The two "if" conditions are mutually exclusive, so we can put them in any order. Reversing the order allows us to remove Blocks.contains(IncomingBlock) in one of the "if" conditions.
3044 lines
125 KiB
C++
3044 lines
125 KiB
C++
//===- IROutliner.cpp -- Outline Similar Regions ----------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
// Implementation for the IROutliner which is used by the IROutliner Pass.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/IPO/IROutliner.h"
|
|
#include "llvm/Analysis/IRSimilarityIdentifier.h"
|
|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/DIBuilder.h"
|
|
#include "llvm/IR/DebugInfo.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Mangler.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Transforms/IPO.h"
|
|
#include <optional>
|
|
#include <vector>
|
|
|
|
#define DEBUG_TYPE "iroutliner"
|
|
|
|
using namespace llvm;
|
|
using namespace IRSimilarity;
|
|
|
|
// A command flag to be used for debugging to exclude branches from similarity
|
|
// matching and outlining.
|
|
namespace llvm {
|
|
extern cl::opt<bool> DisableBranches;
|
|
|
|
// A command flag to be used for debugging to indirect calls from similarity
|
|
// matching and outlining.
|
|
extern cl::opt<bool> DisableIndirectCalls;
|
|
|
|
// A command flag to be used for debugging to exclude intrinsics from similarity
|
|
// matching and outlining.
|
|
extern cl::opt<bool> DisableIntrinsics;
|
|
|
|
} // namespace llvm
|
|
|
|
// Set to true if the user wants the ir outliner to run on linkonceodr linkage
|
|
// functions. This is false by default because the linker can dedupe linkonceodr
|
|
// functions. Since the outliner is confined to a single module (modulo LTO),
|
|
// this is off by default. It should, however, be the default behavior in
|
|
// LTO.
|
|
static cl::opt<bool> EnableLinkOnceODRIROutlining(
|
|
"enable-linkonceodr-ir-outlining", cl::Hidden,
|
|
cl::desc("Enable the IR outliner on linkonceodr functions"),
|
|
cl::init(false));
|
|
|
|
// This is a debug option to test small pieces of code to ensure that outlining
|
|
// works correctly.
|
|
static cl::opt<bool> NoCostModel(
|
|
"ir-outlining-no-cost", cl::init(false), cl::ReallyHidden,
|
|
cl::desc("Debug option to outline greedily, without restriction that "
|
|
"calculated benefit outweighs cost"));
|
|
|
|
/// The OutlinableGroup holds all the overarching information for outlining
|
|
/// a set of regions that are structurally similar to one another, such as the
|
|
/// types of the overall function, the output blocks, the sets of stores needed
|
|
/// and a list of the different regions. This information is used in the
|
|
/// deduplication of extracted regions with the same structure.
|
|
struct OutlinableGroup {
|
|
/// The sections that could be outlined
|
|
std::vector<OutlinableRegion *> Regions;
|
|
|
|
/// The argument types for the function created as the overall function to
|
|
/// replace the extracted function for each region.
|
|
std::vector<Type *> ArgumentTypes;
|
|
/// The FunctionType for the overall function.
|
|
FunctionType *OutlinedFunctionType = nullptr;
|
|
/// The Function for the collective overall function.
|
|
Function *OutlinedFunction = nullptr;
|
|
|
|
/// Flag for whether we should not consider this group of OutlinableRegions
|
|
/// for extraction.
|
|
bool IgnoreGroup = false;
|
|
|
|
/// The return blocks for the overall function.
|
|
DenseMap<Value *, BasicBlock *> EndBBs;
|
|
|
|
/// The PHIBlocks with their corresponding return block based on the return
|
|
/// value as the key.
|
|
DenseMap<Value *, BasicBlock *> PHIBlocks;
|
|
|
|
/// A set containing the different GVN store sets needed. Each array contains
|
|
/// a sorted list of the different values that need to be stored into output
|
|
/// registers.
|
|
DenseSet<ArrayRef<unsigned>> OutputGVNCombinations;
|
|
|
|
/// Flag for whether the \ref ArgumentTypes have been defined after the
|
|
/// extraction of the first region.
|
|
bool InputTypesSet = false;
|
|
|
|
/// The number of input values in \ref ArgumentTypes. Anything after this
|
|
/// index in ArgumentTypes is an output argument.
|
|
unsigned NumAggregateInputs = 0;
|
|
|
|
/// The mapping of the canonical numbering of the values in outlined sections
|
|
/// to specific arguments.
|
|
DenseMap<unsigned, unsigned> CanonicalNumberToAggArg;
|
|
|
|
/// The number of branches in the region target a basic block that is outside
|
|
/// of the region.
|
|
unsigned BranchesToOutside = 0;
|
|
|
|
/// Tracker counting backwards from the highest unsigned value possible to
|
|
/// avoid conflicting with the GVNs of assigned values. We start at -3 since
|
|
/// -2 and -1 are assigned by the DenseMap.
|
|
unsigned PHINodeGVNTracker = -3;
|
|
|
|
DenseMap<unsigned,
|
|
std::pair<std::pair<unsigned, unsigned>, SmallVector<unsigned, 2>>>
|
|
PHINodeGVNToGVNs;
|
|
DenseMap<hash_code, unsigned> GVNsToPHINodeGVN;
|
|
|
|
/// The number of instructions that will be outlined by extracting \ref
|
|
/// Regions.
|
|
InstructionCost Benefit = 0;
|
|
/// The number of added instructions needed for the outlining of the \ref
|
|
/// Regions.
|
|
InstructionCost Cost = 0;
|
|
|
|
/// The argument that needs to be marked with the swifterr attribute. If not
|
|
/// needed, there is no value.
|
|
std::optional<unsigned> SwiftErrorArgument;
|
|
|
|
/// For the \ref Regions, we look at every Value. If it is a constant,
|
|
/// we check whether it is the same in Region.
|
|
///
|
|
/// \param [in,out] NotSame contains the global value numbers where the
|
|
/// constant is not always the same, and must be passed in as an argument.
|
|
void findSameConstants(DenseSet<unsigned> &NotSame);
|
|
|
|
/// For the regions, look at each set of GVN stores needed and account for
|
|
/// each combination. Add an argument to the argument types if there is
|
|
/// more than one combination.
|
|
///
|
|
/// \param [in] M - The module we are outlining from.
|
|
void collectGVNStoreSets(Module &M);
|
|
};
|
|
|
|
/// Move the contents of \p SourceBB to before the last instruction of \p
|
|
/// TargetBB.
|
|
/// \param SourceBB - the BasicBlock to pull Instructions from.
|
|
/// \param TargetBB - the BasicBlock to put Instruction into.
|
|
static void moveBBContents(BasicBlock &SourceBB, BasicBlock &TargetBB) {
|
|
TargetBB.splice(TargetBB.end(), &SourceBB);
|
|
}
|
|
|
|
/// A function to sort the keys of \p Map, which must be a mapping of constant
|
|
/// values to basic blocks and return it in \p SortedKeys
|
|
///
|
|
/// \param SortedKeys - The vector the keys will be return in and sorted.
|
|
/// \param Map - The DenseMap containing keys to sort.
|
|
static void getSortedConstantKeys(std::vector<Value *> &SortedKeys,
|
|
DenseMap<Value *, BasicBlock *> &Map) {
|
|
for (auto &VtoBB : Map)
|
|
SortedKeys.push_back(VtoBB.first);
|
|
|
|
// Here we expect to have either 1 value that is void (nullptr) or multiple
|
|
// values that are all constant integers.
|
|
if (SortedKeys.size() == 1) {
|
|
assert(!SortedKeys[0] && "Expected a single void value.");
|
|
return;
|
|
}
|
|
|
|
stable_sort(SortedKeys, [](const Value *LHS, const Value *RHS) {
|
|
assert(LHS && RHS && "Expected non void values.");
|
|
const ConstantInt *LHSC = cast<ConstantInt>(LHS);
|
|
const ConstantInt *RHSC = cast<ConstantInt>(RHS);
|
|
|
|
return LHSC->getLimitedValue() < RHSC->getLimitedValue();
|
|
});
|
|
}
|
|
|
|
Value *OutlinableRegion::findCorrespondingValueIn(const OutlinableRegion &Other,
|
|
Value *V) {
|
|
std::optional<unsigned> GVN = Candidate->getGVN(V);
|
|
assert(GVN && "No GVN for incoming value");
|
|
std::optional<unsigned> CanonNum = Candidate->getCanonicalNum(*GVN);
|
|
std::optional<unsigned> FirstGVN =
|
|
Other.Candidate->fromCanonicalNum(*CanonNum);
|
|
std::optional<Value *> FoundValueOpt = Other.Candidate->fromGVN(*FirstGVN);
|
|
return FoundValueOpt.value_or(nullptr);
|
|
}
|
|
|
|
BasicBlock *
|
|
OutlinableRegion::findCorrespondingBlockIn(const OutlinableRegion &Other,
|
|
BasicBlock *BB) {
|
|
Instruction *FirstNonPHI = &*BB->getFirstNonPHIOrDbg();
|
|
assert(FirstNonPHI && "block is empty?");
|
|
Value *CorrespondingVal = findCorrespondingValueIn(Other, FirstNonPHI);
|
|
if (!CorrespondingVal)
|
|
return nullptr;
|
|
BasicBlock *CorrespondingBlock =
|
|
cast<Instruction>(CorrespondingVal)->getParent();
|
|
return CorrespondingBlock;
|
|
}
|
|
|
|
/// Rewrite the BranchInsts in the incoming blocks to \p PHIBlock that are found
|
|
/// in \p Included to branch to BasicBlock \p Replace if they currently branch
|
|
/// to the BasicBlock \p Find. This is used to fix up the incoming basic blocks
|
|
/// when PHINodes are included in outlined regions.
|
|
///
|
|
/// \param PHIBlock - The BasicBlock containing the PHINodes that need to be
|
|
/// checked.
|
|
/// \param Find - The successor block to be replaced.
|
|
/// \param Replace - The new succesor block to branch to.
|
|
/// \param Included - The set of blocks about to be outlined.
|
|
static void replaceTargetsFromPHINode(BasicBlock *PHIBlock, BasicBlock *Find,
|
|
BasicBlock *Replace,
|
|
DenseSet<BasicBlock *> &Included) {
|
|
for (PHINode &PN : PHIBlock->phis()) {
|
|
for (unsigned Idx = 0, PNEnd = PN.getNumIncomingValues(); Idx != PNEnd;
|
|
++Idx) {
|
|
// Check if the incoming block is included in the set of blocks being
|
|
// outlined.
|
|
BasicBlock *Incoming = PN.getIncomingBlock(Idx);
|
|
if (!Included.contains(Incoming))
|
|
continue;
|
|
|
|
BranchInst *BI = dyn_cast<BranchInst>(Incoming->getTerminator());
|
|
assert(BI && "Not a branch instruction?");
|
|
// Look over the branching instructions into this block to see if we
|
|
// used to branch to Find in this outlined block.
|
|
for (unsigned Succ = 0, End = BI->getNumSuccessors(); Succ != End;
|
|
Succ++) {
|
|
// If we have found the block to replace, we do so here.
|
|
if (BI->getSuccessor(Succ) != Find)
|
|
continue;
|
|
BI->setSuccessor(Succ, Replace);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void OutlinableRegion::splitCandidate() {
|
|
assert(!CandidateSplit && "Candidate already split!");
|
|
|
|
Instruction *BackInst = Candidate->backInstruction();
|
|
|
|
Instruction *EndInst = nullptr;
|
|
// Check whether the last instruction is a terminator, if it is, we do
|
|
// not split on the following instruction. We leave the block as it is. We
|
|
// also check that this is not the last instruction in the Module, otherwise
|
|
// the check for whether the current following instruction matches the
|
|
// previously recorded instruction will be incorrect.
|
|
if (!BackInst->isTerminator() ||
|
|
BackInst->getParent() != &BackInst->getFunction()->back()) {
|
|
EndInst = Candidate->end()->Inst;
|
|
assert(EndInst && "Expected an end instruction?");
|
|
}
|
|
|
|
// We check if the current instruction following the last instruction in the
|
|
// region is the same as the recorded instruction following the last
|
|
// instruction. If they do not match, there could be problems in rewriting
|
|
// the program after outlining, so we ignore it.
|
|
if (!BackInst->isTerminator() &&
|
|
EndInst != BackInst->getNextNonDebugInstruction())
|
|
return;
|
|
|
|
Instruction *StartInst = (*Candidate->begin()).Inst;
|
|
assert(StartInst && "Expected a start instruction?");
|
|
StartBB = StartInst->getParent();
|
|
PrevBB = StartBB;
|
|
|
|
DenseSet<BasicBlock *> BBSet;
|
|
Candidate->getBasicBlocks(BBSet);
|
|
|
|
// We iterate over the instructions in the region, if we find a PHINode, we
|
|
// check if there are predecessors outside of the region, if there are,
|
|
// we ignore this region since we are unable to handle the severing of the
|
|
// phi node right now.
|
|
|
|
// TODO: Handle extraneous inputs for PHINodes through variable number of
|
|
// inputs, similar to how outputs are handled.
|
|
BasicBlock::iterator It = StartInst->getIterator();
|
|
EndBB = BackInst->getParent();
|
|
BasicBlock *IBlock;
|
|
BasicBlock *PHIPredBlock = nullptr;
|
|
bool EndBBTermAndBackInstDifferent = EndBB->getTerminator() != BackInst;
|
|
while (PHINode *PN = dyn_cast<PHINode>(&*It)) {
|
|
unsigned NumPredsOutsideRegion = 0;
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
|
|
if (!BBSet.contains(PN->getIncomingBlock(i))) {
|
|
PHIPredBlock = PN->getIncomingBlock(i);
|
|
++NumPredsOutsideRegion;
|
|
continue;
|
|
}
|
|
|
|
// We must consider the case there the incoming block to the PHINode is
|
|
// the same as the final block of the OutlinableRegion. If this is the
|
|
// case, the branch from this block must also be outlined to be valid.
|
|
IBlock = PN->getIncomingBlock(i);
|
|
if (IBlock == EndBB && EndBBTermAndBackInstDifferent) {
|
|
PHIPredBlock = PN->getIncomingBlock(i);
|
|
++NumPredsOutsideRegion;
|
|
}
|
|
}
|
|
|
|
if (NumPredsOutsideRegion > 1)
|
|
return;
|
|
|
|
It++;
|
|
}
|
|
|
|
// If the region starts with a PHINode, but is not the initial instruction of
|
|
// the BasicBlock, we ignore this region for now.
|
|
if (isa<PHINode>(StartInst) && StartInst != &*StartBB->begin())
|
|
return;
|
|
|
|
// If the region ends with a PHINode, but does not contain all of the phi node
|
|
// instructions of the region, we ignore it for now.
|
|
if (isa<PHINode>(BackInst) &&
|
|
BackInst != &*std::prev(EndBB->getFirstInsertionPt()))
|
|
return;
|
|
|
|
// The basic block gets split like so:
|
|
// block: block:
|
|
// inst1 inst1
|
|
// inst2 inst2
|
|
// region1 br block_to_outline
|
|
// region2 block_to_outline:
|
|
// region3 -> region1
|
|
// region4 region2
|
|
// inst3 region3
|
|
// inst4 region4
|
|
// br block_after_outline
|
|
// block_after_outline:
|
|
// inst3
|
|
// inst4
|
|
|
|
std::string OriginalName = PrevBB->getName().str();
|
|
|
|
StartBB = PrevBB->splitBasicBlock(StartInst, OriginalName + "_to_outline");
|
|
PrevBB->replaceSuccessorsPhiUsesWith(PrevBB, StartBB);
|
|
// If there was a PHINode with an incoming block outside the region,
|
|
// make sure is correctly updated in the newly split block.
|
|
if (PHIPredBlock)
|
|
PrevBB->replaceSuccessorsPhiUsesWith(PHIPredBlock, PrevBB);
|
|
|
|
CandidateSplit = true;
|
|
if (!BackInst->isTerminator()) {
|
|
EndBB = EndInst->getParent();
|
|
FollowBB = EndBB->splitBasicBlock(EndInst, OriginalName + "_after_outline");
|
|
EndBB->replaceSuccessorsPhiUsesWith(EndBB, FollowBB);
|
|
FollowBB->replaceSuccessorsPhiUsesWith(PrevBB, FollowBB);
|
|
} else {
|
|
EndBB = BackInst->getParent();
|
|
EndsInBranch = true;
|
|
FollowBB = nullptr;
|
|
}
|
|
|
|
// Refind the basic block set.
|
|
BBSet.clear();
|
|
Candidate->getBasicBlocks(BBSet);
|
|
// For the phi nodes in the new starting basic block of the region, we
|
|
// reassign the targets of the basic blocks branching instructions.
|
|
replaceTargetsFromPHINode(StartBB, PrevBB, StartBB, BBSet);
|
|
if (FollowBB)
|
|
replaceTargetsFromPHINode(FollowBB, EndBB, FollowBB, BBSet);
|
|
}
|
|
|
|
void OutlinableRegion::reattachCandidate() {
|
|
assert(CandidateSplit && "Candidate is not split!");
|
|
|
|
// The basic block gets reattached like so:
|
|
// block: block:
|
|
// inst1 inst1
|
|
// inst2 inst2
|
|
// br block_to_outline region1
|
|
// block_to_outline: -> region2
|
|
// region1 region3
|
|
// region2 region4
|
|
// region3 inst3
|
|
// region4 inst4
|
|
// br block_after_outline
|
|
// block_after_outline:
|
|
// inst3
|
|
// inst4
|
|
assert(StartBB != nullptr && "StartBB for Candidate is not defined!");
|
|
|
|
assert(PrevBB->getTerminator() && "Terminator removed from PrevBB!");
|
|
// Make sure PHINode references to the block we are merging into are
|
|
// updated to be incoming blocks from the predecessor to the current block.
|
|
|
|
// NOTE: If this is updated such that the outlined block can have more than
|
|
// one incoming block to a PHINode, this logic will have to updated
|
|
// to handle multiple precessors instead.
|
|
|
|
// We only need to update this if the outlined section contains a PHINode, if
|
|
// it does not, then the incoming block was never changed in the first place.
|
|
// On the other hand, if PrevBB has no predecessors, it means that all
|
|
// incoming blocks to the first block are contained in the region, and there
|
|
// will be nothing to update.
|
|
Instruction *StartInst = (*Candidate->begin()).Inst;
|
|
if (isa<PHINode>(StartInst) && !PrevBB->hasNPredecessors(0)) {
|
|
assert(!PrevBB->hasNPredecessorsOrMore(2) &&
|
|
"PrevBB has more than one predecessor. Should be 0 or 1.");
|
|
BasicBlock *BeforePrevBB = PrevBB->getSinglePredecessor();
|
|
PrevBB->replaceSuccessorsPhiUsesWith(PrevBB, BeforePrevBB);
|
|
}
|
|
PrevBB->getTerminator()->eraseFromParent();
|
|
|
|
// If we reattaching after outlining, we iterate over the phi nodes to
|
|
// the initial block, and reassign the branch instructions of the incoming
|
|
// blocks to the block we are remerging into.
|
|
if (!ExtractedFunction) {
|
|
DenseSet<BasicBlock *> BBSet;
|
|
Candidate->getBasicBlocks(BBSet);
|
|
|
|
replaceTargetsFromPHINode(StartBB, StartBB, PrevBB, BBSet);
|
|
if (!EndsInBranch)
|
|
replaceTargetsFromPHINode(FollowBB, FollowBB, EndBB, BBSet);
|
|
}
|
|
|
|
moveBBContents(*StartBB, *PrevBB);
|
|
|
|
BasicBlock *PlacementBB = PrevBB;
|
|
if (StartBB != EndBB)
|
|
PlacementBB = EndBB;
|
|
if (!EndsInBranch && PlacementBB->getUniqueSuccessor() != nullptr) {
|
|
assert(FollowBB != nullptr && "FollowBB for Candidate is not defined!");
|
|
assert(PlacementBB->getTerminator() && "Terminator removed from EndBB!");
|
|
PlacementBB->getTerminator()->eraseFromParent();
|
|
moveBBContents(*FollowBB, *PlacementBB);
|
|
PlacementBB->replaceSuccessorsPhiUsesWith(FollowBB, PlacementBB);
|
|
FollowBB->eraseFromParent();
|
|
}
|
|
|
|
PrevBB->replaceSuccessorsPhiUsesWith(StartBB, PrevBB);
|
|
StartBB->eraseFromParent();
|
|
|
|
// Make sure to save changes back to the StartBB.
|
|
StartBB = PrevBB;
|
|
EndBB = nullptr;
|
|
PrevBB = nullptr;
|
|
FollowBB = nullptr;
|
|
|
|
CandidateSplit = false;
|
|
}
|
|
|
|
/// Find whether \p V matches the Constants previously found for the \p GVN.
|
|
///
|
|
/// \param V - The value to check for consistency.
|
|
/// \param GVN - The global value number assigned to \p V.
|
|
/// \param GVNToConstant - The mapping of global value number to Constants.
|
|
/// \returns true if the Value matches the Constant mapped to by V and false if
|
|
/// it \p V is a Constant but does not match.
|
|
/// \returns std::nullopt if \p V is not a Constant.
|
|
static std::optional<bool>
|
|
constantMatches(Value *V, unsigned GVN,
|
|
DenseMap<unsigned, Constant *> &GVNToConstant) {
|
|
// See if we have a constants
|
|
Constant *CST = dyn_cast<Constant>(V);
|
|
if (!CST)
|
|
return std::nullopt;
|
|
|
|
// Holds a mapping from a global value number to a Constant.
|
|
DenseMap<unsigned, Constant *>::iterator GVNToConstantIt;
|
|
bool Inserted;
|
|
|
|
|
|
// If we have a constant, try to make a new entry in the GVNToConstant.
|
|
std::tie(GVNToConstantIt, Inserted) =
|
|
GVNToConstant.insert(std::make_pair(GVN, CST));
|
|
// If it was found and is not equal, it is not the same. We do not
|
|
// handle this case yet, and exit early.
|
|
if (Inserted || (GVNToConstantIt->second == CST))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
InstructionCost OutlinableRegion::getBenefit(TargetTransformInfo &TTI) {
|
|
InstructionCost Benefit = 0;
|
|
|
|
// Estimate the benefit of outlining a specific sections of the program. We
|
|
// delegate mostly this task to the TargetTransformInfo so that if the target
|
|
// has specific changes, we can have a more accurate estimate.
|
|
|
|
// However, getInstructionCost delegates the code size calculation for
|
|
// arithmetic instructions to getArithmeticInstrCost in
|
|
// include/Analysis/TargetTransformImpl.h, where it always estimates that the
|
|
// code size for a division and remainder instruction to be equal to 4, and
|
|
// everything else to 1. This is not an accurate representation of the
|
|
// division instruction for targets that have a native division instruction.
|
|
// To be overly conservative, we only add 1 to the number of instructions for
|
|
// each division instruction.
|
|
for (IRInstructionData &ID : *Candidate) {
|
|
Instruction *I = ID.Inst;
|
|
switch (I->getOpcode()) {
|
|
case Instruction::FDiv:
|
|
case Instruction::FRem:
|
|
case Instruction::SDiv:
|
|
case Instruction::SRem:
|
|
case Instruction::UDiv:
|
|
case Instruction::URem:
|
|
Benefit += 1;
|
|
break;
|
|
default:
|
|
Benefit += TTI.getInstructionCost(I, TargetTransformInfo::TCK_CodeSize);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return Benefit;
|
|
}
|
|
|
|
/// Check the \p OutputMappings structure for value \p Input, if it exists
|
|
/// it has been used as an output for outlining, and has been renamed, and we
|
|
/// return the new value, otherwise, we return the same value.
|
|
///
|
|
/// \param OutputMappings [in] - The mapping of values to their renamed value
|
|
/// after being used as an output for an outlined region.
|
|
/// \param Input [in] - The value to find the remapped value of, if it exists.
|
|
/// \return The remapped value if it has been renamed, and the same value if has
|
|
/// not.
|
|
static Value *findOutputMapping(const DenseMap<Value *, Value *> OutputMappings,
|
|
Value *Input) {
|
|
DenseMap<Value *, Value *>::const_iterator OutputMapping =
|
|
OutputMappings.find(Input);
|
|
if (OutputMapping != OutputMappings.end())
|
|
return OutputMapping->second;
|
|
return Input;
|
|
}
|
|
|
|
/// Find whether \p Region matches the global value numbering to Constant
|
|
/// mapping found so far.
|
|
///
|
|
/// \param Region - The OutlinableRegion we are checking for constants
|
|
/// \param GVNToConstant - The mapping of global value number to Constants.
|
|
/// \param NotSame - The set of global value numbers that do not have the same
|
|
/// constant in each region.
|
|
/// \returns true if all Constants are the same in every use of a Constant in \p
|
|
/// Region and false if not
|
|
static bool
|
|
collectRegionsConstants(OutlinableRegion &Region,
|
|
DenseMap<unsigned, Constant *> &GVNToConstant,
|
|
DenseSet<unsigned> &NotSame) {
|
|
bool ConstantsTheSame = true;
|
|
|
|
IRSimilarityCandidate &C = *Region.Candidate;
|
|
for (IRInstructionData &ID : C) {
|
|
|
|
// Iterate over the operands in an instruction. If the global value number,
|
|
// assigned by the IRSimilarityCandidate, has been seen before, we check if
|
|
// the number has been found to be not the same value in each instance.
|
|
for (Value *V : ID.OperVals) {
|
|
std::optional<unsigned> GVNOpt = C.getGVN(V);
|
|
assert(GVNOpt && "Expected a GVN for operand?");
|
|
unsigned GVN = *GVNOpt;
|
|
|
|
// Check if this global value has been found to not be the same already.
|
|
if (NotSame.contains(GVN)) {
|
|
if (isa<Constant>(V))
|
|
ConstantsTheSame = false;
|
|
continue;
|
|
}
|
|
|
|
// If it has been the same so far, we check the value for if the
|
|
// associated Constant value match the previous instances of the same
|
|
// global value number. If the global value does not map to a Constant,
|
|
// it is considered to not be the same value.
|
|
std::optional<bool> ConstantMatches =
|
|
constantMatches(V, GVN, GVNToConstant);
|
|
if (ConstantMatches) {
|
|
if (*ConstantMatches)
|
|
continue;
|
|
else
|
|
ConstantsTheSame = false;
|
|
}
|
|
|
|
// While this value is a register, it might not have been previously,
|
|
// make sure we don't already have a constant mapped to this global value
|
|
// number.
|
|
if (GVNToConstant.contains(GVN))
|
|
ConstantsTheSame = false;
|
|
|
|
NotSame.insert(GVN);
|
|
}
|
|
}
|
|
|
|
return ConstantsTheSame;
|
|
}
|
|
|
|
void OutlinableGroup::findSameConstants(DenseSet<unsigned> &NotSame) {
|
|
DenseMap<unsigned, Constant *> GVNToConstant;
|
|
|
|
for (OutlinableRegion *Region : Regions)
|
|
collectRegionsConstants(*Region, GVNToConstant, NotSame);
|
|
}
|
|
|
|
void OutlinableGroup::collectGVNStoreSets(Module &M) {
|
|
for (OutlinableRegion *OS : Regions)
|
|
OutputGVNCombinations.insert(OS->GVNStores);
|
|
|
|
// We are adding an extracted argument to decide between which output path
|
|
// to use in the basic block. It is used in a switch statement and only
|
|
// needs to be an integer.
|
|
if (OutputGVNCombinations.size() > 1)
|
|
ArgumentTypes.push_back(Type::getInt32Ty(M.getContext()));
|
|
}
|
|
|
|
/// Get the subprogram if it exists for one of the outlined regions.
|
|
///
|
|
/// \param [in] Group - The set of regions to find a subprogram for.
|
|
/// \returns the subprogram if it exists, or nullptr.
|
|
static DISubprogram *getSubprogramOrNull(OutlinableGroup &Group) {
|
|
for (OutlinableRegion *OS : Group.Regions)
|
|
if (Function *F = OS->Call->getFunction())
|
|
if (DISubprogram *SP = F->getSubprogram())
|
|
return SP;
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
Function *IROutliner::createFunction(Module &M, OutlinableGroup &Group,
|
|
unsigned FunctionNameSuffix) {
|
|
assert(!Group.OutlinedFunction && "Function is already defined!");
|
|
|
|
Type *RetTy = Type::getVoidTy(M.getContext());
|
|
// All extracted functions _should_ have the same return type at this point
|
|
// since the similarity identifier ensures that all branches outside of the
|
|
// region occur in the same place.
|
|
|
|
// NOTE: Should we ever move to the model that uses a switch at every point
|
|
// needed, meaning that we could branch within the region or out, it is
|
|
// possible that we will need to switch to using the most general case all of
|
|
// the time.
|
|
for (OutlinableRegion *R : Group.Regions) {
|
|
Type *ExtractedFuncType = R->ExtractedFunction->getReturnType();
|
|
if ((RetTy->isVoidTy() && !ExtractedFuncType->isVoidTy()) ||
|
|
(RetTy->isIntegerTy(1) && ExtractedFuncType->isIntegerTy(16)))
|
|
RetTy = ExtractedFuncType;
|
|
}
|
|
|
|
Group.OutlinedFunctionType = FunctionType::get(
|
|
RetTy, Group.ArgumentTypes, false);
|
|
|
|
// These functions will only be called from within the same module, so
|
|
// we can set an internal linkage.
|
|
Group.OutlinedFunction = Function::Create(
|
|
Group.OutlinedFunctionType, GlobalValue::InternalLinkage,
|
|
"outlined_ir_func_" + std::to_string(FunctionNameSuffix), M);
|
|
|
|
// Transfer the swifterr attribute to the correct function parameter.
|
|
if (Group.SwiftErrorArgument)
|
|
Group.OutlinedFunction->addParamAttr(*Group.SwiftErrorArgument,
|
|
Attribute::SwiftError);
|
|
|
|
Group.OutlinedFunction->addFnAttr(Attribute::OptimizeForSize);
|
|
Group.OutlinedFunction->addFnAttr(Attribute::MinSize);
|
|
|
|
// If there's a DISubprogram associated with this outlined function, then
|
|
// emit debug info for the outlined function.
|
|
if (DISubprogram *SP = getSubprogramOrNull(Group)) {
|
|
Function *F = Group.OutlinedFunction;
|
|
// We have a DISubprogram. Get its DICompileUnit.
|
|
DICompileUnit *CU = SP->getUnit();
|
|
DIBuilder DB(M, true, CU);
|
|
DIFile *Unit = SP->getFile();
|
|
Mangler Mg;
|
|
// Get the mangled name of the function for the linkage name.
|
|
std::string Dummy;
|
|
llvm::raw_string_ostream MangledNameStream(Dummy);
|
|
Mg.getNameWithPrefix(MangledNameStream, F, false);
|
|
|
|
DISubprogram *OutlinedSP = DB.createFunction(
|
|
Unit /* Context */, F->getName(), Dummy, Unit /* File */,
|
|
0 /* Line 0 is reserved for compiler-generated code. */,
|
|
DB.createSubroutineType(DB.getOrCreateTypeArray({})), /* void type */
|
|
0, /* Line 0 is reserved for compiler-generated code. */
|
|
DINode::DIFlags::FlagArtificial /* Compiler-generated code. */,
|
|
/* Outlined code is optimized code by definition. */
|
|
DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized);
|
|
|
|
// Don't add any new variables to the subprogram.
|
|
DB.finalizeSubprogram(OutlinedSP);
|
|
|
|
// Attach subprogram to the function.
|
|
F->setSubprogram(OutlinedSP);
|
|
// We're done with the DIBuilder.
|
|
DB.finalize();
|
|
}
|
|
|
|
return Group.OutlinedFunction;
|
|
}
|
|
|
|
/// Move each BasicBlock in \p Old to \p New.
|
|
///
|
|
/// \param [in] Old - The function to move the basic blocks from.
|
|
/// \param [in] New - The function to move the basic blocks to.
|
|
/// \param [out] NewEnds - The return blocks of the new overall function.
|
|
static void moveFunctionData(Function &Old, Function &New,
|
|
DenseMap<Value *, BasicBlock *> &NewEnds) {
|
|
for (BasicBlock &CurrBB : llvm::make_early_inc_range(Old)) {
|
|
CurrBB.removeFromParent();
|
|
CurrBB.insertInto(&New);
|
|
Instruction *I = CurrBB.getTerminator();
|
|
|
|
// For each block we find a return instruction is, it is a potential exit
|
|
// path for the function. We keep track of each block based on the return
|
|
// value here.
|
|
if (ReturnInst *RI = dyn_cast<ReturnInst>(I))
|
|
NewEnds.insert(std::make_pair(RI->getReturnValue(), &CurrBB));
|
|
|
|
std::vector<Instruction *> DebugInsts;
|
|
|
|
for (Instruction &Val : CurrBB) {
|
|
// Since debug-info originates from many different locations in the
|
|
// program, it will cause incorrect reporting from a debugger if we keep
|
|
// the same debug instructions. Drop non-intrinsic DbgVariableRecords
|
|
// here, collect intrinsics for removal later.
|
|
Val.dropDbgRecords();
|
|
|
|
// We must handle the scoping of called functions differently than
|
|
// other outlined instructions.
|
|
if (!isa<CallInst>(&Val)) {
|
|
// Remove the debug information for outlined functions.
|
|
Val.setDebugLoc(DebugLoc());
|
|
|
|
// Loop info metadata may contain line locations. Update them to have no
|
|
// value in the new subprogram since the outlined code could be from
|
|
// several locations.
|
|
auto updateLoopInfoLoc = [&New](Metadata *MD) -> Metadata * {
|
|
if (DISubprogram *SP = New.getSubprogram())
|
|
if (auto *Loc = dyn_cast_or_null<DILocation>(MD))
|
|
return DILocation::get(New.getContext(), Loc->getLine(),
|
|
Loc->getColumn(), SP, nullptr);
|
|
return MD;
|
|
};
|
|
updateLoopMetadataDebugLocations(Val, updateLoopInfoLoc);
|
|
continue;
|
|
}
|
|
|
|
// From this point we are only handling call instructions.
|
|
CallInst *CI = cast<CallInst>(&Val);
|
|
|
|
// Collect debug intrinsics for later removal.
|
|
if (isa<DbgInfoIntrinsic>(CI)) {
|
|
DebugInsts.push_back(&Val);
|
|
continue;
|
|
}
|
|
|
|
// Edit the scope of called functions inside of outlined functions.
|
|
if (DISubprogram *SP = New.getSubprogram()) {
|
|
DILocation *DI = DILocation::get(New.getContext(), 0, 0, SP);
|
|
Val.setDebugLoc(DI);
|
|
}
|
|
}
|
|
|
|
for (Instruction *I : DebugInsts)
|
|
I->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
/// Find the constants that will need to be lifted into arguments
|
|
/// as they are not the same in each instance of the region.
|
|
///
|
|
/// \param [in] C - The IRSimilarityCandidate containing the region we are
|
|
/// analyzing.
|
|
/// \param [in] NotSame - The set of global value numbers that do not have a
|
|
/// single Constant across all OutlinableRegions similar to \p C.
|
|
/// \param [out] Inputs - The list containing the global value numbers of the
|
|
/// arguments needed for the region of code.
|
|
static void findConstants(IRSimilarityCandidate &C, DenseSet<unsigned> &NotSame,
|
|
std::vector<unsigned> &Inputs) {
|
|
DenseSet<unsigned> Seen;
|
|
// Iterate over the instructions, and find what constants will need to be
|
|
// extracted into arguments.
|
|
for (IRInstructionDataList::iterator IDIt = C.begin(), EndIDIt = C.end();
|
|
IDIt != EndIDIt; IDIt++) {
|
|
for (Value *V : (*IDIt).OperVals) {
|
|
// Since these are stored before any outlining, they will be in the
|
|
// global value numbering.
|
|
unsigned GVN = *C.getGVN(V);
|
|
if (isa<Constant>(V))
|
|
if (NotSame.contains(GVN) && Seen.insert(GVN).second)
|
|
Inputs.push_back(GVN);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Find the GVN for the inputs that have been found by the CodeExtractor.
|
|
///
|
|
/// \param [in] C - The IRSimilarityCandidate containing the region we are
|
|
/// analyzing.
|
|
/// \param [in] CurrentInputs - The set of inputs found by the
|
|
/// CodeExtractor.
|
|
/// \param [in] OutputMappings - The mapping of values that have been replaced
|
|
/// by a new output value.
|
|
/// \param [out] EndInputNumbers - The global value numbers for the extracted
|
|
/// arguments.
|
|
static void mapInputsToGVNs(IRSimilarityCandidate &C,
|
|
SetVector<Value *> &CurrentInputs,
|
|
const DenseMap<Value *, Value *> &OutputMappings,
|
|
std::vector<unsigned> &EndInputNumbers) {
|
|
// Get the Global Value Number for each input. We check if the Value has been
|
|
// replaced by a different value at output, and use the original value before
|
|
// replacement.
|
|
for (Value *Input : CurrentInputs) {
|
|
assert(Input && "Have a nullptr as an input");
|
|
auto It = OutputMappings.find(Input);
|
|
if (It != OutputMappings.end())
|
|
Input = It->second;
|
|
assert(C.getGVN(Input) && "Could not find a numbering for the given input");
|
|
EndInputNumbers.push_back(*C.getGVN(Input));
|
|
}
|
|
}
|
|
|
|
/// Find the original value for the \p ArgInput values if any one of them was
|
|
/// replaced during a previous extraction.
|
|
///
|
|
/// \param [in] ArgInputs - The inputs to be extracted by the code extractor.
|
|
/// \param [in] OutputMappings - The mapping of values that have been replaced
|
|
/// by a new output value.
|
|
/// \param [out] RemappedArgInputs - The remapped values according to
|
|
/// \p OutputMappings that will be extracted.
|
|
static void
|
|
remapExtractedInputs(const ArrayRef<Value *> ArgInputs,
|
|
const DenseMap<Value *, Value *> &OutputMappings,
|
|
SetVector<Value *> &RemappedArgInputs) {
|
|
// Get the global value number for each input that will be extracted as an
|
|
// argument by the code extractor, remapping if needed for reloaded values.
|
|
for (Value *Input : ArgInputs) {
|
|
auto It = OutputMappings.find(Input);
|
|
if (It != OutputMappings.end())
|
|
Input = It->second;
|
|
RemappedArgInputs.insert(Input);
|
|
}
|
|
}
|
|
|
|
/// Find the input GVNs and the output values for a region of Instructions.
|
|
/// Using the code extractor, we collect the inputs to the extracted function.
|
|
///
|
|
/// The \p Region can be identified as needing to be ignored in this function.
|
|
/// It should be checked whether it should be ignored after a call to this
|
|
/// function.
|
|
///
|
|
/// \param [in,out] Region - The region of code to be analyzed.
|
|
/// \param [out] InputGVNs - The global value numbers for the extracted
|
|
/// arguments.
|
|
/// \param [in] NotSame - The global value numbers in the region that do not
|
|
/// have the same constant value in the regions structurally similar to
|
|
/// \p Region.
|
|
/// \param [in] OutputMappings - The mapping of values that have been replaced
|
|
/// by a new output value after extraction.
|
|
/// \param [out] ArgInputs - The values of the inputs to the extracted function.
|
|
/// \param [out] Outputs - The set of values extracted by the CodeExtractor
|
|
/// as outputs.
|
|
static void getCodeExtractorArguments(
|
|
OutlinableRegion &Region, std::vector<unsigned> &InputGVNs,
|
|
DenseSet<unsigned> &NotSame, DenseMap<Value *, Value *> &OutputMappings,
|
|
SetVector<Value *> &ArgInputs, SetVector<Value *> &Outputs) {
|
|
IRSimilarityCandidate &C = *Region.Candidate;
|
|
|
|
// OverallInputs are the inputs to the region found by the CodeExtractor,
|
|
// SinkCands and HoistCands are used by the CodeExtractor to find sunken
|
|
// allocas of values whose lifetimes are contained completely within the
|
|
// outlined region. PremappedInputs are the arguments found by the
|
|
// CodeExtractor, removing conditions such as sunken allocas, but that
|
|
// may need to be remapped due to the extracted output values replacing
|
|
// the original values. We use DummyOutputs for this first run of finding
|
|
// inputs and outputs since the outputs could change during findAllocas,
|
|
// the correct set of extracted outputs will be in the final Outputs ValueSet.
|
|
SetVector<Value *> OverallInputs, PremappedInputs, SinkCands, HoistCands,
|
|
DummyOutputs;
|
|
|
|
// Use the code extractor to get the inputs and outputs, without sunken
|
|
// allocas or removing llvm.assumes.
|
|
CodeExtractor *CE = Region.CE;
|
|
CE->findInputsOutputs(OverallInputs, DummyOutputs, SinkCands);
|
|
assert(Region.StartBB && "Region must have a start BasicBlock!");
|
|
Function *OrigF = Region.StartBB->getParent();
|
|
CodeExtractorAnalysisCache CEAC(*OrigF);
|
|
BasicBlock *Dummy = nullptr;
|
|
|
|
// The region may be ineligible due to VarArgs in the parent function. In this
|
|
// case we ignore the region.
|
|
if (!CE->isEligible()) {
|
|
Region.IgnoreRegion = true;
|
|
return;
|
|
}
|
|
|
|
// Find if any values are going to be sunk into the function when extracted
|
|
CE->findAllocas(CEAC, SinkCands, HoistCands, Dummy);
|
|
CE->findInputsOutputs(PremappedInputs, Outputs, SinkCands);
|
|
|
|
// TODO: Support regions with sunken allocas: values whose lifetimes are
|
|
// contained completely within the outlined region. These are not guaranteed
|
|
// to be the same in every region, so we must elevate them all to arguments
|
|
// when they appear. If these values are not equal, it means there is some
|
|
// Input in OverallInputs that was removed for ArgInputs.
|
|
if (OverallInputs.size() != PremappedInputs.size()) {
|
|
Region.IgnoreRegion = true;
|
|
return;
|
|
}
|
|
|
|
findConstants(C, NotSame, InputGVNs);
|
|
|
|
mapInputsToGVNs(C, OverallInputs, OutputMappings, InputGVNs);
|
|
|
|
remapExtractedInputs(PremappedInputs.getArrayRef(), OutputMappings,
|
|
ArgInputs);
|
|
|
|
// Sort the GVNs, since we now have constants included in the \ref InputGVNs
|
|
// we need to make sure they are in a deterministic order.
|
|
stable_sort(InputGVNs);
|
|
}
|
|
|
|
/// Look over the inputs and map each input argument to an argument in the
|
|
/// overall function for the OutlinableRegions. This creates a way to replace
|
|
/// the arguments of the extracted function with the arguments of the new
|
|
/// overall function.
|
|
///
|
|
/// \param [in,out] Region - The region of code to be analyzed.
|
|
/// \param [in] InputGVNs - The global value numbering of the input values
|
|
/// collected.
|
|
/// \param [in] ArgInputs - The values of the arguments to the extracted
|
|
/// function.
|
|
static void
|
|
findExtractedInputToOverallInputMapping(OutlinableRegion &Region,
|
|
std::vector<unsigned> &InputGVNs,
|
|
SetVector<Value *> &ArgInputs) {
|
|
|
|
IRSimilarityCandidate &C = *Region.Candidate;
|
|
OutlinableGroup &Group = *Region.Parent;
|
|
|
|
// This counts the argument number in the overall function.
|
|
unsigned TypeIndex = 0;
|
|
|
|
// This counts the argument number in the extracted function.
|
|
unsigned OriginalIndex = 0;
|
|
|
|
// Find the mapping of the extracted arguments to the arguments for the
|
|
// overall function. Since there may be extra arguments in the overall
|
|
// function to account for the extracted constants, we have two different
|
|
// counters as we find extracted arguments, and as we come across overall
|
|
// arguments.
|
|
|
|
// Additionally, in our first pass, for the first extracted function,
|
|
// we find argument locations for the canonical value numbering. This
|
|
// numbering overrides any discovered location for the extracted code.
|
|
for (unsigned InputVal : InputGVNs) {
|
|
std::optional<unsigned> CanonicalNumberOpt = C.getCanonicalNum(InputVal);
|
|
assert(CanonicalNumberOpt && "Canonical number not found?");
|
|
unsigned CanonicalNumber = *CanonicalNumberOpt;
|
|
|
|
std::optional<Value *> InputOpt = C.fromGVN(InputVal);
|
|
assert(InputOpt && "Global value number not found?");
|
|
Value *Input = *InputOpt;
|
|
|
|
DenseMap<unsigned, unsigned>::iterator AggArgIt =
|
|
Group.CanonicalNumberToAggArg.find(CanonicalNumber);
|
|
|
|
if (!Group.InputTypesSet) {
|
|
Group.ArgumentTypes.push_back(Input->getType());
|
|
// If the input value has a swifterr attribute, make sure to mark the
|
|
// argument in the overall function.
|
|
if (Input->isSwiftError()) {
|
|
assert(
|
|
!Group.SwiftErrorArgument &&
|
|
"Argument already marked with swifterr for this OutlinableGroup!");
|
|
Group.SwiftErrorArgument = TypeIndex;
|
|
}
|
|
}
|
|
|
|
// Check if we have a constant. If we do add it to the overall argument
|
|
// number to Constant map for the region, and continue to the next input.
|
|
if (Constant *CST = dyn_cast<Constant>(Input)) {
|
|
if (AggArgIt != Group.CanonicalNumberToAggArg.end())
|
|
Region.AggArgToConstant.insert(std::make_pair(AggArgIt->second, CST));
|
|
else {
|
|
Group.CanonicalNumberToAggArg.insert(
|
|
std::make_pair(CanonicalNumber, TypeIndex));
|
|
Region.AggArgToConstant.insert(std::make_pair(TypeIndex, CST));
|
|
}
|
|
TypeIndex++;
|
|
continue;
|
|
}
|
|
|
|
// It is not a constant, we create the mapping from extracted argument list
|
|
// to the overall argument list, using the canonical location, if it exists.
|
|
assert(ArgInputs.count(Input) && "Input cannot be found!");
|
|
|
|
if (AggArgIt != Group.CanonicalNumberToAggArg.end()) {
|
|
if (OriginalIndex != AggArgIt->second)
|
|
Region.ChangedArgOrder = true;
|
|
Region.ExtractedArgToAgg.insert(
|
|
std::make_pair(OriginalIndex, AggArgIt->second));
|
|
Region.AggArgToExtracted.insert(
|
|
std::make_pair(AggArgIt->second, OriginalIndex));
|
|
} else {
|
|
Group.CanonicalNumberToAggArg.insert(
|
|
std::make_pair(CanonicalNumber, TypeIndex));
|
|
Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, TypeIndex));
|
|
Region.AggArgToExtracted.insert(std::make_pair(TypeIndex, OriginalIndex));
|
|
}
|
|
OriginalIndex++;
|
|
TypeIndex++;
|
|
}
|
|
|
|
// If the function type definitions for the OutlinableGroup holding the region
|
|
// have not been set, set the length of the inputs here. We should have the
|
|
// same inputs for all of the different regions contained in the
|
|
// OutlinableGroup since they are all structurally similar to one another.
|
|
if (!Group.InputTypesSet) {
|
|
Group.NumAggregateInputs = TypeIndex;
|
|
Group.InputTypesSet = true;
|
|
}
|
|
|
|
Region.NumExtractedInputs = OriginalIndex;
|
|
}
|
|
|
|
/// Check if the \p V has any uses outside of the region other than \p PN.
|
|
///
|
|
/// \param V [in] - The value to check.
|
|
/// \param PHILoc [in] - The location in the PHINode of \p V.
|
|
/// \param PN [in] - The PHINode using \p V.
|
|
/// \param Exits [in] - The potential blocks we exit to from the outlined
|
|
/// region.
|
|
/// \param BlocksInRegion [in] - The basic blocks contained in the region.
|
|
/// \returns true if \p V has any use soutside its region other than \p PN.
|
|
static bool outputHasNonPHI(Value *V, unsigned PHILoc, PHINode &PN,
|
|
SmallPtrSet<BasicBlock *, 1> &Exits,
|
|
DenseSet<BasicBlock *> &BlocksInRegion) {
|
|
// We check to see if the value is used by the PHINode from some other
|
|
// predecessor not included in the region. If it is, we make sure
|
|
// to keep it as an output.
|
|
if (any_of(llvm::seq<unsigned>(0, PN.getNumIncomingValues()),
|
|
[PHILoc, &PN, V, &BlocksInRegion](unsigned Idx) {
|
|
return (Idx != PHILoc && V == PN.getIncomingValue(Idx) &&
|
|
!BlocksInRegion.contains(PN.getIncomingBlock(Idx)));
|
|
}))
|
|
return true;
|
|
|
|
// Check if the value is used by any other instructions outside the region.
|
|
return any_of(V->users(), [&Exits, &BlocksInRegion](User *U) {
|
|
Instruction *I = dyn_cast<Instruction>(U);
|
|
if (!I)
|
|
return false;
|
|
|
|
// If the use of the item is inside the region, we skip it. Uses
|
|
// inside the region give us useful information about how the item could be
|
|
// used as an output.
|
|
BasicBlock *Parent = I->getParent();
|
|
if (BlocksInRegion.contains(Parent))
|
|
return false;
|
|
|
|
// If it's not a PHINode then we definitely know the use matters. This
|
|
// output value will not completely combined with another item in a PHINode
|
|
// as it is directly reference by another non-phi instruction
|
|
if (!isa<PHINode>(I))
|
|
return true;
|
|
|
|
// If we have a PHINode outside one of the exit locations, then it
|
|
// can be considered an outside use as well. If there is a PHINode
|
|
// contained in the Exit where this values use matters, it will be
|
|
// caught when we analyze that PHINode.
|
|
if (!Exits.contains(Parent))
|
|
return true;
|
|
|
|
return false;
|
|
});
|
|
}
|
|
|
|
/// Test whether \p CurrentExitFromRegion contains any PhiNodes that should be
|
|
/// considered outputs. A PHINodes is an output when more than one incoming
|
|
/// value has been marked by the CodeExtractor as an output.
|
|
///
|
|
/// \param CurrentExitFromRegion [in] - The block to analyze.
|
|
/// \param PotentialExitsFromRegion [in] - The potential exit blocks from the
|
|
/// region.
|
|
/// \param RegionBlocks [in] - The basic blocks in the region.
|
|
/// \param Outputs [in, out] - The existing outputs for the region, we may add
|
|
/// PHINodes to this as we find that they replace output values.
|
|
/// \param OutputsReplacedByPHINode [out] - A set containing outputs that are
|
|
/// totally replaced by a PHINode.
|
|
/// \param OutputsWithNonPhiUses [out] - A set containing outputs that are used
|
|
/// in PHINodes, but have other uses, and should still be considered outputs.
|
|
static void analyzeExitPHIsForOutputUses(
|
|
BasicBlock *CurrentExitFromRegion,
|
|
SmallPtrSet<BasicBlock *, 1> &PotentialExitsFromRegion,
|
|
DenseSet<BasicBlock *> &RegionBlocks, SetVector<Value *> &Outputs,
|
|
DenseSet<Value *> &OutputsReplacedByPHINode,
|
|
DenseSet<Value *> &OutputsWithNonPhiUses) {
|
|
for (PHINode &PN : CurrentExitFromRegion->phis()) {
|
|
// Find all incoming values from the outlining region.
|
|
SmallVector<unsigned, 2> IncomingVals;
|
|
for (unsigned I = 0, E = PN.getNumIncomingValues(); I < E; ++I)
|
|
if (RegionBlocks.contains(PN.getIncomingBlock(I)))
|
|
IncomingVals.push_back(I);
|
|
|
|
// Do not process PHI if there are no predecessors from region.
|
|
unsigned NumIncomingVals = IncomingVals.size();
|
|
if (NumIncomingVals == 0)
|
|
continue;
|
|
|
|
// If there is one predecessor, we mark it as a value that needs to be kept
|
|
// as an output.
|
|
if (NumIncomingVals == 1) {
|
|
Value *V = PN.getIncomingValue(*IncomingVals.begin());
|
|
OutputsWithNonPhiUses.insert(V);
|
|
OutputsReplacedByPHINode.erase(V);
|
|
continue;
|
|
}
|
|
|
|
// This PHINode will be used as an output value, so we add it to our list.
|
|
Outputs.insert(&PN);
|
|
|
|
// Not all of the incoming values should be ignored as other inputs and
|
|
// outputs may have uses in outlined region. If they have other uses
|
|
// outside of the single PHINode we should not skip over it.
|
|
for (unsigned Idx : IncomingVals) {
|
|
Value *V = PN.getIncomingValue(Idx);
|
|
if (outputHasNonPHI(V, Idx, PN, PotentialExitsFromRegion, RegionBlocks)) {
|
|
OutputsWithNonPhiUses.insert(V);
|
|
OutputsReplacedByPHINode.erase(V);
|
|
continue;
|
|
}
|
|
if (!OutputsWithNonPhiUses.contains(V))
|
|
OutputsReplacedByPHINode.insert(V);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Represents the type for the unsigned number denoting the output number for
|
|
// phi node, along with the canonical number for the exit block.
|
|
using ArgLocWithBBCanon = std::pair<unsigned, unsigned>;
|
|
// The list of canonical numbers for the incoming values to a PHINode.
|
|
using CanonList = SmallVector<unsigned, 2>;
|
|
// The pair type representing the set of canonical values being combined in the
|
|
// PHINode, along with the location data for the PHINode.
|
|
using PHINodeData = std::pair<ArgLocWithBBCanon, CanonList>;
|
|
|
|
/// Encode \p PND as an integer for easy lookup based on the argument location,
|
|
/// the parent BasicBlock canonical numbering, and the canonical numbering of
|
|
/// the values stored in the PHINode.
|
|
///
|
|
/// \param PND - The data to hash.
|
|
/// \returns The hash code of \p PND.
|
|
static hash_code encodePHINodeData(PHINodeData &PND) {
|
|
return llvm::hash_combine(
|
|
llvm::hash_value(PND.first.first), llvm::hash_value(PND.first.second),
|
|
llvm::hash_combine_range(PND.second.begin(), PND.second.end()));
|
|
}
|
|
|
|
/// Create a special GVN for PHINodes that will be used outside of
|
|
/// the region. We create a hash code based on the Canonical number of the
|
|
/// parent BasicBlock, the canonical numbering of the values stored in the
|
|
/// PHINode and the aggregate argument location. This is used to find whether
|
|
/// this PHINode type has been given a canonical numbering already. If not, we
|
|
/// assign it a value and store it for later use. The value is returned to
|
|
/// identify different output schemes for the set of regions.
|
|
///
|
|
/// \param Region - The region that \p PN is an output for.
|
|
/// \param PN - The PHINode we are analyzing.
|
|
/// \param Blocks - The blocks for the region we are analyzing.
|
|
/// \param AggArgIdx - The argument \p PN will be stored into.
|
|
/// \returns An optional holding the assigned canonical number, or std::nullopt
|
|
/// if there is some attribute of the PHINode blocking it from being used.
|
|
static std::optional<unsigned> getGVNForPHINode(OutlinableRegion &Region,
|
|
PHINode *PN,
|
|
DenseSet<BasicBlock *> &Blocks,
|
|
unsigned AggArgIdx) {
|
|
OutlinableGroup &Group = *Region.Parent;
|
|
IRSimilarityCandidate &Cand = *Region.Candidate;
|
|
BasicBlock *PHIBB = PN->getParent();
|
|
CanonList PHIGVNs;
|
|
Value *Incoming;
|
|
BasicBlock *IncomingBlock;
|
|
for (unsigned Idx = 0, EIdx = PN->getNumIncomingValues(); Idx < EIdx; Idx++) {
|
|
Incoming = PN->getIncomingValue(Idx);
|
|
IncomingBlock = PN->getIncomingBlock(Idx);
|
|
// If the incoming block isn't in the region, we don't have to worry about
|
|
// this incoming value.
|
|
if (!Blocks.contains(IncomingBlock))
|
|
continue;
|
|
|
|
// If we cannot find a GVN, and the incoming block is included in the region
|
|
// this means that the input to the PHINode is not included in the region we
|
|
// are trying to analyze, meaning, that if it was outlined, we would be
|
|
// adding an extra input. We ignore this case for now, and so ignore the
|
|
// region.
|
|
std::optional<unsigned> OGVN = Cand.getGVN(Incoming);
|
|
if (!OGVN) {
|
|
Region.IgnoreRegion = true;
|
|
return std::nullopt;
|
|
}
|
|
|
|
// Collect the canonical numbers of the values in the PHINode.
|
|
unsigned GVN = *OGVN;
|
|
OGVN = Cand.getCanonicalNum(GVN);
|
|
assert(OGVN && "No GVN found for incoming value?");
|
|
PHIGVNs.push_back(*OGVN);
|
|
|
|
// Find the incoming block and use the canonical numbering as well to define
|
|
// the hash for the PHINode.
|
|
OGVN = Cand.getGVN(IncomingBlock);
|
|
|
|
// If there is no number for the incoming block, it is because we have
|
|
// split the candidate basic blocks. So we use the previous block that it
|
|
// was split from to find the valid global value numbering for the PHINode.
|
|
if (!OGVN) {
|
|
assert(Cand.getStartBB() == IncomingBlock &&
|
|
"Unknown basic block used in exit path PHINode.");
|
|
|
|
BasicBlock *PrevBlock = nullptr;
|
|
// Iterate over the predecessors to the incoming block of the
|
|
// PHINode, when we find a block that is not contained in the region
|
|
// we know that this is the first block that we split from, and should
|
|
// have a valid global value numbering.
|
|
for (BasicBlock *Pred : predecessors(IncomingBlock))
|
|
if (!Blocks.contains(Pred)) {
|
|
PrevBlock = Pred;
|
|
break;
|
|
}
|
|
assert(PrevBlock && "Expected a predecessor not in the reigon!");
|
|
OGVN = Cand.getGVN(PrevBlock);
|
|
}
|
|
GVN = *OGVN;
|
|
OGVN = Cand.getCanonicalNum(GVN);
|
|
assert(OGVN && "No GVN found for incoming block?");
|
|
PHIGVNs.push_back(*OGVN);
|
|
}
|
|
|
|
// Now that we have the GVNs for the incoming values, we are going to combine
|
|
// them with the GVN of the incoming bock, and the output location of the
|
|
// PHINode to generate a hash value representing this instance of the PHINode.
|
|
DenseMap<hash_code, unsigned>::iterator GVNToPHIIt;
|
|
DenseMap<unsigned, PHINodeData>::iterator PHIToGVNIt;
|
|
std::optional<unsigned> BBGVN = Cand.getGVN(PHIBB);
|
|
assert(BBGVN && "Could not find GVN for the incoming block!");
|
|
|
|
BBGVN = Cand.getCanonicalNum(*BBGVN);
|
|
assert(BBGVN && "Could not find canonical number for the incoming block!");
|
|
// Create a pair of the exit block canonical value, and the aggregate
|
|
// argument location, connected to the canonical numbers stored in the
|
|
// PHINode.
|
|
PHINodeData TemporaryPair =
|
|
std::make_pair(std::make_pair(*BBGVN, AggArgIdx), PHIGVNs);
|
|
hash_code PHINodeDataHash = encodePHINodeData(TemporaryPair);
|
|
|
|
// Look for and create a new entry in our connection between canonical
|
|
// numbers for PHINodes, and the set of objects we just created.
|
|
GVNToPHIIt = Group.GVNsToPHINodeGVN.find(PHINodeDataHash);
|
|
if (GVNToPHIIt == Group.GVNsToPHINodeGVN.end()) {
|
|
bool Inserted = false;
|
|
std::tie(PHIToGVNIt, Inserted) = Group.PHINodeGVNToGVNs.insert(
|
|
std::make_pair(Group.PHINodeGVNTracker, TemporaryPair));
|
|
std::tie(GVNToPHIIt, Inserted) = Group.GVNsToPHINodeGVN.insert(
|
|
std::make_pair(PHINodeDataHash, Group.PHINodeGVNTracker--));
|
|
}
|
|
|
|
return GVNToPHIIt->second;
|
|
}
|
|
|
|
/// Create a mapping of the output arguments for the \p Region to the output
|
|
/// arguments of the overall outlined function.
|
|
///
|
|
/// \param [in,out] Region - The region of code to be analyzed.
|
|
/// \param [in] Outputs - The values found by the code extractor.
|
|
static void
|
|
findExtractedOutputToOverallOutputMapping(Module &M, OutlinableRegion &Region,
|
|
SetVector<Value *> &Outputs) {
|
|
OutlinableGroup &Group = *Region.Parent;
|
|
IRSimilarityCandidate &C = *Region.Candidate;
|
|
|
|
SmallVector<BasicBlock *> BE;
|
|
DenseSet<BasicBlock *> BlocksInRegion;
|
|
C.getBasicBlocks(BlocksInRegion, BE);
|
|
|
|
// Find the exits to the region.
|
|
SmallPtrSet<BasicBlock *, 1> Exits;
|
|
for (BasicBlock *Block : BE)
|
|
for (BasicBlock *Succ : successors(Block))
|
|
if (!BlocksInRegion.contains(Succ))
|
|
Exits.insert(Succ);
|
|
|
|
// After determining which blocks exit to PHINodes, we add these PHINodes to
|
|
// the set of outputs to be processed. We also check the incoming values of
|
|
// the PHINodes for whether they should no longer be considered outputs.
|
|
DenseSet<Value *> OutputsReplacedByPHINode;
|
|
DenseSet<Value *> OutputsWithNonPhiUses;
|
|
for (BasicBlock *ExitBB : Exits)
|
|
analyzeExitPHIsForOutputUses(ExitBB, Exits, BlocksInRegion, Outputs,
|
|
OutputsReplacedByPHINode,
|
|
OutputsWithNonPhiUses);
|
|
|
|
// This counts the argument number in the extracted function.
|
|
unsigned OriginalIndex = Region.NumExtractedInputs;
|
|
|
|
// This counts the argument number in the overall function.
|
|
unsigned TypeIndex = Group.NumAggregateInputs;
|
|
bool TypeFound;
|
|
DenseSet<unsigned> AggArgsUsed;
|
|
|
|
// Iterate over the output types and identify if there is an aggregate pointer
|
|
// type whose base type matches the current output type. If there is, we mark
|
|
// that we will use this output register for this value. If not we add another
|
|
// type to the overall argument type list. We also store the GVNs used for
|
|
// stores to identify which values will need to be moved into an special
|
|
// block that holds the stores to the output registers.
|
|
for (Value *Output : Outputs) {
|
|
TypeFound = false;
|
|
// We can do this since it is a result value, and will have a number
|
|
// that is necessarily the same. BUT if in the future, the instructions
|
|
// do not have to be in same order, but are functionally the same, we will
|
|
// have to use a different scheme, as one-to-one correspondence is not
|
|
// guaranteed.
|
|
unsigned ArgumentSize = Group.ArgumentTypes.size();
|
|
|
|
// If the output is combined in a PHINode, we make sure to skip over it.
|
|
if (OutputsReplacedByPHINode.contains(Output))
|
|
continue;
|
|
|
|
unsigned AggArgIdx = 0;
|
|
for (unsigned Jdx = TypeIndex; Jdx < ArgumentSize; Jdx++) {
|
|
if (!isa<PointerType>(Group.ArgumentTypes[Jdx]))
|
|
continue;
|
|
|
|
if (!AggArgsUsed.insert(Jdx).second)
|
|
continue;
|
|
|
|
TypeFound = true;
|
|
Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, Jdx));
|
|
Region.AggArgToExtracted.insert(std::make_pair(Jdx, OriginalIndex));
|
|
AggArgIdx = Jdx;
|
|
break;
|
|
}
|
|
|
|
// We were unable to find an unused type in the output type set that matches
|
|
// the output, so we add a pointer type to the argument types of the overall
|
|
// function to handle this output and create a mapping to it.
|
|
if (!TypeFound) {
|
|
Group.ArgumentTypes.push_back(PointerType::get(Output->getContext(),
|
|
M.getDataLayout().getAllocaAddrSpace()));
|
|
// Mark the new pointer type as the last value in the aggregate argument
|
|
// list.
|
|
unsigned ArgTypeIdx = Group.ArgumentTypes.size() - 1;
|
|
AggArgsUsed.insert(ArgTypeIdx);
|
|
Region.ExtractedArgToAgg.insert(
|
|
std::make_pair(OriginalIndex, ArgTypeIdx));
|
|
Region.AggArgToExtracted.insert(
|
|
std::make_pair(ArgTypeIdx, OriginalIndex));
|
|
AggArgIdx = ArgTypeIdx;
|
|
}
|
|
|
|
// TODO: Adapt to the extra input from the PHINode.
|
|
PHINode *PN = dyn_cast<PHINode>(Output);
|
|
|
|
std::optional<unsigned> GVN;
|
|
if (PN && !BlocksInRegion.contains(PN->getParent())) {
|
|
// Values outside the region can be combined into PHINode when we
|
|
// have multiple exits. We collect both of these into a list to identify
|
|
// which values are being used in the PHINode. Each list identifies a
|
|
// different PHINode, and a different output. We store the PHINode as it's
|
|
// own canonical value. These canonical values are also dependent on the
|
|
// output argument it is saved to.
|
|
|
|
// If two PHINodes have the same canonical values, but different aggregate
|
|
// argument locations, then they will have distinct Canonical Values.
|
|
GVN = getGVNForPHINode(Region, PN, BlocksInRegion, AggArgIdx);
|
|
if (!GVN)
|
|
return;
|
|
} else {
|
|
// If we do not have a PHINode we use the global value numbering for the
|
|
// output value, to find the canonical number to add to the set of stored
|
|
// values.
|
|
GVN = C.getGVN(Output);
|
|
GVN = C.getCanonicalNum(*GVN);
|
|
}
|
|
|
|
// Each region has a potentially unique set of outputs. We save which
|
|
// values are output in a list of canonical values so we can differentiate
|
|
// among the different store schemes.
|
|
Region.GVNStores.push_back(*GVN);
|
|
|
|
OriginalIndex++;
|
|
TypeIndex++;
|
|
}
|
|
|
|
// We sort the stored values to make sure that we are not affected by analysis
|
|
// order when determining what combination of items were stored.
|
|
stable_sort(Region.GVNStores);
|
|
}
|
|
|
|
void IROutliner::findAddInputsOutputs(Module &M, OutlinableRegion &Region,
|
|
DenseSet<unsigned> &NotSame) {
|
|
std::vector<unsigned> Inputs;
|
|
SetVector<Value *> ArgInputs, Outputs;
|
|
|
|
getCodeExtractorArguments(Region, Inputs, NotSame, OutputMappings, ArgInputs,
|
|
Outputs);
|
|
|
|
if (Region.IgnoreRegion)
|
|
return;
|
|
|
|
// Map the inputs found by the CodeExtractor to the arguments found for
|
|
// the overall function.
|
|
findExtractedInputToOverallInputMapping(Region, Inputs, ArgInputs);
|
|
|
|
// Map the outputs found by the CodeExtractor to the arguments found for
|
|
// the overall function.
|
|
findExtractedOutputToOverallOutputMapping(M, Region, Outputs);
|
|
}
|
|
|
|
/// Replace the extracted function in the Region with a call to the overall
|
|
/// function constructed from the deduplicated similar regions, replacing and
|
|
/// remapping the values passed to the extracted function as arguments to the
|
|
/// new arguments of the overall function.
|
|
///
|
|
/// \param [in] M - The module to outline from.
|
|
/// \param [in] Region - The regions of extracted code to be replaced with a new
|
|
/// function.
|
|
/// \returns a call instruction with the replaced function.
|
|
CallInst *replaceCalledFunction(Module &M, OutlinableRegion &Region) {
|
|
std::vector<Value *> NewCallArgs;
|
|
DenseMap<unsigned, unsigned>::iterator ArgPair;
|
|
|
|
OutlinableGroup &Group = *Region.Parent;
|
|
CallInst *Call = Region.Call;
|
|
assert(Call && "Call to replace is nullptr?");
|
|
Function *AggFunc = Group.OutlinedFunction;
|
|
assert(AggFunc && "Function to replace with is nullptr?");
|
|
|
|
// If the arguments are the same size, there are not values that need to be
|
|
// made into an argument, the argument ordering has not been change, or
|
|
// different output registers to handle. We can simply replace the called
|
|
// function in this case.
|
|
if (!Region.ChangedArgOrder && AggFunc->arg_size() == Call->arg_size()) {
|
|
LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to "
|
|
<< *AggFunc << " with same number of arguments\n");
|
|
Call->setCalledFunction(AggFunc);
|
|
return Call;
|
|
}
|
|
|
|
// We have a different number of arguments than the new function, so
|
|
// we need to use our previously mappings off extracted argument to overall
|
|
// function argument, and constants to overall function argument to create the
|
|
// new argument list.
|
|
for (unsigned AggArgIdx = 0; AggArgIdx < AggFunc->arg_size(); AggArgIdx++) {
|
|
|
|
if (AggArgIdx == AggFunc->arg_size() - 1 &&
|
|
Group.OutputGVNCombinations.size() > 1) {
|
|
// If we are on the last argument, and we need to differentiate between
|
|
// output blocks, add an integer to the argument list to determine
|
|
// what block to take
|
|
LLVM_DEBUG(dbgs() << "Set switch block argument to "
|
|
<< Region.OutputBlockNum << "\n");
|
|
NewCallArgs.push_back(ConstantInt::get(Type::getInt32Ty(M.getContext()),
|
|
Region.OutputBlockNum));
|
|
continue;
|
|
}
|
|
|
|
ArgPair = Region.AggArgToExtracted.find(AggArgIdx);
|
|
if (ArgPair != Region.AggArgToExtracted.end()) {
|
|
Value *ArgumentValue = Call->getArgOperand(ArgPair->second);
|
|
// If we found the mapping from the extracted function to the overall
|
|
// function, we simply add it to the argument list. We use the same
|
|
// value, it just needs to honor the new order of arguments.
|
|
LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value "
|
|
<< *ArgumentValue << "\n");
|
|
NewCallArgs.push_back(ArgumentValue);
|
|
continue;
|
|
}
|
|
|
|
// If it is a constant, we simply add it to the argument list as a value.
|
|
if (Region.AggArgToConstant.contains(AggArgIdx)) {
|
|
Constant *CST = Region.AggArgToConstant.find(AggArgIdx)->second;
|
|
LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value "
|
|
<< *CST << "\n");
|
|
NewCallArgs.push_back(CST);
|
|
continue;
|
|
}
|
|
|
|
// Add a nullptr value if the argument is not found in the extracted
|
|
// function. If we cannot find a value, it means it is not in use
|
|
// for the region, so we should not pass anything to it.
|
|
LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to nullptr\n");
|
|
NewCallArgs.push_back(ConstantPointerNull::get(
|
|
static_cast<PointerType *>(AggFunc->getArg(AggArgIdx)->getType())));
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to "
|
|
<< *AggFunc << " with new set of arguments\n");
|
|
// Create the new call instruction and erase the old one.
|
|
Call = CallInst::Create(AggFunc->getFunctionType(), AggFunc, NewCallArgs, "",
|
|
Call->getIterator());
|
|
|
|
// It is possible that the call to the outlined function is either the first
|
|
// instruction is in the new block, the last instruction, or both. If either
|
|
// of these is the case, we need to make sure that we replace the instruction
|
|
// in the IRInstructionData struct with the new call.
|
|
CallInst *OldCall = Region.Call;
|
|
if (Region.NewFront->Inst == OldCall)
|
|
Region.NewFront->Inst = Call;
|
|
if (Region.NewBack->Inst == OldCall)
|
|
Region.NewBack->Inst = Call;
|
|
|
|
// Transfer any debug information.
|
|
Call->setDebugLoc(Region.Call->getDebugLoc());
|
|
// Since our output may determine which branch we go to, we make sure to
|
|
// propagate this new call value through the module.
|
|
OldCall->replaceAllUsesWith(Call);
|
|
|
|
// Remove the old instruction.
|
|
OldCall->eraseFromParent();
|
|
Region.Call = Call;
|
|
|
|
// Make sure that the argument in the new function has the SwiftError
|
|
// argument.
|
|
if (Group.SwiftErrorArgument)
|
|
Call->addParamAttr(*Group.SwiftErrorArgument, Attribute::SwiftError);
|
|
|
|
return Call;
|
|
}
|
|
|
|
/// Find or create a BasicBlock in the outlined function containing PhiBlocks
|
|
/// for \p RetVal.
|
|
///
|
|
/// \param Group - The OutlinableGroup containing the information about the
|
|
/// overall outlined function.
|
|
/// \param RetVal - The return value or exit option that we are currently
|
|
/// evaluating.
|
|
/// \returns The found or newly created BasicBlock to contain the needed
|
|
/// PHINodes to be used as outputs.
|
|
static BasicBlock *findOrCreatePHIBlock(OutlinableGroup &Group, Value *RetVal) {
|
|
DenseMap<Value *, BasicBlock *>::iterator PhiBlockForRetVal,
|
|
ReturnBlockForRetVal;
|
|
PhiBlockForRetVal = Group.PHIBlocks.find(RetVal);
|
|
ReturnBlockForRetVal = Group.EndBBs.find(RetVal);
|
|
assert(ReturnBlockForRetVal != Group.EndBBs.end() &&
|
|
"Could not find output value!");
|
|
BasicBlock *ReturnBB = ReturnBlockForRetVal->second;
|
|
|
|
// Find if a PHIBlock exists for this return value already. If it is
|
|
// the first time we are analyzing this, we will not, so we record it.
|
|
PhiBlockForRetVal = Group.PHIBlocks.find(RetVal);
|
|
if (PhiBlockForRetVal != Group.PHIBlocks.end())
|
|
return PhiBlockForRetVal->second;
|
|
|
|
// If we did not find a block, we create one, and insert it into the
|
|
// overall function and record it.
|
|
bool Inserted = false;
|
|
BasicBlock *PHIBlock = BasicBlock::Create(ReturnBB->getContext(), "phi_block",
|
|
ReturnBB->getParent());
|
|
std::tie(PhiBlockForRetVal, Inserted) =
|
|
Group.PHIBlocks.insert(std::make_pair(RetVal, PHIBlock));
|
|
|
|
// We find the predecessors of the return block in the newly created outlined
|
|
// function in order to point them to the new PHIBlock rather than the already
|
|
// existing return block.
|
|
SmallVector<BranchInst *, 2> BranchesToChange;
|
|
for (BasicBlock *Pred : predecessors(ReturnBB))
|
|
BranchesToChange.push_back(cast<BranchInst>(Pred->getTerminator()));
|
|
|
|
// Now we mark the branch instructions found, and change the references of the
|
|
// return block to the newly created PHIBlock.
|
|
for (BranchInst *BI : BranchesToChange)
|
|
for (unsigned Succ = 0, End = BI->getNumSuccessors(); Succ < End; Succ++) {
|
|
if (BI->getSuccessor(Succ) != ReturnBB)
|
|
continue;
|
|
BI->setSuccessor(Succ, PHIBlock);
|
|
}
|
|
|
|
BranchInst::Create(ReturnBB, PHIBlock);
|
|
|
|
return PhiBlockForRetVal->second;
|
|
}
|
|
|
|
/// For the function call now representing the \p Region, find the passed value
|
|
/// to that call that represents Argument \p A at the call location if the
|
|
/// call has already been replaced with a call to the overall, aggregate
|
|
/// function.
|
|
///
|
|
/// \param A - The Argument to get the passed value for.
|
|
/// \param Region - The extracted Region corresponding to the outlined function.
|
|
/// \returns The Value representing \p A at the call site.
|
|
static Value *
|
|
getPassedArgumentInAlreadyOutlinedFunction(const Argument *A,
|
|
const OutlinableRegion &Region) {
|
|
// If we don't need to adjust the argument number at all (since the call
|
|
// has already been replaced by a call to the overall outlined function)
|
|
// we can just get the specified argument.
|
|
return Region.Call->getArgOperand(A->getArgNo());
|
|
}
|
|
|
|
/// For the function call now representing the \p Region, find the passed value
|
|
/// to that call that represents Argument \p A at the call location if the
|
|
/// call has only been replaced by the call to the aggregate function.
|
|
///
|
|
/// \param A - The Argument to get the passed value for.
|
|
/// \param Region - The extracted Region corresponding to the outlined function.
|
|
/// \returns The Value representing \p A at the call site.
|
|
static Value *
|
|
getPassedArgumentAndAdjustArgumentLocation(const Argument *A,
|
|
const OutlinableRegion &Region) {
|
|
unsigned ArgNum = A->getArgNo();
|
|
|
|
// If it is a constant, we can look at our mapping from when we created
|
|
// the outputs to figure out what the constant value is.
|
|
if (Region.AggArgToConstant.count(ArgNum))
|
|
return Region.AggArgToConstant.find(ArgNum)->second;
|
|
|
|
// If it is not a constant, and we are not looking at the overall function, we
|
|
// need to adjust which argument we are looking at.
|
|
ArgNum = Region.AggArgToExtracted.find(ArgNum)->second;
|
|
return Region.Call->getArgOperand(ArgNum);
|
|
}
|
|
|
|
/// Find the canonical numbering for the incoming Values into the PHINode \p PN.
|
|
///
|
|
/// \param PN [in] - The PHINode that we are finding the canonical numbers for.
|
|
/// \param Region [in] - The OutlinableRegion containing \p PN.
|
|
/// \param OutputMappings [in] - The mapping of output values from outlined
|
|
/// region to their original values.
|
|
/// \param CanonNums [out] - The canonical numbering for the incoming values to
|
|
/// \p PN paired with their incoming block.
|
|
/// \param ReplacedWithOutlinedCall - A flag to use the extracted function call
|
|
/// of \p Region rather than the overall function's call.
|
|
static void findCanonNumsForPHI(
|
|
PHINode *PN, OutlinableRegion &Region,
|
|
const DenseMap<Value *, Value *> &OutputMappings,
|
|
SmallVector<std::pair<unsigned, BasicBlock *>> &CanonNums,
|
|
bool ReplacedWithOutlinedCall = true) {
|
|
// Iterate over the incoming values.
|
|
for (unsigned Idx = 0, EIdx = PN->getNumIncomingValues(); Idx < EIdx; Idx++) {
|
|
Value *IVal = PN->getIncomingValue(Idx);
|
|
BasicBlock *IBlock = PN->getIncomingBlock(Idx);
|
|
// If we have an argument as incoming value, we need to grab the passed
|
|
// value from the call itself.
|
|
if (Argument *A = dyn_cast<Argument>(IVal)) {
|
|
if (ReplacedWithOutlinedCall)
|
|
IVal = getPassedArgumentInAlreadyOutlinedFunction(A, Region);
|
|
else
|
|
IVal = getPassedArgumentAndAdjustArgumentLocation(A, Region);
|
|
}
|
|
|
|
// Get the original value if it has been replaced by an output value.
|
|
IVal = findOutputMapping(OutputMappings, IVal);
|
|
|
|
// Find and add the canonical number for the incoming value.
|
|
std::optional<unsigned> GVN = Region.Candidate->getGVN(IVal);
|
|
assert(GVN && "No GVN for incoming value");
|
|
std::optional<unsigned> CanonNum = Region.Candidate->getCanonicalNum(*GVN);
|
|
assert(CanonNum && "No Canonical Number for GVN");
|
|
CanonNums.push_back(std::make_pair(*CanonNum, IBlock));
|
|
}
|
|
}
|
|
|
|
/// Find, or add PHINode \p PN to the combined PHINode Block \p OverallPHIBlock
|
|
/// in order to condense the number of instructions added to the outlined
|
|
/// function.
|
|
///
|
|
/// \param PN [in] - The PHINode that we are finding the canonical numbers for.
|
|
/// \param Region [in] - The OutlinableRegion containing \p PN.
|
|
/// \param OverallPhiBlock [in] - The overall PHIBlock we are trying to find
|
|
/// \p PN in.
|
|
/// \param OutputMappings [in] - The mapping of output values from outlined
|
|
/// region to their original values.
|
|
/// \param UsedPHIs [in, out] - The PHINodes in the block that have already been
|
|
/// matched.
|
|
/// \return the newly found or created PHINode in \p OverallPhiBlock.
|
|
static PHINode*
|
|
findOrCreatePHIInBlock(PHINode &PN, OutlinableRegion &Region,
|
|
BasicBlock *OverallPhiBlock,
|
|
const DenseMap<Value *, Value *> &OutputMappings,
|
|
DenseSet<PHINode *> &UsedPHIs) {
|
|
OutlinableGroup &Group = *Region.Parent;
|
|
|
|
|
|
// A list of the canonical numbering assigned to each incoming value, paired
|
|
// with the incoming block for the PHINode passed into this function.
|
|
SmallVector<std::pair<unsigned, BasicBlock *>> PNCanonNums;
|
|
|
|
// We have to use the extracted function since we have merged this region into
|
|
// the overall function yet. We make sure to reassign the argument numbering
|
|
// since it is possible that the argument ordering is different between the
|
|
// functions.
|
|
findCanonNumsForPHI(&PN, Region, OutputMappings, PNCanonNums,
|
|
/* ReplacedWithOutlinedCall = */ false);
|
|
|
|
OutlinableRegion *FirstRegion = Group.Regions[0];
|
|
|
|
// A list of the canonical numbering assigned to each incoming value, paired
|
|
// with the incoming block for the PHINode that we are currently comparing
|
|
// the passed PHINode to.
|
|
SmallVector<std::pair<unsigned, BasicBlock *>> CurrentCanonNums;
|
|
|
|
// Find the Canonical Numbering for each PHINode, if it matches, we replace
|
|
// the uses of the PHINode we are searching for, with the found PHINode.
|
|
for (PHINode &CurrPN : OverallPhiBlock->phis()) {
|
|
// If this PHINode has already been matched to another PHINode to be merged,
|
|
// we skip it.
|
|
if (UsedPHIs.contains(&CurrPN))
|
|
continue;
|
|
|
|
CurrentCanonNums.clear();
|
|
findCanonNumsForPHI(&CurrPN, *FirstRegion, OutputMappings, CurrentCanonNums,
|
|
/* ReplacedWithOutlinedCall = */ true);
|
|
|
|
// If the list of incoming values is not the same length, then they cannot
|
|
// match since there is not an analogue for each incoming value.
|
|
if (PNCanonNums.size() != CurrentCanonNums.size())
|
|
continue;
|
|
|
|
bool FoundMatch = true;
|
|
|
|
// We compare the canonical value for each incoming value in the passed
|
|
// in PHINode to one already present in the outlined region. If the
|
|
// incoming values do not match, then the PHINodes do not match.
|
|
|
|
// We also check to make sure that the incoming block matches as well by
|
|
// finding the corresponding incoming block in the combined outlined region
|
|
// for the current outlined region.
|
|
for (unsigned Idx = 0, Edx = PNCanonNums.size(); Idx < Edx; ++Idx) {
|
|
std::pair<unsigned, BasicBlock *> ToCompareTo = CurrentCanonNums[Idx];
|
|
std::pair<unsigned, BasicBlock *> ToAdd = PNCanonNums[Idx];
|
|
if (ToCompareTo.first != ToAdd.first) {
|
|
FoundMatch = false;
|
|
break;
|
|
}
|
|
|
|
BasicBlock *CorrespondingBlock =
|
|
Region.findCorrespondingBlockIn(*FirstRegion, ToAdd.second);
|
|
assert(CorrespondingBlock && "Found block is nullptr");
|
|
if (CorrespondingBlock != ToCompareTo.second) {
|
|
FoundMatch = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If all incoming values and branches matched, then we can merge
|
|
// into the found PHINode.
|
|
if (FoundMatch) {
|
|
UsedPHIs.insert(&CurrPN);
|
|
return &CurrPN;
|
|
}
|
|
}
|
|
|
|
// If we've made it here, it means we weren't able to replace the PHINode, so
|
|
// we must insert it ourselves.
|
|
PHINode *NewPN = cast<PHINode>(PN.clone());
|
|
NewPN->insertBefore(OverallPhiBlock->begin());
|
|
for (unsigned Idx = 0, Edx = NewPN->getNumIncomingValues(); Idx < Edx;
|
|
Idx++) {
|
|
Value *IncomingVal = NewPN->getIncomingValue(Idx);
|
|
BasicBlock *IncomingBlock = NewPN->getIncomingBlock(Idx);
|
|
|
|
// Find corresponding basic block in the overall function for the incoming
|
|
// block.
|
|
BasicBlock *BlockToUse =
|
|
Region.findCorrespondingBlockIn(*FirstRegion, IncomingBlock);
|
|
NewPN->setIncomingBlock(Idx, BlockToUse);
|
|
|
|
// If we have an argument we make sure we replace using the argument from
|
|
// the correct function.
|
|
if (Argument *A = dyn_cast<Argument>(IncomingVal)) {
|
|
Value *Val = Group.OutlinedFunction->getArg(A->getArgNo());
|
|
NewPN->setIncomingValue(Idx, Val);
|
|
continue;
|
|
}
|
|
|
|
// Find the corresponding value in the overall function.
|
|
IncomingVal = findOutputMapping(OutputMappings, IncomingVal);
|
|
Value *Val = Region.findCorrespondingValueIn(*FirstRegion, IncomingVal);
|
|
assert(Val && "Value is nullptr?");
|
|
DenseMap<Value *, Value *>::iterator RemappedIt =
|
|
FirstRegion->RemappedArguments.find(Val);
|
|
if (RemappedIt != FirstRegion->RemappedArguments.end())
|
|
Val = RemappedIt->second;
|
|
NewPN->setIncomingValue(Idx, Val);
|
|
}
|
|
return NewPN;
|
|
}
|
|
|
|
// Within an extracted function, replace the argument uses of the extracted
|
|
// region with the arguments of the function for an OutlinableGroup.
|
|
//
|
|
/// \param [in] Region - The region of extracted code to be changed.
|
|
/// \param [in,out] OutputBBs - The BasicBlock for the output stores for this
|
|
/// region.
|
|
/// \param [in] FirstFunction - A flag to indicate whether we are using this
|
|
/// function to define the overall outlined function for all the regions, or
|
|
/// if we are operating on one of the following regions.
|
|
static void
|
|
replaceArgumentUses(OutlinableRegion &Region,
|
|
DenseMap<Value *, BasicBlock *> &OutputBBs,
|
|
const DenseMap<Value *, Value *> &OutputMappings,
|
|
bool FirstFunction = false) {
|
|
OutlinableGroup &Group = *Region.Parent;
|
|
assert(Region.ExtractedFunction && "Region has no extracted function?");
|
|
|
|
Function *DominatingFunction = Region.ExtractedFunction;
|
|
if (FirstFunction)
|
|
DominatingFunction = Group.OutlinedFunction;
|
|
DominatorTree DT(*DominatingFunction);
|
|
DenseSet<PHINode *> UsedPHIs;
|
|
|
|
for (unsigned ArgIdx = 0; ArgIdx < Region.ExtractedFunction->arg_size();
|
|
ArgIdx++) {
|
|
assert(Region.ExtractedArgToAgg.contains(ArgIdx) &&
|
|
"No mapping from extracted to outlined?");
|
|
unsigned AggArgIdx = Region.ExtractedArgToAgg.find(ArgIdx)->second;
|
|
Argument *AggArg = Group.OutlinedFunction->getArg(AggArgIdx);
|
|
Argument *Arg = Region.ExtractedFunction->getArg(ArgIdx);
|
|
// The argument is an input, so we can simply replace it with the overall
|
|
// argument value
|
|
if (ArgIdx < Region.NumExtractedInputs) {
|
|
LLVM_DEBUG(dbgs() << "Replacing uses of input " << *Arg << " in function "
|
|
<< *Region.ExtractedFunction << " with " << *AggArg
|
|
<< " in function " << *Group.OutlinedFunction << "\n");
|
|
Arg->replaceAllUsesWith(AggArg);
|
|
Value *V = Region.Call->getArgOperand(ArgIdx);
|
|
Region.RemappedArguments.insert(std::make_pair(V, AggArg));
|
|
continue;
|
|
}
|
|
|
|
// If we are replacing an output, we place the store value in its own
|
|
// block inside the overall function before replacing the use of the output
|
|
// in the function.
|
|
assert(Arg->hasOneUse() && "Output argument can only have one use");
|
|
User *InstAsUser = Arg->user_back();
|
|
assert(InstAsUser && "User is nullptr!");
|
|
|
|
Instruction *I = cast<Instruction>(InstAsUser);
|
|
BasicBlock *BB = I->getParent();
|
|
SmallVector<BasicBlock *, 4> Descendants;
|
|
DT.getDescendants(BB, Descendants);
|
|
bool EdgeAdded = false;
|
|
if (Descendants.size() == 0) {
|
|
EdgeAdded = true;
|
|
DT.insertEdge(&DominatingFunction->getEntryBlock(), BB);
|
|
DT.getDescendants(BB, Descendants);
|
|
}
|
|
|
|
// Iterate over the following blocks, looking for return instructions,
|
|
// if we find one, find the corresponding output block for the return value
|
|
// and move our store instruction there.
|
|
for (BasicBlock *DescendBB : Descendants) {
|
|
ReturnInst *RI = dyn_cast<ReturnInst>(DescendBB->getTerminator());
|
|
if (!RI)
|
|
continue;
|
|
Value *RetVal = RI->getReturnValue();
|
|
auto VBBIt = OutputBBs.find(RetVal);
|
|
assert(VBBIt != OutputBBs.end() && "Could not find output value!");
|
|
|
|
// If this is storing a PHINode, we must make sure it is included in the
|
|
// overall function.
|
|
StoreInst *SI = cast<StoreInst>(I);
|
|
|
|
Value *ValueOperand = SI->getValueOperand();
|
|
|
|
StoreInst *NewI = cast<StoreInst>(I->clone());
|
|
NewI->setDebugLoc(DebugLoc());
|
|
BasicBlock *OutputBB = VBBIt->second;
|
|
NewI->insertInto(OutputBB, OutputBB->end());
|
|
LLVM_DEBUG(dbgs() << "Move store for instruction " << *I << " to "
|
|
<< *OutputBB << "\n");
|
|
|
|
// If this is storing a PHINode, we must make sure it is included in the
|
|
// overall function.
|
|
if (!isa<PHINode>(ValueOperand) ||
|
|
Region.Candidate->getGVN(ValueOperand).has_value()) {
|
|
if (FirstFunction)
|
|
continue;
|
|
Value *CorrVal =
|
|
Region.findCorrespondingValueIn(*Group.Regions[0], ValueOperand);
|
|
assert(CorrVal && "Value is nullptr?");
|
|
NewI->setOperand(0, CorrVal);
|
|
continue;
|
|
}
|
|
PHINode *PN = cast<PHINode>(SI->getValueOperand());
|
|
// If it has a value, it was not split by the code extractor, which
|
|
// is what we are looking for.
|
|
if (Region.Candidate->getGVN(PN))
|
|
continue;
|
|
|
|
// We record the parent block for the PHINode in the Region so that
|
|
// we can exclude it from checks later on.
|
|
Region.PHIBlocks.insert(std::make_pair(RetVal, PN->getParent()));
|
|
|
|
// If this is the first function, we do not need to worry about mergiing
|
|
// this with any other block in the overall outlined function, so we can
|
|
// just continue.
|
|
if (FirstFunction) {
|
|
BasicBlock *PHIBlock = PN->getParent();
|
|
Group.PHIBlocks.insert(std::make_pair(RetVal, PHIBlock));
|
|
continue;
|
|
}
|
|
|
|
// We look for the aggregate block that contains the PHINodes leading into
|
|
// this exit path. If we can't find one, we create one.
|
|
BasicBlock *OverallPhiBlock = findOrCreatePHIBlock(Group, RetVal);
|
|
|
|
// For our PHINode, we find the combined canonical numbering, and
|
|
// attempt to find a matching PHINode in the overall PHIBlock. If we
|
|
// cannot, we copy the PHINode and move it into this new block.
|
|
PHINode *NewPN = findOrCreatePHIInBlock(*PN, Region, OverallPhiBlock,
|
|
OutputMappings, UsedPHIs);
|
|
NewI->setOperand(0, NewPN);
|
|
}
|
|
|
|
// If we added an edge for basic blocks without a predecessor, we remove it
|
|
// here.
|
|
if (EdgeAdded)
|
|
DT.deleteEdge(&DominatingFunction->getEntryBlock(), BB);
|
|
I->eraseFromParent();
|
|
|
|
LLVM_DEBUG(dbgs() << "Replacing uses of output " << *Arg << " in function "
|
|
<< *Region.ExtractedFunction << " with " << *AggArg
|
|
<< " in function " << *Group.OutlinedFunction << "\n");
|
|
Arg->replaceAllUsesWith(AggArg);
|
|
}
|
|
}
|
|
|
|
/// Within an extracted function, replace the constants that need to be lifted
|
|
/// into arguments with the actual argument.
|
|
///
|
|
/// \param Region [in] - The region of extracted code to be changed.
|
|
void replaceConstants(OutlinableRegion &Region) {
|
|
OutlinableGroup &Group = *Region.Parent;
|
|
// Iterate over the constants that need to be elevated into arguments
|
|
for (std::pair<unsigned, Constant *> &Const : Region.AggArgToConstant) {
|
|
unsigned AggArgIdx = Const.first;
|
|
Function *OutlinedFunction = Group.OutlinedFunction;
|
|
assert(OutlinedFunction && "Overall Function is not defined?");
|
|
Constant *CST = Const.second;
|
|
Argument *Arg = Group.OutlinedFunction->getArg(AggArgIdx);
|
|
// Identify the argument it will be elevated to, and replace instances of
|
|
// that constant in the function.
|
|
|
|
// TODO: If in the future constants do not have one global value number,
|
|
// i.e. a constant 1 could be mapped to several values, this check will
|
|
// have to be more strict. It cannot be using only replaceUsesWithIf.
|
|
|
|
LLVM_DEBUG(dbgs() << "Replacing uses of constant " << *CST
|
|
<< " in function " << *OutlinedFunction << " with "
|
|
<< *Arg << "\n");
|
|
CST->replaceUsesWithIf(Arg, [OutlinedFunction](Use &U) {
|
|
if (Instruction *I = dyn_cast<Instruction>(U.getUser()))
|
|
return I->getFunction() == OutlinedFunction;
|
|
return false;
|
|
});
|
|
}
|
|
}
|
|
|
|
/// It is possible that there is a basic block that already performs the same
|
|
/// stores. This returns a duplicate block, if it exists
|
|
///
|
|
/// \param OutputBBs [in] the blocks we are looking for a duplicate of.
|
|
/// \param OutputStoreBBs [in] The existing output blocks.
|
|
/// \returns an optional value with the number output block if there is a match.
|
|
std::optional<unsigned> findDuplicateOutputBlock(
|
|
DenseMap<Value *, BasicBlock *> &OutputBBs,
|
|
std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) {
|
|
|
|
bool Mismatch = false;
|
|
unsigned MatchingNum = 0;
|
|
// We compare the new set output blocks to the other sets of output blocks.
|
|
// If they are the same number, and have identical instructions, they are
|
|
// considered to be the same.
|
|
for (DenseMap<Value *, BasicBlock *> &CompBBs : OutputStoreBBs) {
|
|
Mismatch = false;
|
|
for (std::pair<Value *, BasicBlock *> &VToB : CompBBs) {
|
|
DenseMap<Value *, BasicBlock *>::iterator OutputBBIt =
|
|
OutputBBs.find(VToB.first);
|
|
if (OutputBBIt == OutputBBs.end()) {
|
|
Mismatch = true;
|
|
break;
|
|
}
|
|
|
|
BasicBlock *CompBB = VToB.second;
|
|
BasicBlock *OutputBB = OutputBBIt->second;
|
|
if (CompBB->size() - 1 != OutputBB->size()) {
|
|
Mismatch = true;
|
|
break;
|
|
}
|
|
|
|
BasicBlock::iterator NIt = OutputBB->begin();
|
|
for (Instruction &I : *CompBB) {
|
|
if (isa<BranchInst>(&I))
|
|
continue;
|
|
|
|
if (!I.isIdenticalTo(&(*NIt))) {
|
|
Mismatch = true;
|
|
break;
|
|
}
|
|
|
|
NIt++;
|
|
}
|
|
}
|
|
|
|
if (!Mismatch)
|
|
return MatchingNum;
|
|
|
|
MatchingNum++;
|
|
}
|
|
|
|
return std::nullopt;
|
|
}
|
|
|
|
/// Remove empty output blocks from the outlined region.
|
|
///
|
|
/// \param BlocksToPrune - Mapping of return values output blocks for the \p
|
|
/// Region.
|
|
/// \param Region - The OutlinableRegion we are analyzing.
|
|
static bool
|
|
analyzeAndPruneOutputBlocks(DenseMap<Value *, BasicBlock *> &BlocksToPrune,
|
|
OutlinableRegion &Region) {
|
|
bool AllRemoved = true;
|
|
Value *RetValueForBB;
|
|
BasicBlock *NewBB;
|
|
SmallVector<Value *, 4> ToRemove;
|
|
// Iterate over the output blocks created in the outlined section.
|
|
for (std::pair<Value *, BasicBlock *> &VtoBB : BlocksToPrune) {
|
|
RetValueForBB = VtoBB.first;
|
|
NewBB = VtoBB.second;
|
|
|
|
// If there are no instructions, we remove it from the module, and also
|
|
// mark the value for removal from the return value to output block mapping.
|
|
if (NewBB->size() == 0) {
|
|
NewBB->eraseFromParent();
|
|
ToRemove.push_back(RetValueForBB);
|
|
continue;
|
|
}
|
|
|
|
// Mark that we could not remove all the blocks since they were not all
|
|
// empty.
|
|
AllRemoved = false;
|
|
}
|
|
|
|
// Remove the return value from the mapping.
|
|
for (Value *V : ToRemove)
|
|
BlocksToPrune.erase(V);
|
|
|
|
// Mark the region as having the no output scheme.
|
|
if (AllRemoved)
|
|
Region.OutputBlockNum = -1;
|
|
|
|
return AllRemoved;
|
|
}
|
|
|
|
/// For the outlined section, move needed the StoreInsts for the output
|
|
/// registers into their own block. Then, determine if there is a duplicate
|
|
/// output block already created.
|
|
///
|
|
/// \param [in] OG - The OutlinableGroup of regions to be outlined.
|
|
/// \param [in] Region - The OutlinableRegion that is being analyzed.
|
|
/// \param [in,out] OutputBBs - the blocks that stores for this region will be
|
|
/// placed in.
|
|
/// \param [in] EndBBs - the final blocks of the extracted function.
|
|
/// \param [in] OutputMappings - OutputMappings the mapping of values that have
|
|
/// been replaced by a new output value.
|
|
/// \param [in,out] OutputStoreBBs - The existing output blocks.
|
|
static void alignOutputBlockWithAggFunc(
|
|
OutlinableGroup &OG, OutlinableRegion &Region,
|
|
DenseMap<Value *, BasicBlock *> &OutputBBs,
|
|
DenseMap<Value *, BasicBlock *> &EndBBs,
|
|
const DenseMap<Value *, Value *> &OutputMappings,
|
|
std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) {
|
|
// If none of the output blocks have any instructions, this means that we do
|
|
// not have to determine if it matches any of the other output schemes, and we
|
|
// don't have to do anything else.
|
|
if (analyzeAndPruneOutputBlocks(OutputBBs, Region))
|
|
return;
|
|
|
|
// Determine is there is a duplicate set of blocks.
|
|
std::optional<unsigned> MatchingBB =
|
|
findDuplicateOutputBlock(OutputBBs, OutputStoreBBs);
|
|
|
|
// If there is, we remove the new output blocks. If it does not,
|
|
// we add it to our list of sets of output blocks.
|
|
if (MatchingBB) {
|
|
LLVM_DEBUG(dbgs() << "Set output block for region in function"
|
|
<< Region.ExtractedFunction << " to " << *MatchingBB);
|
|
|
|
Region.OutputBlockNum = *MatchingBB;
|
|
for (std::pair<Value *, BasicBlock *> &VtoBB : OutputBBs)
|
|
VtoBB.second->eraseFromParent();
|
|
return;
|
|
}
|
|
|
|
Region.OutputBlockNum = OutputStoreBBs.size();
|
|
|
|
Value *RetValueForBB;
|
|
BasicBlock *NewBB;
|
|
OutputStoreBBs.push_back(DenseMap<Value *, BasicBlock *>());
|
|
for (std::pair<Value *, BasicBlock *> &VtoBB : OutputBBs) {
|
|
RetValueForBB = VtoBB.first;
|
|
NewBB = VtoBB.second;
|
|
DenseMap<Value *, BasicBlock *>::iterator VBBIt =
|
|
EndBBs.find(RetValueForBB);
|
|
LLVM_DEBUG(dbgs() << "Create output block for region in"
|
|
<< Region.ExtractedFunction << " to "
|
|
<< *NewBB);
|
|
BranchInst::Create(VBBIt->second, NewBB);
|
|
OutputStoreBBs.back().insert(std::make_pair(RetValueForBB, NewBB));
|
|
}
|
|
}
|
|
|
|
/// Takes in a mapping, \p OldMap of ConstantValues to BasicBlocks, sorts keys,
|
|
/// before creating a basic block for each \p NewMap, and inserting into the new
|
|
/// block. Each BasicBlock is named with the scheme "<basename>_<key_idx>".
|
|
///
|
|
/// \param OldMap [in] - The mapping to base the new mapping off of.
|
|
/// \param NewMap [out] - The output mapping using the keys of \p OldMap.
|
|
/// \param ParentFunc [in] - The function to put the new basic block in.
|
|
/// \param BaseName [in] - The start of the BasicBlock names to be appended to
|
|
/// by an index value.
|
|
static void createAndInsertBasicBlocks(DenseMap<Value *, BasicBlock *> &OldMap,
|
|
DenseMap<Value *, BasicBlock *> &NewMap,
|
|
Function *ParentFunc, Twine BaseName) {
|
|
unsigned Idx = 0;
|
|
std::vector<Value *> SortedKeys;
|
|
|
|
getSortedConstantKeys(SortedKeys, OldMap);
|
|
|
|
for (Value *RetVal : SortedKeys) {
|
|
BasicBlock *NewBB = BasicBlock::Create(
|
|
ParentFunc->getContext(),
|
|
Twine(BaseName) + Twine("_") + Twine(static_cast<unsigned>(Idx++)),
|
|
ParentFunc);
|
|
NewMap.insert(std::make_pair(RetVal, NewBB));
|
|
}
|
|
}
|
|
|
|
/// Create the switch statement for outlined function to differentiate between
|
|
/// all the output blocks.
|
|
///
|
|
/// For the outlined section, determine if an outlined block already exists that
|
|
/// matches the needed stores for the extracted section.
|
|
/// \param [in] M - The module we are outlining from.
|
|
/// \param [in] OG - The group of regions to be outlined.
|
|
/// \param [in] EndBBs - The final blocks of the extracted function.
|
|
/// \param [in,out] OutputStoreBBs - The existing output blocks.
|
|
void createSwitchStatement(
|
|
Module &M, OutlinableGroup &OG, DenseMap<Value *, BasicBlock *> &EndBBs,
|
|
std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) {
|
|
// We only need the switch statement if there is more than one store
|
|
// combination, or there is more than one set of output blocks. The first
|
|
// will occur when we store different sets of values for two different
|
|
// regions. The second will occur when we have two outputs that are combined
|
|
// in a PHINode outside of the region in one outlined instance, and are used
|
|
// seaparately in another. This will create the same set of OutputGVNs, but
|
|
// will generate two different output schemes.
|
|
if (OG.OutputGVNCombinations.size() > 1) {
|
|
Function *AggFunc = OG.OutlinedFunction;
|
|
// Create a final block for each different return block.
|
|
DenseMap<Value *, BasicBlock *> ReturnBBs;
|
|
createAndInsertBasicBlocks(OG.EndBBs, ReturnBBs, AggFunc, "final_block");
|
|
|
|
for (std::pair<Value *, BasicBlock *> &RetBlockPair : ReturnBBs) {
|
|
std::pair<Value *, BasicBlock *> &OutputBlock =
|
|
*OG.EndBBs.find(RetBlockPair.first);
|
|
BasicBlock *ReturnBlock = RetBlockPair.second;
|
|
BasicBlock *EndBB = OutputBlock.second;
|
|
Instruction *Term = EndBB->getTerminator();
|
|
// Move the return value to the final block instead of the original exit
|
|
// stub.
|
|
Term->moveBefore(*ReturnBlock, ReturnBlock->end());
|
|
// Put the switch statement in the old end basic block for the function
|
|
// with a fall through to the new return block.
|
|
LLVM_DEBUG(dbgs() << "Create switch statement in " << *AggFunc << " for "
|
|
<< OutputStoreBBs.size() << "\n");
|
|
SwitchInst *SwitchI =
|
|
SwitchInst::Create(AggFunc->getArg(AggFunc->arg_size() - 1),
|
|
ReturnBlock, OutputStoreBBs.size(), EndBB);
|
|
|
|
unsigned Idx = 0;
|
|
for (DenseMap<Value *, BasicBlock *> &OutputStoreBB : OutputStoreBBs) {
|
|
DenseMap<Value *, BasicBlock *>::iterator OSBBIt =
|
|
OutputStoreBB.find(OutputBlock.first);
|
|
|
|
if (OSBBIt == OutputStoreBB.end())
|
|
continue;
|
|
|
|
BasicBlock *BB = OSBBIt->second;
|
|
SwitchI->addCase(
|
|
ConstantInt::get(Type::getInt32Ty(M.getContext()), Idx), BB);
|
|
Term = BB->getTerminator();
|
|
Term->setSuccessor(0, ReturnBlock);
|
|
Idx++;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
assert(OutputStoreBBs.size() < 2 && "Different store sets not handled!");
|
|
|
|
// If there needs to be stores, move them from the output blocks to their
|
|
// corresponding ending block. We do not check that the OutputGVNCombinations
|
|
// is equal to 1 here since that could just been the case where there are 0
|
|
// outputs. Instead, we check whether there is more than one set of output
|
|
// blocks since this is the only case where we would have to move the
|
|
// stores, and erase the extraneous blocks.
|
|
if (OutputStoreBBs.size() == 1) {
|
|
LLVM_DEBUG(dbgs() << "Move store instructions to the end block in "
|
|
<< *OG.OutlinedFunction << "\n");
|
|
DenseMap<Value *, BasicBlock *> OutputBlocks = OutputStoreBBs[0];
|
|
for (std::pair<Value *, BasicBlock *> &VBPair : OutputBlocks) {
|
|
DenseMap<Value *, BasicBlock *>::iterator EndBBIt =
|
|
EndBBs.find(VBPair.first);
|
|
assert(EndBBIt != EndBBs.end() && "Could not find end block");
|
|
BasicBlock *EndBB = EndBBIt->second;
|
|
BasicBlock *OutputBB = VBPair.second;
|
|
Instruction *Term = OutputBB->getTerminator();
|
|
Term->eraseFromParent();
|
|
Term = EndBB->getTerminator();
|
|
moveBBContents(*OutputBB, *EndBB);
|
|
Term->moveBefore(*EndBB, EndBB->end());
|
|
OutputBB->eraseFromParent();
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Fill the new function that will serve as the replacement function for all of
|
|
/// the extracted regions of a certain structure from the first region in the
|
|
/// list of regions. Replace this first region's extracted function with the
|
|
/// new overall function.
|
|
///
|
|
/// \param [in] M - The module we are outlining from.
|
|
/// \param [in] CurrentGroup - The group of regions to be outlined.
|
|
/// \param [in,out] OutputStoreBBs - The output blocks for each different
|
|
/// set of stores needed for the different functions.
|
|
/// \param [in,out] FuncsToRemove - Extracted functions to erase from module
|
|
/// once outlining is complete.
|
|
/// \param [in] OutputMappings - Extracted functions to erase from module
|
|
/// once outlining is complete.
|
|
static void fillOverallFunction(
|
|
Module &M, OutlinableGroup &CurrentGroup,
|
|
std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs,
|
|
std::vector<Function *> &FuncsToRemove,
|
|
const DenseMap<Value *, Value *> &OutputMappings) {
|
|
OutlinableRegion *CurrentOS = CurrentGroup.Regions[0];
|
|
|
|
// Move first extracted function's instructions into new function.
|
|
LLVM_DEBUG(dbgs() << "Move instructions from "
|
|
<< *CurrentOS->ExtractedFunction << " to instruction "
|
|
<< *CurrentGroup.OutlinedFunction << "\n");
|
|
moveFunctionData(*CurrentOS->ExtractedFunction,
|
|
*CurrentGroup.OutlinedFunction, CurrentGroup.EndBBs);
|
|
|
|
// Transfer the attributes from the function to the new function.
|
|
for (Attribute A : CurrentOS->ExtractedFunction->getAttributes().getFnAttrs())
|
|
CurrentGroup.OutlinedFunction->addFnAttr(A);
|
|
|
|
// Create a new set of output blocks for the first extracted function.
|
|
DenseMap<Value *, BasicBlock *> NewBBs;
|
|
createAndInsertBasicBlocks(CurrentGroup.EndBBs, NewBBs,
|
|
CurrentGroup.OutlinedFunction, "output_block_0");
|
|
CurrentOS->OutputBlockNum = 0;
|
|
|
|
replaceArgumentUses(*CurrentOS, NewBBs, OutputMappings, true);
|
|
replaceConstants(*CurrentOS);
|
|
|
|
// We first identify if any output blocks are empty, if they are we remove
|
|
// them. We then create a branch instruction to the basic block to the return
|
|
// block for the function for each non empty output block.
|
|
if (!analyzeAndPruneOutputBlocks(NewBBs, *CurrentOS)) {
|
|
OutputStoreBBs.push_back(DenseMap<Value *, BasicBlock *>());
|
|
for (std::pair<Value *, BasicBlock *> &VToBB : NewBBs) {
|
|
DenseMap<Value *, BasicBlock *>::iterator VBBIt =
|
|
CurrentGroup.EndBBs.find(VToBB.first);
|
|
BasicBlock *EndBB = VBBIt->second;
|
|
BranchInst::Create(EndBB, VToBB.second);
|
|
OutputStoreBBs.back().insert(VToBB);
|
|
}
|
|
}
|
|
|
|
// Replace the call to the extracted function with the outlined function.
|
|
CurrentOS->Call = replaceCalledFunction(M, *CurrentOS);
|
|
|
|
// We only delete the extracted functions at the end since we may need to
|
|
// reference instructions contained in them for mapping purposes.
|
|
FuncsToRemove.push_back(CurrentOS->ExtractedFunction);
|
|
}
|
|
|
|
void IROutliner::deduplicateExtractedSections(
|
|
Module &M, OutlinableGroup &CurrentGroup,
|
|
std::vector<Function *> &FuncsToRemove, unsigned &OutlinedFunctionNum) {
|
|
createFunction(M, CurrentGroup, OutlinedFunctionNum);
|
|
|
|
std::vector<DenseMap<Value *, BasicBlock *>> OutputStoreBBs;
|
|
|
|
OutlinableRegion *CurrentOS;
|
|
|
|
fillOverallFunction(M, CurrentGroup, OutputStoreBBs, FuncsToRemove,
|
|
OutputMappings);
|
|
|
|
std::vector<Value *> SortedKeys;
|
|
for (unsigned Idx = 1; Idx < CurrentGroup.Regions.size(); Idx++) {
|
|
CurrentOS = CurrentGroup.Regions[Idx];
|
|
AttributeFuncs::mergeAttributesForOutlining(*CurrentGroup.OutlinedFunction,
|
|
*CurrentOS->ExtractedFunction);
|
|
|
|
// Create a set of BasicBlocks, one for each return block, to hold the
|
|
// needed store instructions.
|
|
DenseMap<Value *, BasicBlock *> NewBBs;
|
|
createAndInsertBasicBlocks(
|
|
CurrentGroup.EndBBs, NewBBs, CurrentGroup.OutlinedFunction,
|
|
"output_block_" + Twine(static_cast<unsigned>(Idx)));
|
|
replaceArgumentUses(*CurrentOS, NewBBs, OutputMappings);
|
|
alignOutputBlockWithAggFunc(CurrentGroup, *CurrentOS, NewBBs,
|
|
CurrentGroup.EndBBs, OutputMappings,
|
|
OutputStoreBBs);
|
|
|
|
CurrentOS->Call = replaceCalledFunction(M, *CurrentOS);
|
|
FuncsToRemove.push_back(CurrentOS->ExtractedFunction);
|
|
}
|
|
|
|
// Create a switch statement to handle the different output schemes.
|
|
createSwitchStatement(M, CurrentGroup, CurrentGroup.EndBBs, OutputStoreBBs);
|
|
|
|
OutlinedFunctionNum++;
|
|
}
|
|
|
|
/// Checks that the next instruction in the InstructionDataList matches the
|
|
/// next instruction in the module. If they do not, there could be the
|
|
/// possibility that extra code has been inserted, and we must ignore it.
|
|
///
|
|
/// \param ID - The IRInstructionData to check the next instruction of.
|
|
/// \returns true if the InstructionDataList and actual instruction match.
|
|
static bool nextIRInstructionDataMatchesNextInst(IRInstructionData &ID) {
|
|
// We check if there is a discrepancy between the InstructionDataList
|
|
// and the actual next instruction in the module. If there is, it means
|
|
// that an extra instruction was added, likely by the CodeExtractor.
|
|
|
|
// Since we do not have any similarity data about this particular
|
|
// instruction, we cannot confidently outline it, and must discard this
|
|
// candidate.
|
|
IRInstructionDataList::iterator NextIDIt = std::next(ID.getIterator());
|
|
Instruction *NextIDLInst = NextIDIt->Inst;
|
|
Instruction *NextModuleInst = nullptr;
|
|
if (!ID.Inst->isTerminator())
|
|
NextModuleInst = ID.Inst->getNextNonDebugInstruction();
|
|
else if (NextIDLInst != nullptr)
|
|
NextModuleInst =
|
|
&*NextIDIt->Inst->getParent()->instructionsWithoutDebug().begin();
|
|
|
|
if (NextIDLInst && NextIDLInst != NextModuleInst)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool IROutliner::isCompatibleWithAlreadyOutlinedCode(
|
|
const OutlinableRegion &Region) {
|
|
IRSimilarityCandidate *IRSC = Region.Candidate;
|
|
unsigned StartIdx = IRSC->getStartIdx();
|
|
unsigned EndIdx = IRSC->getEndIdx();
|
|
|
|
// A check to make sure that we are not about to attempt to outline something
|
|
// that has already been outlined.
|
|
for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++)
|
|
if (Outlined.contains(Idx))
|
|
return false;
|
|
|
|
// We check if the recorded instruction matches the actual next instruction,
|
|
// if it does not, we fix it in the InstructionDataList.
|
|
if (!Region.Candidate->backInstruction()->isTerminator()) {
|
|
Instruction *NewEndInst =
|
|
Region.Candidate->backInstruction()->getNextNonDebugInstruction();
|
|
assert(NewEndInst && "Next instruction is a nullptr?");
|
|
if (Region.Candidate->end()->Inst != NewEndInst) {
|
|
IRInstructionDataList *IDL = Region.Candidate->front()->IDL;
|
|
IRInstructionData *NewEndIRID = new (InstDataAllocator.Allocate())
|
|
IRInstructionData(*NewEndInst,
|
|
InstructionClassifier.visit(*NewEndInst), *IDL);
|
|
|
|
// Insert the first IRInstructionData of the new region after the
|
|
// last IRInstructionData of the IRSimilarityCandidate.
|
|
IDL->insert(Region.Candidate->end(), *NewEndIRID);
|
|
}
|
|
}
|
|
|
|
return none_of(*IRSC, [this](IRInstructionData &ID) {
|
|
if (!nextIRInstructionDataMatchesNextInst(ID))
|
|
return true;
|
|
|
|
return !this->InstructionClassifier.visit(ID.Inst);
|
|
});
|
|
}
|
|
|
|
void IROutliner::pruneIncompatibleRegions(
|
|
std::vector<IRSimilarityCandidate> &CandidateVec,
|
|
OutlinableGroup &CurrentGroup) {
|
|
bool PreviouslyOutlined;
|
|
|
|
// Sort from beginning to end, so the IRSimilarityCandidates are in order.
|
|
stable_sort(CandidateVec, [](const IRSimilarityCandidate &LHS,
|
|
const IRSimilarityCandidate &RHS) {
|
|
return LHS.getStartIdx() < RHS.getStartIdx();
|
|
});
|
|
|
|
IRSimilarityCandidate &FirstCandidate = CandidateVec[0];
|
|
// Since outlining a call and a branch instruction will be the same as only
|
|
// outlinining a call instruction, we ignore it as a space saving.
|
|
if (FirstCandidate.getLength() == 2) {
|
|
if (isa<CallInst>(FirstCandidate.front()->Inst) &&
|
|
isa<BranchInst>(FirstCandidate.back()->Inst))
|
|
return;
|
|
}
|
|
|
|
unsigned CurrentEndIdx = 0;
|
|
for (IRSimilarityCandidate &IRSC : CandidateVec) {
|
|
PreviouslyOutlined = false;
|
|
unsigned StartIdx = IRSC.getStartIdx();
|
|
unsigned EndIdx = IRSC.getEndIdx();
|
|
const Function &FnForCurrCand = *IRSC.getFunction();
|
|
|
|
for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++)
|
|
if (Outlined.contains(Idx)) {
|
|
PreviouslyOutlined = true;
|
|
break;
|
|
}
|
|
|
|
if (PreviouslyOutlined)
|
|
continue;
|
|
|
|
// Check over the instructions, and if the basic block has its address
|
|
// taken for use somewhere else, we do not outline that block.
|
|
bool BBHasAddressTaken = any_of(IRSC, [](IRInstructionData &ID){
|
|
return ID.Inst->getParent()->hasAddressTaken();
|
|
});
|
|
|
|
if (BBHasAddressTaken)
|
|
continue;
|
|
|
|
if (FnForCurrCand.hasOptNone())
|
|
continue;
|
|
|
|
if (FnForCurrCand.hasFnAttribute("nooutline")) {
|
|
LLVM_DEBUG({
|
|
dbgs() << "... Skipping function with nooutline attribute: "
|
|
<< FnForCurrCand.getName() << "\n";
|
|
});
|
|
continue;
|
|
}
|
|
|
|
if (IRSC.front()->Inst->getFunction()->hasLinkOnceODRLinkage() &&
|
|
!OutlineFromLinkODRs)
|
|
continue;
|
|
|
|
// Greedily prune out any regions that will overlap with already chosen
|
|
// regions.
|
|
if (CurrentEndIdx != 0 && StartIdx <= CurrentEndIdx)
|
|
continue;
|
|
|
|
bool BadInst = any_of(IRSC, [this](IRInstructionData &ID) {
|
|
if (!nextIRInstructionDataMatchesNextInst(ID))
|
|
return true;
|
|
|
|
return !this->InstructionClassifier.visit(ID.Inst);
|
|
});
|
|
|
|
if (BadInst)
|
|
continue;
|
|
|
|
OutlinableRegion *OS = new (RegionAllocator.Allocate())
|
|
OutlinableRegion(IRSC, CurrentGroup);
|
|
CurrentGroup.Regions.push_back(OS);
|
|
|
|
CurrentEndIdx = EndIdx;
|
|
}
|
|
}
|
|
|
|
InstructionCost
|
|
IROutliner::findBenefitFromAllRegions(OutlinableGroup &CurrentGroup) {
|
|
InstructionCost RegionBenefit = 0;
|
|
for (OutlinableRegion *Region : CurrentGroup.Regions) {
|
|
TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent());
|
|
// We add the number of instructions in the region to the benefit as an
|
|
// estimate as to how much will be removed.
|
|
RegionBenefit += Region->getBenefit(TTI);
|
|
LLVM_DEBUG(dbgs() << "Adding: " << RegionBenefit
|
|
<< " saved instructions to overfall benefit.\n");
|
|
}
|
|
|
|
return RegionBenefit;
|
|
}
|
|
|
|
/// For the \p OutputCanon number passed in find the value represented by this
|
|
/// canonical number. If it is from a PHINode, we pick the first incoming
|
|
/// value and return that Value instead.
|
|
///
|
|
/// \param Region - The OutlinableRegion to get the Value from.
|
|
/// \param OutputCanon - The canonical number to find the Value from.
|
|
/// \returns The Value represented by a canonical number \p OutputCanon in \p
|
|
/// Region.
|
|
static Value *findOutputValueInRegion(OutlinableRegion &Region,
|
|
unsigned OutputCanon) {
|
|
OutlinableGroup &CurrentGroup = *Region.Parent;
|
|
// If the value is greater than the value in the tracker, we have a
|
|
// PHINode and will instead use one of the incoming values to find the
|
|
// type.
|
|
if (OutputCanon > CurrentGroup.PHINodeGVNTracker) {
|
|
auto It = CurrentGroup.PHINodeGVNToGVNs.find(OutputCanon);
|
|
assert(It != CurrentGroup.PHINodeGVNToGVNs.end() &&
|
|
"Could not find GVN set for PHINode number!");
|
|
assert(It->second.second.size() > 0 && "PHINode does not have any values!");
|
|
OutputCanon = *It->second.second.begin();
|
|
}
|
|
std::optional<unsigned> OGVN =
|
|
Region.Candidate->fromCanonicalNum(OutputCanon);
|
|
assert(OGVN && "Could not find GVN for Canonical Number?");
|
|
std::optional<Value *> OV = Region.Candidate->fromGVN(*OGVN);
|
|
assert(OV && "Could not find value for GVN?");
|
|
return *OV;
|
|
}
|
|
|
|
InstructionCost
|
|
IROutliner::findCostOutputReloads(OutlinableGroup &CurrentGroup) {
|
|
InstructionCost OverallCost = 0;
|
|
for (OutlinableRegion *Region : CurrentGroup.Regions) {
|
|
TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent());
|
|
|
|
// Each output incurs a load after the call, so we add that to the cost.
|
|
for (unsigned OutputCanon : Region->GVNStores) {
|
|
Value *V = findOutputValueInRegion(*Region, OutputCanon);
|
|
InstructionCost LoadCost =
|
|
TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0,
|
|
TargetTransformInfo::TCK_CodeSize);
|
|
|
|
LLVM_DEBUG(dbgs() << "Adding: " << LoadCost
|
|
<< " instructions to cost for output of type "
|
|
<< *V->getType() << "\n");
|
|
OverallCost += LoadCost;
|
|
}
|
|
}
|
|
|
|
return OverallCost;
|
|
}
|
|
|
|
/// Find the extra instructions needed to handle any output values for the
|
|
/// region.
|
|
///
|
|
/// \param [in] M - The Module to outline from.
|
|
/// \param [in] CurrentGroup - The collection of OutlinableRegions to analyze.
|
|
/// \param [in] TTI - The TargetTransformInfo used to collect information for
|
|
/// new instruction costs.
|
|
/// \returns the additional cost to handle the outputs.
|
|
static InstructionCost findCostForOutputBlocks(Module &M,
|
|
OutlinableGroup &CurrentGroup,
|
|
TargetTransformInfo &TTI) {
|
|
InstructionCost OutputCost = 0;
|
|
unsigned NumOutputBranches = 0;
|
|
|
|
OutlinableRegion &FirstRegion = *CurrentGroup.Regions[0];
|
|
IRSimilarityCandidate &Candidate = *CurrentGroup.Regions[0]->Candidate;
|
|
DenseSet<BasicBlock *> CandidateBlocks;
|
|
Candidate.getBasicBlocks(CandidateBlocks);
|
|
|
|
// Count the number of different output branches that point to blocks outside
|
|
// of the region.
|
|
DenseSet<BasicBlock *> FoundBlocks;
|
|
for (IRInstructionData &ID : Candidate) {
|
|
if (!isa<BranchInst>(ID.Inst))
|
|
continue;
|
|
|
|
for (Value *V : ID.OperVals) {
|
|
BasicBlock *BB = static_cast<BasicBlock *>(V);
|
|
if (!CandidateBlocks.contains(BB) && FoundBlocks.insert(BB).second)
|
|
NumOutputBranches++;
|
|
}
|
|
}
|
|
|
|
CurrentGroup.BranchesToOutside = NumOutputBranches;
|
|
|
|
for (const ArrayRef<unsigned> &OutputUse :
|
|
CurrentGroup.OutputGVNCombinations) {
|
|
for (unsigned OutputCanon : OutputUse) {
|
|
Value *V = findOutputValueInRegion(FirstRegion, OutputCanon);
|
|
InstructionCost StoreCost =
|
|
TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0,
|
|
TargetTransformInfo::TCK_CodeSize);
|
|
|
|
// An instruction cost is added for each store set that needs to occur for
|
|
// various output combinations inside the function, plus a branch to
|
|
// return to the exit block.
|
|
LLVM_DEBUG(dbgs() << "Adding: " << StoreCost
|
|
<< " instructions to cost for output of type "
|
|
<< *V->getType() << "\n");
|
|
OutputCost += StoreCost * NumOutputBranches;
|
|
}
|
|
|
|
InstructionCost BranchCost =
|
|
TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize);
|
|
LLVM_DEBUG(dbgs() << "Adding " << BranchCost << " to the current cost for"
|
|
<< " a branch instruction\n");
|
|
OutputCost += BranchCost * NumOutputBranches;
|
|
}
|
|
|
|
// If there is more than one output scheme, we must have a comparison and
|
|
// branch for each different item in the switch statement.
|
|
if (CurrentGroup.OutputGVNCombinations.size() > 1) {
|
|
InstructionCost ComparisonCost = TTI.getCmpSelInstrCost(
|
|
Instruction::ICmp, Type::getInt32Ty(M.getContext()),
|
|
Type::getInt32Ty(M.getContext()), CmpInst::BAD_ICMP_PREDICATE,
|
|
TargetTransformInfo::TCK_CodeSize);
|
|
InstructionCost BranchCost =
|
|
TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize);
|
|
|
|
unsigned DifferentBlocks = CurrentGroup.OutputGVNCombinations.size();
|
|
InstructionCost TotalCost = ComparisonCost * BranchCost * DifferentBlocks;
|
|
|
|
LLVM_DEBUG(dbgs() << "Adding: " << TotalCost
|
|
<< " instructions for each switch case for each different"
|
|
<< " output path in a function\n");
|
|
OutputCost += TotalCost * NumOutputBranches;
|
|
}
|
|
|
|
return OutputCost;
|
|
}
|
|
|
|
void IROutliner::findCostBenefit(Module &M, OutlinableGroup &CurrentGroup) {
|
|
InstructionCost RegionBenefit = findBenefitFromAllRegions(CurrentGroup);
|
|
CurrentGroup.Benefit += RegionBenefit;
|
|
LLVM_DEBUG(dbgs() << "Current Benefit: " << CurrentGroup.Benefit << "\n");
|
|
|
|
InstructionCost OutputReloadCost = findCostOutputReloads(CurrentGroup);
|
|
CurrentGroup.Cost += OutputReloadCost;
|
|
LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
|
|
|
|
InstructionCost AverageRegionBenefit =
|
|
RegionBenefit / CurrentGroup.Regions.size();
|
|
unsigned OverallArgumentNum = CurrentGroup.ArgumentTypes.size();
|
|
unsigned NumRegions = CurrentGroup.Regions.size();
|
|
TargetTransformInfo &TTI =
|
|
getTTI(*CurrentGroup.Regions[0]->Candidate->getFunction());
|
|
|
|
// We add one region to the cost once, to account for the instructions added
|
|
// inside of the newly created function.
|
|
LLVM_DEBUG(dbgs() << "Adding: " << AverageRegionBenefit
|
|
<< " instructions to cost for body of new function.\n");
|
|
CurrentGroup.Cost += AverageRegionBenefit;
|
|
LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
|
|
|
|
// For each argument, we must add an instruction for loading the argument
|
|
// out of the register and into a value inside of the newly outlined function.
|
|
LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum
|
|
<< " instructions to cost for each argument in the new"
|
|
<< " function.\n");
|
|
CurrentGroup.Cost +=
|
|
OverallArgumentNum * TargetTransformInfo::TCC_Basic;
|
|
LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
|
|
|
|
// Each argument needs to either be loaded into a register or onto the stack.
|
|
// Some arguments will only be loaded into the stack once the argument
|
|
// registers are filled.
|
|
LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum
|
|
<< " instructions to cost for each argument in the new"
|
|
<< " function " << NumRegions << " times for the "
|
|
<< "needed argument handling at the call site.\n");
|
|
CurrentGroup.Cost +=
|
|
2 * OverallArgumentNum * TargetTransformInfo::TCC_Basic * NumRegions;
|
|
LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
|
|
|
|
CurrentGroup.Cost += findCostForOutputBlocks(M, CurrentGroup, TTI);
|
|
LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
|
|
}
|
|
|
|
void IROutliner::updateOutputMapping(OutlinableRegion &Region,
|
|
ArrayRef<Value *> Outputs,
|
|
LoadInst *LI) {
|
|
// For and load instructions following the call
|
|
Value *Operand = LI->getPointerOperand();
|
|
std::optional<unsigned> OutputIdx;
|
|
// Find if the operand it is an output register.
|
|
for (unsigned ArgIdx = Region.NumExtractedInputs;
|
|
ArgIdx < Region.Call->arg_size(); ArgIdx++) {
|
|
if (Operand == Region.Call->getArgOperand(ArgIdx)) {
|
|
OutputIdx = ArgIdx - Region.NumExtractedInputs;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If we found an output register, place a mapping of the new value
|
|
// to the original in the mapping.
|
|
if (!OutputIdx)
|
|
return;
|
|
|
|
if (!OutputMappings.contains(Outputs[*OutputIdx])) {
|
|
LLVM_DEBUG(dbgs() << "Mapping extracted output " << *LI << " to "
|
|
<< *Outputs[*OutputIdx] << "\n");
|
|
OutputMappings.insert(std::make_pair(LI, Outputs[*OutputIdx]));
|
|
} else {
|
|
Value *Orig = OutputMappings.find(Outputs[*OutputIdx])->second;
|
|
LLVM_DEBUG(dbgs() << "Mapping extracted output " << *Orig << " to "
|
|
<< *Outputs[*OutputIdx] << "\n");
|
|
OutputMappings.insert(std::make_pair(LI, Orig));
|
|
}
|
|
}
|
|
|
|
bool IROutliner::extractSection(OutlinableRegion &Region) {
|
|
SetVector<Value *> ArgInputs, Outputs, SinkCands;
|
|
assert(Region.StartBB && "StartBB for the OutlinableRegion is nullptr!");
|
|
BasicBlock *InitialStart = Region.StartBB;
|
|
Function *OrigF = Region.StartBB->getParent();
|
|
CodeExtractorAnalysisCache CEAC(*OrigF);
|
|
Region.ExtractedFunction =
|
|
Region.CE->extractCodeRegion(CEAC, ArgInputs, Outputs);
|
|
|
|
// If the extraction was successful, find the BasicBlock, and reassign the
|
|
// OutlinableRegion blocks
|
|
if (!Region.ExtractedFunction) {
|
|
LLVM_DEBUG(dbgs() << "CodeExtractor failed to outline " << Region.StartBB
|
|
<< "\n");
|
|
Region.reattachCandidate();
|
|
return false;
|
|
}
|
|
|
|
// Get the block containing the called branch, and reassign the blocks as
|
|
// necessary. If the original block still exists, it is because we ended on
|
|
// a branch instruction, and so we move the contents into the block before
|
|
// and assign the previous block correctly.
|
|
User *InstAsUser = Region.ExtractedFunction->user_back();
|
|
BasicBlock *RewrittenBB = cast<Instruction>(InstAsUser)->getParent();
|
|
Region.PrevBB = RewrittenBB->getSinglePredecessor();
|
|
assert(Region.PrevBB && "PrevBB is nullptr?");
|
|
if (Region.PrevBB == InitialStart) {
|
|
BasicBlock *NewPrev = InitialStart->getSinglePredecessor();
|
|
Instruction *BI = NewPrev->getTerminator();
|
|
BI->eraseFromParent();
|
|
moveBBContents(*InitialStart, *NewPrev);
|
|
Region.PrevBB = NewPrev;
|
|
InitialStart->eraseFromParent();
|
|
}
|
|
|
|
Region.StartBB = RewrittenBB;
|
|
Region.EndBB = RewrittenBB;
|
|
|
|
// The sequences of outlinable regions has now changed. We must fix the
|
|
// IRInstructionDataList for consistency. Although they may not be illegal
|
|
// instructions, they should not be compared with anything else as they
|
|
// should not be outlined in this round. So marking these as illegal is
|
|
// allowed.
|
|
IRInstructionDataList *IDL = Region.Candidate->front()->IDL;
|
|
Instruction *BeginRewritten = &*RewrittenBB->begin();
|
|
Instruction *EndRewritten = &*RewrittenBB->begin();
|
|
Region.NewFront = new (InstDataAllocator.Allocate()) IRInstructionData(
|
|
*BeginRewritten, InstructionClassifier.visit(*BeginRewritten), *IDL);
|
|
Region.NewBack = new (InstDataAllocator.Allocate()) IRInstructionData(
|
|
*EndRewritten, InstructionClassifier.visit(*EndRewritten), *IDL);
|
|
|
|
// Insert the first IRInstructionData of the new region in front of the
|
|
// first IRInstructionData of the IRSimilarityCandidate.
|
|
IDL->insert(Region.Candidate->begin(), *Region.NewFront);
|
|
// Insert the first IRInstructionData of the new region after the
|
|
// last IRInstructionData of the IRSimilarityCandidate.
|
|
IDL->insert(Region.Candidate->end(), *Region.NewBack);
|
|
// Remove the IRInstructionData from the IRSimilarityCandidate.
|
|
IDL->erase(Region.Candidate->begin(), std::prev(Region.Candidate->end()));
|
|
|
|
assert(RewrittenBB != nullptr &&
|
|
"Could not find a predecessor after extraction!");
|
|
|
|
// Iterate over the new set of instructions to find the new call
|
|
// instruction.
|
|
for (Instruction &I : *RewrittenBB)
|
|
if (CallInst *CI = dyn_cast<CallInst>(&I)) {
|
|
if (Region.ExtractedFunction == CI->getCalledFunction())
|
|
Region.Call = CI;
|
|
} else if (LoadInst *LI = dyn_cast<LoadInst>(&I))
|
|
updateOutputMapping(Region, Outputs.getArrayRef(), LI);
|
|
Region.reattachCandidate();
|
|
return true;
|
|
}
|
|
|
|
unsigned IROutliner::doOutline(Module &M) {
|
|
// Find the possible similarity sections.
|
|
InstructionClassifier.EnableBranches = !DisableBranches;
|
|
InstructionClassifier.EnableIndirectCalls = !DisableIndirectCalls;
|
|
InstructionClassifier.EnableIntrinsics = !DisableIntrinsics;
|
|
|
|
IRSimilarityIdentifier &Identifier = getIRSI(M);
|
|
SimilarityGroupList &SimilarityCandidates = *Identifier.getSimilarity();
|
|
|
|
// Sort them by size of extracted sections
|
|
unsigned OutlinedFunctionNum = 0;
|
|
// If we only have one SimilarityGroup in SimilarityCandidates, we do not have
|
|
// to sort them by the potential number of instructions to be outlined
|
|
if (SimilarityCandidates.size() > 1)
|
|
llvm::stable_sort(SimilarityCandidates,
|
|
[](const std::vector<IRSimilarityCandidate> &LHS,
|
|
const std::vector<IRSimilarityCandidate> &RHS) {
|
|
return LHS[0].getLength() * LHS.size() >
|
|
RHS[0].getLength() * RHS.size();
|
|
});
|
|
// Creating OutlinableGroups for each SimilarityCandidate to be used in
|
|
// each of the following for loops to avoid making an allocator.
|
|
std::vector<OutlinableGroup> PotentialGroups(SimilarityCandidates.size());
|
|
|
|
DenseSet<unsigned> NotSame;
|
|
std::vector<OutlinableGroup *> NegativeCostGroups;
|
|
std::vector<OutlinableRegion *> OutlinedRegions;
|
|
// Iterate over the possible sets of similarity.
|
|
unsigned PotentialGroupIdx = 0;
|
|
for (SimilarityGroup &CandidateVec : SimilarityCandidates) {
|
|
OutlinableGroup &CurrentGroup = PotentialGroups[PotentialGroupIdx++];
|
|
|
|
// Remove entries that were previously outlined
|
|
pruneIncompatibleRegions(CandidateVec, CurrentGroup);
|
|
|
|
// We pruned the number of regions to 0 to 1, meaning that it's not worth
|
|
// trying to outlined since there is no compatible similar instance of this
|
|
// code.
|
|
if (CurrentGroup.Regions.size() < 2)
|
|
continue;
|
|
|
|
// Determine if there are any values that are the same constant throughout
|
|
// each section in the set.
|
|
NotSame.clear();
|
|
CurrentGroup.findSameConstants(NotSame);
|
|
|
|
if (CurrentGroup.IgnoreGroup)
|
|
continue;
|
|
|
|
// Create a CodeExtractor for each outlinable region. Identify inputs and
|
|
// outputs for each section using the code extractor and create the argument
|
|
// types for the Aggregate Outlining Function.
|
|
OutlinedRegions.clear();
|
|
for (OutlinableRegion *OS : CurrentGroup.Regions) {
|
|
// Break the outlinable region out of its parent BasicBlock into its own
|
|
// BasicBlocks (see function implementation).
|
|
OS->splitCandidate();
|
|
|
|
// There's a chance that when the region is split, extra instructions are
|
|
// added to the region. This makes the region no longer viable
|
|
// to be split, so we ignore it for outlining.
|
|
if (!OS->CandidateSplit)
|
|
continue;
|
|
|
|
SmallVector<BasicBlock *> BE;
|
|
DenseSet<BasicBlock *> BlocksInRegion;
|
|
OS->Candidate->getBasicBlocks(BlocksInRegion, BE);
|
|
OS->CE = new (ExtractorAllocator.Allocate())
|
|
CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false,
|
|
false, nullptr, "outlined");
|
|
findAddInputsOutputs(M, *OS, NotSame);
|
|
if (!OS->IgnoreRegion)
|
|
OutlinedRegions.push_back(OS);
|
|
|
|
// We recombine the blocks together now that we have gathered all the
|
|
// needed information.
|
|
OS->reattachCandidate();
|
|
}
|
|
|
|
CurrentGroup.Regions = std::move(OutlinedRegions);
|
|
|
|
if (CurrentGroup.Regions.empty())
|
|
continue;
|
|
|
|
CurrentGroup.collectGVNStoreSets(M);
|
|
|
|
if (CostModel)
|
|
findCostBenefit(M, CurrentGroup);
|
|
|
|
// If we are adhering to the cost model, skip those groups where the cost
|
|
// outweighs the benefits.
|
|
if (CurrentGroup.Cost >= CurrentGroup.Benefit && CostModel) {
|
|
OptimizationRemarkEmitter &ORE =
|
|
getORE(*CurrentGroup.Regions[0]->Candidate->getFunction());
|
|
ORE.emit([&]() {
|
|
IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate;
|
|
OptimizationRemarkMissed R(DEBUG_TYPE, "WouldNotDecreaseSize",
|
|
C->frontInstruction());
|
|
R << "did not outline "
|
|
<< ore::NV(std::to_string(CurrentGroup.Regions.size()))
|
|
<< " regions due to estimated increase of "
|
|
<< ore::NV("InstructionIncrease",
|
|
CurrentGroup.Cost - CurrentGroup.Benefit)
|
|
<< " instructions at locations ";
|
|
interleave(
|
|
CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(),
|
|
[&R](OutlinableRegion *Region) {
|
|
R << ore::NV(
|
|
"DebugLoc",
|
|
Region->Candidate->frontInstruction()->getDebugLoc());
|
|
},
|
|
[&R]() { R << " "; });
|
|
return R;
|
|
});
|
|
continue;
|
|
}
|
|
|
|
NegativeCostGroups.push_back(&CurrentGroup);
|
|
}
|
|
|
|
ExtractorAllocator.DestroyAll();
|
|
|
|
if (NegativeCostGroups.size() > 1)
|
|
stable_sort(NegativeCostGroups,
|
|
[](const OutlinableGroup *LHS, const OutlinableGroup *RHS) {
|
|
return LHS->Benefit - LHS->Cost > RHS->Benefit - RHS->Cost;
|
|
});
|
|
|
|
std::vector<Function *> FuncsToRemove;
|
|
for (OutlinableGroup *CG : NegativeCostGroups) {
|
|
OutlinableGroup &CurrentGroup = *CG;
|
|
|
|
OutlinedRegions.clear();
|
|
for (OutlinableRegion *Region : CurrentGroup.Regions) {
|
|
// We check whether our region is compatible with what has already been
|
|
// outlined, and whether we need to ignore this item.
|
|
if (!isCompatibleWithAlreadyOutlinedCode(*Region))
|
|
continue;
|
|
OutlinedRegions.push_back(Region);
|
|
}
|
|
|
|
if (OutlinedRegions.size() < 2)
|
|
continue;
|
|
|
|
// Reestimate the cost and benefit of the OutlinableGroup. Continue only if
|
|
// we are still outlining enough regions to make up for the added cost.
|
|
CurrentGroup.Regions = std::move(OutlinedRegions);
|
|
if (CostModel) {
|
|
CurrentGroup.Benefit = 0;
|
|
CurrentGroup.Cost = 0;
|
|
findCostBenefit(M, CurrentGroup);
|
|
if (CurrentGroup.Cost >= CurrentGroup.Benefit)
|
|
continue;
|
|
}
|
|
OutlinedRegions.clear();
|
|
for (OutlinableRegion *Region : CurrentGroup.Regions) {
|
|
Region->splitCandidate();
|
|
if (!Region->CandidateSplit)
|
|
continue;
|
|
OutlinedRegions.push_back(Region);
|
|
}
|
|
|
|
CurrentGroup.Regions = std::move(OutlinedRegions);
|
|
if (CurrentGroup.Regions.size() < 2) {
|
|
for (OutlinableRegion *R : CurrentGroup.Regions)
|
|
R->reattachCandidate();
|
|
continue;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Outlining regions with cost " << CurrentGroup.Cost
|
|
<< " and benefit " << CurrentGroup.Benefit << "\n");
|
|
|
|
// Create functions out of all the sections, and mark them as outlined.
|
|
OutlinedRegions.clear();
|
|
for (OutlinableRegion *OS : CurrentGroup.Regions) {
|
|
SmallVector<BasicBlock *> BE;
|
|
DenseSet<BasicBlock *> BlocksInRegion;
|
|
OS->Candidate->getBasicBlocks(BlocksInRegion, BE);
|
|
OS->CE = new (ExtractorAllocator.Allocate())
|
|
CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false,
|
|
false, nullptr, "outlined");
|
|
bool FunctionOutlined = extractSection(*OS);
|
|
if (FunctionOutlined) {
|
|
unsigned StartIdx = OS->Candidate->getStartIdx();
|
|
unsigned EndIdx = OS->Candidate->getEndIdx();
|
|
for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++)
|
|
Outlined.insert(Idx);
|
|
|
|
OutlinedRegions.push_back(OS);
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Outlined " << OutlinedRegions.size()
|
|
<< " with benefit " << CurrentGroup.Benefit
|
|
<< " and cost " << CurrentGroup.Cost << "\n");
|
|
|
|
CurrentGroup.Regions = std::move(OutlinedRegions);
|
|
|
|
if (CurrentGroup.Regions.empty())
|
|
continue;
|
|
|
|
OptimizationRemarkEmitter &ORE =
|
|
getORE(*CurrentGroup.Regions[0]->Call->getFunction());
|
|
ORE.emit([&]() {
|
|
IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate;
|
|
OptimizationRemark R(DEBUG_TYPE, "Outlined", C->front()->Inst);
|
|
R << "outlined " << ore::NV(std::to_string(CurrentGroup.Regions.size()))
|
|
<< " regions with decrease of "
|
|
<< ore::NV("Benefit", CurrentGroup.Benefit - CurrentGroup.Cost)
|
|
<< " instructions at locations ";
|
|
interleave(
|
|
CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(),
|
|
[&R](OutlinableRegion *Region) {
|
|
R << ore::NV("DebugLoc",
|
|
Region->Candidate->frontInstruction()->getDebugLoc());
|
|
},
|
|
[&R]() { R << " "; });
|
|
return R;
|
|
});
|
|
|
|
deduplicateExtractedSections(M, CurrentGroup, FuncsToRemove,
|
|
OutlinedFunctionNum);
|
|
}
|
|
|
|
for (Function *F : FuncsToRemove)
|
|
F->eraseFromParent();
|
|
|
|
return OutlinedFunctionNum;
|
|
}
|
|
|
|
bool IROutliner::run(Module &M) {
|
|
CostModel = !NoCostModel;
|
|
OutlineFromLinkODRs = EnableLinkOnceODRIROutlining;
|
|
|
|
return doOutline(M) > 0;
|
|
}
|
|
|
|
PreservedAnalyses IROutlinerPass::run(Module &M, ModuleAnalysisManager &AM) {
|
|
auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
|
|
|
|
std::function<TargetTransformInfo &(Function &)> GTTI =
|
|
[&FAM](Function &F) -> TargetTransformInfo & {
|
|
return FAM.getResult<TargetIRAnalysis>(F);
|
|
};
|
|
|
|
std::function<IRSimilarityIdentifier &(Module &)> GIRSI =
|
|
[&AM](Module &M) -> IRSimilarityIdentifier & {
|
|
return AM.getResult<IRSimilarityAnalysis>(M);
|
|
};
|
|
|
|
std::unique_ptr<OptimizationRemarkEmitter> ORE;
|
|
std::function<OptimizationRemarkEmitter &(Function &)> GORE =
|
|
[&ORE](Function &F) -> OptimizationRemarkEmitter & {
|
|
ORE.reset(new OptimizationRemarkEmitter(&F));
|
|
return *ORE;
|
|
};
|
|
|
|
if (IROutliner(GTTI, GIRSI, GORE).run(M))
|
|
return PreservedAnalyses::none();
|
|
return PreservedAnalyses::all();
|
|
}
|