|
EVT DataVT) const {
|
|
// We have indexed loads for all supported EEW types. Indices are always
|
|
// zero extended.
|
|
return Extend.getOpcode() == ISD::ZERO_EXTEND &&
|
|
isTypeLegal(Extend.getValueType()) &&
|
|
isTypeLegal(Extend.getOperand(0).getValueType()) &&
|
|
Extend.getOperand(0).getValueType().getVectorElementType() != MVT::i1;
|
|
}
|
|
|
|
bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT,
|
|
EVT VT) const {
|
|
if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple())
|
|
return false;
|
|
|
|
switch (FPVT.getSimpleVT().SimpleTy) {
|
|
case MVT::f16:
|
|
return Subtarget.hasStdExtZfhmin();
|
|
case MVT::f32:
|
|
return Subtarget.hasStdExtF();
|
|
case MVT::f64:
|
|
return Subtarget.hasStdExtD();
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
unsigned RISCVTargetLowering::getJumpTableEncoding() const {
|
|
// If we are using the small code model, we can reduce size of jump table
|
|
// entry to 4 bytes.
|
|
if (Subtarget.is64Bit() && !isPositionIndependent() &&
|
|
getTargetMachine().getCodeModel() == CodeModel::Small) {
|
|
return MachineJumpTableInfo::EK_Custom32;
|
|
}
|
|
return TargetLowering::getJumpTableEncoding();
|
|
}
|
|
|
|
const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry(
|
|
const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB,
|
|
unsigned uid, MCContext &Ctx) const {
|
|
assert(Subtarget.is64Bit() && !isPositionIndependent() &&
|
|
getTargetMachine().getCodeModel() == CodeModel::Small);
|
|
return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx);
|
|
}
|
|
|
|
bool RISCVTargetLowering::isVScaleKnownToBeAPowerOfTwo() const {
|
|
// We define vscale to be VLEN/RVVBitsPerBlock. VLEN is always a power
|
|
// of two >= 64, and RVVBitsPerBlock is 64. Thus, vscale must be
|
|
// a power of two as well.
|
|
// FIXME: This doesn't work for zve32, but that's already broken
|
|
// elsewhere for the same reason.
|
|
assert(Subtarget.getRealMinVLen() >= 64 && "zve32* unsupported");
|
|
static_assert(RISCV::RVVBitsPerBlock == 64,
|
|
"RVVBitsPerBlock changed, audit needed");
|
|
return true;
|
|
}
|
|
|
|
bool RISCVTargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base,
|
|
SDValue &Offset,
|
|
ISD::MemIndexedMode &AM,
|
|
SelectionDAG &DAG) const {
|
|
// Target does not support indexed loads.
|
|
if (!Subtarget.hasVendorXTHeadMemIdx())
|
|
return false;
|
|
|
|
if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)
|
|
return false;
|
|
|
|
Base = Op->getOperand(0);
|
|
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
|
|
int64_t RHSC = RHS->getSExtValue();
|
|
if (Op->getOpcode() == ISD::SUB)
|
|
RHSC = -(uint64_t)RHSC;
|
|
|
|
// The constants that can be encoded in the THeadMemIdx instructions
|
|
// are of the form (sign_extend(imm5) << imm2).
|
|
bool isLegalIndexedOffset = false;
|
|
for (unsigned i = 0; i < 4; i++)
|
|
if (isInt<5>(RHSC >> i) && ((RHSC % (1LL << i)) == 0)) {
|
|
isLegalIndexedOffset = true;
|
|
break;
|
|
}
|
|
|
|
if (!isLegalIndexedOffset)
|
|
return false;
|
|
|
|
Offset = Op->getOperand(1);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool RISCVTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
|
|
SDValue &Offset,
|
|
ISD::MemIndexedMode &AM,
|
|
SelectionDAG &DAG) const {
|
|
EVT VT;
|
|
SDValue Ptr;
|
|
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
|
|
VT = LD->getMemoryVT();
|
|
Ptr = LD->getBasePtr();
|
|
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
|
|
VT = ST->getMemoryVT();
|
|
Ptr = ST->getBasePtr();
|
|
} else
|
|
return false;
|
|
|
|
if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, DAG))
|
|
return false;
|
|
|
|
AM = ISD::PRE_INC;
|
|
return true;
|
|
}
|
|
|
|
bool RISCVTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
|
|
SDValue &Base,
|
|
SDValue &Offset,
|
|
ISD::MemIndexedMode &AM,
|
|
SelectionDAG &DAG) const {
|
|
if (Subtarget.hasVendorXCVmem() && !Subtarget.is64Bit()) {
|
|
if (Op->getOpcode() != ISD::ADD)
|
|
return false;
|
|
|
|
if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N))
|
|
Base = LS->getBasePtr();
|
|
else
|
|
return false;
|
|
|
|
if (Base == Op->getOperand(0))
|
|
Offset = Op->getOperand(1);
|
|
else if (Base == Op->getOperand(1))
|
|
Offset = Op->getOperand(0);
|
|
else
|
|
return false;
|
|
|
|
AM = ISD::POST_INC;
|
|
return true;
|
|
}
|
|
|
|
EVT VT;
|
|
SDValue Ptr;
|
|
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
|
|
VT = LD->getMemoryVT();
|
|
Ptr = LD->getBasePtr();
|
|
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
|
|
VT = ST->getMemoryVT();
|
|
Ptr = ST->getBasePtr();
|
|
} else
|
|
return false;
|
|
|
|
if (!getIndexedAddressParts(Op, Base, Offset, AM, DAG))
|
|
return false;
|
|
// Post-indexing updates the base, so it's not a valid transform
|
|
// if that's not the same as the load's pointer.
|
|
if (Ptr != Base)
|
|
return false;
|
|
|
|
AM = ISD::POST_INC;
|
|
return true;
|
|
}
|
|
|
|
bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
|
|
EVT VT) const {
|
|
EVT SVT = VT.getScalarType();
|
|
|
|
if (!SVT.isSimple())
|
|
return false;
|
|
|
|
switch (SVT.getSimpleVT().SimpleTy) {
|
|
case MVT::f16:
|
|
return VT.isVector() ? Subtarget.hasVInstructionsF16()
|
|
: Subtarget.hasStdExtZfhOrZhinx();
|
|
case MVT::f32:
|
|
return Subtarget.hasStdExtFOrZfinx();
|
|
case MVT::f64:
|
|
return Subtarget.hasStdExtDOrZdinx();
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
ISD::NodeType RISCVTargetLowering::getExtendForAtomicCmpSwapArg() const {
|
|
// Zacas will use amocas.w which does not require extension.
|
|
return Subtarget.hasStdExtZacas() ? ISD::ANY_EXTEND : ISD::SIGN_EXTEND;
|
|
}
|
|
|
|
Register RISCVTargetLowering::getExceptionPointerRegister(
|
|
const Constant *PersonalityFn) const {
|
|
return RISCV::X10;
|
|
}
|
|
|
|
Register RISCVTargetLowering::getExceptionSelectorRegister(
|
|
const Constant *PersonalityFn) const {
|
|
return RISCV::X11;
|
|
}
|
|
|
|
bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
|
|
// Return false to suppress the unnecessary extensions if the LibCall
|
|
// arguments or return value is a float narrower than XLEN on a soft FP ABI.
|
|
if (Subtarget.isSoftFPABI() && (Type.isFloatingPoint() && !Type.isVector() &&
|
|
Type.getSizeInBits() < Subtarget.getXLen()))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(Type *Ty,
|
|
bool IsSigned) const {
|
|
if (Subtarget.is64Bit() && Ty->isIntegerTy(32))
|
|
return true;
|
|
|
|
return IsSigned;
|
|
}
|
|
|
|
bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
|
|
SDValue C) const {
|
|
// Check integral scalar types.
|
|
if (!VT.isScalarInteger())
|
|
return false;
|
|
|
|
// Omit the optimization if the sub target has the M extension and the data
|
|
// size exceeds XLen.
|
|
const bool HasZmmul = Subtarget.hasStdExtZmmul();
|
|
if (HasZmmul && VT.getSizeInBits() > Subtarget.getXLen())
|
|
return false;
|
|
|
|
auto *ConstNode = cast<ConstantSDNode>(C);
|
|
const APInt &Imm = ConstNode->getAPIntValue();
|
|
|
|
// Break the MUL to a SLLI and an ADD/SUB.
|
|
if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
|
|
(1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
|
|
return true;
|
|
|
|
// Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12.
|
|
if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) &&
|
|
((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
|
|
(Imm - 8).isPowerOf2()))
|
|
return true;
|
|
|
|
// Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
|
|
// a pair of LUI/ADDI.
|
|
if (!Imm.isSignedIntN(12) && Imm.countr_zero() < 12 &&
|
|
ConstNode->hasOneUse()) {
|
|
APInt ImmS = Imm.ashr(Imm.countr_zero());
|
|
if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
|
|
(1 - ImmS).isPowerOf2())
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool RISCVTargetLowering::isMulAddWithConstProfitable(SDValue AddNode,
|
|
SDValue ConstNode) const {
|
|
// Let the DAGCombiner decide for vectors.
|
|
EVT VT = AddNode.getValueType();
|
|
if (VT.isVector())
|
|
return true;
|
|
|
|
// Let the DAGCombiner decide for larger types.
|
|
if (VT.getScalarSizeInBits() > Subtarget.getXLen())
|
|
return true;
|
|
|
|
// It is worse if c1 is simm12 while c1*c2 is not.
|
|
ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1));
|
|
ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode);
|
|
const APInt &C1 = C1Node->getAPIntValue();
|
|
const APInt &C2 = C2Node->getAPIntValue();
|
|
if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12))
|
|
return false;
|
|
|
|
// Default to true and let the DAGCombiner decide.
|
|
return true;
|
|
}
|
|
|
|
bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
|
|
EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
|
|
unsigned *Fast) const {
|
|
if (!VT.isVector()) {
|
|
if (Fast)
|
|
*Fast = Subtarget.enableUnalignedScalarMem();
|
|
return Subtarget.enableUnalignedScalarMem();
|
|
}
|
|
|
|
// All vector implementations must support element alignment
|
|
EVT ElemVT = VT.getVectorElementType();
|
|
if (Alignment >= ElemVT.getStoreSize()) {
|
|
if (Fast)
|
|
*Fast = 1;
|
|
return true;
|
|
}
|
|
|
|
// Note: We lower an unmasked unaligned vector access to an equally sized
|
|
// e8 element type access. Given this, we effectively support all unmasked
|
|
// misaligned accesses. TODO: Work through the codegen implications of
|
|
// allowing such accesses to be formed, and considered fast.
|
|
if (Fast)
|
|
*Fast = Subtarget.enableUnalignedVectorMem();
|
|
return Subtarget.enableUnalignedVectorMem();
|
|
}
|
|
|
|
|
|
EVT RISCVTargetLowering::getOptimalMemOpType(const MemOp &Op,
|
|
const AttributeList &FuncAttributes) const {
|
|
if (!Subtarget.hasVInstructions())
|
|
return MVT::Other;
|
|
|
|
if (FuncAttributes.hasFnAttr(Attribute::NoImplicitFloat))
|
|
return MVT::Other;
|
|
|
|
// We use LMUL1 memory operations here for a non-obvious reason. Our caller
|
|
// has an expansion threshold, and we want the number of hardware memory
|
|
// operations to correspond roughly to that threshold. LMUL>1 operations
|
|
// are typically expanded linearly internally, and thus correspond to more
|
|
// than one actual memory operation. Note that store merging and load
|
|
// combining will typically form larger LMUL operations from the LMUL1
|
|
// operations emitted here, and that's okay because combining isn't
|
|
// introducing new memory operations; it's just merging existing ones.
|
|
// NOTE: We limit to 1024 bytes to avoid creating an invalid MVT.
|
|
const unsigned MinVLenInBytes =
|
|
std::min(Subtarget.getRealMinVLen() / 8, 1024U);
|
|
|
|
if (Op.size() < MinVLenInBytes)
|
|
// TODO: Figure out short memops. For the moment, do the default thing
|
|
// which ends up using scalar sequences.
|
|
return MVT::Other;
|
|
|
|
// If the minimum VLEN is less than RISCV::RVVBitsPerBlock we don't support
|
|
// fixed vectors.
|
|
if (MinVLenInBytes <= RISCV::RVVBytesPerBlock)
|
|
return MVT::Other;
|
|
|
|
// Prefer i8 for non-zero memset as it allows us to avoid materializing
|
|
// a large scalar constant and instead use vmv.v.x/i to do the
|
|
// broadcast. For everything else, prefer ELenVT to minimize VL and thus
|
|
// maximize the chance we can encode the size in the vsetvli.
|
|
MVT ELenVT = MVT::getIntegerVT(Subtarget.getELen());
|
|
MVT PreferredVT = (Op.isMemset() && !Op.isZeroMemset()) ? MVT::i8 : ELenVT;
|
|
|
|
// Do we have sufficient alignment for our preferred VT? If not, revert
|
|
// to largest size allowed by our alignment criteria.
|
|
if (PreferredVT != MVT::i8 && !Subtarget.enableUnalignedVectorMem()) {
|
|
Align RequiredAlign(PreferredVT.getStoreSize());
|
|
if (Op.isFixedDstAlign())
|
|
RequiredAlign = std::min(RequiredAlign, Op.getDstAlign());
|
|
if (Op.isMemcpy())
|
|
RequiredAlign = std::min(RequiredAlign, Op.getSrcAlign());
|
|
PreferredVT = MVT::getIntegerVT(RequiredAlign.value() * 8);
|
|
}
|
|
return MVT::getVectorVT(PreferredVT, MinVLenInBytes/PreferredVT.getStoreSize());
|
|
}
|
|
|
|
bool RISCVTargetLowering::splitValueIntoRegisterParts(
|
|
SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
|
|
unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const {
|
|
bool IsABIRegCopy = CC.has_value();
|
|
EVT ValueVT = Val.getValueType();
|
|
|
|
MVT PairVT = Subtarget.is64Bit() ? MVT::i128 : MVT::i64;
|
|
if ((ValueVT == PairVT ||
|
|
(!Subtarget.is64Bit() && Subtarget.hasStdExtZdinx() &&
|
|
ValueVT == MVT::f64)) &&
|
|
NumParts == 1 && PartVT == MVT::Untyped) {
|
|
// Pairs in Inline Assembly, f64 in Inline assembly on rv32_zdinx
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
if (ValueVT == MVT::f64)
|
|
Val = DAG.getBitcast(MVT::i64, Val);
|
|
auto [Lo, Hi] = DAG.SplitScalar(Val, DL, XLenVT, XLenVT);
|
|
// Always creating an MVT::Untyped part, so always use
|
|
// RISCVISD::BuildGPRPair.
|
|
Parts[0] = DAG.getNode(RISCVISD::BuildGPRPair, DL, PartVT, Lo, Hi);
|
|
return true;
|
|
}
|
|
|
|
if (IsABIRegCopy && (ValueVT == MVT::f16 || ValueVT == MVT::bf16) &&
|
|
PartVT == MVT::f32) {
|
|
// Cast the [b]f16 to i16, extend to i32, pad with ones to make a float
|
|
// nan, and cast to f32.
|
|
Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
|
|
Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
|
|
Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
|
|
DAG.getConstant(0xFFFF0000, DL, MVT::i32));
|
|
Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
|
|
Parts[0] = Val;
|
|
return true;
|
|
}
|
|
|
|
if (ValueVT.isRISCVVectorTuple() && PartVT.isRISCVVectorTuple()) {
|
|
#ifndef NDEBUG
|
|
unsigned ValNF = ValueVT.getRISCVVectorTupleNumFields();
|
|
[[maybe_unused]] unsigned ValLMUL =
|
|
divideCeil(ValueVT.getSizeInBits().getKnownMinValue(),
|
|
ValNF * RISCV::RVVBitsPerBlock);
|
|
unsigned PartNF = PartVT.getRISCVVectorTupleNumFields();
|
|
[[maybe_unused]] unsigned PartLMUL =
|
|
divideCeil(PartVT.getSizeInBits().getKnownMinValue(),
|
|
PartNF * RISCV::RVVBitsPerBlock);
|
|
assert(ValNF == PartNF && ValLMUL == PartLMUL &&
|
|
"RISC-V vector tuple type only accepts same register class type "
|
|
"TUPLE_INSERT");
|
|
#endif
|
|
|
|
Val = DAG.getNode(RISCVISD::TUPLE_INSERT, DL, PartVT, DAG.getUNDEF(PartVT),
|
|
Val, DAG.getVectorIdxConstant(0, DL));
|
|
Parts[0] = Val;
|
|
return true;
|
|
}
|
|
|
|
if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
|
|
LLVMContext &Context = *DAG.getContext();
|
|
EVT ValueEltVT = ValueVT.getVectorElementType();
|
|
EVT PartEltVT = PartVT.getVectorElementType();
|
|
unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinValue();
|
|
unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinValue();
|
|
if (PartVTBitSize % ValueVTBitSize == 0) {
|
|
assert(PartVTBitSize >= ValueVTBitSize);
|
|
// If the element types are different, bitcast to the same element type of
|
|
// PartVT first.
|
|
// Give an example here, we want copy a <vscale x 1 x i8> value to
|
|
// <vscale x 4 x i16>.
|
|
// We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert
|
|
// subvector, then we can bitcast to <vscale x 4 x i16>.
|
|
if (ValueEltVT != PartEltVT) {
|
|
if (PartVTBitSize > ValueVTBitSize) {
|
|
unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
|
|
assert(Count != 0 && "The number of element should not be zero.");
|
|
EVT SameEltTypeVT =
|
|
EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
|
|
Val = DAG.getInsertSubvector(DL, DAG.getUNDEF(SameEltTypeVT), Val, 0);
|
|
}
|
|
Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
|
|
} else {
|
|
Val = DAG.getInsertSubvector(DL, DAG.getUNDEF(PartVT), Val, 0);
|
|
}
|
|
Parts[0] = Val;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
|
|
SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
|
|
MVT PartVT, EVT ValueVT, std::optional<CallingConv::ID> CC) const {
|
|
bool IsABIRegCopy = CC.has_value();
|
|
|
|
MVT PairVT = Subtarget.is64Bit() ? MVT::i128 : MVT::i64;
|
|
if ((ValueVT == PairVT ||
|
|
(!Subtarget.is64Bit() && Subtarget.hasStdExtZdinx() &&
|
|
ValueVT == MVT::f64)) &&
|
|
NumParts == 1 && PartVT == MVT::Untyped) {
|
|
// Pairs in Inline Assembly, f64 in Inline assembly on rv32_zdinx
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
SDValue Val = Parts[0];
|
|
// Always starting with an MVT::Untyped part, so always use
|
|
// RISCVISD::SplitGPRPair
|
|
Val = DAG.getNode(RISCVISD::SplitGPRPair, DL, DAG.getVTList(XLenVT, XLenVT),
|
|
Val);
|
|
Val = DAG.getNode(ISD::BUILD_PAIR, DL, PairVT, Val.getValue(0),
|
|
Val.getValue(1));
|
|
if (ValueVT == MVT::f64)
|
|
Val = DAG.getBitcast(ValueVT, Val);
|
|
return Val;
|
|
}
|
|
|
|
if (IsABIRegCopy && (ValueVT == MVT::f16 || ValueVT == MVT::bf16) &&
|
|
PartVT == MVT::f32) {
|
|
SDValue Val = Parts[0];
|
|
|
|
// Cast the f32 to i32, truncate to i16, and cast back to [b]f16.
|
|
Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
|
|
Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
|
|
Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
|
|
return Val;
|
|
}
|
|
|
|
if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
|
|
LLVMContext &Context = *DAG.getContext();
|
|
SDValue Val = Parts[0];
|
|
EVT ValueEltVT = ValueVT.getVectorElementType();
|
|
EVT PartEltVT = PartVT.getVectorElementType();
|
|
unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinValue();
|
|
unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinValue();
|
|
if (PartVTBitSize % ValueVTBitSize == 0) {
|
|
assert(PartVTBitSize >= ValueVTBitSize);
|
|
EVT SameEltTypeVT = ValueVT;
|
|
// If the element types are different, convert it to the same element type
|
|
// of PartVT.
|
|
// Give an example here, we want copy a <vscale x 1 x i8> value from
|
|
// <vscale x 4 x i16>.
|
|
// We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first,
|
|
// then we can extract <vscale x 1 x i8>.
|
|
if (ValueEltVT != PartEltVT) {
|
|
unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
|
|
assert(Count != 0 && "The number of element should not be zero.");
|
|
SameEltTypeVT =
|
|
EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
|
|
Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
|
|
}
|
|
Val = DAG.getExtractSubvector(DL, ValueVT, Val, 0);
|
|
return Val;
|
|
}
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
bool RISCVTargetLowering::isIntDivCheap(EVT VT, AttributeList Attr) const {
|
|
// When aggressively optimizing for code size, we prefer to use a div
|
|
// instruction, as it is usually smaller than the alternative sequence.
|
|
// TODO: Add vector division?
|
|
bool OptSize = Attr.hasFnAttr(Attribute::MinSize);
|
|
return OptSize && !VT.isVector();
|
|
}
|
|
|
|
bool RISCVTargetLowering::preferScalarizeSplat(SDNode *N) const {
|
|
// Scalarize zero_ext and sign_ext might stop match to widening instruction in
|
|
// some situation.
|
|
unsigned Opc = N->getOpcode();
|
|
if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static Value *useTpOffset(IRBuilderBase &IRB, unsigned Offset) {
|
|
Module *M = IRB.GetInsertBlock()->getModule();
|
|
Function *ThreadPointerFunc = Intrinsic::getOrInsertDeclaration(
|
|
M, Intrinsic::thread_pointer, IRB.getPtrTy());
|
|
return IRB.CreateConstGEP1_32(IRB.getInt8Ty(),
|
|
IRB.CreateCall(ThreadPointerFunc), Offset);
|
|
}
|
|
|
|
Value *RISCVTargetLowering::getIRStackGuard(IRBuilderBase &IRB) const {
|
|
// Fuchsia provides a fixed TLS slot for the stack cookie.
|
|
// <zircon/tls.h> defines ZX_TLS_STACK_GUARD_OFFSET with this value.
|
|
if (Subtarget.isTargetFuchsia())
|
|
return useTpOffset(IRB, -0x10);
|
|
|
|
// Android provides a fixed TLS slot for the stack cookie. See the definition
|
|
// of TLS_SLOT_STACK_GUARD in
|
|
// https://android.googlesource.com/platform/bionic/+/main/libc/platform/bionic/tls_defines.h
|
|
if (Subtarget.isTargetAndroid())
|
|
return useTpOffset(IRB, -0x18);
|
|
|
|
Module *M = IRB.GetInsertBlock()->getModule();
|
|
|
|
if (M->getStackProtectorGuard() == "tls") {
|
|
// Users must specify the offset explicitly
|
|
int Offset = M->getStackProtectorGuardOffset();
|
|
return useTpOffset(IRB, Offset);
|
|
}
|
|
|
|
return TargetLowering::getIRStackGuard(IRB);
|
|
}
|
|
|
|
bool RISCVTargetLowering::isLegalInterleavedAccessType(
|
|
VectorType *VTy, unsigned Factor, Align Alignment, unsigned AddrSpace,
|
|
const DataLayout &DL) const {
|
|
EVT VT = getValueType(DL, VTy);
|
|
// Don't lower vlseg/vsseg for vector types that can't be split.
|
|
if (!isTypeLegal(VT))
|
|
return false;
|
|
|
|
if (!isLegalElementTypeForRVV(VT.getScalarType()) ||
|
|
!allowsMemoryAccessForAlignment(VTy->getContext(), DL, VT, AddrSpace,
|
|
Alignment))
|
|
return false;
|
|
|
|
MVT ContainerVT = VT.getSimpleVT();
|
|
|
|
if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) {
|
|
if (!Subtarget.useRVVForFixedLengthVectors())
|
|
return false;
|
|
// Sometimes the interleaved access pass picks up splats as interleaves of
|
|
// one element. Don't lower these.
|
|
if (FVTy->getNumElements() < 2)
|
|
return false;
|
|
|
|
ContainerVT = getContainerForFixedLengthVector(VT.getSimpleVT());
|
|
}
|
|
|
|
// Need to make sure that EMUL * NFIELDS ≤ 8
|
|
auto [LMUL, Fractional] = RISCVVType::decodeVLMUL(getLMUL(ContainerVT));
|
|
if (Fractional)
|
|
return true;
|
|
return Factor * LMUL <= 8;
|
|
}
|
|
|
|
bool RISCVTargetLowering::isLegalStridedLoadStore(EVT DataType,
|
|
Align Alignment) const {
|
|
if (!Subtarget.hasVInstructions())
|
|
return false;
|
|
|
|
// Only support fixed vectors if we know the minimum vector size.
|
|
if (DataType.isFixedLengthVector() && !Subtarget.useRVVForFixedLengthVectors())
|
|
return false;
|
|
|
|
EVT ScalarType = DataType.getScalarType();
|
|
if (!isLegalElementTypeForRVV(ScalarType))
|
|
return false;
|
|
|
|
if (!Subtarget.enableUnalignedVectorMem() &&
|
|
Alignment < ScalarType.getStoreSize())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static const Intrinsic::ID FixedVlsegIntrIds[] = {
|
|
Intrinsic::riscv_seg2_load_mask, Intrinsic::riscv_seg3_load_mask,
|
|
Intrinsic::riscv_seg4_load_mask, Intrinsic::riscv_seg5_load_mask,
|
|
Intrinsic::riscv_seg6_load_mask, Intrinsic::riscv_seg7_load_mask,
|
|
Intrinsic::riscv_seg8_load_mask};
|
|
|
|
/// Lower an interleaved load into a vlsegN intrinsic.
|
|
///
|
|
/// E.g. Lower an interleaved load (Factor = 2):
|
|
/// %wide.vec = load <8 x i32>, <8 x i32>* %ptr
|
|
/// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements
|
|
/// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements
|
|
///
|
|
/// Into:
|
|
/// %ld2 = { <4 x i32>, <4 x i32> } call llvm.riscv.seg2.load.v4i32.p0.i64(
|
|
/// %ptr, i64 4)
|
|
/// %vec0 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 0
|
|
/// %vec1 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 1
|
|
bool RISCVTargetLowering::lowerInterleavedLoad(
|
|
LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
|
|
ArrayRef<unsigned> Indices, unsigned Factor) const {
|
|
assert(Indices.size() == Shuffles.size());
|
|
|
|
IRBuilder<> Builder(LI);
|
|
|
|
auto *VTy = cast<FixedVectorType>(Shuffles[0]->getType());
|
|
if (!isLegalInterleavedAccessType(VTy, Factor, LI->getAlign(),
|
|
LI->getPointerAddressSpace(),
|
|
LI->getDataLayout()))
|
|
return false;
|
|
|
|
auto *PtrTy = LI->getPointerOperandType();
|
|
auto *XLenTy = Type::getIntNTy(LI->getContext(), Subtarget.getXLen());
|
|
|
|
// If the segment load is going to be performed segment at a time anyways
|
|
// and there's only one element used, use a strided load instead. This
|
|
// will be equally fast, and create less vector register pressure.
|
|
if (Indices.size() == 1 && !Subtarget.hasOptimizedSegmentLoadStore(Factor)) {
|
|
unsigned ScalarSizeInBytes = VTy->getScalarSizeInBits() / 8;
|
|
Value *Stride = ConstantInt::get(XLenTy, Factor * ScalarSizeInBytes);
|
|
Value *Offset = ConstantInt::get(XLenTy, Indices[0] * ScalarSizeInBytes);
|
|
Value *BasePtr = Builder.CreatePtrAdd(LI->getPointerOperand(), Offset);
|
|
Value *Mask = Builder.getAllOnesMask(VTy->getElementCount());
|
|
Value *VL = Builder.getInt32(VTy->getNumElements());
|
|
|
|
CallInst *CI =
|
|
Builder.CreateIntrinsic(Intrinsic::experimental_vp_strided_load,
|
|
{VTy, BasePtr->getType(), Stride->getType()},
|
|
{BasePtr, Stride, Mask, VL});
|
|
CI->addParamAttr(
|
|
0, Attribute::getWithAlignment(CI->getContext(), LI->getAlign()));
|
|
Shuffles[0]->replaceAllUsesWith(CI);
|
|
return true;
|
|
};
|
|
|
|
Value *VL = ConstantInt::get(XLenTy, VTy->getNumElements());
|
|
Value *Mask = Builder.getAllOnesMask(VTy->getElementCount());
|
|
CallInst *VlsegN = Builder.CreateIntrinsic(
|
|
FixedVlsegIntrIds[Factor - 2], {VTy, PtrTy, XLenTy},
|
|
{LI->getPointerOperand(), Mask, VL});
|
|
|
|
for (unsigned i = 0; i < Shuffles.size(); i++) {
|
|
Value *SubVec = Builder.CreateExtractValue(VlsegN, Indices[i]);
|
|
Shuffles[i]->replaceAllUsesWith(SubVec);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static const Intrinsic::ID FixedVssegIntrIds[] = {
|
|
Intrinsic::riscv_seg2_store_mask, Intrinsic::riscv_seg3_store_mask,
|
|
Intrinsic::riscv_seg4_store_mask, Intrinsic::riscv_seg5_store_mask,
|
|
Intrinsic::riscv_seg6_store_mask, Intrinsic::riscv_seg7_store_mask,
|
|
Intrinsic::riscv_seg8_store_mask};
|
|
|
|
/// Lower an interleaved store into a vssegN intrinsic.
|
|
///
|
|
/// E.g. Lower an interleaved store (Factor = 3):
|
|
/// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
|
|
/// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
|
|
/// store <12 x i32> %i.vec, <12 x i32>* %ptr
|
|
///
|
|
/// Into:
|
|
/// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
|
|
/// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
|
|
/// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
|
|
/// call void llvm.riscv.seg3.store.v4i32.p0.i64(%sub.v0, %sub.v1, %sub.v2,
|
|
/// %ptr, i32 4)
|
|
///
|
|
/// Note that the new shufflevectors will be removed and we'll only generate one
|
|
/// vsseg3 instruction in CodeGen.
|
|
bool RISCVTargetLowering::lowerInterleavedStore(StoreInst *SI,
|
|
ShuffleVectorInst *SVI,
|
|
unsigned Factor) const {
|
|
IRBuilder<> Builder(SI);
|
|
auto Mask = SVI->getShuffleMask();
|
|
auto *ShuffleVTy = cast<FixedVectorType>(SVI->getType());
|
|
// Given SVI : <n*factor x ty>, then VTy : <n x ty>
|
|
auto *VTy = FixedVectorType::get(ShuffleVTy->getElementType(),
|
|
ShuffleVTy->getNumElements() / Factor);
|
|
if (!isLegalInterleavedAccessType(VTy, Factor, SI->getAlign(),
|
|
SI->getPointerAddressSpace(),
|
|
SI->getDataLayout()))
|
|
return false;
|
|
|
|
auto *PtrTy = SI->getPointerOperandType();
|
|
auto *XLenTy = Type::getIntNTy(SI->getContext(), Subtarget.getXLen());
|
|
|
|
unsigned Index;
|
|
// If the segment store only has one active lane (i.e. the interleave is
|
|
// just a spread shuffle), we can use a strided store instead. This will
|
|
// be equally fast, and create less vector register pressure.
|
|
if (!Subtarget.hasOptimizedSegmentLoadStore(Factor) &&
|
|
isSpreadMask(Mask, Factor, Index)) {
|
|
unsigned ScalarSizeInBytes = ShuffleVTy->getScalarSizeInBits() / 8;
|
|
Value *Data = SVI->getOperand(0);
|
|
auto *DataVTy = cast<FixedVectorType>(Data->getType());
|
|
Value *Stride = ConstantInt::get(XLenTy, Factor * ScalarSizeInBytes);
|
|
Value *Offset = ConstantInt::get(XLenTy, Index * ScalarSizeInBytes);
|
|
Value *BasePtr = Builder.CreatePtrAdd(SI->getPointerOperand(), Offset);
|
|
Value *Mask = Builder.getAllOnesMask(DataVTy->getElementCount());
|
|
Value *VL = Builder.getInt32(VTy->getNumElements());
|
|
|
|
CallInst *CI = Builder.CreateIntrinsic(
|
|
Intrinsic::experimental_vp_strided_store,
|
|
{Data->getType(), BasePtr->getType(), Stride->getType()},
|
|
{Data, BasePtr, Stride, Mask, VL});
|
|
CI->addParamAttr(
|
|
1, Attribute::getWithAlignment(CI->getContext(), SI->getAlign()));
|
|
|
|
return true;
|
|
}
|
|
|
|
Function *VssegNFunc = Intrinsic::getOrInsertDeclaration(
|
|
SI->getModule(), FixedVssegIntrIds[Factor - 2], {VTy, PtrTy, XLenTy});
|
|
|
|
SmallVector<Value *, 10> Ops;
|
|
SmallVector<int, 16> NewShuffleMask;
|
|
|
|
for (unsigned i = 0; i < Factor; i++) {
|
|
// Collect shuffle mask for this lane.
|
|
for (unsigned j = 0; j < VTy->getNumElements(); j++)
|
|
NewShuffleMask.push_back(Mask[i + Factor * j]);
|
|
|
|
Value *Shuffle = Builder.CreateShuffleVector(
|
|
SVI->getOperand(0), SVI->getOperand(1), NewShuffleMask);
|
|
Ops.push_back(Shuffle);
|
|
|
|
NewShuffleMask.clear();
|
|
}
|
|
// This VL should be OK (should be executable in one vsseg instruction,
|
|
// potentially under larger LMULs) because we checked that the fixed vector
|
|
// type fits in isLegalInterleavedAccessType
|
|
Value *VL = ConstantInt::get(XLenTy, VTy->getNumElements());
|
|
Value *StoreMask = Builder.getAllOnesMask(VTy->getElementCount());
|
|
Ops.append({SI->getPointerOperand(), StoreMask, VL});
|
|
|
|
Builder.CreateCall(VssegNFunc, Ops);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool RISCVTargetLowering::lowerDeinterleaveIntrinsicToLoad(
|
|
LoadInst *LI, ArrayRef<Value *> DeinterleaveValues) const {
|
|
unsigned Factor = DeinterleaveValues.size();
|
|
if (Factor > 8)
|
|
return false;
|
|
|
|
assert(LI->isSimple());
|
|
IRBuilder<> Builder(LI);
|
|
|
|
auto *ResVTy = cast<VectorType>(DeinterleaveValues[0]->getType());
|
|
|
|
const DataLayout &DL = LI->getDataLayout();
|
|
|
|
if (!isLegalInterleavedAccessType(ResVTy, Factor, LI->getAlign(),
|
|
LI->getPointerAddressSpace(), DL))
|
|
return false;
|
|
|
|
Value *Return;
|
|
Type *PtrTy = LI->getPointerOperandType();
|
|
Type *XLenTy = Type::getIntNTy(LI->getContext(), Subtarget.getXLen());
|
|
|
|
if (auto *FVTy = dyn_cast<FixedVectorType>(ResVTy)) {
|
|
Value *VL = ConstantInt::get(XLenTy, FVTy->getNumElements());
|
|
Value *Mask = Builder.getAllOnesMask(FVTy->getElementCount());
|
|
Return = Builder.CreateIntrinsic(FixedVlsegIntrIds[Factor - 2],
|
|
{ResVTy, PtrTy, XLenTy},
|
|
{LI->getPointerOperand(), Mask, VL});
|
|
} else {
|
|
static const Intrinsic::ID IntrIds[] = {
|
|
Intrinsic::riscv_vlseg2, Intrinsic::riscv_vlseg3,
|
|
Intrinsic::riscv_vlseg4, Intrinsic::riscv_vlseg5,
|
|
Intrinsic::riscv_vlseg6, Intrinsic::riscv_vlseg7,
|
|
Intrinsic::riscv_vlseg8};
|
|
|
|
unsigned SEW = DL.getTypeSizeInBits(ResVTy->getElementType());
|
|
unsigned NumElts = ResVTy->getElementCount().getKnownMinValue();
|
|
Type *VecTupTy = TargetExtType::get(
|
|
LI->getContext(), "riscv.vector.tuple",
|
|
ScalableVectorType::get(Type::getInt8Ty(LI->getContext()),
|
|
NumElts * SEW / 8),
|
|
Factor);
|
|
|
|
Value *VL = Constant::getAllOnesValue(XLenTy);
|
|
|
|
Value *Vlseg = Builder.CreateIntrinsic(
|
|
IntrIds[Factor - 2], {VecTupTy, PtrTy, XLenTy},
|
|
{PoisonValue::get(VecTupTy), LI->getPointerOperand(), VL,
|
|
ConstantInt::get(XLenTy, Log2_64(SEW))});
|
|
|
|
SmallVector<Type *, 2> AggrTypes{Factor, ResVTy};
|
|
Return = PoisonValue::get(StructType::get(LI->getContext(), AggrTypes));
|
|
for (unsigned i = 0; i < Factor; ++i) {
|
|
Value *VecExtract = Builder.CreateIntrinsic(
|
|
Intrinsic::riscv_tuple_extract, {ResVTy, VecTupTy},
|
|
{Vlseg, Builder.getInt32(i)});
|
|
Return = Builder.CreateInsertValue(Return, VecExtract, i);
|
|
}
|
|
}
|
|
|
|
for (auto [Idx, DIV] : enumerate(DeinterleaveValues)) {
|
|
// We have to create a brand new ExtractValue to replace each
|
|
// of these old ExtractValue instructions.
|
|
Value *NewEV =
|
|
Builder.CreateExtractValue(Return, {static_cast<unsigned>(Idx)});
|
|
DIV->replaceAllUsesWith(NewEV);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool RISCVTargetLowering::lowerInterleaveIntrinsicToStore(
|
|
StoreInst *SI, ArrayRef<Value *> InterleaveValues) const {
|
|
unsigned Factor = InterleaveValues.size();
|
|
if (Factor > 8)
|
|
return false;
|
|
|
|
assert(SI->isSimple());
|
|
IRBuilder<> Builder(SI);
|
|
|
|
auto *InVTy = cast<VectorType>(InterleaveValues[0]->getType());
|
|
auto *PtrTy = SI->getPointerOperandType();
|
|
const DataLayout &DL = SI->getDataLayout();
|
|
|
|
if (!isLegalInterleavedAccessType(InVTy, Factor, SI->getAlign(),
|
|
SI->getPointerAddressSpace(), DL))
|
|
return false;
|
|
|
|
Type *XLenTy = Type::getIntNTy(SI->getContext(), Subtarget.getXLen());
|
|
|
|
if (auto *FVTy = dyn_cast<FixedVectorType>(InVTy)) {
|
|
Function *VssegNFunc = Intrinsic::getOrInsertDeclaration(
|
|
SI->getModule(), FixedVssegIntrIds[Factor - 2], {InVTy, PtrTy, XLenTy});
|
|
|
|
SmallVector<Value *, 10> Ops(InterleaveValues);
|
|
Value *VL = ConstantInt::get(XLenTy, FVTy->getNumElements());
|
|
Value *Mask = Builder.getAllOnesMask(FVTy->getElementCount());
|
|
Ops.append({SI->getPointerOperand(), Mask, VL});
|
|
|
|
Builder.CreateCall(VssegNFunc, Ops);
|
|
} else {
|
|
static const Intrinsic::ID IntrIds[] = {
|
|
Intrinsic::riscv_vsseg2, Intrinsic::riscv_vsseg3,
|
|
Intrinsic::riscv_vsseg4, Intrinsic::riscv_vsseg5,
|
|
Intrinsic::riscv_vsseg6, Intrinsic::riscv_vsseg7,
|
|
Intrinsic::riscv_vsseg8};
|
|
|
|
unsigned SEW = DL.getTypeSizeInBits(InVTy->getElementType());
|
|
unsigned NumElts = InVTy->getElementCount().getKnownMinValue();
|
|
Type *VecTupTy = TargetExtType::get(
|
|
SI->getContext(), "riscv.vector.tuple",
|
|
ScalableVectorType::get(Type::getInt8Ty(SI->getContext()),
|
|
NumElts * SEW / 8),
|
|
Factor);
|
|
|
|
Function *VssegNFunc = Intrinsic::getOrInsertDeclaration(
|
|
SI->getModule(), IntrIds[Factor - 2], {VecTupTy, PtrTy, XLenTy});
|
|
|
|
Value *VL = Constant::getAllOnesValue(XLenTy);
|
|
|
|
Value *StoredVal = PoisonValue::get(VecTupTy);
|
|
for (unsigned i = 0; i < Factor; ++i)
|
|
StoredVal = Builder.CreateIntrinsic(
|
|
Intrinsic::riscv_tuple_insert, {VecTupTy, InVTy},
|
|
{StoredVal, InterleaveValues[i], Builder.getInt32(i)});
|
|
|
|
Builder.CreateCall(VssegNFunc, {StoredVal, SI->getPointerOperand(), VL,
|
|
ConstantInt::get(XLenTy, Log2_64(SEW))});
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool isMultipleOfN(const Value *V, const DataLayout &DL, unsigned N) {
|
|
assert(N);
|
|
if (N == 1)
|
|
return true;
|
|
|
|
using namespace PatternMatch;
|
|
// Right now we're only recognizing the simplest pattern.
|
|
uint64_t C;
|
|
if (match(V, m_CombineOr(m_ConstantInt(C),
|
|
m_c_Mul(m_Value(), m_ConstantInt(C)))) &&
|
|
C && C % N == 0)
|
|
return true;
|
|
|
|
if (isPowerOf2_32(N)) {
|
|
KnownBits KB = llvm::computeKnownBits(V, DL);
|
|
return KB.countMinTrailingZeros() >= Log2_32(N);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Lower an interleaved vp.load into a vlsegN intrinsic.
|
|
///
|
|
/// E.g. Lower an interleaved vp.load (Factor = 2):
|
|
/// %l = call <vscale x 64 x i8> @llvm.vp.load.nxv64i8.p0(ptr %ptr,
|
|
/// %mask,
|
|
/// i32 %wide.rvl)
|
|
/// %dl = tail call { <vscale x 32 x i8>, <vscale x 32 x i8> }
|
|
/// @llvm.vector.deinterleave2.nxv64i8(
|
|
/// <vscale x 64 x i8> %l)
|
|
/// %r0 = extractvalue { <vscale x 32 x i8>, <vscale x 32 x i8> } %dl, 0
|
|
/// %r1 = extractvalue { <vscale x 32 x i8>, <vscale x 32 x i8> } %dl, 1
|
|
///
|
|
/// Into:
|
|
/// %rvl = udiv %wide.rvl, 2
|
|
/// %sl = call { <vscale x 32 x i8>, <vscale x 32 x i8> }
|
|
/// @llvm.riscv.vlseg2.mask.nxv32i8.i64(<vscale x 32 x i8> undef,
|
|
/// <vscale x 32 x i8> undef,
|
|
/// ptr %ptr,
|
|
/// %mask,
|
|
/// i64 %rvl,
|
|
/// i64 1)
|
|
/// %r0 = extractvalue { <vscale x 32 x i8>, <vscale x 32 x i8> } %sl, 0
|
|
/// %r1 = extractvalue { <vscale x 32 x i8>, <vscale x 32 x i8> } %sl, 1
|
|
///
|
|
/// NOTE: the deinterleave2 intrinsic won't be touched and is expected to be
|
|
/// removed by the caller
|
|
/// TODO: We probably can loosen the dependency on matching extractvalue when
|
|
/// dealing with factor of 2 (extractvalue is still required for most of other
|
|
/// factors though).
|
|
bool RISCVTargetLowering::lowerInterleavedVPLoad(
|
|
VPIntrinsic *Load, Value *Mask,
|
|
ArrayRef<Value *> DeinterleaveResults) const {
|
|
assert(Mask && "Expect a valid mask");
|
|
assert(Load->getIntrinsicID() == Intrinsic::vp_load &&
|
|
"Unexpected intrinsic");
|
|
|
|
const unsigned Factor = DeinterleaveResults.size();
|
|
|
|
auto *VTy = dyn_cast<VectorType>(DeinterleaveResults[0]->getType());
|
|
if (!VTy)
|
|
return false;
|
|
|
|
auto &DL = Load->getModule()->getDataLayout();
|
|
Align Alignment = Load->getParamAlign(0).value_or(
|
|
DL.getABITypeAlign(VTy->getElementType()));
|
|
if (!isLegalInterleavedAccessType(
|
|
VTy, Factor, Alignment,
|
|
Load->getArgOperand(0)->getType()->getPointerAddressSpace(), DL))
|
|
return false;
|
|
|
|
IRBuilder<> Builder(Load);
|
|
|
|
Value *WideEVL = Load->getVectorLengthParam();
|
|
// Conservatively check if EVL is a multiple of factor, otherwise some
|
|
// (trailing) elements might be lost after the transformation.
|
|
if (!isMultipleOfN(WideEVL, Load->getDataLayout(), Factor))
|
|
return false;
|
|
|
|
auto *PtrTy = Load->getArgOperand(0)->getType();
|
|
auto *XLenTy = Type::getIntNTy(Load->getContext(), Subtarget.getXLen());
|
|
Value *EVL = Builder.CreateZExt(
|
|
Builder.CreateUDiv(WideEVL, ConstantInt::get(WideEVL->getType(), Factor)),
|
|
XLenTy);
|
|
|
|
Value *Return = nullptr;
|
|
if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) {
|
|
Return = Builder.CreateIntrinsic(FixedVlsegIntrIds[Factor - 2],
|
|
{FVTy, PtrTy, XLenTy},
|
|
{Load->getArgOperand(0), Mask, EVL});
|
|
} else {
|
|
static const Intrinsic::ID IntrMaskIds[] = {
|
|
Intrinsic::riscv_vlseg2_mask, Intrinsic::riscv_vlseg3_mask,
|
|
Intrinsic::riscv_vlseg4_mask, Intrinsic::riscv_vlseg5_mask,
|
|
Intrinsic::riscv_vlseg6_mask, Intrinsic::riscv_vlseg7_mask,
|
|
Intrinsic::riscv_vlseg8_mask,
|
|
};
|
|
|
|
unsigned SEW = DL.getTypeSizeInBits(VTy->getElementType());
|
|
unsigned NumElts = VTy->getElementCount().getKnownMinValue();
|
|
Type *VecTupTy = TargetExtType::get(
|
|
Load->getContext(), "riscv.vector.tuple",
|
|
ScalableVectorType::get(Type::getInt8Ty(Load->getContext()),
|
|
NumElts * SEW / 8),
|
|
Factor);
|
|
|
|
Value *PoisonVal = PoisonValue::get(VecTupTy);
|
|
|
|
Function *VlsegNFunc = Intrinsic::getOrInsertDeclaration(
|
|
Load->getModule(), IntrMaskIds[Factor - 2],
|
|
{VecTupTy, PtrTy, Mask->getType(), EVL->getType()});
|
|
|
|
Value *Operands[] = {
|
|
PoisonVal,
|
|
Load->getArgOperand(0),
|
|
Mask,
|
|
EVL,
|
|
ConstantInt::get(XLenTy,
|
|
RISCVVType::TAIL_AGNOSTIC | RISCVVType::MASK_AGNOSTIC),
|
|
ConstantInt::get(XLenTy, Log2_64(SEW))};
|
|
|
|
CallInst *VlsegN = Builder.CreateCall(VlsegNFunc, Operands);
|
|
|
|
SmallVector<Type *, 8> AggrTypes{Factor, VTy};
|
|
Return = PoisonValue::get(StructType::get(Load->getContext(), AggrTypes));
|
|
Function *VecExtractFunc = Intrinsic::getOrInsertDeclaration(
|
|
Load->getModule(), Intrinsic::riscv_tuple_extract, {VTy, VecTupTy});
|
|
for (unsigned i = 0; i < Factor; ++i) {
|
|
Value *VecExtract =
|
|
Builder.CreateCall(VecExtractFunc, {VlsegN, Builder.getInt32(i)});
|
|
Return = Builder.CreateInsertValue(Return, VecExtract, i);
|
|
}
|
|
}
|
|
|
|
for (auto [Idx, DIO] : enumerate(DeinterleaveResults)) {
|
|
if (!DIO)
|
|
continue;
|
|
// We have to create a brand new ExtractValue to replace each
|
|
// of these old ExtractValue instructions.
|
|
Value *NewEV =
|
|
Builder.CreateExtractValue(Return, {static_cast<unsigned>(Idx)});
|
|
DIO->replaceAllUsesWith(NewEV);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Lower an interleaved vp.store into a vssegN intrinsic.
|
|
///
|
|
/// E.g. Lower an interleaved vp.store (Factor = 2):
|
|
///
|
|
/// %is = tail call <vscale x 64 x i8>
|
|
/// @llvm.vector.interleave2.nxv64i8(
|
|
/// <vscale x 32 x i8> %load0,
|
|
/// <vscale x 32 x i8> %load1
|
|
/// %wide.rvl = shl nuw nsw i32 %rvl, 1
|
|
/// tail call void @llvm.vp.store.nxv64i8.p0(
|
|
/// <vscale x 64 x i8> %is, ptr %ptr,
|
|
/// %mask,
|
|
/// i32 %wide.rvl)
|
|
///
|
|
/// Into:
|
|
/// call void @llvm.riscv.vsseg2.mask.nxv32i8.i64(
|
|
/// <vscale x 32 x i8> %load1,
|
|
/// <vscale x 32 x i8> %load2, ptr %ptr,
|
|
/// %mask,
|
|
/// i64 %rvl)
|
|
bool RISCVTargetLowering::lowerInterleavedVPStore(
|
|
VPIntrinsic *Store, Value *Mask,
|
|
ArrayRef<Value *> InterleaveOperands) const {
|
|
assert(Mask && "Expect a valid mask");
|
|
assert(Store->getIntrinsicID() == Intrinsic::vp_store &&
|
|
"Unexpected intrinsic");
|
|
|
|
const unsigned Factor = InterleaveOperands.size();
|
|
|
|
auto *VTy = dyn_cast<VectorType>(InterleaveOperands[0]->getType());
|
|
if (!VTy)
|
|
return false;
|
|
|
|
const DataLayout &DL = Store->getDataLayout();
|
|
Align Alignment = Store->getParamAlign(1).value_or(
|
|
DL.getABITypeAlign(VTy->getElementType()));
|
|
if (!isLegalInterleavedAccessType(
|
|
VTy, Factor, Alignment,
|
|
Store->getArgOperand(1)->getType()->getPointerAddressSpace(), DL))
|
|
return false;
|
|
|
|
IRBuilder<> Builder(Store);
|
|
Value *WideEVL = Store->getArgOperand(3);
|
|
// Conservatively check if EVL is a multiple of factor, otherwise some
|
|
// (trailing) elements might be lost after the transformation.
|
|
if (!isMultipleOfN(WideEVL, Store->getDataLayout(), Factor))
|
|
return false;
|
|
|
|
auto *PtrTy = Store->getArgOperand(1)->getType();
|
|
auto *XLenTy = Type::getIntNTy(Store->getContext(), Subtarget.getXLen());
|
|
Value *EVL = Builder.CreateZExt(
|
|
Builder.CreateUDiv(WideEVL, ConstantInt::get(WideEVL->getType(), Factor)),
|
|
XLenTy);
|
|
|
|
if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) {
|
|
SmallVector<Value *, 8> Operands(InterleaveOperands);
|
|
Operands.append({Store->getArgOperand(1), Mask, EVL});
|
|
Builder.CreateIntrinsic(FixedVssegIntrIds[Factor - 2],
|
|
{FVTy, PtrTy, XLenTy}, Operands);
|
|
return true;
|
|
}
|
|
|
|
static const Intrinsic::ID IntrMaskIds[] = {
|
|
Intrinsic::riscv_vsseg2_mask, Intrinsic::riscv_vsseg3_mask,
|
|
Intrinsic::riscv_vsseg4_mask, Intrinsic::riscv_vsseg5_mask,
|
|
Intrinsic::riscv_vsseg6_mask, Intrinsic::riscv_vsseg7_mask,
|
|
Intrinsic::riscv_vsseg8_mask,
|
|
};
|
|
|
|
unsigned SEW = DL.getTypeSizeInBits(VTy->getElementType());
|
|
unsigned NumElts = VTy->getElementCount().getKnownMinValue();
|
|
Type *VecTupTy = TargetExtType::get(
|
|
Store->getContext(), "riscv.vector.tuple",
|
|
ScalableVectorType::get(Type::getInt8Ty(Store->getContext()),
|
|
NumElts * SEW / 8),
|
|
Factor);
|
|
|
|
Function *VecInsertFunc = Intrinsic::getOrInsertDeclaration(
|
|
Store->getModule(), Intrinsic::riscv_tuple_insert, {VecTupTy, VTy});
|
|
Value *StoredVal = PoisonValue::get(VecTupTy);
|
|
for (unsigned i = 0; i < Factor; ++i)
|
|
StoredVal = Builder.CreateCall(
|
|
VecInsertFunc, {StoredVal, InterleaveOperands[i], Builder.getInt32(i)});
|
|
|
|
Function *VssegNFunc = Intrinsic::getOrInsertDeclaration(
|
|
Store->getModule(), IntrMaskIds[Factor - 2],
|
|
{VecTupTy, PtrTy, Mask->getType(), EVL->getType()});
|
|
|
|
Value *Operands[] = {StoredVal, Store->getArgOperand(1), Mask, EVL,
|
|
ConstantInt::get(XLenTy, Log2_64(SEW))};
|
|
|
|
Builder.CreateCall(VssegNFunc, Operands);
|
|
return true;
|
|
}
|
|
|
|
MachineInstr *
|
|
RISCVTargetLowering::EmitKCFICheck(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::instr_iterator &MBBI,
|
|
const TargetInstrInfo *TII) const {
|
|
assert(MBBI->isCall() && MBBI->getCFIType() &&
|
|
"Invalid call instruction for a KCFI check");
|
|
assert(is_contained({RISCV::PseudoCALLIndirect, RISCV::PseudoTAILIndirect},
|
|
MBBI->getOpcode()));
|
|
|
|
MachineOperand &Target = MBBI->getOperand(0);
|
|
Target.setIsRenamable(false);
|
|
|
|
return BuildMI(MBB, MBBI, MBBI->getDebugLoc(), TII->get(RISCV::KCFI_CHECK))
|
|
.addReg(Target.getReg())
|
|
.addImm(MBBI->getCFIType())
|
|
.getInstr();
|
|
}
|
|
|
|
#define GET_REGISTER_MATCHER
|
|
#include "RISCVGenAsmMatcher.inc"
|
|
|
|
Register
|
|
RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
|
|
const MachineFunction &MF) const {
|
|
Register Reg = MatchRegisterAltName(RegName);
|
|
if (!Reg)
|
|
Reg = MatchRegisterName(RegName);
|
|
if (!Reg)
|
|
return Reg;
|
|
|
|
BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
|
|
if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
|
|
report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
|
|
StringRef(RegName) + "\"."));
|
|
return Reg;
|
|
}
|
|
|
|
MachineMemOperand::Flags
|
|
RISCVTargetLowering::getTargetMMOFlags(const Instruction &I) const {
|
|
const MDNode *NontemporalInfo = I.getMetadata(LLVMContext::MD_nontemporal);
|
|
|
|
if (NontemporalInfo == nullptr)
|
|
return MachineMemOperand::MONone;
|
|
|
|
// 1 for default value work as __RISCV_NTLH_ALL
|
|
// 2 -> __RISCV_NTLH_INNERMOST_PRIVATE
|
|
// 3 -> __RISCV_NTLH_ALL_PRIVATE
|
|
// 4 -> __RISCV_NTLH_INNERMOST_SHARED
|
|
// 5 -> __RISCV_NTLH_ALL
|
|
int NontemporalLevel = 5;
|
|
const MDNode *RISCVNontemporalInfo =
|
|
I.getMetadata("riscv-nontemporal-domain");
|
|
if (RISCVNontemporalInfo != nullptr)
|
|
NontemporalLevel =
|
|
cast<ConstantInt>(
|
|
cast<ConstantAsMetadata>(RISCVNontemporalInfo->getOperand(0))
|
|
->getValue())
|
|
->getZExtValue();
|
|
|
|
assert((1 <= NontemporalLevel && NontemporalLevel <= 5) &&
|
|
"RISC-V target doesn't support this non-temporal domain.");
|
|
|
|
NontemporalLevel -= 2;
|
|
MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
|
|
if (NontemporalLevel & 0b1)
|
|
Flags |= MONontemporalBit0;
|
|
if (NontemporalLevel & 0b10)
|
|
Flags |= MONontemporalBit1;
|
|
|
|
return Flags;
|
|
}
|
|
|
|
MachineMemOperand::Flags
|
|
RISCVTargetLowering::getTargetMMOFlags(const MemSDNode &Node) const {
|
|
|
|
MachineMemOperand::Flags NodeFlags = Node.getMemOperand()->getFlags();
|
|
MachineMemOperand::Flags TargetFlags = MachineMemOperand::MONone;
|
|
TargetFlags |= (NodeFlags & MONontemporalBit0);
|
|
TargetFlags |= (NodeFlags & MONontemporalBit1);
|
|
return TargetFlags;
|
|
}
|
|
|
|
bool RISCVTargetLowering::areTwoSDNodeTargetMMOFlagsMergeable(
|
|
const MemSDNode &NodeX, const MemSDNode &NodeY) const {
|
|
return getTargetMMOFlags(NodeX) == getTargetMMOFlags(NodeY);
|
|
}
|
|
|
|
bool RISCVTargetLowering::isCtpopFast(EVT VT) const {
|
|
if (VT.isScalableVector())
|
|
return isTypeLegal(VT) && Subtarget.hasStdExtZvbb();
|
|
if (VT.isFixedLengthVector() && Subtarget.hasStdExtZvbb())
|
|
return true;
|
|
return Subtarget.hasStdExtZbb() &&
|
|
(VT == MVT::i32 || VT == MVT::i64 || VT.isFixedLengthVector());
|
|
}
|
|
|
|
unsigned RISCVTargetLowering::getCustomCtpopCost(EVT VT,
|
|
ISD::CondCode Cond) const {
|
|
return isCtpopFast(VT) ? 0 : 1;
|
|
}
|
|
|
|
bool RISCVTargetLowering::shouldInsertFencesForAtomic(
|
|
const Instruction *I) const {
|
|
if (Subtarget.hasStdExtZalasr()) {
|
|
if (Subtarget.hasStdExtZtso()) {
|
|
// Zalasr + TSO means that atomic_load_acquire and atomic_store_release
|
|
// should be lowered to plain load/store. The easiest way to do this is
|
|
// to say we should insert fences for them, and the fence insertion code
|
|
// will just not insert any fences
|
|
auto *LI = dyn_cast<LoadInst>(I);
|
|
auto *SI = dyn_cast<StoreInst>(I);
|
|
if ((LI &&
|
|
(LI->getOrdering() == AtomicOrdering::SequentiallyConsistent)) ||
|
|
(SI &&
|
|
(SI->getOrdering() == AtomicOrdering::SequentiallyConsistent))) {
|
|
// Here, this is a load or store which is seq_cst, and needs a .aq or
|
|
// .rl therefore we shouldn't try to insert fences
|
|
return false;
|
|
}
|
|
// Here, we are a TSO inst that isn't a seq_cst load/store
|
|
return isa<LoadInst>(I) || isa<StoreInst>(I);
|
|
}
|
|
return false;
|
|
}
|
|
// Note that one specific case requires fence insertion for an
|
|
// AtomicCmpXchgInst but is handled via the RISCVZacasABIFix pass rather
|
|
// than this hook due to limitations in the interface here.
|
|
return isa<LoadInst>(I) || isa<StoreInst>(I);
|
|
}
|
|
|
|
bool RISCVTargetLowering::fallBackToDAGISel(const Instruction &Inst) const {
|
|
|
|
// GISel support is in progress or complete for these opcodes.
|
|
unsigned Op = Inst.getOpcode();
|
|
if (Op == Instruction::Add || Op == Instruction::Sub ||
|
|
Op == Instruction::And || Op == Instruction::Or ||
|
|
Op == Instruction::Xor || Op == Instruction::InsertElement ||
|
|
Op == Instruction::ShuffleVector || Op == Instruction::Load ||
|
|
Op == Instruction::Freeze || Op == Instruction::Store)
|
|
return false;
|
|
|
|
if (Inst.getType()->isScalableTy())
|
|
return true;
|
|
|
|
for (unsigned i = 0; i < Inst.getNumOperands(); ++i)
|
|
if (Inst.getOperand(i)->getType()->isScalableTy() &&
|
|
!isa<ReturnInst>(&Inst))
|
|
return true;
|
|
|
|
if (const AllocaInst *AI = dyn_cast<AllocaInst>(&Inst)) {
|
|
if (AI->getAllocatedType()->isScalableTy())
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
SDValue
|
|
RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
|
|
SelectionDAG &DAG,
|
|
SmallVectorImpl<SDNode *> &Created) const {
|
|
AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
|
|
if (isIntDivCheap(N->getValueType(0), Attr))
|
|
return SDValue(N, 0); // Lower SDIV as SDIV
|
|
|
|
// Only perform this transform if short forward branch opt is supported.
|
|
if (!Subtarget.hasShortForwardBranchOpt())
|
|
return SDValue();
|
|
EVT VT = N->getValueType(0);
|
|
if (!(VT == MVT::i32 || (VT == MVT::i64 && Subtarget.is64Bit())))
|
|
return SDValue();
|
|
|
|
// Ensure 2**k-1 < 2048 so that we can just emit a single addi/addiw.
|
|
if (Divisor.sgt(2048) || Divisor.slt(-2048))
|
|
return SDValue();
|
|
return TargetLowering::buildSDIVPow2WithCMov(N, Divisor, DAG, Created);
|
|
}
|
|
|
|
bool RISCVTargetLowering::shouldFoldSelectWithSingleBitTest(
|
|
EVT VT, const APInt &AndMask) const {
|
|
if (Subtarget.hasStdExtZicond() || Subtarget.hasVendorXVentanaCondOps())
|
|
return !Subtarget.hasStdExtZbs() && AndMask.ugt(1024);
|
|
return TargetLowering::shouldFoldSelectWithSingleBitTest(VT, AndMask);
|
|
}
|
|
|
|
unsigned RISCVTargetLowering::getMinimumJumpTableEntries() const {
|
|
return Subtarget.getMinimumJumpTableEntries();
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::expandIndirectJTBranch(const SDLoc &dl,
|
|
SDValue Value, SDValue Addr,
|
|
int JTI,
|
|
SelectionDAG &DAG) const {
|
|
if (Subtarget.hasStdExtZicfilp()) {
|
|
// When Zicfilp enabled, we need to use software guarded branch for jump
|
|
// table branch.
|
|
SDValue Chain = Value;
|
|
// Jump table debug info is only needed if CodeView is enabled.
|
|
if (DAG.getTarget().getTargetTriple().isOSBinFormatCOFF())
|
|
Chain = DAG.getJumpTableDebugInfo(JTI, Chain, dl);
|
|
return DAG.getNode(RISCVISD::SW_GUARDED_BRIND, dl, MVT::Other, Chain, Addr);
|
|
}
|
|
return TargetLowering::expandIndirectJTBranch(dl, Value, Addr, JTI, DAG);
|
|
}
|
|
|
|
// If an output pattern produces multiple instructions tablegen may pick an
|
|
// arbitrary type from an instructions destination register class to use for the
|
|
// VT of that MachineSDNode. This VT may be used to look up the representative
|
|
// register class. If the type isn't legal, the default implementation will
|
|
// not find a register class.
|
|
//
|
|
// Some integer types smaller than XLen are listed in the GPR register class to
|
|
// support isel patterns for GISel, but are not legal in SelectionDAG. The
|
|
// arbitrary type tablegen picks may be one of these smaller types.
|
|
//
|
|
// f16 and bf16 are both valid for the FPR16 or GPRF16 register class. It's
|
|
// possible for tablegen to pick bf16 as the arbitrary type for an f16 pattern.
|
|
std::pair<const TargetRegisterClass *, uint8_t>
|
|
RISCVTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
|
|
MVT VT) const {
|
|
switch (VT.SimpleTy) {
|
|
default:
|
|
break;
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
case MVT::i32:
|
|
return TargetLowering::findRepresentativeClass(TRI, Subtarget.getXLenVT());
|
|
case MVT::bf16:
|
|
case MVT::f16:
|
|
return TargetLowering::findRepresentativeClass(TRI, MVT::f32);
|
|
}
|
|
|
|
return TargetLowering::findRepresentativeClass(TRI, VT);
|
|
}
|
|
|
|
namespace llvm::RISCVVIntrinsicsTable {
|
|
|
|
#define GET_RISCVVIntrinsicsTable_IMPL
|
|
#include "RISCVGenSearchableTables.inc"
|
|
|
|
} // namespace llvm::RISCVVIntrinsicsTable
|
|
|
|
bool RISCVTargetLowering::hasInlineStackProbe(const MachineFunction &MF) const {
|
|
|
|
// If the function specifically requests inline stack probes, emit them.
|
|
if (MF.getFunction().hasFnAttribute("probe-stack"))
|
|
return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
|
|
"inline-asm";
|
|
|
|
return false;
|
|
}
|
|
|
|
unsigned RISCVTargetLowering::getStackProbeSize(const MachineFunction &MF,
|
|
Align StackAlign) const {
|
|
// The default stack probe size is 4096 if the function has no
|
|
// stack-probe-size attribute.
|
|
const Function &Fn = MF.getFunction();
|
|
unsigned StackProbeSize =
|
|
Fn.getFnAttributeAsParsedInteger("stack-probe-size", 4096);
|
|
// Round down to the stack alignment.
|
|
StackProbeSize = alignDown(StackProbeSize, StackAlign.value());
|
|
return StackProbeSize ? StackProbeSize : StackAlign.value();
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerDYNAMIC_STACKALLOC(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
if (!hasInlineStackProbe(MF))
|
|
return SDValue();
|
|
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
// Get the inputs.
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue Size = Op.getOperand(1);
|
|
|
|
MaybeAlign Align =
|
|
cast<ConstantSDNode>(Op.getOperand(2))->getMaybeAlignValue();
|
|
SDLoc dl(Op);
|
|
EVT VT = Op.getValueType();
|
|
|
|
// Construct the new SP value in a GPR.
|
|
SDValue SP = DAG.getCopyFromReg(Chain, dl, RISCV::X2, XLenVT);
|
|
Chain = SP.getValue(1);
|
|
SP = DAG.getNode(ISD::SUB, dl, XLenVT, SP, Size);
|
|
if (Align)
|
|
SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
|
|
DAG.getSignedConstant(-(uint64_t)Align->value(), dl, VT));
|
|
|
|
// Set the real SP to the new value with a probing loop.
|
|
Chain = DAG.getNode(RISCVISD::PROBED_ALLOCA, dl, MVT::Other, Chain, SP);
|
|
return DAG.getMergeValues({SP, Chain}, dl);
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
RISCVTargetLowering::emitDynamicProbedAlloc(MachineInstr &MI,
|
|
MachineBasicBlock *MBB) const {
|
|
MachineFunction &MF = *MBB->getParent();
|
|
MachineBasicBlock::iterator MBBI = MI.getIterator();
|
|
DebugLoc DL = MBB->findDebugLoc(MBBI);
|
|
Register TargetReg = MI.getOperand(0).getReg();
|
|
|
|
const RISCVInstrInfo *TII = Subtarget.getInstrInfo();
|
|
bool IsRV64 = Subtarget.is64Bit();
|
|
Align StackAlign = Subtarget.getFrameLowering()->getStackAlign();
|
|
const RISCVTargetLowering *TLI = Subtarget.getTargetLowering();
|
|
uint64_t ProbeSize = TLI->getStackProbeSize(MF, StackAlign);
|
|
|
|
MachineFunction::iterator MBBInsertPoint = std::next(MBB->getIterator());
|
|
MachineBasicBlock *LoopTestMBB =
|
|
MF.CreateMachineBasicBlock(MBB->getBasicBlock());
|
|
MF.insert(MBBInsertPoint, LoopTestMBB);
|
|
MachineBasicBlock *ExitMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
|
|
MF.insert(MBBInsertPoint, ExitMBB);
|
|
Register SPReg = RISCV::X2;
|
|
Register ScratchReg =
|
|
MF.getRegInfo().createVirtualRegister(&RISCV::GPRRegClass);
|
|
|
|
// ScratchReg = ProbeSize
|
|
TII->movImm(*MBB, MBBI, DL, ScratchReg, ProbeSize, MachineInstr::NoFlags);
|
|
|
|
// LoopTest:
|
|
// SUB SP, SP, ProbeSize
|
|
BuildMI(*LoopTestMBB, LoopTestMBB->end(), DL, TII->get(RISCV::SUB), SPReg)
|
|
.addReg(SPReg)
|
|
.addReg(ScratchReg);
|
|
|
|
// s[d|w] zero, 0(sp)
|
|
BuildMI(*LoopTestMBB, LoopTestMBB->end(), DL,
|
|
TII->get(IsRV64 ? RISCV::SD : RISCV::SW))
|
|
.addReg(RISCV::X0)
|
|
.addReg(SPReg)
|
|
.addImm(0);
|
|
|
|
// BLT TargetReg, SP, LoopTest
|
|
BuildMI(*LoopTestMBB, LoopTestMBB->end(), DL, TII->get(RISCV::BLT))
|
|
.addReg(TargetReg)
|
|
.addReg(SPReg)
|
|
.addMBB(LoopTestMBB);
|
|
|
|
// Adjust with: MV SP, TargetReg.
|
|
BuildMI(*ExitMBB, ExitMBB->end(), DL, TII->get(RISCV::ADDI), SPReg)
|
|
.addReg(TargetReg)
|
|
.addImm(0);
|
|
|
|
ExitMBB->splice(ExitMBB->end(), MBB, std::next(MBBI), MBB->end());
|
|
ExitMBB->transferSuccessorsAndUpdatePHIs(MBB);
|
|
|
|
LoopTestMBB->addSuccessor(ExitMBB);
|
|
LoopTestMBB->addSuccessor(LoopTestMBB);
|
|
MBB->addSuccessor(LoopTestMBB);
|
|
|
|
MI.eraseFromParent();
|
|
MF.getInfo<RISCVMachineFunctionInfo>()->setDynamicAllocation();
|
|
return ExitMBB->begin()->getParent();
|
|
}
|
|
|
|
ArrayRef<MCPhysReg> RISCVTargetLowering::getRoundingControlRegisters() const {
|
|
if (Subtarget.hasStdExtFOrZfinx()) {
|
|
static const MCPhysReg RCRegs[] = {RISCV::FRM, RISCV::FFLAGS};
|
|
return RCRegs;
|
|
}
|
|
return {};
|
|
}
|