`sret` arguments are always going to reside in the stack/`alloca` address space, which makes the current formulation where their AS is derived from the pointee somewhat quaint. This patch ensures that `sret` ends up pointing to the `alloca` AS in IR function signatures, and also guards agains trying to pass a casted `alloca`d pointer to a `sret` arg, which can happen for most languages, when compiled for targets that have a non-zero `alloca` AS (e.g. AMDGCN) / map `LangAS::default` to a non-zero value (SPIR-V). A target could still choose to do something different here, by e.g. overriding `classifyReturnType` behaviour. In a broader sense, this patch extends non-aliased indirect args to also carry an AS, which leads to changing the `getIndirect()` interface. At the moment we're only using this for (indirect) returns, but it allows for future handling of indirect args themselves. We default to using the AllocaAS as that matches what Clang is currently doing, however if, in the future, a target would opt for e.g. placing indirect returns in some other storage, with another AS, this will require revisiting. --------- Co-authored-by: Matt Arsenault <arsenm2@gmail.com> Co-authored-by: Matt Arsenault <Matthew.Arsenault@amd.com>
418 lines
14 KiB
C++
418 lines
14 KiB
C++
//===- Sparc.cpp ----------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ABIInfoImpl.h"
|
|
#include "TargetInfo.h"
|
|
|
|
using namespace clang;
|
|
using namespace clang::CodeGen;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SPARC v8 ABI Implementation.
|
|
// Based on the SPARC Compliance Definition version 2.4.1.
|
|
//
|
|
// Ensures that complex values are passed in registers.
|
|
//
|
|
namespace {
|
|
class SparcV8ABIInfo : public DefaultABIInfo {
|
|
public:
|
|
SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
|
|
|
|
private:
|
|
ABIArgInfo classifyReturnType(QualType RetTy) const;
|
|
void computeInfo(CGFunctionInfo &FI) const override;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
|
|
ABIArgInfo
|
|
SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
|
|
if (Ty->isAnyComplexType()) {
|
|
return ABIArgInfo::getDirect();
|
|
}
|
|
else {
|
|
return DefaultABIInfo::classifyReturnType(Ty);
|
|
}
|
|
}
|
|
|
|
void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
|
|
|
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
|
|
for (auto &Arg : FI.arguments())
|
|
Arg.info = classifyArgumentType(Arg.type);
|
|
}
|
|
|
|
namespace {
|
|
class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
|
|
public:
|
|
SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
|
|
: TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {}
|
|
|
|
llvm::Value *decodeReturnAddress(CodeGen::CodeGenFunction &CGF,
|
|
llvm::Value *Address) const override {
|
|
int Offset;
|
|
if (isAggregateTypeForABI(CGF.CurFnInfo->getReturnType()))
|
|
Offset = 12;
|
|
else
|
|
Offset = 8;
|
|
return CGF.Builder.CreateGEP(CGF.Int8Ty, Address,
|
|
llvm::ConstantInt::get(CGF.Int32Ty, Offset));
|
|
}
|
|
|
|
llvm::Value *encodeReturnAddress(CodeGen::CodeGenFunction &CGF,
|
|
llvm::Value *Address) const override {
|
|
int Offset;
|
|
if (isAggregateTypeForABI(CGF.CurFnInfo->getReturnType()))
|
|
Offset = -12;
|
|
else
|
|
Offset = -8;
|
|
return CGF.Builder.CreateGEP(CGF.Int8Ty, Address,
|
|
llvm::ConstantInt::get(CGF.Int32Ty, Offset));
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SPARC v9 ABI Implementation.
|
|
// Based on the SPARC Compliance Definition version 2.4.1.
|
|
//
|
|
// Function arguments a mapped to a nominal "parameter array" and promoted to
|
|
// registers depending on their type. Each argument occupies 8 or 16 bytes in
|
|
// the array, structs larger than 16 bytes are passed indirectly.
|
|
//
|
|
// One case requires special care:
|
|
//
|
|
// struct mixed {
|
|
// int i;
|
|
// float f;
|
|
// };
|
|
//
|
|
// When a struct mixed is passed by value, it only occupies 8 bytes in the
|
|
// parameter array, but the int is passed in an integer register, and the float
|
|
// is passed in a floating point register. This is represented as two arguments
|
|
// with the LLVM IR inreg attribute:
|
|
//
|
|
// declare void f(i32 inreg %i, float inreg %f)
|
|
//
|
|
// The code generator will only allocate 4 bytes from the parameter array for
|
|
// the inreg arguments. All other arguments are allocated a multiple of 8
|
|
// bytes.
|
|
//
|
|
namespace {
|
|
class SparcV9ABIInfo : public ABIInfo {
|
|
public:
|
|
SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
|
|
|
|
private:
|
|
ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
|
|
void computeInfo(CGFunctionInfo &FI) const override;
|
|
RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
|
|
AggValueSlot Slot) const override;
|
|
|
|
// Coercion type builder for structs passed in registers. The coercion type
|
|
// serves two purposes:
|
|
//
|
|
// 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
|
|
// in registers.
|
|
// 2. Expose aligned floating point elements as first-level elements, so the
|
|
// code generator knows to pass them in floating point registers.
|
|
//
|
|
// We also compute the InReg flag which indicates that the struct contains
|
|
// aligned 32-bit floats.
|
|
//
|
|
struct CoerceBuilder {
|
|
llvm::LLVMContext &Context;
|
|
const llvm::DataLayout &DL;
|
|
SmallVector<llvm::Type*, 8> Elems;
|
|
uint64_t Size;
|
|
bool InReg;
|
|
|
|
CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
|
|
: Context(c), DL(dl), Size(0), InReg(false) {}
|
|
|
|
// Pad Elems with integers until Size is ToSize.
|
|
void pad(uint64_t ToSize) {
|
|
assert(ToSize >= Size && "Cannot remove elements");
|
|
if (ToSize == Size)
|
|
return;
|
|
|
|
// Finish the current 64-bit word.
|
|
uint64_t Aligned = llvm::alignTo(Size, 64);
|
|
if (Aligned > Size && Aligned <= ToSize) {
|
|
Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
|
|
Size = Aligned;
|
|
}
|
|
|
|
// Add whole 64-bit words.
|
|
while (Size + 64 <= ToSize) {
|
|
Elems.push_back(llvm::Type::getInt64Ty(Context));
|
|
Size += 64;
|
|
}
|
|
|
|
// Final in-word padding.
|
|
if (Size < ToSize) {
|
|
Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
|
|
Size = ToSize;
|
|
}
|
|
}
|
|
|
|
// Add a floating point element at Offset.
|
|
void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
|
|
// Unaligned floats are treated as integers.
|
|
if (Offset % Bits)
|
|
return;
|
|
// The InReg flag is only required if there are any floats < 64 bits.
|
|
if (Bits < 64)
|
|
InReg = true;
|
|
pad(Offset);
|
|
Elems.push_back(Ty);
|
|
Size = Offset + Bits;
|
|
}
|
|
|
|
// Add a struct type to the coercion type, starting at Offset (in bits).
|
|
void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
|
|
const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
|
|
for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
|
|
llvm::Type *ElemTy = StrTy->getElementType(i);
|
|
uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
|
|
switch (ElemTy->getTypeID()) {
|
|
case llvm::Type::StructTyID:
|
|
addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
|
|
break;
|
|
case llvm::Type::FloatTyID:
|
|
addFloat(ElemOffset, ElemTy, 32);
|
|
break;
|
|
case llvm::Type::DoubleTyID:
|
|
addFloat(ElemOffset, ElemTy, 64);
|
|
break;
|
|
case llvm::Type::FP128TyID:
|
|
addFloat(ElemOffset, ElemTy, 128);
|
|
break;
|
|
case llvm::Type::PointerTyID:
|
|
if (ElemOffset % 64 == 0) {
|
|
pad(ElemOffset);
|
|
Elems.push_back(ElemTy);
|
|
Size += 64;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check if Ty is a usable substitute for the coercion type.
|
|
bool isUsableType(llvm::StructType *Ty) const {
|
|
return llvm::ArrayRef(Elems) == Ty->elements();
|
|
}
|
|
|
|
// Get the coercion type as a literal struct type.
|
|
llvm::Type *getType() const {
|
|
if (Elems.size() == 1)
|
|
return Elems.front();
|
|
else
|
|
return llvm::StructType::get(Context, Elems);
|
|
}
|
|
};
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
ABIArgInfo
|
|
SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
|
|
if (Ty->isVoidType())
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
uint64_t Size = getContext().getTypeSize(Ty);
|
|
|
|
// Anything too big to fit in registers is passed with an explicit indirect
|
|
// pointer / sret pointer.
|
|
if (Size > SizeLimit)
|
|
return getNaturalAlignIndirect(
|
|
Ty, /*AddrSpace=*/getDataLayout().getAllocaAddrSpace(),
|
|
/*ByVal=*/false);
|
|
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
|
|
|
// Integer types smaller than a register are extended.
|
|
if (Size < 64 && Ty->isIntegerType())
|
|
return ABIArgInfo::getExtend(Ty);
|
|
|
|
if (const auto *EIT = Ty->getAs<BitIntType>())
|
|
if (EIT->getNumBits() < 64)
|
|
return ABIArgInfo::getExtend(Ty);
|
|
|
|
// Other non-aggregates go in registers.
|
|
if (!isAggregateTypeForABI(Ty))
|
|
return ABIArgInfo::getDirect();
|
|
|
|
// If a C++ object has either a non-trivial copy constructor or a non-trivial
|
|
// destructor, it is passed with an explicit indirect pointer / sret pointer.
|
|
if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
|
|
return getNaturalAlignIndirect(Ty, getDataLayout().getAllocaAddrSpace(),
|
|
RAA == CGCXXABI::RAA_DirectInMemory);
|
|
|
|
// This is a small aggregate type that should be passed in registers.
|
|
// Build a coercion type from the LLVM struct type.
|
|
llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
|
|
if (!StrTy)
|
|
return ABIArgInfo::getDirect();
|
|
|
|
CoerceBuilder CB(getVMContext(), getDataLayout());
|
|
CB.addStruct(0, StrTy);
|
|
// All structs, even empty ones, should take up a register argument slot,
|
|
// so pin the minimum struct size to one bit.
|
|
CB.pad(llvm::alignTo(
|
|
std::max(CB.DL.getTypeSizeInBits(StrTy).getKnownMinValue(), uint64_t(1)),
|
|
64));
|
|
|
|
// Try to use the original type for coercion.
|
|
llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
|
|
|
|
if (CB.InReg)
|
|
return ABIArgInfo::getDirectInReg(CoerceTy);
|
|
else
|
|
return ABIArgInfo::getDirect(CoerceTy);
|
|
}
|
|
|
|
RValue SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
|
QualType Ty, AggValueSlot Slot) const {
|
|
ABIArgInfo AI = classifyType(Ty, 16 * 8);
|
|
llvm::Type *ArgTy = CGT.ConvertType(Ty);
|
|
if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
|
|
AI.setCoerceToType(ArgTy);
|
|
|
|
CharUnits SlotSize = CharUnits::fromQuantity(8);
|
|
|
|
CGBuilderTy &Builder = CGF.Builder;
|
|
Address Addr = Address(Builder.CreateLoad(VAListAddr, "ap.cur"),
|
|
getVAListElementType(CGF), SlotSize);
|
|
llvm::Type *ArgPtrTy = CGF.UnqualPtrTy;
|
|
|
|
auto TypeInfo = getContext().getTypeInfoInChars(Ty);
|
|
|
|
Address ArgAddr = Address::invalid();
|
|
CharUnits Stride;
|
|
switch (AI.getKind()) {
|
|
case ABIArgInfo::Expand:
|
|
case ABIArgInfo::CoerceAndExpand:
|
|
case ABIArgInfo::InAlloca:
|
|
llvm_unreachable("Unsupported ABI kind for va_arg");
|
|
|
|
case ABIArgInfo::Extend: {
|
|
Stride = SlotSize;
|
|
CharUnits Offset = SlotSize - TypeInfo.Width;
|
|
ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
|
|
break;
|
|
}
|
|
|
|
case ABIArgInfo::Direct: {
|
|
auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
|
|
Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
|
|
ArgAddr = Addr;
|
|
break;
|
|
}
|
|
|
|
case ABIArgInfo::Indirect:
|
|
case ABIArgInfo::IndirectAliased:
|
|
Stride = SlotSize;
|
|
ArgAddr = Addr.withElementType(ArgPtrTy);
|
|
ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), ArgTy,
|
|
TypeInfo.Align);
|
|
break;
|
|
|
|
case ABIArgInfo::Ignore:
|
|
return Slot.asRValue();
|
|
}
|
|
|
|
// Update VAList.
|
|
Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next");
|
|
Builder.CreateStore(NextPtr.emitRawPointer(CGF), VAListAddr);
|
|
|
|
return CGF.EmitLoadOfAnyValue(
|
|
CGF.MakeAddrLValue(ArgAddr.withElementType(ArgTy), Ty), Slot);
|
|
}
|
|
|
|
void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
|
FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
|
|
for (auto &I : FI.arguments())
|
|
I.info = classifyType(I.type, 16 * 8);
|
|
}
|
|
|
|
namespace {
|
|
class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
|
|
public:
|
|
SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
|
|
: TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {}
|
|
|
|
int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
|
|
return 14;
|
|
}
|
|
|
|
bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
|
llvm::Value *Address) const override;
|
|
|
|
llvm::Value *decodeReturnAddress(CodeGen::CodeGenFunction &CGF,
|
|
llvm::Value *Address) const override {
|
|
return CGF.Builder.CreateGEP(CGF.Int8Ty, Address,
|
|
llvm::ConstantInt::get(CGF.Int32Ty, 8));
|
|
}
|
|
|
|
llvm::Value *encodeReturnAddress(CodeGen::CodeGenFunction &CGF,
|
|
llvm::Value *Address) const override {
|
|
return CGF.Builder.CreateGEP(CGF.Int8Ty, Address,
|
|
llvm::ConstantInt::get(CGF.Int32Ty, -8));
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
bool
|
|
SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
|
llvm::Value *Address) const {
|
|
// This is calculated from the LLVM and GCC tables and verified
|
|
// against gcc output. AFAIK all ABIs use the same encoding.
|
|
|
|
CodeGen::CGBuilderTy &Builder = CGF.Builder;
|
|
|
|
llvm::IntegerType *i8 = CGF.Int8Ty;
|
|
llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
|
|
llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
|
|
|
|
// 0-31: the 8-byte general-purpose registers
|
|
AssignToArrayRange(Builder, Address, Eight8, 0, 31);
|
|
|
|
// 32-63: f0-31, the 4-byte floating-point registers
|
|
AssignToArrayRange(Builder, Address, Four8, 32, 63);
|
|
|
|
// Y = 64
|
|
// PSR = 65
|
|
// WIM = 66
|
|
// TBR = 67
|
|
// PC = 68
|
|
// NPC = 69
|
|
// FSR = 70
|
|
// CSR = 71
|
|
AssignToArrayRange(Builder, Address, Eight8, 64, 71);
|
|
|
|
// 72-87: d0-15, the 8-byte floating-point registers
|
|
AssignToArrayRange(Builder, Address, Eight8, 72, 87);
|
|
|
|
return false;
|
|
}
|
|
|
|
std::unique_ptr<TargetCodeGenInfo>
|
|
CodeGen::createSparcV8TargetCodeGenInfo(CodeGenModule &CGM) {
|
|
return std::make_unique<SparcV8TargetCodeGenInfo>(CGM.getTypes());
|
|
}
|
|
|
|
std::unique_ptr<TargetCodeGenInfo>
|
|
CodeGen::createSparcV9TargetCodeGenInfo(CodeGenModule &CGM) {
|
|
return std::make_unique<SparcV9TargetCodeGenInfo>(CGM.getTypes());
|
|
}
|