The SPIR-V Backend uses the same set of utility functions, mostly though not entirely from SPIRVGlobalRegistry, to generate gMIR and SPIR-V opcodes, depending on the current stage of translation. This is controlled by an explicit EmitIR flag rather than the current translation pass, and there are legacy pieces of code where the EmitIR flag is declared so that it has a default true value, allowing using utility functions without explicitly declaring their intent to work either in gMIR or in SPIR-V part of the lowering process. While it may be ok to leave this default EmitIR flag as is in generation of scalar integer/float types, as we don't expect to see any dependent opcodes derived from such OpTypeXXX instructions, using of EmitIR by default in aggregation types is a source of hidden logical flaws and actual issues. This PR provides a partial fix to the problem by removing default status of EmitIR, requiring a user call site to explicitly announce its intent to generate gMIR or SPIR-V code, fixes several cases of misuse of EmitIR, and, the most important, fixes a nasty logical error that breaks passing of actually asked EmitIR value by the default value in the middle of the chain of calls, in the `findSPIRVType` call. The latter error was a source of issues in the post-instruction selection pass that has been getting gMIR code where SPIR-V was explicitly requested due to overloaded with default parameters internal API in SPIRVGlobalRegistry (most notably, `findSPIRVType`).
1061 lines
42 KiB
C++
1061 lines
42 KiB
C++
//===-- SPIRVPreLegalizer.cpp - prepare IR for legalization -----*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// The pass prepares IR for legalization: it assigns SPIR-V types to registers
|
|
// and removes intrinsics which holded these types during IR translation.
|
|
// Also it processes constants and registers them in GR to avoid duplication.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "SPIRV.h"
|
|
#include "SPIRVSubtarget.h"
|
|
#include "SPIRVUtils.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
|
|
#include "llvm/CodeGen/GlobalISel/CSEInfo.h"
|
|
#include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/IR/IntrinsicsSPIRV.h"
|
|
|
|
#define DEBUG_TYPE "spirv-prelegalizer"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
class SPIRVPreLegalizer : public MachineFunctionPass {
|
|
public:
|
|
static char ID;
|
|
SPIRVPreLegalizer() : MachineFunctionPass(ID) {
|
|
initializeSPIRVPreLegalizerPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override;
|
|
};
|
|
} // namespace
|
|
|
|
void SPIRVPreLegalizer::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addPreserved<GISelKnownBitsAnalysis>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
static void
|
|
addConstantsToTrack(MachineFunction &MF, SPIRVGlobalRegistry *GR,
|
|
const SPIRVSubtarget &STI,
|
|
DenseMap<MachineInstr *, Type *> &TargetExtConstTypes,
|
|
SmallSet<Register, 4> &TrackedConstRegs) {
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
DenseMap<MachineInstr *, Register> RegsAlreadyAddedToDT;
|
|
SmallVector<MachineInstr *, 10> ToErase, ToEraseComposites;
|
|
for (MachineBasicBlock &MBB : MF) {
|
|
for (MachineInstr &MI : MBB) {
|
|
if (!isSpvIntrinsic(MI, Intrinsic::spv_track_constant))
|
|
continue;
|
|
ToErase.push_back(&MI);
|
|
Register SrcReg = MI.getOperand(2).getReg();
|
|
auto *Const =
|
|
cast<Constant>(cast<ConstantAsMetadata>(
|
|
MI.getOperand(3).getMetadata()->getOperand(0))
|
|
->getValue());
|
|
if (auto *GV = dyn_cast<GlobalValue>(Const)) {
|
|
Register Reg = GR->find(GV, &MF);
|
|
if (!Reg.isValid()) {
|
|
GR->add(GV, &MF, SrcReg);
|
|
GR->addGlobalObject(GV, &MF, SrcReg);
|
|
} else
|
|
RegsAlreadyAddedToDT[&MI] = Reg;
|
|
} else {
|
|
Register Reg = GR->find(Const, &MF);
|
|
if (!Reg.isValid()) {
|
|
if (auto *ConstVec = dyn_cast<ConstantDataVector>(Const)) {
|
|
auto *BuildVec = MRI.getVRegDef(SrcReg);
|
|
assert(BuildVec &&
|
|
BuildVec->getOpcode() == TargetOpcode::G_BUILD_VECTOR);
|
|
for (unsigned i = 0; i < ConstVec->getNumElements(); ++i) {
|
|
// Ensure that OpConstantComposite reuses a constant when it's
|
|
// already created and available in the same machine function.
|
|
Constant *ElemConst = ConstVec->getElementAsConstant(i);
|
|
Register ElemReg = GR->find(ElemConst, &MF);
|
|
if (!ElemReg.isValid())
|
|
GR->add(ElemConst, &MF, BuildVec->getOperand(1 + i).getReg());
|
|
else
|
|
BuildVec->getOperand(1 + i).setReg(ElemReg);
|
|
}
|
|
}
|
|
GR->add(Const, &MF, SrcReg);
|
|
TrackedConstRegs.insert(SrcReg);
|
|
if (Const->getType()->isTargetExtTy()) {
|
|
// remember association so that we can restore it when assign types
|
|
MachineInstr *SrcMI = MRI.getVRegDef(SrcReg);
|
|
if (SrcMI && (SrcMI->getOpcode() == TargetOpcode::G_CONSTANT ||
|
|
SrcMI->getOpcode() == TargetOpcode::G_IMPLICIT_DEF))
|
|
TargetExtConstTypes[SrcMI] = Const->getType();
|
|
if (Const->isNullValue()) {
|
|
MachineIRBuilder MIB(MF);
|
|
SPIRVType *ExtType = GR->getOrCreateSPIRVType(
|
|
Const->getType(), MIB, SPIRV::AccessQualifier::ReadWrite,
|
|
true);
|
|
SrcMI->setDesc(STI.getInstrInfo()->get(SPIRV::OpConstantNull));
|
|
SrcMI->addOperand(MachineOperand::CreateReg(
|
|
GR->getSPIRVTypeID(ExtType), false));
|
|
}
|
|
}
|
|
} else {
|
|
RegsAlreadyAddedToDT[&MI] = Reg;
|
|
// This MI is unused and will be removed. If the MI uses
|
|
// const_composite, it will be unused and should be removed too.
|
|
assert(MI.getOperand(2).isReg() && "Reg operand is expected");
|
|
MachineInstr *SrcMI = MRI.getVRegDef(MI.getOperand(2).getReg());
|
|
if (SrcMI && isSpvIntrinsic(*SrcMI, Intrinsic::spv_const_composite))
|
|
ToEraseComposites.push_back(SrcMI);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
for (MachineInstr *MI : ToErase) {
|
|
Register Reg = MI->getOperand(2).getReg();
|
|
if (RegsAlreadyAddedToDT.contains(MI))
|
|
Reg = RegsAlreadyAddedToDT[MI];
|
|
auto *RC = MRI.getRegClassOrNull(MI->getOperand(0).getReg());
|
|
if (!MRI.getRegClassOrNull(Reg) && RC)
|
|
MRI.setRegClass(Reg, RC);
|
|
MRI.replaceRegWith(MI->getOperand(0).getReg(), Reg);
|
|
MI->eraseFromParent();
|
|
}
|
|
for (MachineInstr *MI : ToEraseComposites)
|
|
MI->eraseFromParent();
|
|
}
|
|
|
|
static void
|
|
foldConstantsIntoIntrinsics(MachineFunction &MF,
|
|
const SmallSet<Register, 4> &TrackedConstRegs) {
|
|
SmallVector<MachineInstr *, 10> ToErase;
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
const unsigned AssignNameOperandShift = 2;
|
|
for (MachineBasicBlock &MBB : MF) {
|
|
for (MachineInstr &MI : MBB) {
|
|
if (!isSpvIntrinsic(MI, Intrinsic::spv_assign_name))
|
|
continue;
|
|
unsigned NumOp = MI.getNumExplicitDefs() + AssignNameOperandShift;
|
|
while (MI.getOperand(NumOp).isReg()) {
|
|
MachineOperand &MOp = MI.getOperand(NumOp);
|
|
MachineInstr *ConstMI = MRI.getVRegDef(MOp.getReg());
|
|
assert(ConstMI->getOpcode() == TargetOpcode::G_CONSTANT);
|
|
MI.removeOperand(NumOp);
|
|
MI.addOperand(MachineOperand::CreateImm(
|
|
ConstMI->getOperand(1).getCImm()->getZExtValue()));
|
|
Register DefReg = ConstMI->getOperand(0).getReg();
|
|
if (MRI.use_empty(DefReg) && !TrackedConstRegs.contains(DefReg))
|
|
ToErase.push_back(ConstMI);
|
|
}
|
|
}
|
|
}
|
|
for (MachineInstr *MI : ToErase)
|
|
MI->eraseFromParent();
|
|
}
|
|
|
|
static MachineInstr *findAssignTypeInstr(Register Reg,
|
|
MachineRegisterInfo *MRI) {
|
|
for (MachineRegisterInfo::use_instr_iterator I = MRI->use_instr_begin(Reg),
|
|
IE = MRI->use_instr_end();
|
|
I != IE; ++I) {
|
|
MachineInstr *UseMI = &*I;
|
|
if ((isSpvIntrinsic(*UseMI, Intrinsic::spv_assign_ptr_type) ||
|
|
isSpvIntrinsic(*UseMI, Intrinsic::spv_assign_type)) &&
|
|
UseMI->getOperand(1).getReg() == Reg)
|
|
return UseMI;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
static void buildOpBitcast(SPIRVGlobalRegistry *GR, MachineIRBuilder &MIB,
|
|
Register ResVReg, Register OpReg) {
|
|
SPIRVType *ResType = GR->getSPIRVTypeForVReg(ResVReg);
|
|
SPIRVType *OpType = GR->getSPIRVTypeForVReg(OpReg);
|
|
assert(ResType && OpType && "Operand types are expected");
|
|
if (!GR->isBitcastCompatible(ResType, OpType))
|
|
report_fatal_error("incompatible result and operand types in a bitcast");
|
|
MachineRegisterInfo *MRI = MIB.getMRI();
|
|
if (!MRI->getRegClassOrNull(ResVReg))
|
|
MRI->setRegClass(ResVReg, GR->getRegClass(ResType));
|
|
if (ResType == OpType)
|
|
MIB.buildInstr(TargetOpcode::COPY).addDef(ResVReg).addUse(OpReg);
|
|
else
|
|
MIB.buildInstr(SPIRV::OpBitcast)
|
|
.addDef(ResVReg)
|
|
.addUse(GR->getSPIRVTypeID(ResType))
|
|
.addUse(OpReg);
|
|
}
|
|
|
|
// We do instruction selections early instead of calling MIB.buildBitcast()
|
|
// generating the general op code G_BITCAST. When MachineVerifier validates
|
|
// G_BITCAST we see a check of a kind: if Source Type is equal to Destination
|
|
// Type then report error "bitcast must change the type". This doesn't take into
|
|
// account the notion of a typed pointer that is important for SPIR-V where a
|
|
// user may and should use bitcast between pointers with different pointee types
|
|
// (https://registry.khronos.org/SPIR-V/specs/unified1/SPIRV.html#OpBitcast).
|
|
// It's important for correct lowering in SPIR-V, because interpretation of the
|
|
// data type is not left to instructions that utilize the pointer, but encoded
|
|
// by the pointer declaration, and the SPIRV target can and must handle the
|
|
// declaration and use of pointers that specify the type of data they point to.
|
|
// It's not feasible to improve validation of G_BITCAST using just information
|
|
// provided by low level types of source and destination. Therefore we don't
|
|
// produce G_BITCAST as the general op code with semantics different from
|
|
// OpBitcast, but rather lower to OpBitcast immediately. As for now, the only
|
|
// difference would be that CombinerHelper couldn't transform known patterns
|
|
// around G_BUILD_VECTOR. See discussion
|
|
// in https://github.com/llvm/llvm-project/pull/110270 for even more context.
|
|
static void selectOpBitcasts(MachineFunction &MF, SPIRVGlobalRegistry *GR,
|
|
MachineIRBuilder MIB) {
|
|
SmallVector<MachineInstr *, 16> ToErase;
|
|
for (MachineBasicBlock &MBB : MF) {
|
|
for (MachineInstr &MI : MBB) {
|
|
if (MI.getOpcode() != TargetOpcode::G_BITCAST)
|
|
continue;
|
|
MIB.setInsertPt(*MI.getParent(), MI);
|
|
buildOpBitcast(GR, MIB, MI.getOperand(0).getReg(),
|
|
MI.getOperand(1).getReg());
|
|
ToErase.push_back(&MI);
|
|
}
|
|
}
|
|
for (MachineInstr *MI : ToErase)
|
|
MI->eraseFromParent();
|
|
}
|
|
|
|
static void insertBitcasts(MachineFunction &MF, SPIRVGlobalRegistry *GR,
|
|
MachineIRBuilder MIB) {
|
|
// Get access to information about available extensions
|
|
const SPIRVSubtarget *ST =
|
|
static_cast<const SPIRVSubtarget *>(&MIB.getMF().getSubtarget());
|
|
SmallVector<MachineInstr *, 10> ToErase;
|
|
for (MachineBasicBlock &MBB : MF) {
|
|
for (MachineInstr &MI : MBB) {
|
|
if (!isSpvIntrinsic(MI, Intrinsic::spv_bitcast) &&
|
|
!isSpvIntrinsic(MI, Intrinsic::spv_ptrcast))
|
|
continue;
|
|
assert(MI.getOperand(2).isReg());
|
|
MIB.setInsertPt(*MI.getParent(), MI);
|
|
ToErase.push_back(&MI);
|
|
if (isSpvIntrinsic(MI, Intrinsic::spv_bitcast)) {
|
|
MIB.buildBitcast(MI.getOperand(0).getReg(), MI.getOperand(2).getReg());
|
|
continue;
|
|
}
|
|
Register Def = MI.getOperand(0).getReg();
|
|
Register Source = MI.getOperand(2).getReg();
|
|
Type *ElemTy = getMDOperandAsType(MI.getOperand(3).getMetadata(), 0);
|
|
SPIRVType *BaseTy = GR->getOrCreateSPIRVType(
|
|
ElemTy, MIB, SPIRV::AccessQualifier::ReadWrite, true);
|
|
SPIRVType *AssignedPtrType = GR->getOrCreateSPIRVPointerType(
|
|
BaseTy, MI, *MF.getSubtarget<SPIRVSubtarget>().getInstrInfo(),
|
|
addressSpaceToStorageClass(MI.getOperand(4).getImm(), *ST));
|
|
|
|
// If the ptrcast would be redundant, replace all uses with the source
|
|
// register.
|
|
MachineRegisterInfo *MRI = MIB.getMRI();
|
|
if (GR->getSPIRVTypeForVReg(Source) == AssignedPtrType) {
|
|
// Erase Def's assign type instruction if we are going to replace Def.
|
|
if (MachineInstr *AssignMI = findAssignTypeInstr(Def, MRI))
|
|
ToErase.push_back(AssignMI);
|
|
MRI->replaceRegWith(Def, Source);
|
|
} else {
|
|
GR->assignSPIRVTypeToVReg(AssignedPtrType, Def, MF);
|
|
MIB.buildBitcast(Def, Source);
|
|
}
|
|
}
|
|
}
|
|
for (MachineInstr *MI : ToErase)
|
|
MI->eraseFromParent();
|
|
}
|
|
|
|
// Translating GV, IRTranslator sometimes generates following IR:
|
|
// %1 = G_GLOBAL_VALUE
|
|
// %2 = COPY %1
|
|
// %3 = G_ADDRSPACE_CAST %2
|
|
//
|
|
// or
|
|
//
|
|
// %1 = G_ZEXT %2
|
|
// G_MEMCPY ... %2 ...
|
|
//
|
|
// New registers have no SPIRVType and no register class info.
|
|
//
|
|
// Set SPIRVType for GV, propagate it from GV to other instructions,
|
|
// also set register classes.
|
|
static SPIRVType *propagateSPIRVType(MachineInstr *MI, SPIRVGlobalRegistry *GR,
|
|
MachineRegisterInfo &MRI,
|
|
MachineIRBuilder &MIB) {
|
|
SPIRVType *SpvType = nullptr;
|
|
assert(MI && "Machine instr is expected");
|
|
if (MI->getOperand(0).isReg()) {
|
|
Register Reg = MI->getOperand(0).getReg();
|
|
SpvType = GR->getSPIRVTypeForVReg(Reg);
|
|
if (!SpvType) {
|
|
switch (MI->getOpcode()) {
|
|
case TargetOpcode::G_FCONSTANT:
|
|
case TargetOpcode::G_CONSTANT: {
|
|
MIB.setInsertPt(*MI->getParent(), MI);
|
|
Type *Ty = MI->getOperand(1).getCImm()->getType();
|
|
SpvType = GR->getOrCreateSPIRVType(
|
|
Ty, MIB, SPIRV::AccessQualifier::ReadWrite, true);
|
|
break;
|
|
}
|
|
case TargetOpcode::G_GLOBAL_VALUE: {
|
|
MIB.setInsertPt(*MI->getParent(), MI);
|
|
const GlobalValue *Global = MI->getOperand(1).getGlobal();
|
|
Type *ElementTy = toTypedPointer(GR->getDeducedGlobalValueType(Global));
|
|
auto *Ty = TypedPointerType::get(ElementTy,
|
|
Global->getType()->getAddressSpace());
|
|
SpvType = GR->getOrCreateSPIRVType(
|
|
Ty, MIB, SPIRV::AccessQualifier::ReadWrite, true);
|
|
break;
|
|
}
|
|
case TargetOpcode::G_ANYEXT:
|
|
case TargetOpcode::G_SEXT:
|
|
case TargetOpcode::G_ZEXT: {
|
|
if (MI->getOperand(1).isReg()) {
|
|
if (MachineInstr *DefInstr =
|
|
MRI.getVRegDef(MI->getOperand(1).getReg())) {
|
|
if (SPIRVType *Def = propagateSPIRVType(DefInstr, GR, MRI, MIB)) {
|
|
unsigned CurrentBW = GR->getScalarOrVectorBitWidth(Def);
|
|
unsigned ExpectedBW =
|
|
std::max(MRI.getType(Reg).getScalarSizeInBits(), CurrentBW);
|
|
unsigned NumElements = GR->getScalarOrVectorComponentCount(Def);
|
|
SpvType = GR->getOrCreateSPIRVIntegerType(ExpectedBW, MIB);
|
|
if (NumElements > 1)
|
|
SpvType = GR->getOrCreateSPIRVVectorType(SpvType, NumElements,
|
|
MIB, true);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case TargetOpcode::G_PTRTOINT:
|
|
SpvType = GR->getOrCreateSPIRVIntegerType(
|
|
MRI.getType(Reg).getScalarSizeInBits(), MIB);
|
|
break;
|
|
case TargetOpcode::G_TRUNC:
|
|
case TargetOpcode::G_ADDRSPACE_CAST:
|
|
case TargetOpcode::G_PTR_ADD:
|
|
case TargetOpcode::COPY: {
|
|
MachineOperand &Op = MI->getOperand(1);
|
|
MachineInstr *Def = Op.isReg() ? MRI.getVRegDef(Op.getReg()) : nullptr;
|
|
if (Def)
|
|
SpvType = propagateSPIRVType(Def, GR, MRI, MIB);
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
if (SpvType) {
|
|
// check if the address space needs correction
|
|
LLT RegType = MRI.getType(Reg);
|
|
if (SpvType->getOpcode() == SPIRV::OpTypePointer &&
|
|
RegType.isPointer() &&
|
|
storageClassToAddressSpace(GR->getPointerStorageClass(SpvType)) !=
|
|
RegType.getAddressSpace()) {
|
|
const SPIRVSubtarget &ST =
|
|
MI->getParent()->getParent()->getSubtarget<SPIRVSubtarget>();
|
|
SpvType = GR->getOrCreateSPIRVPointerType(
|
|
GR->getPointeeType(SpvType), *MI, *ST.getInstrInfo(),
|
|
addressSpaceToStorageClass(RegType.getAddressSpace(), ST));
|
|
}
|
|
GR->assignSPIRVTypeToVReg(SpvType, Reg, MIB.getMF());
|
|
}
|
|
if (!MRI.getRegClassOrNull(Reg))
|
|
MRI.setRegClass(Reg, SpvType ? GR->getRegClass(SpvType)
|
|
: &SPIRV::iIDRegClass);
|
|
}
|
|
}
|
|
return SpvType;
|
|
}
|
|
|
|
// To support current approach and limitations wrt. bit width here we widen a
|
|
// scalar register with a bit width greater than 1 to valid sizes and cap it to
|
|
// 64 width.
|
|
static void widenScalarLLTNextPow2(Register Reg, MachineRegisterInfo &MRI) {
|
|
LLT RegType = MRI.getType(Reg);
|
|
if (!RegType.isScalar())
|
|
return;
|
|
unsigned Sz = RegType.getScalarSizeInBits();
|
|
if (Sz == 1)
|
|
return;
|
|
unsigned NewSz = std::min(std::max(1u << Log2_32_Ceil(Sz), 8u), 64u);
|
|
if (NewSz != Sz)
|
|
MRI.setType(Reg, LLT::scalar(NewSz));
|
|
}
|
|
|
|
static std::pair<Register, unsigned>
|
|
createNewIdReg(SPIRVType *SpvType, Register SrcReg, MachineRegisterInfo &MRI,
|
|
const SPIRVGlobalRegistry &GR) {
|
|
if (!SpvType)
|
|
SpvType = GR.getSPIRVTypeForVReg(SrcReg);
|
|
const TargetRegisterClass *RC = GR.getRegClass(SpvType);
|
|
Register Reg = MRI.createGenericVirtualRegister(GR.getRegType(SpvType));
|
|
MRI.setRegClass(Reg, RC);
|
|
unsigned GetIdOp = SPIRV::GET_ID;
|
|
if (RC == &SPIRV::fIDRegClass)
|
|
GetIdOp = SPIRV::GET_fID;
|
|
else if (RC == &SPIRV::pIDRegClass)
|
|
GetIdOp = SPIRV::GET_pID;
|
|
else if (RC == &SPIRV::vfIDRegClass)
|
|
GetIdOp = SPIRV::GET_vfID;
|
|
else if (RC == &SPIRV::vpIDRegClass)
|
|
GetIdOp = SPIRV::GET_vpID;
|
|
else if (RC == &SPIRV::vIDRegClass)
|
|
GetIdOp = SPIRV::GET_vID;
|
|
return {Reg, GetIdOp};
|
|
}
|
|
|
|
static void setInsertPtAfterDef(MachineIRBuilder &MIB, MachineInstr *Def) {
|
|
MachineBasicBlock &MBB = *Def->getParent();
|
|
MachineBasicBlock::iterator DefIt =
|
|
Def->getNextNode() ? Def->getNextNode()->getIterator() : MBB.end();
|
|
// Skip all the PHI and debug instructions.
|
|
while (DefIt != MBB.end() &&
|
|
(DefIt->isPHI() || DefIt->isDebugOrPseudoInstr()))
|
|
DefIt = std::next(DefIt);
|
|
MIB.setInsertPt(MBB, DefIt);
|
|
}
|
|
|
|
// Insert ASSIGN_TYPE instuction between Reg and its definition, set NewReg as
|
|
// a dst of the definition, assign SPIRVType to both registers. If SpvType is
|
|
// provided, use it as SPIRVType in ASSIGN_TYPE, otherwise create it from Ty.
|
|
// It's used also in SPIRVBuiltins.cpp.
|
|
// TODO: maybe move to SPIRVUtils.
|
|
namespace llvm {
|
|
Register insertAssignInstr(Register Reg, Type *Ty, SPIRVType *SpvType,
|
|
SPIRVGlobalRegistry *GR, MachineIRBuilder &MIB,
|
|
MachineRegisterInfo &MRI) {
|
|
assert((Ty || SpvType) && "Either LLVM or SPIRV type is expected.");
|
|
MachineInstr *Def = MRI.getVRegDef(Reg);
|
|
setInsertPtAfterDef(MIB, Def);
|
|
SpvType = SpvType ? SpvType
|
|
: GR->getOrCreateSPIRVType(
|
|
Ty, MIB, SPIRV::AccessQualifier::ReadWrite, true);
|
|
Register NewReg = MRI.createGenericVirtualRegister(MRI.getType(Reg));
|
|
if (auto *RC = MRI.getRegClassOrNull(Reg)) {
|
|
MRI.setRegClass(NewReg, RC);
|
|
} else {
|
|
auto RegClass = GR->getRegClass(SpvType);
|
|
MRI.setRegClass(NewReg, RegClass);
|
|
MRI.setRegClass(Reg, RegClass);
|
|
}
|
|
GR->assignSPIRVTypeToVReg(SpvType, Reg, MIB.getMF());
|
|
// This is to make it convenient for Legalizer to get the SPIRVType
|
|
// when processing the actual MI (i.e. not pseudo one).
|
|
GR->assignSPIRVTypeToVReg(SpvType, NewReg, MIB.getMF());
|
|
// Copy MIFlags from Def to ASSIGN_TYPE instruction. It's required to keep
|
|
// the flags after instruction selection.
|
|
const uint32_t Flags = Def->getFlags();
|
|
MIB.buildInstr(SPIRV::ASSIGN_TYPE)
|
|
.addDef(Reg)
|
|
.addUse(NewReg)
|
|
.addUse(GR->getSPIRVTypeID(SpvType))
|
|
.setMIFlags(Flags);
|
|
for (unsigned I = 0, E = Def->getNumDefs(); I != E; ++I) {
|
|
MachineOperand &MO = Def->getOperand(I);
|
|
if (MO.getReg() == Reg) {
|
|
MO.setReg(NewReg);
|
|
break;
|
|
}
|
|
}
|
|
return NewReg;
|
|
}
|
|
|
|
void processInstr(MachineInstr &MI, MachineIRBuilder &MIB,
|
|
MachineRegisterInfo &MRI, SPIRVGlobalRegistry *GR) {
|
|
MIB.setInsertPt(*MI.getParent(), MI.getIterator());
|
|
for (auto &Op : MI.operands()) {
|
|
if (!Op.isReg() || Op.isDef())
|
|
continue;
|
|
Register OpReg = Op.getReg();
|
|
SPIRVType *SpvType = GR->getSPIRVTypeForVReg(OpReg);
|
|
auto IdOpInfo = createNewIdReg(SpvType, OpReg, MRI, *GR);
|
|
MIB.buildInstr(IdOpInfo.second).addDef(IdOpInfo.first).addUse(OpReg);
|
|
const TargetRegisterClass *RC = GR->getRegClass(SpvType);
|
|
if (RC != MRI.getRegClassOrNull(OpReg))
|
|
MRI.setRegClass(OpReg, RC);
|
|
Op.setReg(IdOpInfo.first);
|
|
}
|
|
}
|
|
} // namespace llvm
|
|
|
|
static void
|
|
generateAssignInstrs(MachineFunction &MF, SPIRVGlobalRegistry *GR,
|
|
MachineIRBuilder MIB,
|
|
DenseMap<MachineInstr *, Type *> &TargetExtConstTypes) {
|
|
// Get access to information about available extensions
|
|
const SPIRVSubtarget *ST =
|
|
static_cast<const SPIRVSubtarget *>(&MIB.getMF().getSubtarget());
|
|
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
SmallVector<MachineInstr *, 10> ToErase;
|
|
DenseMap<MachineInstr *, Register> RegsAlreadyAddedToDT;
|
|
|
|
bool IsExtendedInts =
|
|
ST->canUseExtension(
|
|
SPIRV::Extension::SPV_INTEL_arbitrary_precision_integers) ||
|
|
ST->canUseExtension(SPIRV::Extension::SPV_KHR_bit_instructions);
|
|
|
|
for (MachineBasicBlock *MBB : post_order(&MF)) {
|
|
if (MBB->empty())
|
|
continue;
|
|
|
|
bool ReachedBegin = false;
|
|
for (auto MII = std::prev(MBB->end()), Begin = MBB->begin();
|
|
!ReachedBegin;) {
|
|
MachineInstr &MI = *MII;
|
|
unsigned MIOp = MI.getOpcode();
|
|
|
|
if (!IsExtendedInts) {
|
|
// validate bit width of scalar registers
|
|
for (const auto &MOP : MI.operands())
|
|
if (MOP.isReg())
|
|
widenScalarLLTNextPow2(MOP.getReg(), MRI);
|
|
}
|
|
|
|
if (isSpvIntrinsic(MI, Intrinsic::spv_assign_ptr_type)) {
|
|
Register Reg = MI.getOperand(1).getReg();
|
|
MIB.setInsertPt(*MI.getParent(), MI.getIterator());
|
|
Type *ElementTy = getMDOperandAsType(MI.getOperand(2).getMetadata(), 0);
|
|
SPIRVType *BaseTy = GR->getOrCreateSPIRVType(
|
|
ElementTy, MIB, SPIRV::AccessQualifier::ReadWrite, true);
|
|
SPIRVType *AssignedPtrType = GR->getOrCreateSPIRVPointerType(
|
|
BaseTy, MI, *MF.getSubtarget<SPIRVSubtarget>().getInstrInfo(),
|
|
addressSpaceToStorageClass(MI.getOperand(3).getImm(), *ST));
|
|
MachineInstr *Def = MRI.getVRegDef(Reg);
|
|
assert(Def && "Expecting an instruction that defines the register");
|
|
// G_GLOBAL_VALUE already has type info.
|
|
if (Def->getOpcode() != TargetOpcode::G_GLOBAL_VALUE &&
|
|
Def->getOpcode() != SPIRV::ASSIGN_TYPE)
|
|
insertAssignInstr(Reg, nullptr, AssignedPtrType, GR, MIB,
|
|
MF.getRegInfo());
|
|
ToErase.push_back(&MI);
|
|
} else if (isSpvIntrinsic(MI, Intrinsic::spv_assign_type)) {
|
|
Register Reg = MI.getOperand(1).getReg();
|
|
Type *Ty = getMDOperandAsType(MI.getOperand(2).getMetadata(), 0);
|
|
MachineInstr *Def = MRI.getVRegDef(Reg);
|
|
assert(Def && "Expecting an instruction that defines the register");
|
|
// G_GLOBAL_VALUE already has type info.
|
|
if (Def->getOpcode() != TargetOpcode::G_GLOBAL_VALUE &&
|
|
Def->getOpcode() != SPIRV::ASSIGN_TYPE)
|
|
insertAssignInstr(Reg, Ty, nullptr, GR, MIB, MF.getRegInfo());
|
|
ToErase.push_back(&MI);
|
|
} else if (MIOp == TargetOpcode::FAKE_USE && MI.getNumOperands() > 0) {
|
|
MachineInstr *MdMI = MI.getPrevNode();
|
|
if (MdMI && isSpvIntrinsic(*MdMI, Intrinsic::spv_value_md)) {
|
|
// It's an internal service info from before IRTranslator passes.
|
|
MachineInstr *Def = getVRegDef(MRI, MI.getOperand(0).getReg());
|
|
for (unsigned I = 1, E = MI.getNumOperands(); I != E && Def; ++I)
|
|
if (getVRegDef(MRI, MI.getOperand(I).getReg()) != Def)
|
|
Def = nullptr;
|
|
if (Def) {
|
|
const MDNode *MD = MdMI->getOperand(1).getMetadata();
|
|
StringRef ValueName =
|
|
cast<MDString>(MD->getOperand(1))->getString();
|
|
const MDNode *TypeMD = cast<MDNode>(MD->getOperand(0));
|
|
Type *ValueTy = getMDOperandAsType(TypeMD, 0);
|
|
GR->addValueAttrs(Def, std::make_pair(ValueTy, ValueName.str()));
|
|
}
|
|
ToErase.push_back(MdMI);
|
|
}
|
|
ToErase.push_back(&MI);
|
|
} else if (MIOp == TargetOpcode::G_CONSTANT ||
|
|
MIOp == TargetOpcode::G_FCONSTANT ||
|
|
MIOp == TargetOpcode::G_BUILD_VECTOR) {
|
|
// %rc = G_CONSTANT ty Val
|
|
// ===>
|
|
// %cty = OpType* ty
|
|
// %rctmp = G_CONSTANT ty Val
|
|
// %rc = ASSIGN_TYPE %rctmp, %cty
|
|
Register Reg = MI.getOperand(0).getReg();
|
|
bool NeedAssignType = true;
|
|
if (MRI.hasOneUse(Reg)) {
|
|
MachineInstr &UseMI = *MRI.use_instr_begin(Reg);
|
|
if (isSpvIntrinsic(UseMI, Intrinsic::spv_assign_type) ||
|
|
isSpvIntrinsic(UseMI, Intrinsic::spv_assign_name))
|
|
continue;
|
|
if (UseMI.getOpcode() == SPIRV::ASSIGN_TYPE)
|
|
NeedAssignType = false;
|
|
}
|
|
Type *Ty = nullptr;
|
|
if (MIOp == TargetOpcode::G_CONSTANT) {
|
|
auto TargetExtIt = TargetExtConstTypes.find(&MI);
|
|
Ty = TargetExtIt == TargetExtConstTypes.end()
|
|
? MI.getOperand(1).getCImm()->getType()
|
|
: TargetExtIt->second;
|
|
const ConstantInt *OpCI = MI.getOperand(1).getCImm();
|
|
// TODO: we may wish to analyze here if OpCI is zero and LLT RegType =
|
|
// MRI.getType(Reg); RegType.isPointer() is true, so that we observe
|
|
// at this point not i64/i32 constant but null pointer in the
|
|
// corresponding address space of RegType.getAddressSpace(). This may
|
|
// help to successfully validate the case when a OpConstantComposite's
|
|
// constituent has type that does not match Result Type of
|
|
// OpConstantComposite (see, for example,
|
|
// pointers/PtrCast-null-in-OpSpecConstantOp.ll).
|
|
Register PrimaryReg = GR->find(OpCI, &MF);
|
|
if (!PrimaryReg.isValid()) {
|
|
GR->add(OpCI, &MF, Reg);
|
|
} else if (PrimaryReg != Reg &&
|
|
MRI.getType(Reg) == MRI.getType(PrimaryReg)) {
|
|
auto *RCReg = MRI.getRegClassOrNull(Reg);
|
|
auto *RCPrimary = MRI.getRegClassOrNull(PrimaryReg);
|
|
if (!RCReg || RCPrimary == RCReg) {
|
|
RegsAlreadyAddedToDT[&MI] = PrimaryReg;
|
|
ToErase.push_back(&MI);
|
|
NeedAssignType = false;
|
|
}
|
|
}
|
|
} else if (MIOp == TargetOpcode::G_FCONSTANT) {
|
|
Ty = MI.getOperand(1).getFPImm()->getType();
|
|
} else {
|
|
assert(MIOp == TargetOpcode::G_BUILD_VECTOR);
|
|
Type *ElemTy = nullptr;
|
|
MachineInstr *ElemMI = MRI.getVRegDef(MI.getOperand(1).getReg());
|
|
assert(ElemMI);
|
|
|
|
if (ElemMI->getOpcode() == TargetOpcode::G_CONSTANT) {
|
|
ElemTy = ElemMI->getOperand(1).getCImm()->getType();
|
|
} else if (ElemMI->getOpcode() == TargetOpcode::G_FCONSTANT) {
|
|
ElemTy = ElemMI->getOperand(1).getFPImm()->getType();
|
|
} else {
|
|
// There may be a case when we already know Reg's type.
|
|
MachineInstr *NextMI = MI.getNextNode();
|
|
if (!NextMI || NextMI->getOpcode() != SPIRV::ASSIGN_TYPE ||
|
|
NextMI->getOperand(1).getReg() != Reg)
|
|
llvm_unreachable("Unexpected opcode");
|
|
}
|
|
if (ElemTy)
|
|
Ty = VectorType::get(
|
|
ElemTy, MI.getNumExplicitOperands() - MI.getNumExplicitDefs(),
|
|
false);
|
|
else
|
|
NeedAssignType = false;
|
|
}
|
|
if (NeedAssignType)
|
|
insertAssignInstr(Reg, Ty, nullptr, GR, MIB, MRI);
|
|
} else if (MIOp == TargetOpcode::G_GLOBAL_VALUE) {
|
|
propagateSPIRVType(&MI, GR, MRI, MIB);
|
|
}
|
|
|
|
if (MII == Begin)
|
|
ReachedBegin = true;
|
|
else
|
|
--MII;
|
|
}
|
|
}
|
|
for (MachineInstr *MI : ToErase) {
|
|
auto It = RegsAlreadyAddedToDT.find(MI);
|
|
if (RegsAlreadyAddedToDT.contains(MI))
|
|
MRI.replaceRegWith(MI->getOperand(0).getReg(), It->second);
|
|
MI->eraseFromParent();
|
|
}
|
|
|
|
// Address the case when IRTranslator introduces instructions with new
|
|
// registers without SPIRVType associated.
|
|
for (MachineBasicBlock &MBB : MF) {
|
|
for (MachineInstr &MI : MBB) {
|
|
switch (MI.getOpcode()) {
|
|
case TargetOpcode::G_TRUNC:
|
|
case TargetOpcode::G_ANYEXT:
|
|
case TargetOpcode::G_SEXT:
|
|
case TargetOpcode::G_ZEXT:
|
|
case TargetOpcode::G_PTRTOINT:
|
|
case TargetOpcode::COPY:
|
|
case TargetOpcode::G_ADDRSPACE_CAST:
|
|
propagateSPIRVType(&MI, GR, MRI, MIB);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Defined in SPIRVLegalizerInfo.cpp.
|
|
extern bool isTypeFoldingSupported(unsigned Opcode);
|
|
|
|
static void processInstrsWithTypeFolding(MachineFunction &MF,
|
|
SPIRVGlobalRegistry *GR,
|
|
MachineIRBuilder MIB) {
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
for (MachineBasicBlock &MBB : MF)
|
|
for (MachineInstr &MI : MBB)
|
|
if (isTypeFoldingSupported(MI.getOpcode()))
|
|
processInstr(MI, MIB, MRI, GR);
|
|
}
|
|
|
|
static Register
|
|
collectInlineAsmInstrOperands(MachineInstr *MI,
|
|
SmallVector<unsigned, 4> *Ops = nullptr) {
|
|
Register DefReg;
|
|
unsigned StartOp = InlineAsm::MIOp_FirstOperand,
|
|
AsmDescOp = InlineAsm::MIOp_FirstOperand;
|
|
for (unsigned Idx = StartOp, MISz = MI->getNumOperands(); Idx != MISz;
|
|
++Idx) {
|
|
const MachineOperand &MO = MI->getOperand(Idx);
|
|
if (MO.isMetadata())
|
|
continue;
|
|
if (Idx == AsmDescOp && MO.isImm()) {
|
|
// compute the index of the next operand descriptor
|
|
const InlineAsm::Flag F(MO.getImm());
|
|
AsmDescOp += 1 + F.getNumOperandRegisters();
|
|
continue;
|
|
}
|
|
if (MO.isReg() && MO.isDef()) {
|
|
if (!Ops)
|
|
return MO.getReg();
|
|
else
|
|
DefReg = MO.getReg();
|
|
} else if (Ops) {
|
|
Ops->push_back(Idx);
|
|
}
|
|
}
|
|
return DefReg;
|
|
}
|
|
|
|
static void
|
|
insertInlineAsmProcess(MachineFunction &MF, SPIRVGlobalRegistry *GR,
|
|
const SPIRVSubtarget &ST, MachineIRBuilder MIRBuilder,
|
|
const SmallVector<MachineInstr *> &ToProcess) {
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
Register AsmTargetReg;
|
|
for (unsigned i = 0, Sz = ToProcess.size(); i + 1 < Sz; i += 2) {
|
|
MachineInstr *I1 = ToProcess[i], *I2 = ToProcess[i + 1];
|
|
assert(isSpvIntrinsic(*I1, Intrinsic::spv_inline_asm) && I2->isInlineAsm());
|
|
MIRBuilder.setInsertPt(*I2->getParent(), *I2);
|
|
|
|
if (!AsmTargetReg.isValid()) {
|
|
// define vendor specific assembly target or dialect
|
|
AsmTargetReg = MRI.createGenericVirtualRegister(LLT::scalar(32));
|
|
MRI.setRegClass(AsmTargetReg, &SPIRV::iIDRegClass);
|
|
auto AsmTargetMIB =
|
|
MIRBuilder.buildInstr(SPIRV::OpAsmTargetINTEL).addDef(AsmTargetReg);
|
|
addStringImm(ST.getTargetTripleAsStr(), AsmTargetMIB);
|
|
GR->add(AsmTargetMIB.getInstr(), &MF, AsmTargetReg);
|
|
}
|
|
|
|
// create types
|
|
const MDNode *IAMD = I1->getOperand(1).getMetadata();
|
|
FunctionType *FTy = cast<FunctionType>(getMDOperandAsType(IAMD, 0));
|
|
SmallVector<SPIRVType *, 4> ArgTypes;
|
|
for (const auto &ArgTy : FTy->params())
|
|
ArgTypes.push_back(GR->getOrCreateSPIRVType(
|
|
ArgTy, MIRBuilder, SPIRV::AccessQualifier::ReadWrite, true));
|
|
SPIRVType *RetType =
|
|
GR->getOrCreateSPIRVType(FTy->getReturnType(), MIRBuilder,
|
|
SPIRV::AccessQualifier::ReadWrite, true);
|
|
SPIRVType *FuncType = GR->getOrCreateOpTypeFunctionWithArgs(
|
|
FTy, RetType, ArgTypes, MIRBuilder);
|
|
|
|
// define vendor specific assembly instructions string
|
|
Register AsmReg = MRI.createGenericVirtualRegister(LLT::scalar(32));
|
|
MRI.setRegClass(AsmReg, &SPIRV::iIDRegClass);
|
|
auto AsmMIB = MIRBuilder.buildInstr(SPIRV::OpAsmINTEL)
|
|
.addDef(AsmReg)
|
|
.addUse(GR->getSPIRVTypeID(RetType))
|
|
.addUse(GR->getSPIRVTypeID(FuncType))
|
|
.addUse(AsmTargetReg);
|
|
// inline asm string:
|
|
addStringImm(I2->getOperand(InlineAsm::MIOp_AsmString).getSymbolName(),
|
|
AsmMIB);
|
|
// inline asm constraint string:
|
|
addStringImm(cast<MDString>(I1->getOperand(2).getMetadata()->getOperand(0))
|
|
->getString(),
|
|
AsmMIB);
|
|
GR->add(AsmMIB.getInstr(), &MF, AsmReg);
|
|
|
|
// calls the inline assembly instruction
|
|
unsigned ExtraInfo = I2->getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
|
|
if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
|
|
MIRBuilder.buildInstr(SPIRV::OpDecorate)
|
|
.addUse(AsmReg)
|
|
.addImm(static_cast<uint32_t>(SPIRV::Decoration::SideEffectsINTEL));
|
|
|
|
Register DefReg = collectInlineAsmInstrOperands(I2);
|
|
if (!DefReg.isValid()) {
|
|
DefReg = MRI.createGenericVirtualRegister(LLT::scalar(32));
|
|
MRI.setRegClass(DefReg, &SPIRV::iIDRegClass);
|
|
SPIRVType *VoidType = GR->getOrCreateSPIRVType(
|
|
Type::getVoidTy(MF.getFunction().getContext()), MIRBuilder,
|
|
SPIRV::AccessQualifier::ReadWrite, true);
|
|
GR->assignSPIRVTypeToVReg(VoidType, DefReg, MF);
|
|
}
|
|
|
|
auto AsmCall = MIRBuilder.buildInstr(SPIRV::OpAsmCallINTEL)
|
|
.addDef(DefReg)
|
|
.addUse(GR->getSPIRVTypeID(RetType))
|
|
.addUse(AsmReg);
|
|
for (unsigned IntrIdx = 3; IntrIdx < I1->getNumOperands(); ++IntrIdx)
|
|
AsmCall.addUse(I1->getOperand(IntrIdx).getReg());
|
|
}
|
|
for (MachineInstr *MI : ToProcess)
|
|
MI->eraseFromParent();
|
|
}
|
|
|
|
static void insertInlineAsm(MachineFunction &MF, SPIRVGlobalRegistry *GR,
|
|
const SPIRVSubtarget &ST,
|
|
MachineIRBuilder MIRBuilder) {
|
|
SmallVector<MachineInstr *> ToProcess;
|
|
for (MachineBasicBlock &MBB : MF) {
|
|
for (MachineInstr &MI : MBB) {
|
|
if (isSpvIntrinsic(MI, Intrinsic::spv_inline_asm) ||
|
|
MI.getOpcode() == TargetOpcode::INLINEASM)
|
|
ToProcess.push_back(&MI);
|
|
}
|
|
}
|
|
if (ToProcess.size() == 0)
|
|
return;
|
|
|
|
if (!ST.canUseExtension(SPIRV::Extension::SPV_INTEL_inline_assembly))
|
|
report_fatal_error("Inline assembly instructions require the "
|
|
"following SPIR-V extension: SPV_INTEL_inline_assembly",
|
|
false);
|
|
|
|
insertInlineAsmProcess(MF, GR, ST, MIRBuilder, ToProcess);
|
|
}
|
|
|
|
static void insertSpirvDecorations(MachineFunction &MF, MachineIRBuilder MIB) {
|
|
SmallVector<MachineInstr *, 10> ToErase;
|
|
for (MachineBasicBlock &MBB : MF) {
|
|
for (MachineInstr &MI : MBB) {
|
|
if (!isSpvIntrinsic(MI, Intrinsic::spv_assign_decoration))
|
|
continue;
|
|
MIB.setInsertPt(*MI.getParent(), MI.getNextNode());
|
|
buildOpSpirvDecorations(MI.getOperand(1).getReg(), MIB,
|
|
MI.getOperand(2).getMetadata());
|
|
ToErase.push_back(&MI);
|
|
}
|
|
}
|
|
for (MachineInstr *MI : ToErase)
|
|
MI->eraseFromParent();
|
|
}
|
|
|
|
// LLVM allows the switches to use registers as cases, while SPIR-V required
|
|
// those to be immediate values. This function replaces such operands with the
|
|
// equivalent immediate constant.
|
|
static void processSwitchesConstants(MachineFunction &MF,
|
|
SPIRVGlobalRegistry *GR,
|
|
MachineIRBuilder MIB) {
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
for (MachineBasicBlock &MBB : MF) {
|
|
for (MachineInstr &MI : MBB) {
|
|
if (!isSpvIntrinsic(MI, Intrinsic::spv_switch))
|
|
continue;
|
|
|
|
SmallVector<MachineOperand, 8> NewOperands;
|
|
NewOperands.push_back(MI.getOperand(0)); // Opcode
|
|
NewOperands.push_back(MI.getOperand(1)); // Condition
|
|
NewOperands.push_back(MI.getOperand(2)); // Default
|
|
for (unsigned i = 3; i < MI.getNumOperands(); i += 2) {
|
|
Register Reg = MI.getOperand(i).getReg();
|
|
MachineInstr *ConstInstr = getDefInstrMaybeConstant(Reg, &MRI);
|
|
NewOperands.push_back(
|
|
MachineOperand::CreateCImm(ConstInstr->getOperand(1).getCImm()));
|
|
|
|
NewOperands.push_back(MI.getOperand(i + 1));
|
|
}
|
|
|
|
assert(MI.getNumOperands() == NewOperands.size());
|
|
while (MI.getNumOperands() > 0)
|
|
MI.removeOperand(0);
|
|
for (auto &MO : NewOperands)
|
|
MI.addOperand(MO);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Some instructions are used during CodeGen but should never be emitted.
|
|
// Cleaning up those.
|
|
static void cleanupHelperInstructions(MachineFunction &MF) {
|
|
SmallVector<MachineInstr *, 8> ToEraseMI;
|
|
for (MachineBasicBlock &MBB : MF) {
|
|
for (MachineInstr &MI : MBB) {
|
|
if (isSpvIntrinsic(MI, Intrinsic::spv_track_constant) ||
|
|
MI.getOpcode() == TargetOpcode::G_BRINDIRECT)
|
|
ToEraseMI.push_back(&MI);
|
|
}
|
|
}
|
|
|
|
for (MachineInstr *MI : ToEraseMI)
|
|
MI->eraseFromParent();
|
|
}
|
|
|
|
// Find all usages of G_BLOCK_ADDR in our intrinsics and replace those
|
|
// operands/registers by the actual MBB it references.
|
|
static void processBlockAddr(MachineFunction &MF, SPIRVGlobalRegistry *GR,
|
|
MachineIRBuilder MIB) {
|
|
// Gather the reverse-mapping BB -> MBB.
|
|
DenseMap<const BasicBlock *, MachineBasicBlock *> BB2MBB;
|
|
for (MachineBasicBlock &MBB : MF)
|
|
BB2MBB[MBB.getBasicBlock()] = &MBB;
|
|
|
|
// Gather instructions requiring patching. For now, only those can use
|
|
// G_BLOCK_ADDR.
|
|
SmallVector<MachineInstr *, 8> InstructionsToPatch;
|
|
for (MachineBasicBlock &MBB : MF) {
|
|
for (MachineInstr &MI : MBB) {
|
|
if (isSpvIntrinsic(MI, Intrinsic::spv_switch) ||
|
|
isSpvIntrinsic(MI, Intrinsic::spv_loop_merge) ||
|
|
isSpvIntrinsic(MI, Intrinsic::spv_selection_merge))
|
|
InstructionsToPatch.push_back(&MI);
|
|
}
|
|
}
|
|
|
|
// For each instruction to fix, we replace all the G_BLOCK_ADDR operands by
|
|
// the actual MBB it references. Once those references have been updated, we
|
|
// can cleanup remaining G_BLOCK_ADDR references.
|
|
SmallPtrSet<MachineBasicBlock *, 8> ClearAddressTaken;
|
|
SmallPtrSet<MachineInstr *, 8> ToEraseMI;
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
for (MachineInstr *MI : InstructionsToPatch) {
|
|
SmallVector<MachineOperand, 8> NewOps;
|
|
for (unsigned i = 0; i < MI->getNumOperands(); ++i) {
|
|
// The operand is not a register, keep as-is.
|
|
if (!MI->getOperand(i).isReg()) {
|
|
NewOps.push_back(MI->getOperand(i));
|
|
continue;
|
|
}
|
|
|
|
Register Reg = MI->getOperand(i).getReg();
|
|
MachineInstr *BuildMBB = MRI.getVRegDef(Reg);
|
|
// The register is not the result of G_BLOCK_ADDR, keep as-is.
|
|
if (!BuildMBB || BuildMBB->getOpcode() != TargetOpcode::G_BLOCK_ADDR) {
|
|
NewOps.push_back(MI->getOperand(i));
|
|
continue;
|
|
}
|
|
|
|
assert(BuildMBB && BuildMBB->getOpcode() == TargetOpcode::G_BLOCK_ADDR &&
|
|
BuildMBB->getOperand(1).isBlockAddress() &&
|
|
BuildMBB->getOperand(1).getBlockAddress());
|
|
BasicBlock *BB =
|
|
BuildMBB->getOperand(1).getBlockAddress()->getBasicBlock();
|
|
auto It = BB2MBB.find(BB);
|
|
if (It == BB2MBB.end())
|
|
report_fatal_error("cannot find a machine basic block by a basic block "
|
|
"in a switch statement");
|
|
MachineBasicBlock *ReferencedBlock = It->second;
|
|
NewOps.push_back(MachineOperand::CreateMBB(ReferencedBlock));
|
|
|
|
ClearAddressTaken.insert(ReferencedBlock);
|
|
ToEraseMI.insert(BuildMBB);
|
|
}
|
|
|
|
// Replace the operands.
|
|
assert(MI->getNumOperands() == NewOps.size());
|
|
while (MI->getNumOperands() > 0)
|
|
MI->removeOperand(0);
|
|
for (auto &MO : NewOps)
|
|
MI->addOperand(MO);
|
|
|
|
if (MachineInstr *Next = MI->getNextNode()) {
|
|
if (isSpvIntrinsic(*Next, Intrinsic::spv_track_constant)) {
|
|
ToEraseMI.insert(Next);
|
|
Next = MI->getNextNode();
|
|
}
|
|
if (Next && Next->getOpcode() == TargetOpcode::G_BRINDIRECT)
|
|
ToEraseMI.insert(Next);
|
|
}
|
|
}
|
|
|
|
// BlockAddress operands were used to keep information between passes,
|
|
// let's undo the "address taken" status to reflect that Succ doesn't
|
|
// actually correspond to an IR-level basic block.
|
|
for (MachineBasicBlock *Succ : ClearAddressTaken)
|
|
Succ->setAddressTakenIRBlock(nullptr);
|
|
|
|
// If we just delete G_BLOCK_ADDR instructions with BlockAddress operands,
|
|
// this leaves their BasicBlock counterparts in a "address taken" status. This
|
|
// would make AsmPrinter to generate a series of unneeded labels of a "Address
|
|
// of block that was removed by CodeGen" kind. Let's first ensure that we
|
|
// don't have a dangling BlockAddress constants by zapping the BlockAddress
|
|
// nodes, and only after that proceed with erasing G_BLOCK_ADDR instructions.
|
|
Constant *Replacement =
|
|
ConstantInt::get(Type::getInt32Ty(MF.getFunction().getContext()), 1);
|
|
for (MachineInstr *BlockAddrI : ToEraseMI) {
|
|
if (BlockAddrI->getOpcode() == TargetOpcode::G_BLOCK_ADDR) {
|
|
BlockAddress *BA = const_cast<BlockAddress *>(
|
|
BlockAddrI->getOperand(1).getBlockAddress());
|
|
BA->replaceAllUsesWith(
|
|
ConstantExpr::getIntToPtr(Replacement, BA->getType()));
|
|
BA->destroyConstant();
|
|
}
|
|
BlockAddrI->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
static bool isImplicitFallthrough(MachineBasicBlock &MBB) {
|
|
if (MBB.empty())
|
|
return true;
|
|
|
|
// Branching SPIR-V intrinsics are not detected by this generic method.
|
|
// Thus, we can only trust negative result.
|
|
if (!MBB.canFallThrough())
|
|
return false;
|
|
|
|
// Otherwise, we must manually check if we have a SPIR-V intrinsic which
|
|
// prevent an implicit fallthrough.
|
|
for (MachineBasicBlock::reverse_iterator It = MBB.rbegin(), E = MBB.rend();
|
|
It != E; ++It) {
|
|
if (isSpvIntrinsic(*It, Intrinsic::spv_switch))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void removeImplicitFallthroughs(MachineFunction &MF,
|
|
MachineIRBuilder MIB) {
|
|
// It is valid for MachineBasicBlocks to not finish with a branch instruction.
|
|
// In such cases, they will simply fallthrough their immediate successor.
|
|
for (MachineBasicBlock &MBB : MF) {
|
|
if (!isImplicitFallthrough(MBB))
|
|
continue;
|
|
|
|
assert(std::distance(MBB.successors().begin(), MBB.successors().end()) ==
|
|
1);
|
|
MIB.setInsertPt(MBB, MBB.end());
|
|
MIB.buildBr(**MBB.successors().begin());
|
|
}
|
|
}
|
|
|
|
bool SPIRVPreLegalizer::runOnMachineFunction(MachineFunction &MF) {
|
|
// Initialize the type registry.
|
|
const SPIRVSubtarget &ST = MF.getSubtarget<SPIRVSubtarget>();
|
|
SPIRVGlobalRegistry *GR = ST.getSPIRVGlobalRegistry();
|
|
GR->setCurrentFunc(MF);
|
|
MachineIRBuilder MIB(MF);
|
|
// a registry of target extension constants
|
|
DenseMap<MachineInstr *, Type *> TargetExtConstTypes;
|
|
// to keep record of tracked constants
|
|
SmallSet<Register, 4> TrackedConstRegs;
|
|
addConstantsToTrack(MF, GR, ST, TargetExtConstTypes, TrackedConstRegs);
|
|
foldConstantsIntoIntrinsics(MF, TrackedConstRegs);
|
|
insertBitcasts(MF, GR, MIB);
|
|
generateAssignInstrs(MF, GR, MIB, TargetExtConstTypes);
|
|
|
|
processSwitchesConstants(MF, GR, MIB);
|
|
processBlockAddr(MF, GR, MIB);
|
|
cleanupHelperInstructions(MF);
|
|
|
|
processInstrsWithTypeFolding(MF, GR, MIB);
|
|
removeImplicitFallthroughs(MF, MIB);
|
|
insertSpirvDecorations(MF, MIB);
|
|
insertInlineAsm(MF, GR, ST, MIB);
|
|
selectOpBitcasts(MF, GR, MIB);
|
|
|
|
return true;
|
|
}
|
|
|
|
INITIALIZE_PASS(SPIRVPreLegalizer, DEBUG_TYPE, "SPIRV pre legalizer", false,
|
|
false)
|
|
|
|
char SPIRVPreLegalizer::ID = 0;
|
|
|
|
FunctionPass *llvm::createSPIRVPreLegalizerPass() {
|
|
return new SPIRVPreLegalizer();
|
|
}
|