The createSIMachineScheduler & createPostMachineScheduler target hooks are currently placed in the PassConfig interface. Moving it out to TargetMachine so that both legacy and the new pass manager can effectively use them.
343 lines
12 KiB
C++
343 lines
12 KiB
C++
//===-- SystemZTargetMachine.cpp - Define TargetMachine for SystemZ -------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "SystemZTargetMachine.h"
|
|
#include "MCTargetDesc/SystemZMCTargetDesc.h"
|
|
#include "SystemZ.h"
|
|
#include "SystemZMachineFunctionInfo.h"
|
|
#include "SystemZMachineScheduler.h"
|
|
#include "SystemZTargetObjectFile.h"
|
|
#include "SystemZTargetTransformInfo.h"
|
|
#include "TargetInfo/SystemZTargetInfo.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
|
|
#include "llvm/CodeGen/TargetPassConfig.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/MC/TargetRegistry.h"
|
|
#include "llvm/Support/CodeGen.h"
|
|
#include "llvm/Target/TargetLoweringObjectFile.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include <memory>
|
|
#include <optional>
|
|
#include <string>
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<bool> EnableMachineCombinerPass(
|
|
"systemz-machine-combiner",
|
|
cl::desc("Enable the machine combiner pass"),
|
|
cl::init(true), cl::Hidden);
|
|
|
|
// NOLINTNEXTLINE(readability-identifier-naming)
|
|
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSystemZTarget() {
|
|
// Register the target.
|
|
RegisterTargetMachine<SystemZTargetMachine> X(getTheSystemZTarget());
|
|
auto &PR = *PassRegistry::getPassRegistry();
|
|
initializeSystemZElimComparePass(PR);
|
|
initializeSystemZShortenInstPass(PR);
|
|
initializeSystemZLongBranchPass(PR);
|
|
initializeSystemZLDCleanupPass(PR);
|
|
initializeSystemZShortenInstPass(PR);
|
|
initializeSystemZPostRewritePass(PR);
|
|
initializeSystemZTDCPassPass(PR);
|
|
initializeSystemZDAGToDAGISelLegacyPass(PR);
|
|
}
|
|
|
|
static std::string computeDataLayout(const Triple &TT) {
|
|
std::string Ret;
|
|
|
|
// Big endian.
|
|
Ret += "E";
|
|
|
|
// Data mangling.
|
|
Ret += DataLayout::getManglingComponent(TT);
|
|
|
|
// Special features for z/OS.
|
|
if (TT.isOSzOS()) {
|
|
if (TT.isArch64Bit()) {
|
|
// Custom address space for ptr32.
|
|
Ret += "-p1:32:32";
|
|
}
|
|
}
|
|
|
|
// Make sure that global data has at least 16 bits of alignment by
|
|
// default, so that we can refer to it using LARL. We don't have any
|
|
// special requirements for stack variables though.
|
|
Ret += "-i1:8:16-i8:8:16";
|
|
|
|
// 64-bit integers are naturally aligned.
|
|
Ret += "-i64:64";
|
|
|
|
// 128-bit floats are aligned only to 64 bits.
|
|
Ret += "-f128:64";
|
|
|
|
// The DataLayout string always holds a vector alignment of 64 bits, see
|
|
// comment in clang/lib/Basic/Targets/SystemZ.h.
|
|
Ret += "-v128:64";
|
|
|
|
// We prefer 16 bits of aligned for all globals; see above.
|
|
Ret += "-a:8:16";
|
|
|
|
// Integer registers are 32 or 64 bits.
|
|
Ret += "-n32:64";
|
|
|
|
return Ret;
|
|
}
|
|
|
|
static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
|
|
if (TT.isOSzOS())
|
|
return std::make_unique<TargetLoweringObjectFileGOFF>();
|
|
|
|
// Note: Some times run with -triple s390x-unknown.
|
|
// In this case, default to ELF unless z/OS specifically provided.
|
|
return std::make_unique<SystemZELFTargetObjectFile>();
|
|
}
|
|
|
|
static Reloc::Model getEffectiveRelocModel(std::optional<Reloc::Model> RM) {
|
|
// Static code is suitable for use in a dynamic executable; there is no
|
|
// separate DynamicNoPIC model.
|
|
if (!RM || *RM == Reloc::DynamicNoPIC)
|
|
return Reloc::Static;
|
|
return *RM;
|
|
}
|
|
|
|
// For SystemZ we define the models as follows:
|
|
//
|
|
// Small: BRASL can call any function and will use a stub if necessary.
|
|
// Locally-binding symbols will always be in range of LARL.
|
|
//
|
|
// Medium: BRASL can call any function and will use a stub if necessary.
|
|
// GOT slots and locally-defined text will always be in range
|
|
// of LARL, but other symbols might not be.
|
|
//
|
|
// Large: Equivalent to Medium for now.
|
|
//
|
|
// Kernel: Equivalent to Medium for now.
|
|
//
|
|
// This means that any PIC module smaller than 4GB meets the
|
|
// requirements of Small, so Small seems like the best default there.
|
|
//
|
|
// All symbols bind locally in a non-PIC module, so the choice is less
|
|
// obvious. There are two cases:
|
|
//
|
|
// - When creating an executable, PLTs and copy relocations allow
|
|
// us to treat external symbols as part of the executable.
|
|
// Any executable smaller than 4GB meets the requirements of Small,
|
|
// so that seems like the best default.
|
|
//
|
|
// - When creating JIT code, stubs will be in range of BRASL if the
|
|
// image is less than 4GB in size. GOT entries will likewise be
|
|
// in range of LARL. However, the JIT environment has no equivalent
|
|
// of copy relocs, so locally-binding data symbols might not be in
|
|
// the range of LARL. We need the Medium model in that case.
|
|
static CodeModel::Model
|
|
getEffectiveSystemZCodeModel(std::optional<CodeModel::Model> CM,
|
|
Reloc::Model RM, bool JIT) {
|
|
if (CM) {
|
|
if (*CM == CodeModel::Tiny)
|
|
report_fatal_error("Target does not support the tiny CodeModel", false);
|
|
if (*CM == CodeModel::Kernel)
|
|
report_fatal_error("Target does not support the kernel CodeModel", false);
|
|
return *CM;
|
|
}
|
|
if (JIT)
|
|
return RM == Reloc::PIC_ ? CodeModel::Small : CodeModel::Medium;
|
|
return CodeModel::Small;
|
|
}
|
|
|
|
SystemZTargetMachine::SystemZTargetMachine(const Target &T, const Triple &TT,
|
|
StringRef CPU, StringRef FS,
|
|
const TargetOptions &Options,
|
|
std::optional<Reloc::Model> RM,
|
|
std::optional<CodeModel::Model> CM,
|
|
CodeGenOptLevel OL, bool JIT)
|
|
: CodeGenTargetMachineImpl(
|
|
T, computeDataLayout(TT), TT, CPU, FS, Options,
|
|
getEffectiveRelocModel(RM),
|
|
getEffectiveSystemZCodeModel(CM, getEffectiveRelocModel(RM), JIT),
|
|
OL),
|
|
TLOF(createTLOF(getTargetTriple())) {
|
|
initAsmInfo();
|
|
}
|
|
|
|
SystemZTargetMachine::~SystemZTargetMachine() = default;
|
|
|
|
const SystemZSubtarget *
|
|
SystemZTargetMachine::getSubtargetImpl(const Function &F) const {
|
|
Attribute CPUAttr = F.getFnAttribute("target-cpu");
|
|
Attribute TuneAttr = F.getFnAttribute("tune-cpu");
|
|
Attribute FSAttr = F.getFnAttribute("target-features");
|
|
|
|
std::string CPU =
|
|
CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU;
|
|
std::string TuneCPU =
|
|
TuneAttr.isValid() ? TuneAttr.getValueAsString().str() : CPU;
|
|
std::string FS =
|
|
FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS;
|
|
|
|
// FIXME: This is related to the code below to reset the target options,
|
|
// we need to know whether the soft float and backchain flags are set on the
|
|
// function, so we can enable them as subtarget features.
|
|
bool SoftFloat = F.getFnAttribute("use-soft-float").getValueAsBool();
|
|
if (SoftFloat)
|
|
FS += FS.empty() ? "+soft-float" : ",+soft-float";
|
|
bool BackChain = F.hasFnAttribute("backchain");
|
|
if (BackChain)
|
|
FS += FS.empty() ? "+backchain" : ",+backchain";
|
|
|
|
auto &I = SubtargetMap[CPU + TuneCPU + FS];
|
|
if (!I) {
|
|
// This needs to be done before we create a new subtarget since any
|
|
// creation will depend on the TM and the code generation flags on the
|
|
// function that reside in TargetOptions.
|
|
resetTargetOptions(F);
|
|
I = std::make_unique<SystemZSubtarget>(TargetTriple, CPU, TuneCPU, FS,
|
|
*this);
|
|
}
|
|
|
|
return I.get();
|
|
}
|
|
|
|
ScheduleDAGInstrs *
|
|
SystemZTargetMachine::createPostMachineScheduler(MachineSchedContext *C) const {
|
|
return new ScheduleDAGMI(C, std::make_unique<SystemZPostRASchedStrategy>(C),
|
|
/*RemoveKillFlags=*/true);
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// SystemZ Code Generator Pass Configuration Options.
|
|
class SystemZPassConfig : public TargetPassConfig {
|
|
public:
|
|
SystemZPassConfig(SystemZTargetMachine &TM, PassManagerBase &PM)
|
|
: TargetPassConfig(TM, PM) {}
|
|
|
|
SystemZTargetMachine &getSystemZTargetMachine() const {
|
|
return getTM<SystemZTargetMachine>();
|
|
}
|
|
|
|
void addIRPasses() override;
|
|
bool addInstSelector() override;
|
|
bool addILPOpts() override;
|
|
void addPreRegAlloc() override;
|
|
void addPostRewrite() override;
|
|
void addPostRegAlloc() override;
|
|
void addPreSched2() override;
|
|
void addPreEmitPass() override;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
void SystemZPassConfig::addIRPasses() {
|
|
if (getOptLevel() != CodeGenOptLevel::None) {
|
|
addPass(createSystemZTDCPass());
|
|
addPass(createLoopDataPrefetchPass());
|
|
}
|
|
|
|
addPass(createAtomicExpandLegacyPass());
|
|
|
|
TargetPassConfig::addIRPasses();
|
|
}
|
|
|
|
bool SystemZPassConfig::addInstSelector() {
|
|
addPass(createSystemZISelDag(getSystemZTargetMachine(), getOptLevel()));
|
|
|
|
if (getOptLevel() != CodeGenOptLevel::None)
|
|
addPass(createSystemZLDCleanupPass(getSystemZTargetMachine()));
|
|
|
|
return false;
|
|
}
|
|
|
|
bool SystemZPassConfig::addILPOpts() {
|
|
addPass(&EarlyIfConverterLegacyID);
|
|
|
|
if (EnableMachineCombinerPass)
|
|
addPass(&MachineCombinerID);
|
|
|
|
return true;
|
|
}
|
|
|
|
void SystemZPassConfig::addPreRegAlloc() {
|
|
addPass(createSystemZCopyPhysRegsPass(getSystemZTargetMachine()));
|
|
}
|
|
|
|
void SystemZPassConfig::addPostRewrite() {
|
|
addPass(createSystemZPostRewritePass(getSystemZTargetMachine()));
|
|
}
|
|
|
|
void SystemZPassConfig::addPostRegAlloc() {
|
|
// PostRewrite needs to be run at -O0 also (in which case addPostRewrite()
|
|
// is not called).
|
|
if (getOptLevel() == CodeGenOptLevel::None)
|
|
addPass(createSystemZPostRewritePass(getSystemZTargetMachine()));
|
|
}
|
|
|
|
void SystemZPassConfig::addPreSched2() {
|
|
if (getOptLevel() != CodeGenOptLevel::None)
|
|
addPass(&IfConverterID);
|
|
}
|
|
|
|
void SystemZPassConfig::addPreEmitPass() {
|
|
// Do instruction shortening before compare elimination because some
|
|
// vector instructions will be shortened into opcodes that compare
|
|
// elimination recognizes.
|
|
if (getOptLevel() != CodeGenOptLevel::None)
|
|
addPass(createSystemZShortenInstPass(getSystemZTargetMachine()));
|
|
|
|
// We eliminate comparisons here rather than earlier because some
|
|
// transformations can change the set of available CC values and we
|
|
// generally want those transformations to have priority. This is
|
|
// especially true in the commonest case where the result of the comparison
|
|
// is used by a single in-range branch instruction, since we will then
|
|
// be able to fuse the compare and the branch instead.
|
|
//
|
|
// For example, two-address NILF can sometimes be converted into
|
|
// three-address RISBLG. NILF produces a CC value that indicates whether
|
|
// the low word is zero, but RISBLG does not modify CC at all. On the
|
|
// other hand, 64-bit ANDs like NILL can sometimes be converted to RISBG.
|
|
// The CC value produced by NILL isn't useful for our purposes, but the
|
|
// value produced by RISBG can be used for any comparison with zero
|
|
// (not just equality). So there are some transformations that lose
|
|
// CC values (while still being worthwhile) and others that happen to make
|
|
// the CC result more useful than it was originally.
|
|
//
|
|
// Another reason is that we only want to use BRANCH ON COUNT in cases
|
|
// where we know that the count register is not going to be spilled.
|
|
//
|
|
// Doing it so late makes it more likely that a register will be reused
|
|
// between the comparison and the branch, but it isn't clear whether
|
|
// preventing that would be a win or not.
|
|
if (getOptLevel() != CodeGenOptLevel::None)
|
|
addPass(createSystemZElimComparePass(getSystemZTargetMachine()));
|
|
addPass(createSystemZLongBranchPass(getSystemZTargetMachine()));
|
|
|
|
// Do final scheduling after all other optimizations, to get an
|
|
// optimal input for the decoder (branch relaxation must happen
|
|
// after block placement).
|
|
if (getOptLevel() != CodeGenOptLevel::None)
|
|
addPass(&PostMachineSchedulerID);
|
|
}
|
|
|
|
TargetPassConfig *SystemZTargetMachine::createPassConfig(PassManagerBase &PM) {
|
|
return new SystemZPassConfig(*this, PM);
|
|
}
|
|
|
|
TargetTransformInfo
|
|
SystemZTargetMachine::getTargetTransformInfo(const Function &F) const {
|
|
return TargetTransformInfo(SystemZTTIImpl(this, F));
|
|
}
|
|
|
|
MachineFunctionInfo *SystemZTargetMachine::createMachineFunctionInfo(
|
|
BumpPtrAllocator &Allocator, const Function &F,
|
|
const TargetSubtargetInfo *STI) const {
|
|
return SystemZMachineFunctionInfo::create<SystemZMachineFunctionInfo>(
|
|
Allocator, F, STI);
|
|
}
|