This work feeds part of PR https://github.com/llvm/llvm-project/pull/88385, and adds support for vectorising loops with uncountable early exits and outside users of loop-defined variables. When calculating the final value from an uncountable early exit we need to calculate the vector lane that triggered the exit, and hence determine the value at the point we exited. All code for calculating the last value when exiting the loop early now lives in a new vector.early.exit block, which sits between the middle.split block and the original exit block. Doing this required two fixes: 1. The vplan verifier incorrectly assumed that the block containing a definition always dominates the block of the user. That's not true if you can arrive at the use block from multiple incoming blocks. This is possible for early exit loops where both the early exit and the latch jump to the same block. 2. We were adding the new vector.early.exit to the wrong parent loop. It needs to have the same parent as the actual early exit block from the original loop. I've added a new ExtractFirstActive VPInstruction that extracts the first active lane of a vector, i.e. the lane of the vector predicate that triggered the exit. NOTE: The IR generated for dealing with live-outs from early exit loops is unoptimised, as opposed to normal loops. This inevitably leads to poor quality code, but this can be fixed up later.
426 lines
14 KiB
C++
426 lines
14 KiB
C++
//===-- VPlanVerifier.cpp -------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
/// This file defines the class VPlanVerifier, which contains utility functions
|
|
/// to check the consistency and invariants of a VPlan.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "VPlanVerifier.h"
|
|
#include "VPlan.h"
|
|
#include "VPlanCFG.h"
|
|
#include "VPlanDominatorTree.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/TypeSwitch.h"
|
|
|
|
#define DEBUG_TYPE "loop-vectorize"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
class VPlanVerifier {
|
|
const VPDominatorTree &VPDT;
|
|
VPTypeAnalysis &TypeInfo;
|
|
|
|
SmallPtrSet<BasicBlock *, 8> WrappedIRBBs;
|
|
|
|
// Verify that phi-like recipes are at the beginning of \p VPBB, with no
|
|
// other recipes in between. Also check that only header blocks contain
|
|
// VPHeaderPHIRecipes.
|
|
bool verifyPhiRecipes(const VPBasicBlock *VPBB);
|
|
|
|
/// Verify that \p EVL is used correctly. The user must be either in
|
|
/// EVL-based recipes as a last operand or VPInstruction::Add which is
|
|
/// incoming value into EVL's recipe.
|
|
bool verifyEVLRecipe(const VPInstruction &EVL) const;
|
|
|
|
bool verifyVPBasicBlock(const VPBasicBlock *VPBB);
|
|
|
|
bool verifyBlock(const VPBlockBase *VPB);
|
|
|
|
/// Helper function that verifies the CFG invariants of the VPBlockBases
|
|
/// within
|
|
/// \p Region. Checks in this function are generic for VPBlockBases. They are
|
|
/// not specific for VPBasicBlocks or VPRegionBlocks.
|
|
bool verifyBlocksInRegion(const VPRegionBlock *Region);
|
|
|
|
/// Verify the CFG invariants of VPRegionBlock \p Region and its nested
|
|
/// VPBlockBases. Do not recurse inside nested VPRegionBlocks.
|
|
bool verifyRegion(const VPRegionBlock *Region);
|
|
|
|
/// Verify the CFG invariants of VPRegionBlock \p Region and its nested
|
|
/// VPBlockBases. Recurse inside nested VPRegionBlocks.
|
|
bool verifyRegionRec(const VPRegionBlock *Region);
|
|
|
|
public:
|
|
VPlanVerifier(VPDominatorTree &VPDT, VPTypeAnalysis &TypeInfo)
|
|
: VPDT(VPDT), TypeInfo(TypeInfo) {}
|
|
|
|
bool verify(const VPlan &Plan);
|
|
};
|
|
} // namespace
|
|
|
|
bool VPlanVerifier::verifyPhiRecipes(const VPBasicBlock *VPBB) {
|
|
auto RecipeI = VPBB->begin();
|
|
auto End = VPBB->end();
|
|
unsigned NumActiveLaneMaskPhiRecipes = 0;
|
|
const VPRegionBlock *ParentR = VPBB->getParent();
|
|
bool IsHeaderVPBB = ParentR && !ParentR->isReplicator() &&
|
|
ParentR->getEntryBasicBlock() == VPBB;
|
|
while (RecipeI != End && RecipeI->isPhi()) {
|
|
if (isa<VPActiveLaneMaskPHIRecipe>(RecipeI))
|
|
NumActiveLaneMaskPhiRecipes++;
|
|
|
|
if (IsHeaderVPBB && !isa<VPHeaderPHIRecipe, VPWidenPHIRecipe>(*RecipeI)) {
|
|
errs() << "Found non-header PHI recipe in header VPBB";
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
errs() << ": ";
|
|
RecipeI->dump();
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
if (!IsHeaderVPBB && isa<VPHeaderPHIRecipe>(*RecipeI)) {
|
|
errs() << "Found header PHI recipe in non-header VPBB";
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
errs() << ": ";
|
|
RecipeI->dump();
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
RecipeI++;
|
|
}
|
|
|
|
if (NumActiveLaneMaskPhiRecipes > 1) {
|
|
errs() << "There should be no more than one VPActiveLaneMaskPHIRecipe";
|
|
return false;
|
|
}
|
|
|
|
while (RecipeI != End) {
|
|
if (RecipeI->isPhi() && !isa<VPBlendRecipe>(&*RecipeI)) {
|
|
errs() << "Found phi-like recipe after non-phi recipe";
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
errs() << ": ";
|
|
RecipeI->dump();
|
|
errs() << "after\n";
|
|
std::prev(RecipeI)->dump();
|
|
#endif
|
|
return false;
|
|
}
|
|
RecipeI++;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool VPlanVerifier::verifyEVLRecipe(const VPInstruction &EVL) const {
|
|
if (EVL.getOpcode() != VPInstruction::ExplicitVectorLength) {
|
|
errs() << "verifyEVLRecipe should only be called on "
|
|
"VPInstruction::ExplicitVectorLength\n";
|
|
return false;
|
|
}
|
|
auto VerifyEVLUse = [&](const VPRecipeBase &R,
|
|
const unsigned ExpectedIdx) -> bool {
|
|
SmallVector<const VPValue *> Ops(R.operands());
|
|
unsigned UseCount = count(Ops, &EVL);
|
|
if (UseCount != 1 || Ops[ExpectedIdx] != &EVL) {
|
|
errs() << "EVL is used as non-last operand in EVL-based recipe\n";
|
|
return false;
|
|
}
|
|
return true;
|
|
};
|
|
return all_of(EVL.users(), [&VerifyEVLUse](VPUser *U) {
|
|
return TypeSwitch<const VPUser *, bool>(U)
|
|
.Case<VPWidenIntrinsicRecipe>([&](const VPWidenIntrinsicRecipe *S) {
|
|
return VerifyEVLUse(*S, S->getNumOperands() - 1);
|
|
})
|
|
.Case<VPWidenStoreEVLRecipe, VPReductionEVLRecipe>(
|
|
[&](const VPRecipeBase *S) { return VerifyEVLUse(*S, 2); })
|
|
.Case<VPWidenLoadEVLRecipe, VPReverseVectorPointerRecipe>(
|
|
[&](const VPRecipeBase *R) { return VerifyEVLUse(*R, 1); })
|
|
.Case<VPWidenEVLRecipe>([&](const VPWidenEVLRecipe *W) {
|
|
return VerifyEVLUse(*W,
|
|
Instruction::isUnaryOp(W->getOpcode()) ? 1 : 2);
|
|
})
|
|
.Case<VPScalarCastRecipe>(
|
|
[&](const VPScalarCastRecipe *S) { return VerifyEVLUse(*S, 0); })
|
|
.Case<VPInstruction>([&](const VPInstruction *I) {
|
|
if (I->getOpcode() != Instruction::Add) {
|
|
errs() << "EVL is used as an operand in non-VPInstruction::Add\n";
|
|
return false;
|
|
}
|
|
if (I->getNumUsers() != 1) {
|
|
errs() << "EVL is used in VPInstruction:Add with multiple "
|
|
"users\n";
|
|
return false;
|
|
}
|
|
if (!isa<VPEVLBasedIVPHIRecipe>(*I->users().begin())) {
|
|
errs() << "Result of VPInstruction::Add with EVL operand is "
|
|
"not used by VPEVLBasedIVPHIRecipe\n";
|
|
return false;
|
|
}
|
|
return true;
|
|
})
|
|
.Default([&](const VPUser *U) {
|
|
errs() << "EVL has unexpected user\n";
|
|
return false;
|
|
});
|
|
});
|
|
}
|
|
|
|
bool VPlanVerifier::verifyVPBasicBlock(const VPBasicBlock *VPBB) {
|
|
if (!verifyPhiRecipes(VPBB))
|
|
return false;
|
|
|
|
// Verify that defs in VPBB dominate all their uses. The current
|
|
// implementation is still incomplete.
|
|
DenseMap<const VPRecipeBase *, unsigned> RecipeNumbering;
|
|
unsigned Cnt = 0;
|
|
for (const VPRecipeBase &R : *VPBB)
|
|
RecipeNumbering[&R] = Cnt++;
|
|
|
|
for (const VPRecipeBase &R : *VPBB) {
|
|
if (isa<VPIRInstruction>(&R) && !isa<VPIRBasicBlock>(VPBB)) {
|
|
errs() << "VPIRInstructions ";
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
R.dump();
|
|
errs() << " ";
|
|
#endif
|
|
errs() << "not in a VPIRBasicBlock!\n";
|
|
return false;
|
|
}
|
|
for (const VPValue *V : R.definedValues()) {
|
|
// Verify that we can infer a scalar type for each defined value. With
|
|
// assertions enabled, inferScalarType will perform some consistency
|
|
// checks during type inference.
|
|
if (!TypeInfo.inferScalarType(V)) {
|
|
errs() << "Failed to infer scalar type!\n";
|
|
return false;
|
|
}
|
|
|
|
for (const VPUser *U : V->users()) {
|
|
auto *UI = cast<VPRecipeBase>(U);
|
|
// TODO: check dominance of incoming values for phis properly.
|
|
if (!UI ||
|
|
isa<VPHeaderPHIRecipe, VPWidenPHIRecipe, VPPredInstPHIRecipe>(UI) ||
|
|
(isa<VPIRInstruction>(UI) &&
|
|
isa<PHINode>(cast<VPIRInstruction>(UI)->getInstruction())))
|
|
continue;
|
|
|
|
// If the user is in the same block, check it comes after R in the
|
|
// block.
|
|
if (UI->getParent() == VPBB) {
|
|
if (RecipeNumbering[UI] < RecipeNumbering[&R]) {
|
|
errs() << "Use before def!\n";
|
|
return false;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (!VPDT.dominates(VPBB, UI->getParent())) {
|
|
errs() << "Use before def!\n";
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
if (const auto *EVL = dyn_cast<VPInstruction>(&R)) {
|
|
if (EVL->getOpcode() == VPInstruction::ExplicitVectorLength &&
|
|
!verifyEVLRecipe(*EVL)) {
|
|
errs() << "EVL VPValue is not used correctly\n";
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
auto *IRBB = dyn_cast<VPIRBasicBlock>(VPBB);
|
|
if (!IRBB)
|
|
return true;
|
|
|
|
if (!WrappedIRBBs.insert(IRBB->getIRBasicBlock()).second) {
|
|
errs() << "Same IR basic block used by multiple wrapper blocks!\n";
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Utility function that checks whether \p VPBlockVec has duplicate
|
|
/// VPBlockBases.
|
|
static bool hasDuplicates(const SmallVectorImpl<VPBlockBase *> &VPBlockVec) {
|
|
SmallDenseSet<const VPBlockBase *, 8> VPBlockSet;
|
|
for (const auto *Block : VPBlockVec) {
|
|
if (!VPBlockSet.insert(Block).second)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool VPlanVerifier::verifyBlock(const VPBlockBase *VPB) {
|
|
auto *VPBB = dyn_cast<VPBasicBlock>(VPB);
|
|
// Check block's condition bit.
|
|
if (VPB->getNumSuccessors() > 1 ||
|
|
(VPBB && VPBB->getParent() && VPBB->isExiting() &&
|
|
!VPBB->getParent()->isReplicator())) {
|
|
if (!VPBB || !VPBB->getTerminator()) {
|
|
errs() << "Block has multiple successors but doesn't "
|
|
"have a proper branch recipe!\n";
|
|
return false;
|
|
}
|
|
} else {
|
|
if (VPBB && VPBB->getTerminator()) {
|
|
errs() << "Unexpected branch recipe!\n";
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Check block's successors.
|
|
const auto &Successors = VPB->getSuccessors();
|
|
// There must be only one instance of a successor in block's successor list.
|
|
// TODO: This won't work for switch statements.
|
|
if (hasDuplicates(Successors)) {
|
|
errs() << "Multiple instances of the same successor.\n";
|
|
return false;
|
|
}
|
|
|
|
for (const VPBlockBase *Succ : Successors) {
|
|
// There must be a bi-directional link between block and successor.
|
|
const auto &SuccPreds = Succ->getPredecessors();
|
|
if (!is_contained(SuccPreds, VPB)) {
|
|
errs() << "Missing predecessor link.\n";
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Check block's predecessors.
|
|
const auto &Predecessors = VPB->getPredecessors();
|
|
// There must be only one instance of a predecessor in block's predecessor
|
|
// list.
|
|
// TODO: This won't work for switch statements.
|
|
if (hasDuplicates(Predecessors)) {
|
|
errs() << "Multiple instances of the same predecessor.\n";
|
|
return false;
|
|
}
|
|
|
|
for (const VPBlockBase *Pred : Predecessors) {
|
|
// Block and predecessor must be inside the same region.
|
|
if (Pred->getParent() != VPB->getParent()) {
|
|
errs() << "Predecessor is not in the same region.\n";
|
|
return false;
|
|
}
|
|
|
|
// There must be a bi-directional link between block and predecessor.
|
|
const auto &PredSuccs = Pred->getSuccessors();
|
|
if (!is_contained(PredSuccs, VPB)) {
|
|
errs() << "Missing successor link.\n";
|
|
return false;
|
|
}
|
|
}
|
|
return !VPBB || verifyVPBasicBlock(VPBB);
|
|
}
|
|
|
|
bool VPlanVerifier::verifyBlocksInRegion(const VPRegionBlock *Region) {
|
|
for (const VPBlockBase *VPB : vp_depth_first_shallow(Region->getEntry())) {
|
|
// Check block's parent.
|
|
if (VPB->getParent() != Region) {
|
|
errs() << "VPBlockBase has wrong parent\n";
|
|
return false;
|
|
}
|
|
|
|
if (!verifyBlock(VPB))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool VPlanVerifier::verifyRegion(const VPRegionBlock *Region) {
|
|
const VPBlockBase *Entry = Region->getEntry();
|
|
const VPBlockBase *Exiting = Region->getExiting();
|
|
|
|
// Entry and Exiting shouldn't have any predecessor/successor, respectively.
|
|
if (Entry->getNumPredecessors() != 0) {
|
|
errs() << "region entry block has predecessors\n";
|
|
return false;
|
|
}
|
|
if (Exiting->getNumSuccessors() != 0) {
|
|
errs() << "region exiting block has successors\n";
|
|
return false;
|
|
}
|
|
|
|
return verifyBlocksInRegion(Region);
|
|
}
|
|
|
|
bool VPlanVerifier::verifyRegionRec(const VPRegionBlock *Region) {
|
|
// Recurse inside nested regions and check all blocks inside the region.
|
|
return verifyRegion(Region) &&
|
|
all_of(vp_depth_first_shallow(Region->getEntry()),
|
|
[this](const VPBlockBase *VPB) {
|
|
const auto *SubRegion = dyn_cast<VPRegionBlock>(VPB);
|
|
return !SubRegion || verifyRegionRec(SubRegion);
|
|
});
|
|
}
|
|
|
|
bool VPlanVerifier::verify(const VPlan &Plan) {
|
|
if (any_of(vp_depth_first_shallow(Plan.getEntry()),
|
|
[this](const VPBlockBase *VPB) { return !verifyBlock(VPB); }))
|
|
return false;
|
|
|
|
const VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
|
|
if (!verifyRegionRec(TopRegion))
|
|
return false;
|
|
|
|
if (TopRegion->getParent()) {
|
|
errs() << "VPlan Top Region should have no parent.\n";
|
|
return false;
|
|
}
|
|
|
|
const VPBasicBlock *Entry = dyn_cast<VPBasicBlock>(TopRegion->getEntry());
|
|
if (!Entry) {
|
|
errs() << "VPlan entry block is not a VPBasicBlock\n";
|
|
return false;
|
|
}
|
|
|
|
if (!isa<VPCanonicalIVPHIRecipe>(&*Entry->begin())) {
|
|
errs() << "VPlan vector loop header does not start with a "
|
|
"VPCanonicalIVPHIRecipe\n";
|
|
return false;
|
|
}
|
|
|
|
const VPBasicBlock *Exiting = dyn_cast<VPBasicBlock>(TopRegion->getExiting());
|
|
if (!Exiting) {
|
|
errs() << "VPlan exiting block is not a VPBasicBlock\n";
|
|
return false;
|
|
}
|
|
|
|
if (Exiting->empty()) {
|
|
errs() << "VPlan vector loop exiting block must end with BranchOnCount or "
|
|
"BranchOnCond VPInstruction but is empty\n";
|
|
return false;
|
|
}
|
|
|
|
auto *LastInst = dyn_cast<VPInstruction>(std::prev(Exiting->end()));
|
|
if (!LastInst || (LastInst->getOpcode() != VPInstruction::BranchOnCount &&
|
|
LastInst->getOpcode() != VPInstruction::BranchOnCond)) {
|
|
errs() << "VPlan vector loop exit must end with BranchOnCount or "
|
|
"BranchOnCond VPInstruction\n";
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool llvm::verifyVPlanIsValid(const VPlan &Plan) {
|
|
VPDominatorTree VPDT;
|
|
VPDT.recalculate(const_cast<VPlan &>(Plan));
|
|
VPTypeAnalysis TypeInfo(
|
|
const_cast<VPlan &>(Plan).getCanonicalIV()->getScalarType());
|
|
VPlanVerifier Verifier(VPDT, TypeInfo);
|
|
return Verifier.verify(Plan);
|
|
}
|