Files
clang-p2996/mlir/test/lib/TestDialect/TestPatterns.cpp
Jacques Pienaar 398f04aa49 Generate builder for ops that use InferTypeOpInterface trait in ODS
For ops with infer type op interface defined, generate version that calls the inferal method on build. This is intermediate step to removing special casing of SameOperandsAndResultType & FirstAttrDereivedResultType. After that would be generating the inference code, with the initial focus on shaped container types. In between I plan to refactor these a bit to reuse generated paths. The intention would not be to add the type inference trait in multiple places, but rather to take advantage of the current modelling in ODS where possible to emit it instead.

Switch the `inferReturnTypes` method to be static.

Skipping ops with regions here as I don't like the Region vs unique_ptr<Region> difference at the moment, and I want the infer return type trait to be useful for verification too. So instead, just skip it for now to avoid churn.

PiperOrigin-RevId: 284217913
2019-12-06 10:53:06 -08:00

511 lines
20 KiB
C++

//===- TestPatterns.cpp - Test dialect pattern driver ---------------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
#include "TestDialect.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
using namespace mlir;
// Native function for testing NativeCodeCall
static Value *chooseOperand(Value *input1, Value *input2, BoolAttr choice) {
return choice.getValue() ? input1 : input2;
}
static void createOpI(PatternRewriter &rewriter, Value *input) {
rewriter.create<OpI>(rewriter.getUnknownLoc(), input);
}
void handleNoResultOp(PatternRewriter &rewriter, OpSymbolBindingNoResult op) {
// Turn the no result op to a one-result op.
rewriter.create<OpSymbolBindingB>(op.getLoc(), op.operand()->getType(),
op.operand());
}
namespace {
#include "TestPatterns.inc"
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Canonicalizer Driver.
//===----------------------------------------------------------------------===//
namespace {
struct TestPatternDriver : public FunctionPass<TestPatternDriver> {
void runOnFunction() override {
mlir::OwningRewritePatternList patterns;
populateWithGenerated(&getContext(), &patterns);
// Verify named pattern is generated with expected name.
patterns.insert<TestNamedPatternRule>(&getContext());
applyPatternsGreedily(getFunction(), patterns);
}
};
} // end anonymous namespace
static mlir::PassRegistration<TestPatternDriver>
pass("test-patterns", "Run test dialect patterns");
//===----------------------------------------------------------------------===//
// ReturnType Driver.
//===----------------------------------------------------------------------===//
struct ReturnTypeOpMatch : public RewritePattern {
ReturnTypeOpMatch(MLIRContext *ctx)
: RewritePattern(OpWithInferTypeInterfaceOp::getOperationName(), 1, ctx) {
}
PatternMatchResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const final {
if (auto retTypeFn = dyn_cast<InferTypeOpInterface>(op)) {
SmallVector<Value *, 4> values(op->getOperands());
auto res = retTypeFn.inferReturnTypes(op->getLoc(), values,
op->getAttrs(), op->getRegions());
SmallVector<Type, 1> result_types(op->getResultTypes());
if (!retTypeFn.isCompatibleReturnTypes(res, result_types))
return op->emitOpError(
"inferred type incompatible with return type of operation"),
matchFailure();
// TODO(jpienaar): Split this out to make the test more focused.
// Create new op with unknown location to verify building with
// InferTypeOpInterface is triggered.
auto fop = op->getParentOfType<FuncOp>();
if (values[0] == fop.getArgument(0)) {
// Use the 2nd function argument if the first function argument is used
// when constructing the new op so that a new return type is inferred.
values[0] = fop.getArgument(1);
values[1] = fop.getArgument(1);
// TODO(jpienaar): Expand to regions.
rewriter.create<OpWithInferTypeInterfaceOp>(
UnknownLoc::get(op->getContext()), values, op->getAttrs());
}
}
return matchFailure();
}
};
namespace {
struct TestReturnTypeDriver : public FunctionPass<TestReturnTypeDriver> {
void runOnFunction() override {
mlir::OwningRewritePatternList patterns;
populateWithGenerated(&getContext(), &patterns);
patterns.insert<ReturnTypeOpMatch>(&getContext());
applyPatternsGreedily(getFunction(), patterns);
}
};
} // end anonymous namespace
static mlir::PassRegistration<TestReturnTypeDriver>
rt_pass("test-return-type", "Run return type functions");
//===----------------------------------------------------------------------===//
// Legalization Driver.
//===----------------------------------------------------------------------===//
namespace {
//===----------------------------------------------------------------------===//
// Region-Block Rewrite Testing
/// This pattern is a simple pattern that inlines the first region of a given
/// operation into the parent region.
struct TestRegionRewriteBlockMovement : public ConversionPattern {
TestRegionRewriteBlockMovement(MLIRContext *ctx)
: ConversionPattern("test.region", 1, ctx) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const final {
// Inline this region into the parent region.
auto &parentRegion = *op->getParentRegion();
if (op->getAttr("legalizer.should_clone"))
rewriter.cloneRegionBefore(op->getRegion(0), parentRegion,
parentRegion.end());
else
rewriter.inlineRegionBefore(op->getRegion(0), parentRegion,
parentRegion.end());
// Drop this operation.
rewriter.eraseOp(op);
return matchSuccess();
}
};
/// This pattern is a simple pattern that generates a region containing an
/// illegal operation.
struct TestRegionRewriteUndo : public RewritePattern {
TestRegionRewriteUndo(MLIRContext *ctx)
: RewritePattern("test.region_builder", 1, ctx) {}
PatternMatchResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const final {
// Create the region operation with an entry block containing arguments.
OperationState newRegion(op->getLoc(), "test.region");
newRegion.addRegion();
auto *regionOp = rewriter.createOperation(newRegion);
auto *entryBlock = rewriter.createBlock(&regionOp->getRegion(0));
entryBlock->addArgument(rewriter.getIntegerType(64));
// Add an explicitly illegal operation to ensure the conversion fails.
rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getIntegerType(32));
rewriter.create<TestValidOp>(op->getLoc(), ArrayRef<Value *>());
// Drop this operation.
rewriter.eraseOp(op);
return matchSuccess();
}
};
//===----------------------------------------------------------------------===//
// Type-Conversion Rewrite Testing
/// This patterns erases a region operation that has had a type conversion.
struct TestDropOpSignatureConversion : public ConversionPattern {
TestDropOpSignatureConversion(MLIRContext *ctx, TypeConverter &converter)
: ConversionPattern("test.drop_region_op", 1, ctx), converter(converter) {
}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const override {
Region &region = op->getRegion(0);
Block *entry = &region.front();
// Convert the original entry arguments.
TypeConverter::SignatureConversion result(entry->getNumArguments());
for (unsigned i = 0, e = entry->getNumArguments(); i != e; ++i)
if (failed(converter.convertSignatureArg(
i, entry->getArgument(i)->getType(), result)))
return matchFailure();
// Convert the region signature and just drop the operation.
rewriter.applySignatureConversion(&region, result);
rewriter.eraseOp(op);
return matchSuccess();
}
/// The type converter to use when rewriting the signature.
TypeConverter &converter;
};
/// This pattern simply updates the operands of the given operation.
struct TestPassthroughInvalidOp : public ConversionPattern {
TestPassthroughInvalidOp(MLIRContext *ctx)
: ConversionPattern("test.invalid", 1, ctx) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const final {
rewriter.replaceOpWithNewOp<TestValidOp>(op, llvm::None, operands,
llvm::None);
return matchSuccess();
}
};
/// This pattern handles the case of a split return value.
struct TestSplitReturnType : public ConversionPattern {
TestSplitReturnType(MLIRContext *ctx)
: ConversionPattern("test.return", 1, ctx) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const final {
// Check for a return of F32.
if (op->getNumOperands() != 1 || !op->getOperand(0)->getType().isF32())
return matchFailure();
// Check if the first operation is a cast operation, if it is we use the
// results directly.
auto *defOp = operands[0]->getDefiningOp();
if (auto packerOp = llvm::dyn_cast_or_null<TestCastOp>(defOp)) {
SmallVector<Value *, 2> returnOperands(packerOp.getOperands());
rewriter.replaceOpWithNewOp<TestReturnOp>(op, returnOperands);
return matchSuccess();
}
// Otherwise, fail to match.
return matchFailure();
}
};
//===----------------------------------------------------------------------===//
// Multi-Level Type-Conversion Rewrite Testing
struct TestChangeProducerTypeI32ToF32 : public ConversionPattern {
TestChangeProducerTypeI32ToF32(MLIRContext *ctx)
: ConversionPattern("test.type_producer", 1, ctx) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const final {
// If the type is I32, change the type to F32.
if (!(*op->result_type_begin()).isInteger(32))
return matchFailure();
rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF32Type());
return matchSuccess();
}
};
struct TestChangeProducerTypeF32ToF64 : public ConversionPattern {
TestChangeProducerTypeF32ToF64(MLIRContext *ctx)
: ConversionPattern("test.type_producer", 1, ctx) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const final {
// If the type is F32, change the type to F64.
if (!(*op->result_type_begin()).isF32())
return matchFailure();
rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF64Type());
return matchSuccess();
}
};
struct TestChangeProducerTypeF32ToInvalid : public ConversionPattern {
TestChangeProducerTypeF32ToInvalid(MLIRContext *ctx)
: ConversionPattern("test.type_producer", 10, ctx) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const final {
// Always convert to B16, even though it is not a legal type. This tests
// that values are unmapped correctly.
rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getBF16Type());
return matchSuccess();
}
};
struct TestUpdateConsumerType : public ConversionPattern {
TestUpdateConsumerType(MLIRContext *ctx)
: ConversionPattern("test.type_consumer", 1, ctx) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const final {
// Verify that the incoming operand has been successfully remapped to F64.
if (!operands[0]->getType().isF64())
return matchFailure();
rewriter.replaceOpWithNewOp<TestTypeConsumerOp>(op, operands[0]);
return matchSuccess();
}
};
//===----------------------------------------------------------------------===//
// Non-Root Replacement Rewrite Testing
/// This pattern generates an invalid operation, but replaces it before the
/// pattern is finished. This checks that we don't need to legalize the
/// temporary op.
struct TestNonRootReplacement : public RewritePattern {
TestNonRootReplacement(MLIRContext *ctx)
: RewritePattern("test.replace_non_root", 1, ctx) {}
PatternMatchResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const final {
auto resultType = *op->result_type_begin();
auto illegalOp = rewriter.create<ILLegalOpF>(op->getLoc(), resultType);
auto legalOp = rewriter.create<LegalOpB>(op->getLoc(), resultType);
rewriter.replaceOp(illegalOp, {legalOp});
rewriter.replaceOp(op, {illegalOp});
return matchSuccess();
}
};
} // namespace
namespace {
struct TestTypeConverter : public TypeConverter {
using TypeConverter::TypeConverter;
LogicalResult convertType(Type t, SmallVectorImpl<Type> &results) override {
// Drop I16 types.
if (t.isInteger(16))
return success();
// Convert I64 to F64.
if (t.isInteger(64)) {
results.push_back(FloatType::getF64(t.getContext()));
return success();
}
// Split F32 into F16,F16.
if (t.isF32()) {
results.assign(2, FloatType::getF16(t.getContext()));
return success();
}
// Otherwise, convert the type directly.
results.push_back(t);
return success();
}
/// Override the hook to materialize a conversion. This is necessary because
/// we generate 1->N type mappings.
Operation *materializeConversion(PatternRewriter &rewriter, Type resultType,
ArrayRef<Value *> inputs,
Location loc) override {
return rewriter.create<TestCastOp>(loc, resultType, inputs);
}
};
struct TestLegalizePatternDriver
: public ModulePass<TestLegalizePatternDriver> {
/// The mode of conversion to use with the driver.
enum class ConversionMode { Analysis, Full, Partial };
TestLegalizePatternDriver(ConversionMode mode) : mode(mode) {}
void runOnModule() override {
TestTypeConverter converter;
mlir::OwningRewritePatternList patterns;
populateWithGenerated(&getContext(), &patterns);
patterns
.insert<TestRegionRewriteBlockMovement, TestRegionRewriteUndo,
TestPassthroughInvalidOp, TestSplitReturnType,
TestChangeProducerTypeI32ToF32, TestChangeProducerTypeF32ToF64,
TestChangeProducerTypeF32ToInvalid, TestUpdateConsumerType,
TestNonRootReplacement>(&getContext());
patterns.insert<TestDropOpSignatureConversion>(&getContext(), converter);
mlir::populateFuncOpTypeConversionPattern(patterns, &getContext(),
converter);
// Define the conversion target used for the test.
ConversionTarget target(getContext());
target.addLegalOp<ModuleOp, ModuleTerminatorOp>();
target.addLegalOp<LegalOpA, LegalOpB, TestCastOp, TestValidOp>();
target.addIllegalOp<ILLegalOpF, TestRegionBuilderOp>();
target.addDynamicallyLegalOp<TestReturnOp>([](TestReturnOp op) {
// Don't allow F32 operands.
return llvm::none_of(op.getOperandTypes(),
[](Type type) { return type.isF32(); });
});
target.addDynamicallyLegalOp<FuncOp>(
[&](FuncOp op) { return converter.isSignatureLegal(op.getType()); });
// Expect the type_producer/type_consumer operations to only operate on f64.
target.addDynamicallyLegalOp<TestTypeProducerOp>(
[](TestTypeProducerOp op) { return op.getType().isF64(); });
target.addDynamicallyLegalOp<TestTypeConsumerOp>([](TestTypeConsumerOp op) {
return op.getOperand()->getType().isF64();
});
// Check support for marking certain operations as recursively legal.
target.markOpRecursivelyLegal<FuncOp, ModuleOp>([](Operation *op) {
return static_cast<bool>(
op->getAttrOfType<UnitAttr>("test.recursively_legal"));
});
// Handle a partial conversion.
if (mode == ConversionMode::Partial) {
(void)applyPartialConversion(getModule(), target, patterns, &converter);
return;
}
// Handle a full conversion.
if (mode == ConversionMode::Full) {
(void)applyFullConversion(getModule(), target, patterns, &converter);
return;
}
// Otherwise, handle an analysis conversion.
assert(mode == ConversionMode::Analysis);
// Analyze the convertible operations.
DenseSet<Operation *> legalizedOps;
if (failed(applyAnalysisConversion(getModule(), target, patterns,
legalizedOps, &converter)))
return signalPassFailure();
// Emit remarks for each legalizable operation.
for (auto *op : legalizedOps)
op->emitRemark() << "op '" << op->getName() << "' is legalizable";
}
/// The mode of conversion to use.
ConversionMode mode;
};
} // end anonymous namespace
static llvm::cl::opt<TestLegalizePatternDriver::ConversionMode>
legalizerConversionMode(
"test-legalize-mode",
llvm::cl::desc("The legalization mode to use with the test driver"),
llvm::cl::init(TestLegalizePatternDriver::ConversionMode::Partial),
llvm::cl::values(
clEnumValN(TestLegalizePatternDriver::ConversionMode::Analysis,
"analysis", "Perform an analysis conversion"),
clEnumValN(TestLegalizePatternDriver::ConversionMode::Full, "full",
"Perform a full conversion"),
clEnumValN(TestLegalizePatternDriver::ConversionMode::Partial,
"partial", "Perform a partial conversion")));
static mlir::PassRegistration<TestLegalizePatternDriver>
legalizer_pass("test-legalize-patterns",
"Run test dialect legalization patterns", [] {
return std::make_unique<TestLegalizePatternDriver>(
legalizerConversionMode);
});
//===----------------------------------------------------------------------===//
// ConversionPatternRewriter::getRemappedValue testing. This method is used
// to get the remapped value of a original value that was replaced using
// ConversionPatternRewriter.
namespace {
/// Converter that replaces a one-result one-operand OneVResOneVOperandOp1 with
/// a one-operand two-result OneVResOneVOperandOp1 by replicating its original
/// operand twice.
///
/// Example:
/// %1 = test.one_variadic_out_one_variadic_in1"(%0)
/// is replaced with:
/// %1 = test.one_variadic_out_one_variadic_in1"(%0, %0)
struct OneVResOneVOperandOp1Converter
: public OpConversionPattern<OneVResOneVOperandOp1> {
using OpConversionPattern<OneVResOneVOperandOp1>::OpConversionPattern;
PatternMatchResult
matchAndRewrite(OneVResOneVOperandOp1 op, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const override {
auto origOps = op.getOperands();
assert(std::distance(origOps.begin(), origOps.end()) == 1 &&
"One operand expected");
Value *origOp = *origOps.begin();
SmallVector<Value *, 2> remappedOperands;
// Replicate the remapped original operand twice. Note that we don't used
// the remapped 'operand' since the goal is testing 'getRemappedValue'.
remappedOperands.push_back(rewriter.getRemappedValue(origOp));
remappedOperands.push_back(rewriter.getRemappedValue(origOp));
SmallVector<Type, 1> resultTypes(op.getResultTypes());
rewriter.replaceOpWithNewOp<OneVResOneVOperandOp1>(op, resultTypes,
remappedOperands);
return matchSuccess();
}
};
struct TestRemappedValue : public mlir::FunctionPass<TestRemappedValue> {
void runOnFunction() override {
mlir::OwningRewritePatternList patterns;
patterns.insert<OneVResOneVOperandOp1Converter>(&getContext());
mlir::ConversionTarget target(getContext());
target.addLegalOp<ModuleOp, ModuleTerminatorOp, FuncOp, TestReturnOp>();
// We make OneVResOneVOperandOp1 legal only when it has more that one
// operand. This will trigger the conversion that will replace one-operand
// OneVResOneVOperandOp1 with two-operand OneVResOneVOperandOp1.
target.addDynamicallyLegalOp<OneVResOneVOperandOp1>(
[](Operation *op) -> bool {
return std::distance(op->operand_begin(), op->operand_end()) > 1;
});
if (failed(mlir::applyFullConversion(getFunction(), target, patterns))) {
signalPassFailure();
}
}
};
} // end anonymous namespace
static PassRegistration<TestRemappedValue> remapped_value_pass(
"test-remapped-value",
"Test public remapped value mechanism in ConversionPatternRewriter");