Files
clang-p2996/clang/test/CodeGen/partial-reinitialization2.c
Alex Voicu 39ec9de7c2 [clang][CodeGen] sret args should always point to the alloca AS, so use that (#114062)
`sret` arguments are always going to reside in the stack/`alloca`
address space, which makes the current formulation where their AS is
derived from the pointee somewhat quaint. This patch ensures that `sret`
ends up pointing to the `alloca` AS in IR function signatures, and also
guards agains trying to pass a casted `alloca`d pointer to a `sret` arg,
which can happen for most languages, when compiled for targets that have
a non-zero `alloca` AS (e.g. AMDGCN) / map `LangAS::default` to a
non-zero value (SPIR-V). A target could still choose to do something
different here, by e.g. overriding `classifyReturnType` behaviour.

In a broader sense, this patch extends non-aliased indirect args to also
carry an AS, which leads to changing the `getIndirect()` interface. At
the moment we're only using this for (indirect) returns, but it allows
for future handling of indirect args themselves. We default to using the
AllocaAS as that matches what Clang is currently doing, however if, in
the future, a target would opt for e.g. placing indirect returns in some
other storage, with another AS, this will require revisiting.

---------

Co-authored-by: Matt Arsenault <arsenm2@gmail.com>
Co-authored-by: Matt Arsenault <Matthew.Arsenault@amd.com>
2025-02-14 11:20:45 +00:00

107 lines
2.7 KiB
C

// RUN: %clang_cc1 %s -triple x86_64-unknown-unknown -emit-llvm -o - | FileCheck %s
struct P1 { char x[6]; } g1 = { "foo" };
struct LP1 { struct P1 p1; };
struct P2 { int a, b, c; } g2 = { 1, 2, 3 };
struct LP2 { struct P2 p2; };
struct LP2P2 { struct P2 p1, p2; };
union UP2 { struct P2 p2; };
struct LP3 { struct P1 p1[2]; } g3 = { { "dog" }, { "cat" } };
struct LLP3 { struct LP3 l3; };
union ULP3 { struct LP3 l3; };
// CHECK-LABEL: test1
void test1(void)
{
// CHECK: call void @llvm.memcpy{{.*}}ptr align 1 @g1, i64 6, i1 false)
// CHECK: store i8 120, ptr %
struct LP1 l = { .p1 = g1, .p1.x[2] = 'x' };
}
// CHECK-LABEL: test2
void test2(void)
{
// CHECK: call void @llvm.memcpy{{.*}}ptr align 1 @g1, i64 6, i1 false)
// CHECK: store i8 114, ptr %
struct LP1 l = { .p1 = g1, .p1.x[1] = 'r' };
}
// CHECK-LABEL: test3
void test3(void)
{
// CHECK: call void @llvm.memcpy{{.*}}ptr align 4 @g2, i64 12, i1 false)
// CHECK: store i32 10, ptr %
struct LP2 l = { .p2 = g2, .p2.b = 10 };
}
// CHECK-LABEL: get235
struct P2 get235(void)
{
struct P2 p = { 2, 3, 5 };
return p;
}
// CHECK-LABEL: get456789
struct LP2P2 get456789(void)
{
struct LP2P2 l = { { 4, 5, 6 }, { 7, 8, 9 } };
return l;
}
// CHECK-LABEL: get123
union UP2 get123(void)
{
union UP2 u = { { 1, 2, 3 } };
return u;
}
// CHECK-LABEL: test4
void test4(void)
{
// CHECK: [[CALL:%[a-z0-9]+]] = call {{.*}}@get123()
// CHECK: store{{.*}}[[CALL]], {{.*}}[[TMP0:%[a-z0-9.]+]]
// CHECK: call void @llvm.memcpy{{.*}}[[TMP0]], i64 12, i1 false)
// CHECK: store i32 100, ptr %
struct LUP2 { union UP2 up; } var = { get123(), .up.p2.a = 100 };
}
// CHECK-LABEL: test5
void test5(void)
{
// .l3 = g3
// CHECK: call void @llvm.memcpy{{.*}}ptr align 1 @g3, i64 12, i1 false)
// .l3.p1 = { [0] = g1 } implicitly sets [1] to zero
// CHECK: call void @llvm.memcpy{{.*}}ptr align 1 @g1, i64 6, i1 false)
// CHECK: getelementptr{{.*}}%struct.P1, ptr{{.*}}i64 1
// CHECK: call void @llvm.memset{{.*}}i8 0, i64 6, i1 false)
// .l3.p1[1].x[1] = 'x'
// CHECK: store i8 120, ptr %
struct LLP3 var = { .l3 = g3, .l3.p1 = { [0] = g1 }, .l3.p1[1].x[1] = 'x' };
}
// CHECK-LABEL: test6
void test6(void)
{
// CHECK: [[VAR:%[a-z0-9]+]] = alloca
// CHECK: call {{.*}}get456789(ptr {{.*}}sret{{.*}} [[VAR]])
// CHECK: [[CALL:%[a-z0-9]+]] = call {{.*}}@get235()
// CHECK: store{{.*}}[[CALL]], {{.*}}[[TMP0:%[a-z0-9.]+]]
// CHECK: call void @llvm.memcpy{{.*}}[[TMP0]], i64 12, i1 false)
// CHECK: store i32 10, ptr %
struct LLP2P2 { struct LP2P2 lp; } var = { get456789(),
.lp.p1 = get235(),
.lp.p1.b = 10 };
}