Files
clang-p2996/llvm/lib/Target/AMDGPU/AMDGPUSwLowerLDS.cpp
Nikita Popov 979c275097 [IR] Store Triple in Module (NFC) (#129868)
The module currently stores the target triple as a string. This means
that any code that wants to actually use the triple first has to
instantiate a Triple, which is somewhat expensive. The change in #121652
caused a moderate compile-time regression due to this. While it would be
easy enough to work around, I think that architecturally, it makes more
sense to store the parsed Triple in the module, so that it can always be
directly queried.

For this change, I've opted not to add any magic conversions between
std::string and Triple for backwards-compatibilty purses, and instead
write out needed Triple()s or str()s explicitly. This is because I think
a decent number of them should be changed to work on Triple as well, to
avoid unnecessary conversions back and forth.

The only interesting part in this patch is that the default triple is
Triple("") instead of Triple() to preserve existing behavior. The former
defaults to using the ELF object format instead of unknown object
format. We should fix that as well.
2025-03-06 10:27:47 +01:00

1352 lines
56 KiB
C++

//===-- AMDGPUSwLowerLDS.cpp -----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass lowers the local data store, LDS, uses in kernel and non-kernel
// functions in module to use dynamically allocated global memory.
// Packed LDS Layout is emulated in the global memory.
// The lowered memory instructions from LDS to global memory are then
// instrumented for address sanitizer, to catch addressing errors.
// This pass only work when address sanitizer has been enabled and has
// instrumented the IR. It identifies that IR has been instrumented using
// "nosanitize_address" module flag.
//
// Replacement of Kernel LDS accesses:
// For a kernel, LDS access can be static or dynamic which are direct
// (accessed within kernel) and indirect (accessed through non-kernels).
// All these LDS accesses corresponding to kernel will be packed together,
// where all static LDS accesses will be allocated first and then dynamic
// LDS follows. The total size with alignment is calculated. A new LDS global
// will be created for the kernel called "SW LDS" and it will have the
// attribute "amdgpu-lds-size" attached with value of the size calculated.
// All the LDS accesses in the module will be replaced by GEP with offset
// into the "Sw LDS".
// A new "llvm.amdgcn.<kernel>.dynlds" is created per kernel accessing
// the dynamic LDS. This will be marked used by kernel and will have
// MD_absolue_symbol metadata set to total static LDS size, Since dynamic
// LDS allocation starts after all static LDS allocation.
//
// A device global memory equal to the total LDS size will be allocated.
// At the prologue of the kernel, a single work-item from the
// work-group, does a "malloc" and stores the pointer of the
// allocation in "SW LDS".
//
// To store the offsets corresponding to all LDS accesses, another global
// variable is created which will be called "SW LDS metadata" in this pass.
// - SW LDS Global:
// It is LDS global of ptr type with name
// "llvm.amdgcn.sw.lds.<kernel-name>".
// - Metadata Global:
// It is of struct type, with n members. n equals the number of LDS
// globals accessed by the kernel(direct and indirect). Each member of
// struct is another struct of type {i32, i32, i32}. First member
// corresponds to offset, second member corresponds to size of LDS global
// being replaced and third represents the total aligned size. It will
// have name "llvm.amdgcn.sw.lds.<kernel-name>.md". This global will have
// an intializer with static LDS related offsets and sizes initialized.
// But for dynamic LDS related entries, offsets will be intialized to
// previous static LDS allocation end offset. Sizes for them will be zero
// initially. These dynamic LDS offset and size values will be updated
// within the kernel, since kernel can read the dynamic LDS size
// allocation done at runtime with query to "hidden_dynamic_lds_size"
// hidden kernel argument.
//
// At the epilogue of kernel, allocated memory would be made free by the same
// single work-item.
//
// Replacement of non-kernel LDS accesses:
// Multiple kernels can access the same non-kernel function.
// All the kernels accessing LDS through non-kernels are sorted and
// assigned a kernel-id. All the LDS globals accessed by non-kernels
// are sorted. This information is used to build two tables:
// - Base table:
// Base table will have single row, with elements of the row
// placed as per kernel ID. Each element in the row corresponds
// to ptr of "SW LDS" variable created for that kernel.
// - Offset table:
// Offset table will have multiple rows and columns.
// Rows are assumed to be from 0 to (n-1). n is total number
// of kernels accessing the LDS through non-kernels.
// Each row will have m elements. m is the total number of
// unique LDS globals accessed by all non-kernels.
// Each element in the row correspond to the ptr of
// the replacement of LDS global done by that particular kernel.
// A LDS variable in non-kernel will be replaced based on the information
// from base and offset tables. Based on kernel-id query, ptr of "SW
// LDS" for that corresponding kernel is obtained from base table.
// The Offset into the base "SW LDS" is obtained from
// corresponding element in offset table. With this information, replacement
// value is obtained.
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "AMDGPUAsanInstrumentation.h"
#include "AMDGPUMemoryUtils.h"
#include "AMDGPUTargetMachine.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/ReplaceConstant.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#include <algorithm>
#define DEBUG_TYPE "amdgpu-sw-lower-lds"
#define COV5_HIDDEN_DYN_LDS_SIZE_ARG 15
using namespace llvm;
using namespace AMDGPU;
namespace {
cl::opt<bool>
AsanInstrumentLDS("amdgpu-asan-instrument-lds",
cl::desc("Run asan instrumentation on LDS instructions "
"lowered to global memory"),
cl::init(true), cl::Hidden);
using DomTreeCallback = function_ref<DominatorTree *(Function &F)>;
struct LDSAccessTypeInfo {
SetVector<GlobalVariable *> StaticLDSGlobals;
SetVector<GlobalVariable *> DynamicLDSGlobals;
};
// Struct to hold all the Metadata required for a kernel
// to replace a LDS global uses with corresponding offset
// in to device global memory.
struct KernelLDSParameters {
GlobalVariable *SwLDS = nullptr;
GlobalVariable *SwDynLDS = nullptr;
GlobalVariable *SwLDSMetadata = nullptr;
LDSAccessTypeInfo DirectAccess;
LDSAccessTypeInfo IndirectAccess;
DenseMap<GlobalVariable *, SmallVector<uint32_t, 3>>
LDSToReplacementIndicesMap;
uint32_t MallocSize = 0;
uint32_t LDSSize = 0;
SmallVector<std::pair<uint32_t, uint32_t>, 64> RedzoneOffsetAndSizeVector;
};
// Struct to store information for creation of offset table
// for all the non-kernel LDS accesses.
struct NonKernelLDSParameters {
GlobalVariable *LDSBaseTable = nullptr;
GlobalVariable *LDSOffsetTable = nullptr;
SetVector<Function *> OrderedKernels;
SetVector<GlobalVariable *> OrdereLDSGlobals;
};
struct AsanInstrumentInfo {
int Scale = 0;
uint32_t Offset = 0;
SetVector<Instruction *> Instructions;
};
struct FunctionsAndLDSAccess {
DenseMap<Function *, KernelLDSParameters> KernelToLDSParametersMap;
SetVector<Function *> KernelsWithIndirectLDSAccess;
SetVector<Function *> NonKernelsWithLDSArgument;
SetVector<GlobalVariable *> AllNonKernelLDSAccess;
FunctionVariableMap NonKernelToLDSAccessMap;
};
class AMDGPUSwLowerLDS {
public:
AMDGPUSwLowerLDS(Module &Mod, const AMDGPUTargetMachine &TM,
DomTreeCallback Callback)
: M(Mod), AMDGPUTM(TM), IRB(M.getContext()), DTCallback(Callback) {}
bool run();
void getUsesOfLDSByNonKernels();
void getNonKernelsWithLDSArguments(const CallGraph &CG);
SetVector<Function *>
getOrderedIndirectLDSAccessingKernels(SetVector<Function *> &Kernels);
SetVector<GlobalVariable *>
getOrderedNonKernelAllLDSGlobals(SetVector<GlobalVariable *> &Variables);
void buildSwLDSGlobal(Function *Func);
void buildSwDynLDSGlobal(Function *Func);
void populateSwMetadataGlobal(Function *Func);
void populateSwLDSAttributeAndMetadata(Function *Func);
void populateLDSToReplacementIndicesMap(Function *Func);
void getLDSMemoryInstructions(Function *Func,
SetVector<Instruction *> &LDSInstructions);
void replaceKernelLDSAccesses(Function *Func);
Value *getTranslatedGlobalMemoryPtrOfLDS(Value *LoadMallocPtr, Value *LDSPtr);
void translateLDSMemoryOperationsToGlobalMemory(
Function *Func, Value *LoadMallocPtr,
SetVector<Instruction *> &LDSInstructions);
void poisonRedzones(Function *Func, Value *MallocPtr);
void lowerKernelLDSAccesses(Function *Func, DomTreeUpdater &DTU);
void buildNonKernelLDSOffsetTable(NonKernelLDSParameters &NKLDSParams);
void buildNonKernelLDSBaseTable(NonKernelLDSParameters &NKLDSParams);
Constant *
getAddressesOfVariablesInKernel(Function *Func,
SetVector<GlobalVariable *> &Variables);
void lowerNonKernelLDSAccesses(Function *Func,
SetVector<GlobalVariable *> &LDSGlobals,
NonKernelLDSParameters &NKLDSParams);
void
updateMallocSizeForDynamicLDS(Function *Func, Value **CurrMallocSize,
Value *HiddenDynLDSSize,
SetVector<GlobalVariable *> &DynamicLDSGlobals);
void initAsanInfo();
private:
Module &M;
const AMDGPUTargetMachine &AMDGPUTM;
IRBuilder<> IRB;
DomTreeCallback DTCallback;
FunctionsAndLDSAccess FuncLDSAccessInfo;
AsanInstrumentInfo AsanInfo;
};
template <typename T> SetVector<T> sortByName(std::vector<T> &&V) {
// Sort the vector of globals or Functions based on their name.
// Returns a SetVector of globals/Functions.
sort(V, [](const auto *L, const auto *R) {
return L->getName() < R->getName();
});
return {SetVector<T>(V.begin(), V.end())};
}
SetVector<GlobalVariable *> AMDGPUSwLowerLDS::getOrderedNonKernelAllLDSGlobals(
SetVector<GlobalVariable *> &Variables) {
// Sort all the non-kernel LDS accesses based on their name.
return sortByName(
std::vector<GlobalVariable *>(Variables.begin(), Variables.end()));
}
SetVector<Function *> AMDGPUSwLowerLDS::getOrderedIndirectLDSAccessingKernels(
SetVector<Function *> &Kernels) {
// Sort the non-kernels accessing LDS based on their name.
// Also assign a kernel ID metadata based on the sorted order.
LLVMContext &Ctx = M.getContext();
if (Kernels.size() > UINT32_MAX) {
report_fatal_error("Unimplemented SW LDS lowering for > 2**32 kernels");
}
SetVector<Function *> OrderedKernels =
sortByName(std::vector<Function *>(Kernels.begin(), Kernels.end()));
for (size_t i = 0; i < Kernels.size(); i++) {
Metadata *AttrMDArgs[1] = {
ConstantAsMetadata::get(IRB.getInt32(i)),
};
Function *Func = OrderedKernels[i];
Func->setMetadata("llvm.amdgcn.lds.kernel.id",
MDNode::get(Ctx, AttrMDArgs));
}
return OrderedKernels;
}
void AMDGPUSwLowerLDS::getNonKernelsWithLDSArguments(const CallGraph &CG) {
// Among the kernels accessing LDS, get list of
// Non-kernels to which a call is made and a ptr
// to addrspace(3) is passed as argument.
for (auto &K : FuncLDSAccessInfo.KernelToLDSParametersMap) {
Function *Func = K.first;
const CallGraphNode *CGN = CG[Func];
if (!CGN)
continue;
for (auto &I : *CGN) {
CallGraphNode *CallerCGN = I.second;
Function *CalledFunc = CallerCGN->getFunction();
if (!CalledFunc || CalledFunc->isDeclaration())
continue;
if (AMDGPU::isKernelLDS(CalledFunc))
continue;
for (auto AI = CalledFunc->arg_begin(), E = CalledFunc->arg_end();
AI != E; ++AI) {
Type *ArgTy = (*AI).getType();
if (!ArgTy->isPointerTy())
continue;
if (ArgTy->getPointerAddressSpace() != AMDGPUAS::LOCAL_ADDRESS)
continue;
FuncLDSAccessInfo.NonKernelsWithLDSArgument.insert(CalledFunc);
// Also add the Calling function to KernelsWithIndirectLDSAccess list
// so that base table of LDS is generated.
FuncLDSAccessInfo.KernelsWithIndirectLDSAccess.insert(Func);
}
}
}
}
void AMDGPUSwLowerLDS::getUsesOfLDSByNonKernels() {
for (GlobalVariable *GV : FuncLDSAccessInfo.AllNonKernelLDSAccess) {
if (!AMDGPU::isLDSVariableToLower(*GV))
continue;
for (User *V : GV->users()) {
if (auto *I = dyn_cast<Instruction>(V)) {
Function *F = I->getFunction();
if (!isKernelLDS(F) && F->hasFnAttribute(Attribute::SanitizeAddress) &&
!F->isDeclaration())
FuncLDSAccessInfo.NonKernelToLDSAccessMap[F].insert(GV);
}
}
}
}
static void recordLDSAbsoluteAddress(Module &M, GlobalVariable *GV,
uint32_t Address) {
// Write the specified address into metadata where it can be retrieved by
// the assembler. Format is a half open range, [Address Address+1)
LLVMContext &Ctx = M.getContext();
auto *IntTy = M.getDataLayout().getIntPtrType(Ctx, AMDGPUAS::LOCAL_ADDRESS);
MDBuilder MDB(Ctx);
MDNode *MetadataNode = MDB.createRange(ConstantInt::get(IntTy, Address),
ConstantInt::get(IntTy, Address + 1));
GV->setMetadata(LLVMContext::MD_absolute_symbol, MetadataNode);
}
static void addLDSSizeAttribute(Function *Func, uint32_t Offset,
bool IsDynLDS) {
if (Offset != 0) {
std::string Buffer;
raw_string_ostream SS{Buffer};
SS << Offset;
if (IsDynLDS)
SS << "," << Offset;
Func->addFnAttr("amdgpu-lds-size", Buffer);
}
}
static void markUsedByKernel(Function *Func, GlobalVariable *SGV) {
BasicBlock *Entry = &Func->getEntryBlock();
IRBuilder<> Builder(Entry, Entry->getFirstNonPHIIt());
Function *Decl = Intrinsic::getOrInsertDeclaration(Func->getParent(),
Intrinsic::donothing, {});
Value *UseInstance[1] = {
Builder.CreateConstInBoundsGEP1_32(SGV->getValueType(), SGV, 0)};
Builder.CreateCall(Decl, {},
{OperandBundleDefT<Value *>("ExplicitUse", UseInstance)});
}
void AMDGPUSwLowerLDS::buildSwLDSGlobal(Function *Func) {
// Create new LDS global required for each kernel to store
// device global memory pointer.
auto &LDSParams = FuncLDSAccessInfo.KernelToLDSParametersMap[Func];
// Create new global pointer variable
LDSParams.SwLDS = new GlobalVariable(
M, IRB.getPtrTy(), false, GlobalValue::InternalLinkage,
PoisonValue::get(IRB.getPtrTy()), "llvm.amdgcn.sw.lds." + Func->getName(),
nullptr, GlobalValue::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS, false);
GlobalValue::SanitizerMetadata MD;
MD.NoAddress = true;
LDSParams.SwLDS->setSanitizerMetadata(MD);
}
void AMDGPUSwLowerLDS::buildSwDynLDSGlobal(Function *Func) {
// Create new Dyn LDS global if kernel accesses dyn LDS.
auto &LDSParams = FuncLDSAccessInfo.KernelToLDSParametersMap[Func];
if (LDSParams.DirectAccess.DynamicLDSGlobals.empty() &&
LDSParams.IndirectAccess.DynamicLDSGlobals.empty())
return;
// Create new global pointer variable
auto *emptyCharArray = ArrayType::get(IRB.getInt8Ty(), 0);
LDSParams.SwDynLDS = new GlobalVariable(
M, emptyCharArray, false, GlobalValue::ExternalLinkage, nullptr,
"llvm.amdgcn." + Func->getName() + ".dynlds", nullptr,
GlobalValue::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS, false);
markUsedByKernel(Func, LDSParams.SwDynLDS);
GlobalValue::SanitizerMetadata MD;
MD.NoAddress = true;
LDSParams.SwDynLDS->setSanitizerMetadata(MD);
}
void AMDGPUSwLowerLDS::populateSwLDSAttributeAndMetadata(Function *Func) {
auto &LDSParams = FuncLDSAccessInfo.KernelToLDSParametersMap[Func];
bool IsDynLDSUsed = LDSParams.SwDynLDS;
uint32_t Offset = LDSParams.LDSSize;
recordLDSAbsoluteAddress(M, LDSParams.SwLDS, 0);
addLDSSizeAttribute(Func, Offset, IsDynLDSUsed);
if (LDSParams.SwDynLDS)
recordLDSAbsoluteAddress(M, LDSParams.SwDynLDS, Offset);
}
void AMDGPUSwLowerLDS::populateSwMetadataGlobal(Function *Func) {
// Create new metadata global for every kernel and initialize the
// start offsets and sizes corresponding to each LDS accesses.
auto &LDSParams = FuncLDSAccessInfo.KernelToLDSParametersMap[Func];
auto &Ctx = M.getContext();
auto &DL = M.getDataLayout();
std::vector<Type *> Items;
Type *Int32Ty = IRB.getInt32Ty();
std::vector<Constant *> Initializers;
Align MaxAlignment(1);
auto UpdateMaxAlignment = [&MaxAlignment, &DL](GlobalVariable *GV) {
Align GVAlign = AMDGPU::getAlign(DL, GV);
MaxAlignment = std::max(MaxAlignment, GVAlign);
};
for (GlobalVariable *GV : LDSParams.DirectAccess.StaticLDSGlobals)
UpdateMaxAlignment(GV);
for (GlobalVariable *GV : LDSParams.DirectAccess.DynamicLDSGlobals)
UpdateMaxAlignment(GV);
for (GlobalVariable *GV : LDSParams.IndirectAccess.StaticLDSGlobals)
UpdateMaxAlignment(GV);
for (GlobalVariable *GV : LDSParams.IndirectAccess.DynamicLDSGlobals)
UpdateMaxAlignment(GV);
//{StartOffset, AlignedSizeInBytes}
SmallString<128> MDItemStr;
raw_svector_ostream MDItemOS(MDItemStr);
MDItemOS << "llvm.amdgcn.sw.lds." << Func->getName() << ".md.item";
StructType *LDSItemTy =
StructType::create(Ctx, {Int32Ty, Int32Ty, Int32Ty}, MDItemOS.str());
uint32_t &MallocSize = LDSParams.MallocSize;
SetVector<GlobalVariable *> UniqueLDSGlobals;
int AsanScale = AsanInfo.Scale;
auto buildInitializerForSwLDSMD =
[&](SetVector<GlobalVariable *> &LDSGlobals) {
for (auto &GV : LDSGlobals) {
if (is_contained(UniqueLDSGlobals, GV))
continue;
UniqueLDSGlobals.insert(GV);
Type *Ty = GV->getValueType();
const uint64_t SizeInBytes = DL.getTypeAllocSize(Ty);
Items.push_back(LDSItemTy);
Constant *ItemStartOffset = ConstantInt::get(Int32Ty, MallocSize);
Constant *SizeInBytesConst = ConstantInt::get(Int32Ty, SizeInBytes);
// Get redzone size corresponding a size.
const uint64_t RightRedzoneSize =
AMDGPU::getRedzoneSizeForGlobal(AsanScale, SizeInBytes);
// Update MallocSize with current size and redzone size.
MallocSize += SizeInBytes;
if (!AMDGPU::isDynamicLDS(*GV))
LDSParams.RedzoneOffsetAndSizeVector.emplace_back(MallocSize,
RightRedzoneSize);
MallocSize += RightRedzoneSize;
// Align current size plus redzone.
uint64_t AlignedSize =
alignTo(SizeInBytes + RightRedzoneSize, MaxAlignment);
Constant *AlignedSizeInBytesConst =
ConstantInt::get(Int32Ty, AlignedSize);
// Align MallocSize
MallocSize = alignTo(MallocSize, MaxAlignment);
Constant *InitItem =
ConstantStruct::get(LDSItemTy, {ItemStartOffset, SizeInBytesConst,
AlignedSizeInBytesConst});
Initializers.push_back(InitItem);
}
};
SetVector<GlobalVariable *> SwLDSVector;
SwLDSVector.insert(LDSParams.SwLDS);
buildInitializerForSwLDSMD(SwLDSVector);
buildInitializerForSwLDSMD(LDSParams.DirectAccess.StaticLDSGlobals);
buildInitializerForSwLDSMD(LDSParams.IndirectAccess.StaticLDSGlobals);
buildInitializerForSwLDSMD(LDSParams.DirectAccess.DynamicLDSGlobals);
buildInitializerForSwLDSMD(LDSParams.IndirectAccess.DynamicLDSGlobals);
// Update the LDS size used by the kernel.
Type *Ty = LDSParams.SwLDS->getValueType();
const uint64_t SizeInBytes = DL.getTypeAllocSize(Ty);
uint64_t AlignedSize = alignTo(SizeInBytes, MaxAlignment);
LDSParams.LDSSize = AlignedSize;
SmallString<128> MDTypeStr;
raw_svector_ostream MDTypeOS(MDTypeStr);
MDTypeOS << "llvm.amdgcn.sw.lds." << Func->getName() << ".md.type";
StructType *MetadataStructType =
StructType::create(Ctx, Items, MDTypeOS.str());
SmallString<128> MDStr;
raw_svector_ostream MDOS(MDStr);
MDOS << "llvm.amdgcn.sw.lds." << Func->getName() << ".md";
LDSParams.SwLDSMetadata = new GlobalVariable(
M, MetadataStructType, false, GlobalValue::InternalLinkage,
PoisonValue::get(MetadataStructType), MDOS.str(), nullptr,
GlobalValue::NotThreadLocal, AMDGPUAS::GLOBAL_ADDRESS, false);
Constant *data = ConstantStruct::get(MetadataStructType, Initializers);
LDSParams.SwLDSMetadata->setInitializer(data);
assert(LDSParams.SwLDS);
// Set the alignment to MaxAlignment for SwLDS.
LDSParams.SwLDS->setAlignment(MaxAlignment);
if (LDSParams.SwDynLDS)
LDSParams.SwDynLDS->setAlignment(MaxAlignment);
GlobalValue::SanitizerMetadata MD;
MD.NoAddress = true;
LDSParams.SwLDSMetadata->setSanitizerMetadata(MD);
}
void AMDGPUSwLowerLDS::populateLDSToReplacementIndicesMap(Function *Func) {
// Fill the corresponding LDS replacement indices for each LDS access
// related to this kernel.
auto &LDSParams = FuncLDSAccessInfo.KernelToLDSParametersMap[Func];
SetVector<GlobalVariable *> UniqueLDSGlobals;
auto PopulateIndices = [&](SetVector<GlobalVariable *> &LDSGlobals,
uint32_t &Idx) {
for (auto &GV : LDSGlobals) {
if (is_contained(UniqueLDSGlobals, GV))
continue;
UniqueLDSGlobals.insert(GV);
LDSParams.LDSToReplacementIndicesMap[GV] = {0, Idx, 0};
++Idx;
}
};
uint32_t Idx = 0;
SetVector<GlobalVariable *> SwLDSVector;
SwLDSVector.insert(LDSParams.SwLDS);
PopulateIndices(SwLDSVector, Idx);
PopulateIndices(LDSParams.DirectAccess.StaticLDSGlobals, Idx);
PopulateIndices(LDSParams.IndirectAccess.StaticLDSGlobals, Idx);
PopulateIndices(LDSParams.DirectAccess.DynamicLDSGlobals, Idx);
PopulateIndices(LDSParams.IndirectAccess.DynamicLDSGlobals, Idx);
}
static void replacesUsesOfGlobalInFunction(Function *Func, GlobalVariable *GV,
Value *Replacement) {
// Replace all uses of LDS global in this Function with a Replacement.
auto ReplaceUsesLambda = [Func](const Use &U) -> bool {
auto *V = U.getUser();
if (auto *Inst = dyn_cast<Instruction>(V)) {
auto *Func1 = Inst->getParent()->getParent();
if (Func == Func1)
return true;
}
return false;
};
GV->replaceUsesWithIf(Replacement, ReplaceUsesLambda);
}
void AMDGPUSwLowerLDS::replaceKernelLDSAccesses(Function *Func) {
auto &LDSParams = FuncLDSAccessInfo.KernelToLDSParametersMap[Func];
GlobalVariable *SwLDS = LDSParams.SwLDS;
assert(SwLDS);
GlobalVariable *SwLDSMetadata = LDSParams.SwLDSMetadata;
assert(SwLDSMetadata);
StructType *SwLDSMetadataStructType =
cast<StructType>(SwLDSMetadata->getValueType());
Type *Int32Ty = IRB.getInt32Ty();
auto &IndirectAccess = LDSParams.IndirectAccess;
auto &DirectAccess = LDSParams.DirectAccess;
// Replace all uses of LDS global in this Function with a Replacement.
SetVector<GlobalVariable *> UniqueLDSGlobals;
auto ReplaceLDSGlobalUses = [&](SetVector<GlobalVariable *> &LDSGlobals) {
for (auto &GV : LDSGlobals) {
// Do not generate instructions if LDS access is in non-kernel
// i.e indirect-access.
if ((IndirectAccess.StaticLDSGlobals.contains(GV) ||
IndirectAccess.DynamicLDSGlobals.contains(GV)) &&
(!DirectAccess.StaticLDSGlobals.contains(GV) &&
!DirectAccess.DynamicLDSGlobals.contains(GV)))
continue;
if (is_contained(UniqueLDSGlobals, GV))
continue;
UniqueLDSGlobals.insert(GV);
auto &Indices = LDSParams.LDSToReplacementIndicesMap[GV];
assert(Indices.size() == 3);
Constant *GEPIdx[] = {ConstantInt::get(Int32Ty, Indices[0]),
ConstantInt::get(Int32Ty, Indices[1]),
ConstantInt::get(Int32Ty, Indices[2])};
Constant *GEP = ConstantExpr::getGetElementPtr(
SwLDSMetadataStructType, SwLDSMetadata, GEPIdx, true);
Value *Offset = IRB.CreateLoad(Int32Ty, GEP);
Value *BasePlusOffset =
IRB.CreateInBoundsGEP(IRB.getInt8Ty(), SwLDS, {Offset});
LLVM_DEBUG(GV->printAsOperand(dbgs() << "Sw LDS Lowering, Replacing LDS ",
false));
replacesUsesOfGlobalInFunction(Func, GV, BasePlusOffset);
}
};
ReplaceLDSGlobalUses(DirectAccess.StaticLDSGlobals);
ReplaceLDSGlobalUses(IndirectAccess.StaticLDSGlobals);
ReplaceLDSGlobalUses(DirectAccess.DynamicLDSGlobals);
ReplaceLDSGlobalUses(IndirectAccess.DynamicLDSGlobals);
}
void AMDGPUSwLowerLDS::updateMallocSizeForDynamicLDS(
Function *Func, Value **CurrMallocSize, Value *HiddenDynLDSSize,
SetVector<GlobalVariable *> &DynamicLDSGlobals) {
auto &LDSParams = FuncLDSAccessInfo.KernelToLDSParametersMap[Func];
Type *Int32Ty = IRB.getInt32Ty();
GlobalVariable *SwLDS = LDSParams.SwLDS;
GlobalVariable *SwLDSMetadata = LDSParams.SwLDSMetadata;
assert(SwLDS && SwLDSMetadata);
StructType *MetadataStructType =
cast<StructType>(SwLDSMetadata->getValueType());
unsigned MaxAlignment = SwLDS->getAlignment();
Value *MaxAlignValue = IRB.getInt32(MaxAlignment);
Value *MaxAlignValueMinusOne = IRB.getInt32(MaxAlignment - 1);
for (GlobalVariable *DynGV : DynamicLDSGlobals) {
auto &Indices = LDSParams.LDSToReplacementIndicesMap[DynGV];
// Update the Offset metadata.
Constant *Index0 = ConstantInt::get(Int32Ty, 0);
Constant *Index1 = ConstantInt::get(Int32Ty, Indices[1]);
Constant *Index2Offset = ConstantInt::get(Int32Ty, 0);
auto *GEPForOffset = IRB.CreateInBoundsGEP(
MetadataStructType, SwLDSMetadata, {Index0, Index1, Index2Offset});
IRB.CreateStore(*CurrMallocSize, GEPForOffset);
// Update the size and Aligned Size metadata.
Constant *Index2Size = ConstantInt::get(Int32Ty, 1);
auto *GEPForSize = IRB.CreateInBoundsGEP(MetadataStructType, SwLDSMetadata,
{Index0, Index1, Index2Size});
Value *CurrDynLDSSize = IRB.CreateLoad(Int32Ty, HiddenDynLDSSize);
IRB.CreateStore(CurrDynLDSSize, GEPForSize);
Constant *Index2AlignedSize = ConstantInt::get(Int32Ty, 2);
auto *GEPForAlignedSize = IRB.CreateInBoundsGEP(
MetadataStructType, SwLDSMetadata, {Index0, Index1, Index2AlignedSize});
Value *AlignedDynLDSSize =
IRB.CreateAdd(CurrDynLDSSize, MaxAlignValueMinusOne);
AlignedDynLDSSize = IRB.CreateUDiv(AlignedDynLDSSize, MaxAlignValue);
AlignedDynLDSSize = IRB.CreateMul(AlignedDynLDSSize, MaxAlignValue);
IRB.CreateStore(AlignedDynLDSSize, GEPForAlignedSize);
// Update the Current Malloc Size
*CurrMallocSize = IRB.CreateAdd(*CurrMallocSize, AlignedDynLDSSize);
}
}
static DebugLoc getOrCreateDebugLoc(const Instruction *InsertBefore,
DISubprogram *SP) {
assert(InsertBefore);
if (InsertBefore->getDebugLoc())
return InsertBefore->getDebugLoc();
if (SP)
return DILocation::get(SP->getContext(), SP->getLine(), 1, SP);
return DebugLoc();
}
void AMDGPUSwLowerLDS::getLDSMemoryInstructions(
Function *Func, SetVector<Instruction *> &LDSInstructions) {
for (BasicBlock &BB : *Func) {
for (Instruction &Inst : BB) {
if (LoadInst *LI = dyn_cast<LoadInst>(&Inst)) {
if (LI->getPointerAddressSpace() == AMDGPUAS::LOCAL_ADDRESS)
LDSInstructions.insert(&Inst);
} else if (StoreInst *SI = dyn_cast<StoreInst>(&Inst)) {
if (SI->getPointerAddressSpace() == AMDGPUAS::LOCAL_ADDRESS)
LDSInstructions.insert(&Inst);
} else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(&Inst)) {
if (RMW->getPointerAddressSpace() == AMDGPUAS::LOCAL_ADDRESS)
LDSInstructions.insert(&Inst);
} else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(&Inst)) {
if (XCHG->getPointerAddressSpace() == AMDGPUAS::LOCAL_ADDRESS)
LDSInstructions.insert(&Inst);
} else if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(&Inst)) {
if (ASC->getSrcAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS)
LDSInstructions.insert(&Inst);
} else
continue;
}
}
}
Value *AMDGPUSwLowerLDS::getTranslatedGlobalMemoryPtrOfLDS(Value *LoadMallocPtr,
Value *LDSPtr) {
assert(LDSPtr && "Invalid LDS pointer operand");
Type *LDSPtrType = LDSPtr->getType();
LLVMContext &Ctx = M.getContext();
const DataLayout &DL = M.getDataLayout();
Type *IntTy = DL.getIntPtrType(Ctx, AMDGPUAS::LOCAL_ADDRESS);
if (auto *VecPtrTy = dyn_cast<VectorType>(LDSPtrType)) {
// Handle vector of pointers
ElementCount NumElements = VecPtrTy->getElementCount();
IntTy = VectorType::get(IntTy, NumElements);
}
Value *GepIndex = IRB.CreatePtrToInt(LDSPtr, IntTy);
return IRB.CreateInBoundsGEP(IRB.getInt8Ty(), LoadMallocPtr, {GepIndex});
}
void AMDGPUSwLowerLDS::translateLDSMemoryOperationsToGlobalMemory(
Function *Func, Value *LoadMallocPtr,
SetVector<Instruction *> &LDSInstructions) {
LLVM_DEBUG(dbgs() << "Translating LDS memory operations to global memory : "
<< Func->getName());
for (Instruction *Inst : LDSInstructions) {
IRB.SetInsertPoint(Inst);
if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
Value *LIOperand = LI->getPointerOperand();
Value *Replacement =
getTranslatedGlobalMemoryPtrOfLDS(LoadMallocPtr, LIOperand);
LoadInst *NewLI = IRB.CreateAlignedLoad(LI->getType(), Replacement,
LI->getAlign(), LI->isVolatile());
NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID());
AsanInfo.Instructions.insert(NewLI);
LI->replaceAllUsesWith(NewLI);
LI->eraseFromParent();
} else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
Value *SIOperand = SI->getPointerOperand();
Value *Replacement =
getTranslatedGlobalMemoryPtrOfLDS(LoadMallocPtr, SIOperand);
StoreInst *NewSI = IRB.CreateAlignedStore(
SI->getValueOperand(), Replacement, SI->getAlign(), SI->isVolatile());
NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID());
AsanInfo.Instructions.insert(NewSI);
SI->replaceAllUsesWith(NewSI);
SI->eraseFromParent();
} else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
Value *RMWPtrOperand = RMW->getPointerOperand();
Value *RMWValOperand = RMW->getValOperand();
Value *Replacement =
getTranslatedGlobalMemoryPtrOfLDS(LoadMallocPtr, RMWPtrOperand);
AtomicRMWInst *NewRMW = IRB.CreateAtomicRMW(
RMW->getOperation(), Replacement, RMWValOperand, RMW->getAlign(),
RMW->getOrdering(), RMW->getSyncScopeID());
NewRMW->setVolatile(RMW->isVolatile());
AsanInfo.Instructions.insert(NewRMW);
RMW->replaceAllUsesWith(NewRMW);
RMW->eraseFromParent();
} else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(Inst)) {
Value *XCHGPtrOperand = XCHG->getPointerOperand();
Value *Replacement =
getTranslatedGlobalMemoryPtrOfLDS(LoadMallocPtr, XCHGPtrOperand);
AtomicCmpXchgInst *NewXCHG = IRB.CreateAtomicCmpXchg(
Replacement, XCHG->getCompareOperand(), XCHG->getNewValOperand(),
XCHG->getAlign(), XCHG->getSuccessOrdering(),
XCHG->getFailureOrdering(), XCHG->getSyncScopeID());
NewXCHG->setVolatile(XCHG->isVolatile());
AsanInfo.Instructions.insert(NewXCHG);
XCHG->replaceAllUsesWith(NewXCHG);
XCHG->eraseFromParent();
} else if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(Inst)) {
Value *AIOperand = ASC->getPointerOperand();
Value *Replacement =
getTranslatedGlobalMemoryPtrOfLDS(LoadMallocPtr, AIOperand);
Value *NewAI = IRB.CreateAddrSpaceCast(Replacement, ASC->getType());
// Note: No need to add the instruction to AsanInfo instructions to be
// instrumented list. FLAT_ADDRESS ptr would have been already
// instrumented by asan pass prior to this pass.
ASC->replaceAllUsesWith(NewAI);
ASC->eraseFromParent();
} else
report_fatal_error("Unimplemented LDS lowering instruction");
}
}
void AMDGPUSwLowerLDS::poisonRedzones(Function *Func, Value *MallocPtr) {
auto &LDSParams = FuncLDSAccessInfo.KernelToLDSParametersMap[Func];
Type *Int64Ty = IRB.getInt64Ty();
Type *VoidTy = IRB.getVoidTy();
FunctionCallee AsanPoisonRegion = M.getOrInsertFunction(
"__asan_poison_region",
FunctionType::get(VoidTy, {Int64Ty, Int64Ty}, false));
auto RedzonesVec = LDSParams.RedzoneOffsetAndSizeVector;
size_t VecSize = RedzonesVec.size();
for (unsigned i = 0; i < VecSize; i++) {
auto &RedzonePair = RedzonesVec[i];
uint64_t RedzoneOffset = RedzonePair.first;
uint64_t RedzoneSize = RedzonePair.second;
Value *RedzoneAddrOffset = IRB.CreateInBoundsGEP(
IRB.getInt8Ty(), MallocPtr, {IRB.getInt64(RedzoneOffset)});
Value *RedzoneAddress = IRB.CreatePtrToInt(RedzoneAddrOffset, Int64Ty);
IRB.CreateCall(AsanPoisonRegion,
{RedzoneAddress, IRB.getInt64(RedzoneSize)});
}
}
void AMDGPUSwLowerLDS::lowerKernelLDSAccesses(Function *Func,
DomTreeUpdater &DTU) {
LLVM_DEBUG(dbgs() << "Sw Lowering Kernel LDS for : " << Func->getName());
auto &LDSParams = FuncLDSAccessInfo.KernelToLDSParametersMap[Func];
auto &Ctx = M.getContext();
auto *PrevEntryBlock = &Func->getEntryBlock();
SetVector<Instruction *> LDSInstructions;
getLDSMemoryInstructions(Func, LDSInstructions);
// Create malloc block.
auto *MallocBlock = BasicBlock::Create(Ctx, "Malloc", Func, PrevEntryBlock);
// Create WIdBlock block which has instructions related to selection of
// {0,0,0} indiex work item in the work group.
auto *WIdBlock = BasicBlock::Create(Ctx, "WId", Func, MallocBlock);
IRB.SetInsertPoint(WIdBlock, WIdBlock->begin());
DebugLoc FirstDL =
getOrCreateDebugLoc(&*PrevEntryBlock->begin(), Func->getSubprogram());
IRB.SetCurrentDebugLocation(FirstDL);
Value *WIdx = IRB.CreateIntrinsic(Intrinsic::amdgcn_workitem_id_x, {}, {});
Value *WIdy = IRB.CreateIntrinsic(Intrinsic::amdgcn_workitem_id_y, {}, {});
Value *WIdz = IRB.CreateIntrinsic(Intrinsic::amdgcn_workitem_id_z, {}, {});
Value *XYOr = IRB.CreateOr(WIdx, WIdy);
Value *XYZOr = IRB.CreateOr(XYOr, WIdz);
Value *WIdzCond = IRB.CreateICmpEQ(XYZOr, IRB.getInt32(0));
// All work items will branch to PrevEntryBlock except {0,0,0} index
// work item which will branch to malloc block.
IRB.CreateCondBr(WIdzCond, MallocBlock, PrevEntryBlock);
// Malloc block
IRB.SetInsertPoint(MallocBlock, MallocBlock->begin());
// If Dynamic LDS globals are accessed by the kernel,
// Get the size of dyn lds from hidden dyn_lds_size kernel arg.
// Update the corresponding metadata global entries for this dyn lds global.
GlobalVariable *SwLDS = LDSParams.SwLDS;
GlobalVariable *SwLDSMetadata = LDSParams.SwLDSMetadata;
assert(SwLDS && SwLDSMetadata);
StructType *MetadataStructType =
cast<StructType>(SwLDSMetadata->getValueType());
uint32_t MallocSize = 0;
Value *CurrMallocSize;
Type *Int32Ty = IRB.getInt32Ty();
Type *Int64Ty = IRB.getInt64Ty();
SetVector<GlobalVariable *> UniqueLDSGlobals;
auto GetUniqueLDSGlobals = [&](SetVector<GlobalVariable *> &LDSGlobals) {
for (auto &GV : LDSGlobals) {
if (is_contained(UniqueLDSGlobals, GV))
continue;
UniqueLDSGlobals.insert(GV);
}
};
GetUniqueLDSGlobals(LDSParams.DirectAccess.StaticLDSGlobals);
GetUniqueLDSGlobals(LDSParams.IndirectAccess.StaticLDSGlobals);
unsigned NumStaticLDS = 1 + UniqueLDSGlobals.size();
UniqueLDSGlobals.clear();
if (NumStaticLDS) {
auto *GEPForEndStaticLDSOffset =
IRB.CreateInBoundsGEP(MetadataStructType, SwLDSMetadata,
{ConstantInt::get(Int32Ty, 0),
ConstantInt::get(Int32Ty, NumStaticLDS - 1),
ConstantInt::get(Int32Ty, 0)});
auto *GEPForEndStaticLDSSize =
IRB.CreateInBoundsGEP(MetadataStructType, SwLDSMetadata,
{ConstantInt::get(Int32Ty, 0),
ConstantInt::get(Int32Ty, NumStaticLDS - 1),
ConstantInt::get(Int32Ty, 2)});
Value *EndStaticLDSOffset =
IRB.CreateLoad(Int32Ty, GEPForEndStaticLDSOffset);
Value *EndStaticLDSSize = IRB.CreateLoad(Int32Ty, GEPForEndStaticLDSSize);
CurrMallocSize = IRB.CreateAdd(EndStaticLDSOffset, EndStaticLDSSize);
} else
CurrMallocSize = IRB.getInt32(MallocSize);
if (LDSParams.SwDynLDS) {
if (!(AMDGPU::getAMDHSACodeObjectVersion(M) >= AMDGPU::AMDHSA_COV5))
report_fatal_error(
"Dynamic LDS size query is only supported for CO V5 and later.");
// Get size from hidden dyn_lds_size argument of kernel
Value *ImplicitArg =
IRB.CreateIntrinsic(Intrinsic::amdgcn_implicitarg_ptr, {}, {});
Value *HiddenDynLDSSize = IRB.CreateInBoundsGEP(
ImplicitArg->getType(), ImplicitArg,
{ConstantInt::get(Int64Ty, COV5_HIDDEN_DYN_LDS_SIZE_ARG)});
UniqueLDSGlobals.clear();
GetUniqueLDSGlobals(LDSParams.DirectAccess.DynamicLDSGlobals);
GetUniqueLDSGlobals(LDSParams.IndirectAccess.DynamicLDSGlobals);
updateMallocSizeForDynamicLDS(Func, &CurrMallocSize, HiddenDynLDSSize,
UniqueLDSGlobals);
}
CurrMallocSize = IRB.CreateZExt(CurrMallocSize, Int64Ty);
// Create a call to malloc function which does device global memory allocation
// with size equals to all LDS global accesses size in this kernel.
Value *ReturnAddress =
IRB.CreateIntrinsic(Intrinsic::returnaddress, {}, {IRB.getInt32(0)});
FunctionCallee MallocFunc = M.getOrInsertFunction(
StringRef("__asan_malloc_impl"),
FunctionType::get(Int64Ty, {Int64Ty, Int64Ty}, false));
Value *RAPtrToInt = IRB.CreatePtrToInt(ReturnAddress, Int64Ty);
Value *MallocCall = IRB.CreateCall(MallocFunc, {CurrMallocSize, RAPtrToInt});
Value *MallocPtr =
IRB.CreateIntToPtr(MallocCall, IRB.getPtrTy(AMDGPUAS::GLOBAL_ADDRESS));
// Create store of malloc to new global
IRB.CreateStore(MallocPtr, SwLDS);
// Create calls to __asan_poison_region to poison redzones.
poisonRedzones(Func, MallocPtr);
// Create branch to PrevEntryBlock
IRB.CreateBr(PrevEntryBlock);
// Create wave-group barrier at the starting of Previous entry block
Type *Int1Ty = IRB.getInt1Ty();
IRB.SetInsertPoint(PrevEntryBlock, PrevEntryBlock->begin());
auto *XYZCondPhi = IRB.CreatePHI(Int1Ty, 2, "xyzCond");
XYZCondPhi->addIncoming(IRB.getInt1(0), WIdBlock);
XYZCondPhi->addIncoming(IRB.getInt1(1), MallocBlock);
IRB.CreateIntrinsic(Intrinsic::amdgcn_s_barrier, {}, {});
// Load malloc pointer from Sw LDS.
Value *LoadMallocPtr =
IRB.CreateLoad(IRB.getPtrTy(AMDGPUAS::GLOBAL_ADDRESS), SwLDS);
// Replace All uses of LDS globals with new LDS pointers.
replaceKernelLDSAccesses(Func);
// Replace Memory Operations on LDS with corresponding
// global memory pointers.
translateLDSMemoryOperationsToGlobalMemory(Func, LoadMallocPtr,
LDSInstructions);
auto *CondFreeBlock = BasicBlock::Create(Ctx, "CondFree", Func);
auto *FreeBlock = BasicBlock::Create(Ctx, "Free", Func);
auto *EndBlock = BasicBlock::Create(Ctx, "End", Func);
for (BasicBlock &BB : *Func) {
if (!BB.empty()) {
if (ReturnInst *RI = dyn_cast<ReturnInst>(&BB.back())) {
RI->eraseFromParent();
IRB.SetInsertPoint(&BB, BB.end());
IRB.CreateBr(CondFreeBlock);
}
}
}
// Cond Free Block
IRB.SetInsertPoint(CondFreeBlock, CondFreeBlock->begin());
IRB.CreateIntrinsic(Intrinsic::amdgcn_s_barrier, {}, {});
IRB.CreateCondBr(XYZCondPhi, FreeBlock, EndBlock);
// Free Block
IRB.SetInsertPoint(FreeBlock, FreeBlock->begin());
// Free the previously allocate device global memory.
FunctionCallee AsanFreeFunc = M.getOrInsertFunction(
StringRef("__asan_free_impl"),
FunctionType::get(IRB.getVoidTy(), {Int64Ty, Int64Ty}, false));
Value *ReturnAddr =
IRB.CreateIntrinsic(Intrinsic::returnaddress, {}, IRB.getInt32(0));
Value *RAPToInt = IRB.CreatePtrToInt(ReturnAddr, Int64Ty);
Value *MallocPtrToInt = IRB.CreatePtrToInt(LoadMallocPtr, Int64Ty);
IRB.CreateCall(AsanFreeFunc, {MallocPtrToInt, RAPToInt});
IRB.CreateBr(EndBlock);
// End Block
IRB.SetInsertPoint(EndBlock, EndBlock->begin());
IRB.CreateRetVoid();
// Update the DomTree with corresponding links to basic blocks.
DTU.applyUpdates({{DominatorTree::Insert, WIdBlock, MallocBlock},
{DominatorTree::Insert, MallocBlock, PrevEntryBlock},
{DominatorTree::Insert, CondFreeBlock, FreeBlock},
{DominatorTree::Insert, FreeBlock, EndBlock}});
}
Constant *AMDGPUSwLowerLDS::getAddressesOfVariablesInKernel(
Function *Func, SetVector<GlobalVariable *> &Variables) {
Type *Int32Ty = IRB.getInt32Ty();
auto &LDSParams = FuncLDSAccessInfo.KernelToLDSParametersMap[Func];
GlobalVariable *SwLDSMetadata = LDSParams.SwLDSMetadata;
assert(SwLDSMetadata);
auto *SwLDSMetadataStructType =
cast<StructType>(SwLDSMetadata->getValueType());
ArrayType *KernelOffsetsType =
ArrayType::get(IRB.getPtrTy(AMDGPUAS::GLOBAL_ADDRESS), Variables.size());
SmallVector<Constant *> Elements;
for (auto *GV : Variables) {
auto It = LDSParams.LDSToReplacementIndicesMap.find(GV);
if (It == LDSParams.LDSToReplacementIndicesMap.end()) {
Elements.push_back(
PoisonValue::get(IRB.getPtrTy(AMDGPUAS::GLOBAL_ADDRESS)));
continue;
}
auto &Indices = It->second;
Constant *GEPIdx[] = {ConstantInt::get(Int32Ty, Indices[0]),
ConstantInt::get(Int32Ty, Indices[1]),
ConstantInt::get(Int32Ty, Indices[2])};
Constant *GEP = ConstantExpr::getGetElementPtr(SwLDSMetadataStructType,
SwLDSMetadata, GEPIdx, true);
Elements.push_back(GEP);
}
return ConstantArray::get(KernelOffsetsType, Elements);
}
void AMDGPUSwLowerLDS::buildNonKernelLDSBaseTable(
NonKernelLDSParameters &NKLDSParams) {
// Base table will have single row, with elements of the row
// placed as per kernel ID. Each element in the row corresponds
// to addresss of "SW LDS" global of the kernel.
auto &Kernels = NKLDSParams.OrderedKernels;
if (Kernels.empty())
return;
Type *Int32Ty = IRB.getInt32Ty();
const size_t NumberKernels = Kernels.size();
ArrayType *AllKernelsOffsetsType =
ArrayType::get(IRB.getPtrTy(AMDGPUAS::LOCAL_ADDRESS), NumberKernels);
std::vector<Constant *> OverallConstantExprElts(NumberKernels);
for (size_t i = 0; i < NumberKernels; i++) {
Function *Func = Kernels[i];
auto &LDSParams = FuncLDSAccessInfo.KernelToLDSParametersMap[Func];
GlobalVariable *SwLDS = LDSParams.SwLDS;
assert(SwLDS);
Constant *GEPIdx[] = {ConstantInt::get(Int32Ty, 0)};
Constant *GEP =
ConstantExpr::getGetElementPtr(SwLDS->getType(), SwLDS, GEPIdx, true);
OverallConstantExprElts[i] = GEP;
}
Constant *init =
ConstantArray::get(AllKernelsOffsetsType, OverallConstantExprElts);
NKLDSParams.LDSBaseTable = new GlobalVariable(
M, AllKernelsOffsetsType, true, GlobalValue::InternalLinkage, init,
"llvm.amdgcn.sw.lds.base.table", nullptr, GlobalValue::NotThreadLocal,
AMDGPUAS::GLOBAL_ADDRESS);
GlobalValue::SanitizerMetadata MD;
MD.NoAddress = true;
NKLDSParams.LDSBaseTable->setSanitizerMetadata(MD);
}
void AMDGPUSwLowerLDS::buildNonKernelLDSOffsetTable(
NonKernelLDSParameters &NKLDSParams) {
// Offset table will have multiple rows and columns.
// Rows are assumed to be from 0 to (n-1). n is total number
// of kernels accessing the LDS through non-kernels.
// Each row will have m elements. m is the total number of
// unique LDS globals accessed by non-kernels.
// Each element in the row correspond to the address of
// the replacement of LDS global done by that particular kernel.
auto &Variables = NKLDSParams.OrdereLDSGlobals;
auto &Kernels = NKLDSParams.OrderedKernels;
if (Variables.empty() || Kernels.empty())
return;
const size_t NumberVariables = Variables.size();
const size_t NumberKernels = Kernels.size();
ArrayType *KernelOffsetsType =
ArrayType::get(IRB.getPtrTy(AMDGPUAS::GLOBAL_ADDRESS), NumberVariables);
ArrayType *AllKernelsOffsetsType =
ArrayType::get(KernelOffsetsType, NumberKernels);
std::vector<Constant *> overallConstantExprElts(NumberKernels);
for (size_t i = 0; i < NumberKernels; i++) {
Function *Func = Kernels[i];
overallConstantExprElts[i] =
getAddressesOfVariablesInKernel(Func, Variables);
}
Constant *Init =
ConstantArray::get(AllKernelsOffsetsType, overallConstantExprElts);
NKLDSParams.LDSOffsetTable = new GlobalVariable(
M, AllKernelsOffsetsType, true, GlobalValue::InternalLinkage, Init,
"llvm.amdgcn.sw.lds.offset.table", nullptr, GlobalValue::NotThreadLocal,
AMDGPUAS::GLOBAL_ADDRESS);
GlobalValue::SanitizerMetadata MD;
MD.NoAddress = true;
NKLDSParams.LDSOffsetTable->setSanitizerMetadata(MD);
}
void AMDGPUSwLowerLDS::lowerNonKernelLDSAccesses(
Function *Func, SetVector<GlobalVariable *> &LDSGlobals,
NonKernelLDSParameters &NKLDSParams) {
// Replace LDS access in non-kernel with replacement queried from
// Base table and offset from offset table.
LLVM_DEBUG(dbgs() << "Sw LDS lowering, lower non-kernel access for : "
<< Func->getName());
auto InsertAt = Func->getEntryBlock().getFirstNonPHIOrDbgOrAlloca();
IRB.SetInsertPoint(InsertAt);
// Get LDS memory instructions.
SetVector<Instruction *> LDSInstructions;
getLDSMemoryInstructions(Func, LDSInstructions);
auto *KernelId = IRB.CreateIntrinsic(Intrinsic::amdgcn_lds_kernel_id, {}, {});
GlobalVariable *LDSBaseTable = NKLDSParams.LDSBaseTable;
GlobalVariable *LDSOffsetTable = NKLDSParams.LDSOffsetTable;
auto &OrdereLDSGlobals = NKLDSParams.OrdereLDSGlobals;
Value *BaseGEP = IRB.CreateInBoundsGEP(
LDSBaseTable->getValueType(), LDSBaseTable, {IRB.getInt32(0), KernelId});
Value *BaseLoad =
IRB.CreateLoad(IRB.getPtrTy(AMDGPUAS::LOCAL_ADDRESS), BaseGEP);
Value *LoadMallocPtr =
IRB.CreateLoad(IRB.getPtrTy(AMDGPUAS::GLOBAL_ADDRESS), BaseLoad);
for (GlobalVariable *GV : LDSGlobals) {
const auto *GVIt =
std::find(OrdereLDSGlobals.begin(), OrdereLDSGlobals.end(), GV);
assert(GVIt != OrdereLDSGlobals.end());
uint32_t GVOffset = std::distance(OrdereLDSGlobals.begin(), GVIt);
Value *OffsetGEP = IRB.CreateInBoundsGEP(
LDSOffsetTable->getValueType(), LDSOffsetTable,
{IRB.getInt32(0), KernelId, IRB.getInt32(GVOffset)});
Value *OffsetLoad =
IRB.CreateLoad(IRB.getPtrTy(AMDGPUAS::GLOBAL_ADDRESS), OffsetGEP);
Value *Offset = IRB.CreateLoad(IRB.getInt32Ty(), OffsetLoad);
Value *BasePlusOffset =
IRB.CreateInBoundsGEP(IRB.getInt8Ty(), BaseLoad, {Offset});
LLVM_DEBUG(dbgs() << "Sw LDS Lowering, Replace non-kernel LDS for "
<< GV->getName());
replacesUsesOfGlobalInFunction(Func, GV, BasePlusOffset);
}
translateLDSMemoryOperationsToGlobalMemory(Func, LoadMallocPtr,
LDSInstructions);
}
static void reorderStaticDynamicIndirectLDSSet(KernelLDSParameters &LDSParams) {
// Sort Static, dynamic LDS globals which are either
// direct or indirect access on basis of name.
auto &DirectAccess = LDSParams.DirectAccess;
auto &IndirectAccess = LDSParams.IndirectAccess;
LDSParams.DirectAccess.StaticLDSGlobals = sortByName(
std::vector<GlobalVariable *>(DirectAccess.StaticLDSGlobals.begin(),
DirectAccess.StaticLDSGlobals.end()));
LDSParams.DirectAccess.DynamicLDSGlobals = sortByName(
std::vector<GlobalVariable *>(DirectAccess.DynamicLDSGlobals.begin(),
DirectAccess.DynamicLDSGlobals.end()));
LDSParams.IndirectAccess.StaticLDSGlobals = sortByName(
std::vector<GlobalVariable *>(IndirectAccess.StaticLDSGlobals.begin(),
IndirectAccess.StaticLDSGlobals.end()));
LDSParams.IndirectAccess.DynamicLDSGlobals = sortByName(
std::vector<GlobalVariable *>(IndirectAccess.DynamicLDSGlobals.begin(),
IndirectAccess.DynamicLDSGlobals.end()));
}
void AMDGPUSwLowerLDS::initAsanInfo() {
// Get Shadow mapping scale and offset.
unsigned LongSize =
M.getDataLayout().getPointerSizeInBits(AMDGPUAS::GLOBAL_ADDRESS);
uint64_t Offset;
int Scale;
bool OrShadowOffset;
llvm::getAddressSanitizerParams(AMDGPUTM.getTargetTriple(), LongSize, false,
&Offset, &Scale, &OrShadowOffset);
AsanInfo.Scale = Scale;
AsanInfo.Offset = Offset;
}
bool AMDGPUSwLowerLDS::run() {
bool Changed = false;
CallGraph CG = CallGraph(M);
Changed |= eliminateConstantExprUsesOfLDSFromAllInstructions(M);
// Get all the direct and indirect access of LDS for all the kernels.
LDSUsesInfoTy LDSUsesInfo = getTransitiveUsesOfLDS(CG, M);
// Utility to group LDS access into direct, indirect, static and dynamic.
auto PopulateKernelStaticDynamicLDS = [&](FunctionVariableMap &LDSAccesses,
bool DirectAccess) {
for (auto &K : LDSAccesses) {
Function *F = K.first;
if (!F || K.second.empty())
continue;
assert(isKernelLDS(F));
if (!F->hasFnAttribute(Attribute::SanitizeAddress))
continue;
// Only inserts if key isn't already in the map.
FuncLDSAccessInfo.KernelToLDSParametersMap.insert(
{F, KernelLDSParameters()});
auto &LDSParams = FuncLDSAccessInfo.KernelToLDSParametersMap[F];
if (!DirectAccess)
FuncLDSAccessInfo.KernelsWithIndirectLDSAccess.insert(F);
for (GlobalVariable *GV : K.second) {
if (!DirectAccess) {
if (AMDGPU::isDynamicLDS(*GV))
LDSParams.IndirectAccess.DynamicLDSGlobals.insert(GV);
else
LDSParams.IndirectAccess.StaticLDSGlobals.insert(GV);
FuncLDSAccessInfo.AllNonKernelLDSAccess.insert(GV);
} else {
if (AMDGPU::isDynamicLDS(*GV))
LDSParams.DirectAccess.DynamicLDSGlobals.insert(GV);
else
LDSParams.DirectAccess.StaticLDSGlobals.insert(GV);
}
}
}
};
PopulateKernelStaticDynamicLDS(LDSUsesInfo.direct_access, true);
PopulateKernelStaticDynamicLDS(LDSUsesInfo.indirect_access, false);
// Get address sanitizer scale.
initAsanInfo();
for (auto &K : FuncLDSAccessInfo.KernelToLDSParametersMap) {
Function *Func = K.first;
auto &LDSParams = FuncLDSAccessInfo.KernelToLDSParametersMap[Func];
if (LDSParams.DirectAccess.StaticLDSGlobals.empty() &&
LDSParams.DirectAccess.DynamicLDSGlobals.empty() &&
LDSParams.IndirectAccess.StaticLDSGlobals.empty() &&
LDSParams.IndirectAccess.DynamicLDSGlobals.empty()) {
Changed = false;
} else {
removeFnAttrFromReachable(
CG, Func,
{"amdgpu-no-workitem-id-x", "amdgpu-no-workitem-id-y",
"amdgpu-no-workitem-id-z", "amdgpu-no-heap-ptr"});
if (!LDSParams.IndirectAccess.StaticLDSGlobals.empty() ||
!LDSParams.IndirectAccess.DynamicLDSGlobals.empty())
removeFnAttrFromReachable(CG, Func, {"amdgpu-no-lds-kernel-id"});
reorderStaticDynamicIndirectLDSSet(LDSParams);
buildSwLDSGlobal(Func);
buildSwDynLDSGlobal(Func);
populateSwMetadataGlobal(Func);
populateSwLDSAttributeAndMetadata(Func);
populateLDSToReplacementIndicesMap(Func);
DomTreeUpdater DTU(DTCallback(*Func),
DomTreeUpdater::UpdateStrategy::Lazy);
lowerKernelLDSAccesses(Func, DTU);
Changed = true;
}
}
// Get the Uses of LDS from non-kernels.
getUsesOfLDSByNonKernels();
// Get non-kernels with LDS ptr as argument and called by kernels.
getNonKernelsWithLDSArguments(CG);
if (!FuncLDSAccessInfo.NonKernelToLDSAccessMap.empty() ||
!FuncLDSAccessInfo.NonKernelsWithLDSArgument.empty()) {
NonKernelLDSParameters NKLDSParams;
NKLDSParams.OrderedKernels = getOrderedIndirectLDSAccessingKernels(
FuncLDSAccessInfo.KernelsWithIndirectLDSAccess);
NKLDSParams.OrdereLDSGlobals = getOrderedNonKernelAllLDSGlobals(
FuncLDSAccessInfo.AllNonKernelLDSAccess);
buildNonKernelLDSBaseTable(NKLDSParams);
buildNonKernelLDSOffsetTable(NKLDSParams);
for (auto &K : FuncLDSAccessInfo.NonKernelToLDSAccessMap) {
Function *Func = K.first;
DenseSet<GlobalVariable *> &LDSGlobals = K.second;
SetVector<GlobalVariable *> OrderedLDSGlobals = sortByName(
std::vector<GlobalVariable *>(LDSGlobals.begin(), LDSGlobals.end()));
lowerNonKernelLDSAccesses(Func, OrderedLDSGlobals, NKLDSParams);
}
for (Function *Func : FuncLDSAccessInfo.NonKernelsWithLDSArgument) {
auto &K = FuncLDSAccessInfo.NonKernelToLDSAccessMap;
if (K.find(Func) != K.end())
continue;
SetVector<llvm::GlobalVariable *> Vec;
lowerNonKernelLDSAccesses(Func, Vec, NKLDSParams);
}
Changed = true;
}
if (!Changed)
return Changed;
for (auto &GV : make_early_inc_range(M.globals())) {
if (AMDGPU::isLDSVariableToLower(GV)) {
// probably want to remove from used lists
GV.removeDeadConstantUsers();
if (GV.use_empty())
GV.eraseFromParent();
}
}
if (AsanInstrumentLDS) {
SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument;
for (Instruction *Inst : AsanInfo.Instructions) {
SmallVector<InterestingMemoryOperand, 1> InterestingOperands;
getInterestingMemoryOperands(M, Inst, InterestingOperands);
for (auto &Operand : InterestingOperands) {
OperandsToInstrument.push_back(Operand);
}
}
for (auto &Operand : OperandsToInstrument) {
Value *Addr = Operand.getPtr();
instrumentAddress(M, IRB, Operand.getInsn(), Operand.getInsn(), Addr,
Operand.Alignment.valueOrOne(), Operand.TypeStoreSize,
Operand.IsWrite, nullptr, false, false, AsanInfo.Scale,
AsanInfo.Offset);
Changed = true;
}
}
return Changed;
}
class AMDGPUSwLowerLDSLegacy : public ModulePass {
public:
const AMDGPUTargetMachine *AMDGPUTM;
static char ID;
AMDGPUSwLowerLDSLegacy(const AMDGPUTargetMachine *TM)
: ModulePass(ID), AMDGPUTM(TM) {
initializeAMDGPUSwLowerLDSLegacyPass(*PassRegistry::getPassRegistry());
}
bool runOnModule(Module &M) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addPreserved<DominatorTreeWrapperPass>();
}
};
} // namespace
char AMDGPUSwLowerLDSLegacy::ID = 0;
char &llvm::AMDGPUSwLowerLDSLegacyPassID = AMDGPUSwLowerLDSLegacy::ID;
INITIALIZE_PASS_BEGIN(AMDGPUSwLowerLDSLegacy, "amdgpu-sw-lower-lds",
"AMDGPU Software lowering of LDS", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_END(AMDGPUSwLowerLDSLegacy, "amdgpu-sw-lower-lds",
"AMDGPU Software lowering of LDS", false, false)
bool AMDGPUSwLowerLDSLegacy::runOnModule(Module &M) {
// AddressSanitizer pass adds "nosanitize_address" module flag if it has
// instrumented the IR. Return early if the flag is not present.
if (!M.getModuleFlag("nosanitize_address"))
return false;
DominatorTreeWrapperPass *const DTW =
getAnalysisIfAvailable<DominatorTreeWrapperPass>();
auto DTCallback = [&DTW](Function &F) -> DominatorTree * {
return DTW ? &DTW->getDomTree() : nullptr;
};
if (!AMDGPUTM) {
auto &TPC = getAnalysis<TargetPassConfig>();
AMDGPUTM = &TPC.getTM<AMDGPUTargetMachine>();
}
AMDGPUSwLowerLDS SwLowerLDSImpl(M, *AMDGPUTM, DTCallback);
bool IsChanged = SwLowerLDSImpl.run();
return IsChanged;
}
ModulePass *
llvm::createAMDGPUSwLowerLDSLegacyPass(const AMDGPUTargetMachine *TM) {
return new AMDGPUSwLowerLDSLegacy(TM);
}
PreservedAnalyses AMDGPUSwLowerLDSPass::run(Module &M,
ModuleAnalysisManager &AM) {
// AddressSanitizer pass adds "nosanitize_address" module flag if it has
// instrumented the IR. Return early if the flag is not present.
if (!M.getModuleFlag("nosanitize_address"))
return PreservedAnalyses::all();
auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
auto DTCallback = [&FAM](Function &F) -> DominatorTree * {
return &FAM.getResult<DominatorTreeAnalysis>(F);
};
AMDGPUSwLowerLDS SwLowerLDSImpl(M, TM, DTCallback);
bool IsChanged = SwLowerLDSImpl.run();
if (!IsChanged)
return PreservedAnalyses::all();
PreservedAnalyses PA;
PA.preserve<DominatorTreeAnalysis>();
return PA;
}